x86,mm: fix pte_special versus pte_numa
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 /*
122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123 */
124 static int __init init_zero_pfn(void)
125 {
126 zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 return 0;
128 }
129 core_initcall(init_zero_pfn);
130
131
132 #if defined(SPLIT_RSS_COUNTING)
133
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 int i;
137
138 for (i = 0; i < NR_MM_COUNTERS; i++) {
139 if (current->rss_stat.count[i]) {
140 add_mm_counter(mm, i, current->rss_stat.count[i]);
141 current->rss_stat.count[i] = 0;
142 }
143 }
144 current->rss_stat.events = 0;
145 }
146
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 struct task_struct *task = current;
150
151 if (likely(task->mm == mm))
152 task->rss_stat.count[member] += val;
153 else
154 add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH (64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 if (unlikely(task != current))
164 return;
165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176
177 #endif /* SPLIT_RSS_COUNTING */
178
179 #ifdef HAVE_GENERIC_MMU_GATHER
180
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 struct mmu_gather_batch *batch;
184
185 batch = tlb->active;
186 if (batch->next) {
187 tlb->active = batch->next;
188 return 1;
189 }
190
191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 return 0;
193
194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 if (!batch)
196 return 0;
197
198 tlb->batch_count++;
199 batch->next = NULL;
200 batch->nr = 0;
201 batch->max = MAX_GATHER_BATCH;
202
203 tlb->active->next = batch;
204 tlb->active = batch;
205
206 return 1;
207 }
208
209 /* tlb_gather_mmu
210 * Called to initialize an (on-stack) mmu_gather structure for page-table
211 * tear-down from @mm. The @fullmm argument is used when @mm is without
212 * users and we're going to destroy the full address space (exit/execve).
213 */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216 tlb->mm = mm;
217
218 /* Is it from 0 to ~0? */
219 tlb->fullmm = !(start | (end+1));
220 tlb->need_flush_all = 0;
221 tlb->start = start;
222 tlb->end = end;
223 tlb->need_flush = 0;
224 tlb->local.next = NULL;
225 tlb->local.nr = 0;
226 tlb->local.max = ARRAY_SIZE(tlb->__pages);
227 tlb->active = &tlb->local;
228 tlb->batch_count = 0;
229
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 tlb->batch = NULL;
232 #endif
233 }
234
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
236 {
237 tlb->need_flush = 0;
238 tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 tlb_table_flush(tlb);
241 #endif
242 }
243
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245 {
246 struct mmu_gather_batch *batch;
247
248 for (batch = &tlb->local; batch; batch = batch->next) {
249 free_pages_and_swap_cache(batch->pages, batch->nr);
250 batch->nr = 0;
251 }
252 tlb->active = &tlb->local;
253 }
254
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257 if (!tlb->need_flush)
258 return;
259 tlb_flush_mmu_tlbonly(tlb);
260 tlb_flush_mmu_free(tlb);
261 }
262
263 /* tlb_finish_mmu
264 * Called at the end of the shootdown operation to free up any resources
265 * that were required.
266 */
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268 {
269 struct mmu_gather_batch *batch, *next;
270
271 tlb_flush_mmu(tlb);
272
273 /* keep the page table cache within bounds */
274 check_pgt_cache();
275
276 for (batch = tlb->local.next; batch; batch = next) {
277 next = batch->next;
278 free_pages((unsigned long)batch, 0);
279 }
280 tlb->local.next = NULL;
281 }
282
283 /* __tlb_remove_page
284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285 * handling the additional races in SMP caused by other CPUs caching valid
286 * mappings in their TLBs. Returns the number of free page slots left.
287 * When out of page slots we must call tlb_flush_mmu().
288 */
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290 {
291 struct mmu_gather_batch *batch;
292
293 VM_BUG_ON(!tlb->need_flush);
294
295 batch = tlb->active;
296 batch->pages[batch->nr++] = page;
297 if (batch->nr == batch->max) {
298 if (!tlb_next_batch(tlb))
299 return 0;
300 batch = tlb->active;
301 }
302 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
303
304 return batch->max - batch->nr;
305 }
306
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310
311 /*
312 * See the comment near struct mmu_table_batch.
313 */
314
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317 /* Simply deliver the interrupt */
318 }
319
320 static void tlb_remove_table_one(void *table)
321 {
322 /*
323 * This isn't an RCU grace period and hence the page-tables cannot be
324 * assumed to be actually RCU-freed.
325 *
326 * It is however sufficient for software page-table walkers that rely on
327 * IRQ disabling. See the comment near struct mmu_table_batch.
328 */
329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 __tlb_remove_table(table);
331 }
332
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335 struct mmu_table_batch *batch;
336 int i;
337
338 batch = container_of(head, struct mmu_table_batch, rcu);
339
340 for (i = 0; i < batch->nr; i++)
341 __tlb_remove_table(batch->tables[i]);
342
343 free_page((unsigned long)batch);
344 }
345
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 if (*batch) {
351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 *batch = NULL;
353 }
354 }
355
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358 struct mmu_table_batch **batch = &tlb->batch;
359
360 tlb->need_flush = 1;
361
362 /*
363 * When there's less then two users of this mm there cannot be a
364 * concurrent page-table walk.
365 */
366 if (atomic_read(&tlb->mm->mm_users) < 2) {
367 __tlb_remove_table(table);
368 return;
369 }
370
371 if (*batch == NULL) {
372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 if (*batch == NULL) {
374 tlb_remove_table_one(table);
375 return;
376 }
377 (*batch)->nr = 0;
378 }
379 (*batch)->tables[(*batch)->nr++] = table;
380 if ((*batch)->nr == MAX_TABLE_BATCH)
381 tlb_table_flush(tlb);
382 }
383
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385
386 /*
387 * Note: this doesn't free the actual pages themselves. That
388 * has been handled earlier when unmapping all the memory regions.
389 */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 unsigned long addr)
392 {
393 pgtable_t token = pmd_pgtable(*pmd);
394 pmd_clear(pmd);
395 pte_free_tlb(tlb, token, addr);
396 atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 unsigned long addr, unsigned long end,
401 unsigned long floor, unsigned long ceiling)
402 {
403 pmd_t *pmd;
404 unsigned long next;
405 unsigned long start;
406
407 start = addr;
408 pmd = pmd_offset(pud, addr);
409 do {
410 next = pmd_addr_end(addr, end);
411 if (pmd_none_or_clear_bad(pmd))
412 continue;
413 free_pte_range(tlb, pmd, addr);
414 } while (pmd++, addr = next, addr != end);
415
416 start &= PUD_MASK;
417 if (start < floor)
418 return;
419 if (ceiling) {
420 ceiling &= PUD_MASK;
421 if (!ceiling)
422 return;
423 }
424 if (end - 1 > ceiling - 1)
425 return;
426
427 pmd = pmd_offset(pud, start);
428 pud_clear(pud);
429 pmd_free_tlb(tlb, pmd, start);
430 }
431
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 unsigned long addr, unsigned long end,
434 unsigned long floor, unsigned long ceiling)
435 {
436 pud_t *pud;
437 unsigned long next;
438 unsigned long start;
439
440 start = addr;
441 pud = pud_offset(pgd, addr);
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
446 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 } while (pud++, addr = next, addr != end);
448
449 start &= PGDIR_MASK;
450 if (start < floor)
451 return;
452 if (ceiling) {
453 ceiling &= PGDIR_MASK;
454 if (!ceiling)
455 return;
456 }
457 if (end - 1 > ceiling - 1)
458 return;
459
460 pud = pud_offset(pgd, start);
461 pgd_clear(pgd);
462 pud_free_tlb(tlb, pud, start);
463 }
464
465 /*
466 * This function frees user-level page tables of a process.
467 */
468 void free_pgd_range(struct mmu_gather *tlb,
469 unsigned long addr, unsigned long end,
470 unsigned long floor, unsigned long ceiling)
471 {
472 pgd_t *pgd;
473 unsigned long next;
474
475 /*
476 * The next few lines have given us lots of grief...
477 *
478 * Why are we testing PMD* at this top level? Because often
479 * there will be no work to do at all, and we'd prefer not to
480 * go all the way down to the bottom just to discover that.
481 *
482 * Why all these "- 1"s? Because 0 represents both the bottom
483 * of the address space and the top of it (using -1 for the
484 * top wouldn't help much: the masks would do the wrong thing).
485 * The rule is that addr 0 and floor 0 refer to the bottom of
486 * the address space, but end 0 and ceiling 0 refer to the top
487 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 * that end 0 case should be mythical).
489 *
490 * Wherever addr is brought up or ceiling brought down, we must
491 * be careful to reject "the opposite 0" before it confuses the
492 * subsequent tests. But what about where end is brought down
493 * by PMD_SIZE below? no, end can't go down to 0 there.
494 *
495 * Whereas we round start (addr) and ceiling down, by different
496 * masks at different levels, in order to test whether a table
497 * now has no other vmas using it, so can be freed, we don't
498 * bother to round floor or end up - the tests don't need that.
499 */
500
501 addr &= PMD_MASK;
502 if (addr < floor) {
503 addr += PMD_SIZE;
504 if (!addr)
505 return;
506 }
507 if (ceiling) {
508 ceiling &= PMD_MASK;
509 if (!ceiling)
510 return;
511 }
512 if (end - 1 > ceiling - 1)
513 end -= PMD_SIZE;
514 if (addr > end - 1)
515 return;
516
517 pgd = pgd_offset(tlb->mm, addr);
518 do {
519 next = pgd_addr_end(addr, end);
520 if (pgd_none_or_clear_bad(pgd))
521 continue;
522 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 } while (pgd++, addr = next, addr != end);
524 }
525
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 unsigned long floor, unsigned long ceiling)
528 {
529 while (vma) {
530 struct vm_area_struct *next = vma->vm_next;
531 unsigned long addr = vma->vm_start;
532
533 /*
534 * Hide vma from rmap and truncate_pagecache before freeing
535 * pgtables
536 */
537 unlink_anon_vmas(vma);
538 unlink_file_vma(vma);
539
540 if (is_vm_hugetlb_page(vma)) {
541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 floor, next? next->vm_start: ceiling);
543 } else {
544 /*
545 * Optimization: gather nearby vmas into one call down
546 */
547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 && !is_vm_hugetlb_page(next)) {
549 vma = next;
550 next = vma->vm_next;
551 unlink_anon_vmas(vma);
552 unlink_file_vma(vma);
553 }
554 free_pgd_range(tlb, addr, vma->vm_end,
555 floor, next? next->vm_start: ceiling);
556 }
557 vma = next;
558 }
559 }
560
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 pmd_t *pmd, unsigned long address)
563 {
564 spinlock_t *ptl;
565 pgtable_t new = pte_alloc_one(mm, address);
566 int wait_split_huge_page;
567 if (!new)
568 return -ENOMEM;
569
570 /*
571 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 * visible before the pte is made visible to other CPUs by being
573 * put into page tables.
574 *
575 * The other side of the story is the pointer chasing in the page
576 * table walking code (when walking the page table without locking;
577 * ie. most of the time). Fortunately, these data accesses consist
578 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 * being the notable exception) will already guarantee loads are
580 * seen in-order. See the alpha page table accessors for the
581 * smp_read_barrier_depends() barriers in page table walking code.
582 */
583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584
585 ptl = pmd_lock(mm, pmd);
586 wait_split_huge_page = 0;
587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
588 atomic_long_inc(&mm->nr_ptes);
589 pmd_populate(mm, pmd, new);
590 new = NULL;
591 } else if (unlikely(pmd_trans_splitting(*pmd)))
592 wait_split_huge_page = 1;
593 spin_unlock(ptl);
594 if (new)
595 pte_free(mm, new);
596 if (wait_split_huge_page)
597 wait_split_huge_page(vma->anon_vma, pmd);
598 return 0;
599 }
600
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 if (!new)
605 return -ENOMEM;
606
607 smp_wmb(); /* See comment in __pte_alloc */
608
609 spin_lock(&init_mm.page_table_lock);
610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
611 pmd_populate_kernel(&init_mm, pmd, new);
612 new = NULL;
613 } else
614 VM_BUG_ON(pmd_trans_splitting(*pmd));
615 spin_unlock(&init_mm.page_table_lock);
616 if (new)
617 pte_free_kernel(&init_mm, new);
618 return 0;
619 }
620
621 static inline void init_rss_vec(int *rss)
622 {
623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628 int i;
629
630 if (current->mm == mm)
631 sync_mm_rss(mm);
632 for (i = 0; i < NR_MM_COUNTERS; i++)
633 if (rss[i])
634 add_mm_counter(mm, i, rss[i]);
635 }
636
637 /*
638 * This function is called to print an error when a bad pte
639 * is found. For example, we might have a PFN-mapped pte in
640 * a region that doesn't allow it.
641 *
642 * The calling function must still handle the error.
643 */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 pte_t pte, struct page *page)
646 {
647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 pud_t *pud = pud_offset(pgd, addr);
649 pmd_t *pmd = pmd_offset(pud, addr);
650 struct address_space *mapping;
651 pgoff_t index;
652 static unsigned long resume;
653 static unsigned long nr_shown;
654 static unsigned long nr_unshown;
655
656 /*
657 * Allow a burst of 60 reports, then keep quiet for that minute;
658 * or allow a steady drip of one report per second.
659 */
660 if (nr_shown == 60) {
661 if (time_before(jiffies, resume)) {
662 nr_unshown++;
663 return;
664 }
665 if (nr_unshown) {
666 printk(KERN_ALERT
667 "BUG: Bad page map: %lu messages suppressed\n",
668 nr_unshown);
669 nr_unshown = 0;
670 }
671 nr_shown = 0;
672 }
673 if (nr_shown++ == 0)
674 resume = jiffies + 60 * HZ;
675
676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 index = linear_page_index(vma, addr);
678
679 printk(KERN_ALERT
680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
681 current->comm,
682 (long long)pte_val(pte), (long long)pmd_val(*pmd));
683 if (page)
684 dump_page(page, "bad pte");
685 printk(KERN_ALERT
686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 /*
689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 */
691 if (vma->vm_ops)
692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 vma->vm_ops->fault);
694 if (vma->vm_file)
695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 vma->vm_file->f_op->mmap);
697 dump_stack();
698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700
701 /*
702 * vm_normal_page -- This function gets the "struct page" associated with a pte.
703 *
704 * "Special" mappings do not wish to be associated with a "struct page" (either
705 * it doesn't exist, or it exists but they don't want to touch it). In this
706 * case, NULL is returned here. "Normal" mappings do have a struct page.
707 *
708 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709 * pte bit, in which case this function is trivial. Secondly, an architecture
710 * may not have a spare pte bit, which requires a more complicated scheme,
711 * described below.
712 *
713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714 * special mapping (even if there are underlying and valid "struct pages").
715 * COWed pages of a VM_PFNMAP are always normal.
716 *
717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720 * mapping will always honor the rule
721 *
722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723 *
724 * And for normal mappings this is false.
725 *
726 * This restricts such mappings to be a linear translation from virtual address
727 * to pfn. To get around this restriction, we allow arbitrary mappings so long
728 * as the vma is not a COW mapping; in that case, we know that all ptes are
729 * special (because none can have been COWed).
730 *
731 *
732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733 *
734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735 * page" backing, however the difference is that _all_ pages with a struct
736 * page (that is, those where pfn_valid is true) are refcounted and considered
737 * normal pages by the VM. The disadvantage is that pages are refcounted
738 * (which can be slower and simply not an option for some PFNMAP users). The
739 * advantage is that we don't have to follow the strict linearity rule of
740 * PFNMAP mappings in order to support COWable mappings.
741 *
742 */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 pte_t pte)
750 {
751 unsigned long pfn = pte_pfn(pte);
752
753 if (HAVE_PTE_SPECIAL) {
754 if (likely(!pte_special(pte)))
755 goto check_pfn;
756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 return NULL;
758 if (!is_zero_pfn(pfn))
759 print_bad_pte(vma, addr, pte, NULL);
760 return NULL;
761 }
762
763 /* !HAVE_PTE_SPECIAL case follows: */
764
765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 if (vma->vm_flags & VM_MIXEDMAP) {
767 if (!pfn_valid(pfn))
768 return NULL;
769 goto out;
770 } else {
771 unsigned long off;
772 off = (addr - vma->vm_start) >> PAGE_SHIFT;
773 if (pfn == vma->vm_pgoff + off)
774 return NULL;
775 if (!is_cow_mapping(vma->vm_flags))
776 return NULL;
777 }
778 }
779
780 if (is_zero_pfn(pfn))
781 return NULL;
782 check_pfn:
783 if (unlikely(pfn > highest_memmap_pfn)) {
784 print_bad_pte(vma, addr, pte, NULL);
785 return NULL;
786 }
787
788 /*
789 * NOTE! We still have PageReserved() pages in the page tables.
790 * eg. VDSO mappings can cause them to exist.
791 */
792 out:
793 return pfn_to_page(pfn);
794 }
795
796 /*
797 * copy one vm_area from one task to the other. Assumes the page tables
798 * already present in the new task to be cleared in the whole range
799 * covered by this vma.
800 */
801
802 static inline unsigned long
803 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
804 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
805 unsigned long addr, int *rss)
806 {
807 unsigned long vm_flags = vma->vm_flags;
808 pte_t pte = *src_pte;
809 struct page *page;
810
811 /* pte contains position in swap or file, so copy. */
812 if (unlikely(!pte_present(pte))) {
813 if (!pte_file(pte)) {
814 swp_entry_t entry = pte_to_swp_entry(pte);
815
816 if (swap_duplicate(entry) < 0)
817 return entry.val;
818
819 /* make sure dst_mm is on swapoff's mmlist. */
820 if (unlikely(list_empty(&dst_mm->mmlist))) {
821 spin_lock(&mmlist_lock);
822 if (list_empty(&dst_mm->mmlist))
823 list_add(&dst_mm->mmlist,
824 &src_mm->mmlist);
825 spin_unlock(&mmlist_lock);
826 }
827 if (likely(!non_swap_entry(entry)))
828 rss[MM_SWAPENTS]++;
829 else if (is_migration_entry(entry)) {
830 page = migration_entry_to_page(entry);
831
832 if (PageAnon(page))
833 rss[MM_ANONPAGES]++;
834 else
835 rss[MM_FILEPAGES]++;
836
837 if (is_write_migration_entry(entry) &&
838 is_cow_mapping(vm_flags)) {
839 /*
840 * COW mappings require pages in both
841 * parent and child to be set to read.
842 */
843 make_migration_entry_read(&entry);
844 pte = swp_entry_to_pte(entry);
845 if (pte_swp_soft_dirty(*src_pte))
846 pte = pte_swp_mksoft_dirty(pte);
847 set_pte_at(src_mm, addr, src_pte, pte);
848 }
849 }
850 }
851 goto out_set_pte;
852 }
853
854 /*
855 * If it's a COW mapping, write protect it both
856 * in the parent and the child
857 */
858 if (is_cow_mapping(vm_flags)) {
859 ptep_set_wrprotect(src_mm, addr, src_pte);
860 pte = pte_wrprotect(pte);
861 }
862
863 /*
864 * If it's a shared mapping, mark it clean in
865 * the child
866 */
867 if (vm_flags & VM_SHARED)
868 pte = pte_mkclean(pte);
869 pte = pte_mkold(pte);
870
871 page = vm_normal_page(vma, addr, pte);
872 if (page) {
873 get_page(page);
874 page_dup_rmap(page);
875 if (PageAnon(page))
876 rss[MM_ANONPAGES]++;
877 else
878 rss[MM_FILEPAGES]++;
879 }
880
881 out_set_pte:
882 set_pte_at(dst_mm, addr, dst_pte, pte);
883 return 0;
884 }
885
886 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
887 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
888 unsigned long addr, unsigned long end)
889 {
890 pte_t *orig_src_pte, *orig_dst_pte;
891 pte_t *src_pte, *dst_pte;
892 spinlock_t *src_ptl, *dst_ptl;
893 int progress = 0;
894 int rss[NR_MM_COUNTERS];
895 swp_entry_t entry = (swp_entry_t){0};
896
897 again:
898 init_rss_vec(rss);
899
900 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
901 if (!dst_pte)
902 return -ENOMEM;
903 src_pte = pte_offset_map(src_pmd, addr);
904 src_ptl = pte_lockptr(src_mm, src_pmd);
905 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
906 orig_src_pte = src_pte;
907 orig_dst_pte = dst_pte;
908 arch_enter_lazy_mmu_mode();
909
910 do {
911 /*
912 * We are holding two locks at this point - either of them
913 * could generate latencies in another task on another CPU.
914 */
915 if (progress >= 32) {
916 progress = 0;
917 if (need_resched() ||
918 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
919 break;
920 }
921 if (pte_none(*src_pte)) {
922 progress++;
923 continue;
924 }
925 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
926 vma, addr, rss);
927 if (entry.val)
928 break;
929 progress += 8;
930 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
931
932 arch_leave_lazy_mmu_mode();
933 spin_unlock(src_ptl);
934 pte_unmap(orig_src_pte);
935 add_mm_rss_vec(dst_mm, rss);
936 pte_unmap_unlock(orig_dst_pte, dst_ptl);
937 cond_resched();
938
939 if (entry.val) {
940 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
941 return -ENOMEM;
942 progress = 0;
943 }
944 if (addr != end)
945 goto again;
946 return 0;
947 }
948
949 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
951 unsigned long addr, unsigned long end)
952 {
953 pmd_t *src_pmd, *dst_pmd;
954 unsigned long next;
955
956 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
957 if (!dst_pmd)
958 return -ENOMEM;
959 src_pmd = pmd_offset(src_pud, addr);
960 do {
961 next = pmd_addr_end(addr, end);
962 if (pmd_trans_huge(*src_pmd)) {
963 int err;
964 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
965 err = copy_huge_pmd(dst_mm, src_mm,
966 dst_pmd, src_pmd, addr, vma);
967 if (err == -ENOMEM)
968 return -ENOMEM;
969 if (!err)
970 continue;
971 /* fall through */
972 }
973 if (pmd_none_or_clear_bad(src_pmd))
974 continue;
975 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
976 vma, addr, next))
977 return -ENOMEM;
978 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
979 return 0;
980 }
981
982 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
983 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
984 unsigned long addr, unsigned long end)
985 {
986 pud_t *src_pud, *dst_pud;
987 unsigned long next;
988
989 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
990 if (!dst_pud)
991 return -ENOMEM;
992 src_pud = pud_offset(src_pgd, addr);
993 do {
994 next = pud_addr_end(addr, end);
995 if (pud_none_or_clear_bad(src_pud))
996 continue;
997 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
998 vma, addr, next))
999 return -ENOMEM;
1000 } while (dst_pud++, src_pud++, addr = next, addr != end);
1001 return 0;
1002 }
1003
1004 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1005 struct vm_area_struct *vma)
1006 {
1007 pgd_t *src_pgd, *dst_pgd;
1008 unsigned long next;
1009 unsigned long addr = vma->vm_start;
1010 unsigned long end = vma->vm_end;
1011 unsigned long mmun_start; /* For mmu_notifiers */
1012 unsigned long mmun_end; /* For mmu_notifiers */
1013 bool is_cow;
1014 int ret;
1015
1016 /*
1017 * Don't copy ptes where a page fault will fill them correctly.
1018 * Fork becomes much lighter when there are big shared or private
1019 * readonly mappings. The tradeoff is that copy_page_range is more
1020 * efficient than faulting.
1021 */
1022 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1023 VM_PFNMAP | VM_MIXEDMAP))) {
1024 if (!vma->anon_vma)
1025 return 0;
1026 }
1027
1028 if (is_vm_hugetlb_page(vma))
1029 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1030
1031 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1032 /*
1033 * We do not free on error cases below as remove_vma
1034 * gets called on error from higher level routine
1035 */
1036 ret = track_pfn_copy(vma);
1037 if (ret)
1038 return ret;
1039 }
1040
1041 /*
1042 * We need to invalidate the secondary MMU mappings only when
1043 * there could be a permission downgrade on the ptes of the
1044 * parent mm. And a permission downgrade will only happen if
1045 * is_cow_mapping() returns true.
1046 */
1047 is_cow = is_cow_mapping(vma->vm_flags);
1048 mmun_start = addr;
1049 mmun_end = end;
1050 if (is_cow)
1051 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1052 mmun_end);
1053
1054 ret = 0;
1055 dst_pgd = pgd_offset(dst_mm, addr);
1056 src_pgd = pgd_offset(src_mm, addr);
1057 do {
1058 next = pgd_addr_end(addr, end);
1059 if (pgd_none_or_clear_bad(src_pgd))
1060 continue;
1061 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1062 vma, addr, next))) {
1063 ret = -ENOMEM;
1064 break;
1065 }
1066 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1067
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1070 return ret;
1071 }
1072
1073 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1074 struct vm_area_struct *vma, pmd_t *pmd,
1075 unsigned long addr, unsigned long end,
1076 struct zap_details *details)
1077 {
1078 struct mm_struct *mm = tlb->mm;
1079 int force_flush = 0;
1080 int rss[NR_MM_COUNTERS];
1081 spinlock_t *ptl;
1082 pte_t *start_pte;
1083 pte_t *pte;
1084
1085 again:
1086 init_rss_vec(rss);
1087 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1088 pte = start_pte;
1089 arch_enter_lazy_mmu_mode();
1090 do {
1091 pte_t ptent = *pte;
1092 if (pte_none(ptent)) {
1093 continue;
1094 }
1095
1096 if (pte_present(ptent)) {
1097 struct page *page;
1098
1099 page = vm_normal_page(vma, addr, ptent);
1100 if (unlikely(details) && page) {
1101 /*
1102 * unmap_shared_mapping_pages() wants to
1103 * invalidate cache without truncating:
1104 * unmap shared but keep private pages.
1105 */
1106 if (details->check_mapping &&
1107 details->check_mapping != page->mapping)
1108 continue;
1109 /*
1110 * Each page->index must be checked when
1111 * invalidating or truncating nonlinear.
1112 */
1113 if (details->nonlinear_vma &&
1114 (page->index < details->first_index ||
1115 page->index > details->last_index))
1116 continue;
1117 }
1118 ptent = ptep_get_and_clear_full(mm, addr, pte,
1119 tlb->fullmm);
1120 tlb_remove_tlb_entry(tlb, pte, addr);
1121 if (unlikely(!page))
1122 continue;
1123 if (unlikely(details) && details->nonlinear_vma
1124 && linear_page_index(details->nonlinear_vma,
1125 addr) != page->index) {
1126 pte_t ptfile = pgoff_to_pte(page->index);
1127 if (pte_soft_dirty(ptent))
1128 pte_file_mksoft_dirty(ptfile);
1129 set_pte_at(mm, addr, pte, ptfile);
1130 }
1131 if (PageAnon(page))
1132 rss[MM_ANONPAGES]--;
1133 else {
1134 if (pte_dirty(ptent)) {
1135 force_flush = 1;
1136 set_page_dirty(page);
1137 }
1138 if (pte_young(ptent) &&
1139 likely(!(vma->vm_flags & VM_SEQ_READ)))
1140 mark_page_accessed(page);
1141 rss[MM_FILEPAGES]--;
1142 }
1143 page_remove_rmap(page);
1144 if (unlikely(page_mapcount(page) < 0))
1145 print_bad_pte(vma, addr, ptent, page);
1146 if (unlikely(!__tlb_remove_page(tlb, page))) {
1147 force_flush = 1;
1148 break;
1149 }
1150 continue;
1151 }
1152 /*
1153 * If details->check_mapping, we leave swap entries;
1154 * if details->nonlinear_vma, we leave file entries.
1155 */
1156 if (unlikely(details))
1157 continue;
1158 if (pte_file(ptent)) {
1159 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1160 print_bad_pte(vma, addr, ptent, NULL);
1161 } else {
1162 swp_entry_t entry = pte_to_swp_entry(ptent);
1163
1164 if (!non_swap_entry(entry))
1165 rss[MM_SWAPENTS]--;
1166 else if (is_migration_entry(entry)) {
1167 struct page *page;
1168
1169 page = migration_entry_to_page(entry);
1170
1171 if (PageAnon(page))
1172 rss[MM_ANONPAGES]--;
1173 else
1174 rss[MM_FILEPAGES]--;
1175 }
1176 if (unlikely(!free_swap_and_cache(entry)))
1177 print_bad_pte(vma, addr, ptent, NULL);
1178 }
1179 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1180 } while (pte++, addr += PAGE_SIZE, addr != end);
1181
1182 add_mm_rss_vec(mm, rss);
1183 arch_leave_lazy_mmu_mode();
1184
1185 /* Do the actual TLB flush before dropping ptl */
1186 if (force_flush) {
1187 unsigned long old_end;
1188
1189 /*
1190 * Flush the TLB just for the previous segment,
1191 * then update the range to be the remaining
1192 * TLB range.
1193 */
1194 old_end = tlb->end;
1195 tlb->end = addr;
1196 tlb_flush_mmu_tlbonly(tlb);
1197 tlb->start = addr;
1198 tlb->end = old_end;
1199 }
1200 pte_unmap_unlock(start_pte, ptl);
1201
1202 /*
1203 * If we forced a TLB flush (either due to running out of
1204 * batch buffers or because we needed to flush dirty TLB
1205 * entries before releasing the ptl), free the batched
1206 * memory too. Restart if we didn't do everything.
1207 */
1208 if (force_flush) {
1209 force_flush = 0;
1210 tlb_flush_mmu_free(tlb);
1211
1212 if (addr != end)
1213 goto again;
1214 }
1215
1216 return addr;
1217 }
1218
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220 struct vm_area_struct *vma, pud_t *pud,
1221 unsigned long addr, unsigned long end,
1222 struct zap_details *details)
1223 {
1224 pmd_t *pmd;
1225 unsigned long next;
1226
1227 pmd = pmd_offset(pud, addr);
1228 do {
1229 next = pmd_addr_end(addr, end);
1230 if (pmd_trans_huge(*pmd)) {
1231 if (next - addr != HPAGE_PMD_SIZE) {
1232 #ifdef CONFIG_DEBUG_VM
1233 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1234 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235 __func__, addr, end,
1236 vma->vm_start,
1237 vma->vm_end);
1238 BUG();
1239 }
1240 #endif
1241 split_huge_page_pmd(vma, addr, pmd);
1242 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1243 goto next;
1244 /* fall through */
1245 }
1246 /*
1247 * Here there can be other concurrent MADV_DONTNEED or
1248 * trans huge page faults running, and if the pmd is
1249 * none or trans huge it can change under us. This is
1250 * because MADV_DONTNEED holds the mmap_sem in read
1251 * mode.
1252 */
1253 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254 goto next;
1255 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1256 next:
1257 cond_resched();
1258 } while (pmd++, addr = next, addr != end);
1259
1260 return addr;
1261 }
1262
1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1264 struct vm_area_struct *vma, pgd_t *pgd,
1265 unsigned long addr, unsigned long end,
1266 struct zap_details *details)
1267 {
1268 pud_t *pud;
1269 unsigned long next;
1270
1271 pud = pud_offset(pgd, addr);
1272 do {
1273 next = pud_addr_end(addr, end);
1274 if (pud_none_or_clear_bad(pud))
1275 continue;
1276 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1277 } while (pud++, addr = next, addr != end);
1278
1279 return addr;
1280 }
1281
1282 static void unmap_page_range(struct mmu_gather *tlb,
1283 struct vm_area_struct *vma,
1284 unsigned long addr, unsigned long end,
1285 struct zap_details *details)
1286 {
1287 pgd_t *pgd;
1288 unsigned long next;
1289
1290 if (details && !details->check_mapping && !details->nonlinear_vma)
1291 details = NULL;
1292
1293 BUG_ON(addr >= end);
1294 tlb_start_vma(tlb, vma);
1295 pgd = pgd_offset(vma->vm_mm, addr);
1296 do {
1297 next = pgd_addr_end(addr, end);
1298 if (pgd_none_or_clear_bad(pgd))
1299 continue;
1300 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301 } while (pgd++, addr = next, addr != end);
1302 tlb_end_vma(tlb, vma);
1303 }
1304
1305
1306 static void unmap_single_vma(struct mmu_gather *tlb,
1307 struct vm_area_struct *vma, unsigned long start_addr,
1308 unsigned long end_addr,
1309 struct zap_details *details)
1310 {
1311 unsigned long start = max(vma->vm_start, start_addr);
1312 unsigned long end;
1313
1314 if (start >= vma->vm_end)
1315 return;
1316 end = min(vma->vm_end, end_addr);
1317 if (end <= vma->vm_start)
1318 return;
1319
1320 if (vma->vm_file)
1321 uprobe_munmap(vma, start, end);
1322
1323 if (unlikely(vma->vm_flags & VM_PFNMAP))
1324 untrack_pfn(vma, 0, 0);
1325
1326 if (start != end) {
1327 if (unlikely(is_vm_hugetlb_page(vma))) {
1328 /*
1329 * It is undesirable to test vma->vm_file as it
1330 * should be non-null for valid hugetlb area.
1331 * However, vm_file will be NULL in the error
1332 * cleanup path of mmap_region. When
1333 * hugetlbfs ->mmap method fails,
1334 * mmap_region() nullifies vma->vm_file
1335 * before calling this function to clean up.
1336 * Since no pte has actually been setup, it is
1337 * safe to do nothing in this case.
1338 */
1339 if (vma->vm_file) {
1340 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1341 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1342 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 }
1344 } else
1345 unmap_page_range(tlb, vma, start, end, details);
1346 }
1347 }
1348
1349 /**
1350 * unmap_vmas - unmap a range of memory covered by a list of vma's
1351 * @tlb: address of the caller's struct mmu_gather
1352 * @vma: the starting vma
1353 * @start_addr: virtual address at which to start unmapping
1354 * @end_addr: virtual address at which to end unmapping
1355 *
1356 * Unmap all pages in the vma list.
1357 *
1358 * Only addresses between `start' and `end' will be unmapped.
1359 *
1360 * The VMA list must be sorted in ascending virtual address order.
1361 *
1362 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1363 * range after unmap_vmas() returns. So the only responsibility here is to
1364 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1365 * drops the lock and schedules.
1366 */
1367 void unmap_vmas(struct mmu_gather *tlb,
1368 struct vm_area_struct *vma, unsigned long start_addr,
1369 unsigned long end_addr)
1370 {
1371 struct mm_struct *mm = vma->vm_mm;
1372
1373 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1374 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1375 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1376 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1377 }
1378
1379 /**
1380 * zap_page_range - remove user pages in a given range
1381 * @vma: vm_area_struct holding the applicable pages
1382 * @start: starting address of pages to zap
1383 * @size: number of bytes to zap
1384 * @details: details of nonlinear truncation or shared cache invalidation
1385 *
1386 * Caller must protect the VMA list
1387 */
1388 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1389 unsigned long size, struct zap_details *details)
1390 {
1391 struct mm_struct *mm = vma->vm_mm;
1392 struct mmu_gather tlb;
1393 unsigned long end = start + size;
1394
1395 lru_add_drain();
1396 tlb_gather_mmu(&tlb, mm, start, end);
1397 update_hiwater_rss(mm);
1398 mmu_notifier_invalidate_range_start(mm, start, end);
1399 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1400 unmap_single_vma(&tlb, vma, start, end, details);
1401 mmu_notifier_invalidate_range_end(mm, start, end);
1402 tlb_finish_mmu(&tlb, start, end);
1403 }
1404
1405 /**
1406 * zap_page_range_single - remove user pages in a given range
1407 * @vma: vm_area_struct holding the applicable pages
1408 * @address: starting address of pages to zap
1409 * @size: number of bytes to zap
1410 * @details: details of nonlinear truncation or shared cache invalidation
1411 *
1412 * The range must fit into one VMA.
1413 */
1414 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1415 unsigned long size, struct zap_details *details)
1416 {
1417 struct mm_struct *mm = vma->vm_mm;
1418 struct mmu_gather tlb;
1419 unsigned long end = address + size;
1420
1421 lru_add_drain();
1422 tlb_gather_mmu(&tlb, mm, address, end);
1423 update_hiwater_rss(mm);
1424 mmu_notifier_invalidate_range_start(mm, address, end);
1425 unmap_single_vma(&tlb, vma, address, end, details);
1426 mmu_notifier_invalidate_range_end(mm, address, end);
1427 tlb_finish_mmu(&tlb, address, end);
1428 }
1429
1430 /**
1431 * zap_vma_ptes - remove ptes mapping the vma
1432 * @vma: vm_area_struct holding ptes to be zapped
1433 * @address: starting address of pages to zap
1434 * @size: number of bytes to zap
1435 *
1436 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1437 *
1438 * The entire address range must be fully contained within the vma.
1439 *
1440 * Returns 0 if successful.
1441 */
1442 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1443 unsigned long size)
1444 {
1445 if (address < vma->vm_start || address + size > vma->vm_end ||
1446 !(vma->vm_flags & VM_PFNMAP))
1447 return -1;
1448 zap_page_range_single(vma, address, size, NULL);
1449 return 0;
1450 }
1451 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1452
1453 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1454 spinlock_t **ptl)
1455 {
1456 pgd_t * pgd = pgd_offset(mm, addr);
1457 pud_t * pud = pud_alloc(mm, pgd, addr);
1458 if (pud) {
1459 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1460 if (pmd) {
1461 VM_BUG_ON(pmd_trans_huge(*pmd));
1462 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1463 }
1464 }
1465 return NULL;
1466 }
1467
1468 /*
1469 * This is the old fallback for page remapping.
1470 *
1471 * For historical reasons, it only allows reserved pages. Only
1472 * old drivers should use this, and they needed to mark their
1473 * pages reserved for the old functions anyway.
1474 */
1475 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1476 struct page *page, pgprot_t prot)
1477 {
1478 struct mm_struct *mm = vma->vm_mm;
1479 int retval;
1480 pte_t *pte;
1481 spinlock_t *ptl;
1482
1483 retval = -EINVAL;
1484 if (PageAnon(page))
1485 goto out;
1486 retval = -ENOMEM;
1487 flush_dcache_page(page);
1488 pte = get_locked_pte(mm, addr, &ptl);
1489 if (!pte)
1490 goto out;
1491 retval = -EBUSY;
1492 if (!pte_none(*pte))
1493 goto out_unlock;
1494
1495 /* Ok, finally just insert the thing.. */
1496 get_page(page);
1497 inc_mm_counter_fast(mm, MM_FILEPAGES);
1498 page_add_file_rmap(page);
1499 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1500
1501 retval = 0;
1502 pte_unmap_unlock(pte, ptl);
1503 return retval;
1504 out_unlock:
1505 pte_unmap_unlock(pte, ptl);
1506 out:
1507 return retval;
1508 }
1509
1510 /**
1511 * vm_insert_page - insert single page into user vma
1512 * @vma: user vma to map to
1513 * @addr: target user address of this page
1514 * @page: source kernel page
1515 *
1516 * This allows drivers to insert individual pages they've allocated
1517 * into a user vma.
1518 *
1519 * The page has to be a nice clean _individual_ kernel allocation.
1520 * If you allocate a compound page, you need to have marked it as
1521 * such (__GFP_COMP), or manually just split the page up yourself
1522 * (see split_page()).
1523 *
1524 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1525 * took an arbitrary page protection parameter. This doesn't allow
1526 * that. Your vma protection will have to be set up correctly, which
1527 * means that if you want a shared writable mapping, you'd better
1528 * ask for a shared writable mapping!
1529 *
1530 * The page does not need to be reserved.
1531 *
1532 * Usually this function is called from f_op->mmap() handler
1533 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1534 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1535 * function from other places, for example from page-fault handler.
1536 */
1537 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1538 struct page *page)
1539 {
1540 if (addr < vma->vm_start || addr >= vma->vm_end)
1541 return -EFAULT;
1542 if (!page_count(page))
1543 return -EINVAL;
1544 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1545 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1546 BUG_ON(vma->vm_flags & VM_PFNMAP);
1547 vma->vm_flags |= VM_MIXEDMAP;
1548 }
1549 return insert_page(vma, addr, page, vma->vm_page_prot);
1550 }
1551 EXPORT_SYMBOL(vm_insert_page);
1552
1553 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1554 unsigned long pfn, pgprot_t prot)
1555 {
1556 struct mm_struct *mm = vma->vm_mm;
1557 int retval;
1558 pte_t *pte, entry;
1559 spinlock_t *ptl;
1560
1561 retval = -ENOMEM;
1562 pte = get_locked_pte(mm, addr, &ptl);
1563 if (!pte)
1564 goto out;
1565 retval = -EBUSY;
1566 if (!pte_none(*pte))
1567 goto out_unlock;
1568
1569 /* Ok, finally just insert the thing.. */
1570 entry = pte_mkspecial(pfn_pte(pfn, prot));
1571 set_pte_at(mm, addr, pte, entry);
1572 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1573
1574 retval = 0;
1575 out_unlock:
1576 pte_unmap_unlock(pte, ptl);
1577 out:
1578 return retval;
1579 }
1580
1581 /**
1582 * vm_insert_pfn - insert single pfn into user vma
1583 * @vma: user vma to map to
1584 * @addr: target user address of this page
1585 * @pfn: source kernel pfn
1586 *
1587 * Similar to vm_insert_page, this allows drivers to insert individual pages
1588 * they've allocated into a user vma. Same comments apply.
1589 *
1590 * This function should only be called from a vm_ops->fault handler, and
1591 * in that case the handler should return NULL.
1592 *
1593 * vma cannot be a COW mapping.
1594 *
1595 * As this is called only for pages that do not currently exist, we
1596 * do not need to flush old virtual caches or the TLB.
1597 */
1598 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1599 unsigned long pfn)
1600 {
1601 int ret;
1602 pgprot_t pgprot = vma->vm_page_prot;
1603 /*
1604 * Technically, architectures with pte_special can avoid all these
1605 * restrictions (same for remap_pfn_range). However we would like
1606 * consistency in testing and feature parity among all, so we should
1607 * try to keep these invariants in place for everybody.
1608 */
1609 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1610 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1611 (VM_PFNMAP|VM_MIXEDMAP));
1612 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1613 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1614
1615 if (addr < vma->vm_start || addr >= vma->vm_end)
1616 return -EFAULT;
1617 if (track_pfn_insert(vma, &pgprot, pfn))
1618 return -EINVAL;
1619
1620 ret = insert_pfn(vma, addr, pfn, pgprot);
1621
1622 return ret;
1623 }
1624 EXPORT_SYMBOL(vm_insert_pfn);
1625
1626 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1627 unsigned long pfn)
1628 {
1629 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1630
1631 if (addr < vma->vm_start || addr >= vma->vm_end)
1632 return -EFAULT;
1633
1634 /*
1635 * If we don't have pte special, then we have to use the pfn_valid()
1636 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1637 * refcount the page if pfn_valid is true (hence insert_page rather
1638 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1639 * without pte special, it would there be refcounted as a normal page.
1640 */
1641 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1642 struct page *page;
1643
1644 page = pfn_to_page(pfn);
1645 return insert_page(vma, addr, page, vma->vm_page_prot);
1646 }
1647 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1648 }
1649 EXPORT_SYMBOL(vm_insert_mixed);
1650
1651 /*
1652 * maps a range of physical memory into the requested pages. the old
1653 * mappings are removed. any references to nonexistent pages results
1654 * in null mappings (currently treated as "copy-on-access")
1655 */
1656 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1657 unsigned long addr, unsigned long end,
1658 unsigned long pfn, pgprot_t prot)
1659 {
1660 pte_t *pte;
1661 spinlock_t *ptl;
1662
1663 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1664 if (!pte)
1665 return -ENOMEM;
1666 arch_enter_lazy_mmu_mode();
1667 do {
1668 BUG_ON(!pte_none(*pte));
1669 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1670 pfn++;
1671 } while (pte++, addr += PAGE_SIZE, addr != end);
1672 arch_leave_lazy_mmu_mode();
1673 pte_unmap_unlock(pte - 1, ptl);
1674 return 0;
1675 }
1676
1677 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1678 unsigned long addr, unsigned long end,
1679 unsigned long pfn, pgprot_t prot)
1680 {
1681 pmd_t *pmd;
1682 unsigned long next;
1683
1684 pfn -= addr >> PAGE_SHIFT;
1685 pmd = pmd_alloc(mm, pud, addr);
1686 if (!pmd)
1687 return -ENOMEM;
1688 VM_BUG_ON(pmd_trans_huge(*pmd));
1689 do {
1690 next = pmd_addr_end(addr, end);
1691 if (remap_pte_range(mm, pmd, addr, next,
1692 pfn + (addr >> PAGE_SHIFT), prot))
1693 return -ENOMEM;
1694 } while (pmd++, addr = next, addr != end);
1695 return 0;
1696 }
1697
1698 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1699 unsigned long addr, unsigned long end,
1700 unsigned long pfn, pgprot_t prot)
1701 {
1702 pud_t *pud;
1703 unsigned long next;
1704
1705 pfn -= addr >> PAGE_SHIFT;
1706 pud = pud_alloc(mm, pgd, addr);
1707 if (!pud)
1708 return -ENOMEM;
1709 do {
1710 next = pud_addr_end(addr, end);
1711 if (remap_pmd_range(mm, pud, addr, next,
1712 pfn + (addr >> PAGE_SHIFT), prot))
1713 return -ENOMEM;
1714 } while (pud++, addr = next, addr != end);
1715 return 0;
1716 }
1717
1718 /**
1719 * remap_pfn_range - remap kernel memory to userspace
1720 * @vma: user vma to map to
1721 * @addr: target user address to start at
1722 * @pfn: physical address of kernel memory
1723 * @size: size of map area
1724 * @prot: page protection flags for this mapping
1725 *
1726 * Note: this is only safe if the mm semaphore is held when called.
1727 */
1728 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1729 unsigned long pfn, unsigned long size, pgprot_t prot)
1730 {
1731 pgd_t *pgd;
1732 unsigned long next;
1733 unsigned long end = addr + PAGE_ALIGN(size);
1734 struct mm_struct *mm = vma->vm_mm;
1735 int err;
1736
1737 /*
1738 * Physically remapped pages are special. Tell the
1739 * rest of the world about it:
1740 * VM_IO tells people not to look at these pages
1741 * (accesses can have side effects).
1742 * VM_PFNMAP tells the core MM that the base pages are just
1743 * raw PFN mappings, and do not have a "struct page" associated
1744 * with them.
1745 * VM_DONTEXPAND
1746 * Disable vma merging and expanding with mremap().
1747 * VM_DONTDUMP
1748 * Omit vma from core dump, even when VM_IO turned off.
1749 *
1750 * There's a horrible special case to handle copy-on-write
1751 * behaviour that some programs depend on. We mark the "original"
1752 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1753 * See vm_normal_page() for details.
1754 */
1755 if (is_cow_mapping(vma->vm_flags)) {
1756 if (addr != vma->vm_start || end != vma->vm_end)
1757 return -EINVAL;
1758 vma->vm_pgoff = pfn;
1759 }
1760
1761 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1762 if (err)
1763 return -EINVAL;
1764
1765 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1766
1767 BUG_ON(addr >= end);
1768 pfn -= addr >> PAGE_SHIFT;
1769 pgd = pgd_offset(mm, addr);
1770 flush_cache_range(vma, addr, end);
1771 do {
1772 next = pgd_addr_end(addr, end);
1773 err = remap_pud_range(mm, pgd, addr, next,
1774 pfn + (addr >> PAGE_SHIFT), prot);
1775 if (err)
1776 break;
1777 } while (pgd++, addr = next, addr != end);
1778
1779 if (err)
1780 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1781
1782 return err;
1783 }
1784 EXPORT_SYMBOL(remap_pfn_range);
1785
1786 /**
1787 * vm_iomap_memory - remap memory to userspace
1788 * @vma: user vma to map to
1789 * @start: start of area
1790 * @len: size of area
1791 *
1792 * This is a simplified io_remap_pfn_range() for common driver use. The
1793 * driver just needs to give us the physical memory range to be mapped,
1794 * we'll figure out the rest from the vma information.
1795 *
1796 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1797 * whatever write-combining details or similar.
1798 */
1799 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1800 {
1801 unsigned long vm_len, pfn, pages;
1802
1803 /* Check that the physical memory area passed in looks valid */
1804 if (start + len < start)
1805 return -EINVAL;
1806 /*
1807 * You *really* shouldn't map things that aren't page-aligned,
1808 * but we've historically allowed it because IO memory might
1809 * just have smaller alignment.
1810 */
1811 len += start & ~PAGE_MASK;
1812 pfn = start >> PAGE_SHIFT;
1813 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1814 if (pfn + pages < pfn)
1815 return -EINVAL;
1816
1817 /* We start the mapping 'vm_pgoff' pages into the area */
1818 if (vma->vm_pgoff > pages)
1819 return -EINVAL;
1820 pfn += vma->vm_pgoff;
1821 pages -= vma->vm_pgoff;
1822
1823 /* Can we fit all of the mapping? */
1824 vm_len = vma->vm_end - vma->vm_start;
1825 if (vm_len >> PAGE_SHIFT > pages)
1826 return -EINVAL;
1827
1828 /* Ok, let it rip */
1829 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1830 }
1831 EXPORT_SYMBOL(vm_iomap_memory);
1832
1833 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1836 {
1837 pte_t *pte;
1838 int err;
1839 pgtable_t token;
1840 spinlock_t *uninitialized_var(ptl);
1841
1842 pte = (mm == &init_mm) ?
1843 pte_alloc_kernel(pmd, addr) :
1844 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1845 if (!pte)
1846 return -ENOMEM;
1847
1848 BUG_ON(pmd_huge(*pmd));
1849
1850 arch_enter_lazy_mmu_mode();
1851
1852 token = pmd_pgtable(*pmd);
1853
1854 do {
1855 err = fn(pte++, token, addr, data);
1856 if (err)
1857 break;
1858 } while (addr += PAGE_SIZE, addr != end);
1859
1860 arch_leave_lazy_mmu_mode();
1861
1862 if (mm != &init_mm)
1863 pte_unmap_unlock(pte-1, ptl);
1864 return err;
1865 }
1866
1867 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1868 unsigned long addr, unsigned long end,
1869 pte_fn_t fn, void *data)
1870 {
1871 pmd_t *pmd;
1872 unsigned long next;
1873 int err;
1874
1875 BUG_ON(pud_huge(*pud));
1876
1877 pmd = pmd_alloc(mm, pud, addr);
1878 if (!pmd)
1879 return -ENOMEM;
1880 do {
1881 next = pmd_addr_end(addr, end);
1882 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1883 if (err)
1884 break;
1885 } while (pmd++, addr = next, addr != end);
1886 return err;
1887 }
1888
1889 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1890 unsigned long addr, unsigned long end,
1891 pte_fn_t fn, void *data)
1892 {
1893 pud_t *pud;
1894 unsigned long next;
1895 int err;
1896
1897 pud = pud_alloc(mm, pgd, addr);
1898 if (!pud)
1899 return -ENOMEM;
1900 do {
1901 next = pud_addr_end(addr, end);
1902 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1903 if (err)
1904 break;
1905 } while (pud++, addr = next, addr != end);
1906 return err;
1907 }
1908
1909 /*
1910 * Scan a region of virtual memory, filling in page tables as necessary
1911 * and calling a provided function on each leaf page table.
1912 */
1913 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1914 unsigned long size, pte_fn_t fn, void *data)
1915 {
1916 pgd_t *pgd;
1917 unsigned long next;
1918 unsigned long end = addr + size;
1919 int err;
1920
1921 BUG_ON(addr >= end);
1922 pgd = pgd_offset(mm, addr);
1923 do {
1924 next = pgd_addr_end(addr, end);
1925 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1926 if (err)
1927 break;
1928 } while (pgd++, addr = next, addr != end);
1929
1930 return err;
1931 }
1932 EXPORT_SYMBOL_GPL(apply_to_page_range);
1933
1934 /*
1935 * handle_pte_fault chooses page fault handler according to an entry
1936 * which was read non-atomically. Before making any commitment, on
1937 * those architectures or configurations (e.g. i386 with PAE) which
1938 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1939 * must check under lock before unmapping the pte and proceeding
1940 * (but do_wp_page is only called after already making such a check;
1941 * and do_anonymous_page can safely check later on).
1942 */
1943 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1944 pte_t *page_table, pte_t orig_pte)
1945 {
1946 int same = 1;
1947 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1948 if (sizeof(pte_t) > sizeof(unsigned long)) {
1949 spinlock_t *ptl = pte_lockptr(mm, pmd);
1950 spin_lock(ptl);
1951 same = pte_same(*page_table, orig_pte);
1952 spin_unlock(ptl);
1953 }
1954 #endif
1955 pte_unmap(page_table);
1956 return same;
1957 }
1958
1959 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1960 {
1961 debug_dma_assert_idle(src);
1962
1963 /*
1964 * If the source page was a PFN mapping, we don't have
1965 * a "struct page" for it. We do a best-effort copy by
1966 * just copying from the original user address. If that
1967 * fails, we just zero-fill it. Live with it.
1968 */
1969 if (unlikely(!src)) {
1970 void *kaddr = kmap_atomic(dst);
1971 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1972
1973 /*
1974 * This really shouldn't fail, because the page is there
1975 * in the page tables. But it might just be unreadable,
1976 * in which case we just give up and fill the result with
1977 * zeroes.
1978 */
1979 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1980 clear_page(kaddr);
1981 kunmap_atomic(kaddr);
1982 flush_dcache_page(dst);
1983 } else
1984 copy_user_highpage(dst, src, va, vma);
1985 }
1986
1987 /*
1988 * Notify the address space that the page is about to become writable so that
1989 * it can prohibit this or wait for the page to get into an appropriate state.
1990 *
1991 * We do this without the lock held, so that it can sleep if it needs to.
1992 */
1993 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1994 unsigned long address)
1995 {
1996 struct vm_fault vmf;
1997 int ret;
1998
1999 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2000 vmf.pgoff = page->index;
2001 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2002 vmf.page = page;
2003
2004 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2005 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2006 return ret;
2007 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2008 lock_page(page);
2009 if (!page->mapping) {
2010 unlock_page(page);
2011 return 0; /* retry */
2012 }
2013 ret |= VM_FAULT_LOCKED;
2014 } else
2015 VM_BUG_ON_PAGE(!PageLocked(page), page);
2016 return ret;
2017 }
2018
2019 /*
2020 * This routine handles present pages, when users try to write
2021 * to a shared page. It is done by copying the page to a new address
2022 * and decrementing the shared-page counter for the old page.
2023 *
2024 * Note that this routine assumes that the protection checks have been
2025 * done by the caller (the low-level page fault routine in most cases).
2026 * Thus we can safely just mark it writable once we've done any necessary
2027 * COW.
2028 *
2029 * We also mark the page dirty at this point even though the page will
2030 * change only once the write actually happens. This avoids a few races,
2031 * and potentially makes it more efficient.
2032 *
2033 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2034 * but allow concurrent faults), with pte both mapped and locked.
2035 * We return with mmap_sem still held, but pte unmapped and unlocked.
2036 */
2037 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2038 unsigned long address, pte_t *page_table, pmd_t *pmd,
2039 spinlock_t *ptl, pte_t orig_pte)
2040 __releases(ptl)
2041 {
2042 struct page *old_page, *new_page = NULL;
2043 pte_t entry;
2044 int ret = 0;
2045 int page_mkwrite = 0;
2046 struct page *dirty_page = NULL;
2047 unsigned long mmun_start = 0; /* For mmu_notifiers */
2048 unsigned long mmun_end = 0; /* For mmu_notifiers */
2049 struct mem_cgroup *memcg;
2050
2051 old_page = vm_normal_page(vma, address, orig_pte);
2052 if (!old_page) {
2053 /*
2054 * VM_MIXEDMAP !pfn_valid() case
2055 *
2056 * We should not cow pages in a shared writeable mapping.
2057 * Just mark the pages writable as we can't do any dirty
2058 * accounting on raw pfn maps.
2059 */
2060 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2061 (VM_WRITE|VM_SHARED))
2062 goto reuse;
2063 goto gotten;
2064 }
2065
2066 /*
2067 * Take out anonymous pages first, anonymous shared vmas are
2068 * not dirty accountable.
2069 */
2070 if (PageAnon(old_page) && !PageKsm(old_page)) {
2071 if (!trylock_page(old_page)) {
2072 page_cache_get(old_page);
2073 pte_unmap_unlock(page_table, ptl);
2074 lock_page(old_page);
2075 page_table = pte_offset_map_lock(mm, pmd, address,
2076 &ptl);
2077 if (!pte_same(*page_table, orig_pte)) {
2078 unlock_page(old_page);
2079 goto unlock;
2080 }
2081 page_cache_release(old_page);
2082 }
2083 if (reuse_swap_page(old_page)) {
2084 /*
2085 * The page is all ours. Move it to our anon_vma so
2086 * the rmap code will not search our parent or siblings.
2087 * Protected against the rmap code by the page lock.
2088 */
2089 page_move_anon_rmap(old_page, vma, address);
2090 unlock_page(old_page);
2091 goto reuse;
2092 }
2093 unlock_page(old_page);
2094 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2095 (VM_WRITE|VM_SHARED))) {
2096 /*
2097 * Only catch write-faults on shared writable pages,
2098 * read-only shared pages can get COWed by
2099 * get_user_pages(.write=1, .force=1).
2100 */
2101 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2102 int tmp;
2103 page_cache_get(old_page);
2104 pte_unmap_unlock(page_table, ptl);
2105 tmp = do_page_mkwrite(vma, old_page, address);
2106 if (unlikely(!tmp || (tmp &
2107 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2108 page_cache_release(old_page);
2109 return tmp;
2110 }
2111 /*
2112 * Since we dropped the lock we need to revalidate
2113 * the PTE as someone else may have changed it. If
2114 * they did, we just return, as we can count on the
2115 * MMU to tell us if they didn't also make it writable.
2116 */
2117 page_table = pte_offset_map_lock(mm, pmd, address,
2118 &ptl);
2119 if (!pte_same(*page_table, orig_pte)) {
2120 unlock_page(old_page);
2121 goto unlock;
2122 }
2123
2124 page_mkwrite = 1;
2125 }
2126 dirty_page = old_page;
2127 get_page(dirty_page);
2128
2129 reuse:
2130 /*
2131 * Clear the pages cpupid information as the existing
2132 * information potentially belongs to a now completely
2133 * unrelated process.
2134 */
2135 if (old_page)
2136 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2137
2138 flush_cache_page(vma, address, pte_pfn(orig_pte));
2139 entry = pte_mkyoung(orig_pte);
2140 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2141 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2142 update_mmu_cache(vma, address, page_table);
2143 pte_unmap_unlock(page_table, ptl);
2144 ret |= VM_FAULT_WRITE;
2145
2146 if (!dirty_page)
2147 return ret;
2148
2149 /*
2150 * Yes, Virginia, this is actually required to prevent a race
2151 * with clear_page_dirty_for_io() from clearing the page dirty
2152 * bit after it clear all dirty ptes, but before a racing
2153 * do_wp_page installs a dirty pte.
2154 *
2155 * do_shared_fault is protected similarly.
2156 */
2157 if (!page_mkwrite) {
2158 wait_on_page_locked(dirty_page);
2159 set_page_dirty_balance(dirty_page);
2160 /* file_update_time outside page_lock */
2161 if (vma->vm_file)
2162 file_update_time(vma->vm_file);
2163 }
2164 put_page(dirty_page);
2165 if (page_mkwrite) {
2166 struct address_space *mapping = dirty_page->mapping;
2167
2168 set_page_dirty(dirty_page);
2169 unlock_page(dirty_page);
2170 page_cache_release(dirty_page);
2171 if (mapping) {
2172 /*
2173 * Some device drivers do not set page.mapping
2174 * but still dirty their pages
2175 */
2176 balance_dirty_pages_ratelimited(mapping);
2177 }
2178 }
2179
2180 return ret;
2181 }
2182
2183 /*
2184 * Ok, we need to copy. Oh, well..
2185 */
2186 page_cache_get(old_page);
2187 gotten:
2188 pte_unmap_unlock(page_table, ptl);
2189
2190 if (unlikely(anon_vma_prepare(vma)))
2191 goto oom;
2192
2193 if (is_zero_pfn(pte_pfn(orig_pte))) {
2194 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2195 if (!new_page)
2196 goto oom;
2197 } else {
2198 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2199 if (!new_page)
2200 goto oom;
2201 cow_user_page(new_page, old_page, address, vma);
2202 }
2203 __SetPageUptodate(new_page);
2204
2205 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2206 goto oom_free_new;
2207
2208 mmun_start = address & PAGE_MASK;
2209 mmun_end = mmun_start + PAGE_SIZE;
2210 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2211
2212 /*
2213 * Re-check the pte - we dropped the lock
2214 */
2215 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2216 if (likely(pte_same(*page_table, orig_pte))) {
2217 if (old_page) {
2218 if (!PageAnon(old_page)) {
2219 dec_mm_counter_fast(mm, MM_FILEPAGES);
2220 inc_mm_counter_fast(mm, MM_ANONPAGES);
2221 }
2222 } else
2223 inc_mm_counter_fast(mm, MM_ANONPAGES);
2224 flush_cache_page(vma, address, pte_pfn(orig_pte));
2225 entry = mk_pte(new_page, vma->vm_page_prot);
2226 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2227 /*
2228 * Clear the pte entry and flush it first, before updating the
2229 * pte with the new entry. This will avoid a race condition
2230 * seen in the presence of one thread doing SMC and another
2231 * thread doing COW.
2232 */
2233 ptep_clear_flush(vma, address, page_table);
2234 page_add_new_anon_rmap(new_page, vma, address);
2235 mem_cgroup_commit_charge(new_page, memcg, false);
2236 lru_cache_add_active_or_unevictable(new_page, vma);
2237 /*
2238 * We call the notify macro here because, when using secondary
2239 * mmu page tables (such as kvm shadow page tables), we want the
2240 * new page to be mapped directly into the secondary page table.
2241 */
2242 set_pte_at_notify(mm, address, page_table, entry);
2243 update_mmu_cache(vma, address, page_table);
2244 if (old_page) {
2245 /*
2246 * Only after switching the pte to the new page may
2247 * we remove the mapcount here. Otherwise another
2248 * process may come and find the rmap count decremented
2249 * before the pte is switched to the new page, and
2250 * "reuse" the old page writing into it while our pte
2251 * here still points into it and can be read by other
2252 * threads.
2253 *
2254 * The critical issue is to order this
2255 * page_remove_rmap with the ptp_clear_flush above.
2256 * Those stores are ordered by (if nothing else,)
2257 * the barrier present in the atomic_add_negative
2258 * in page_remove_rmap.
2259 *
2260 * Then the TLB flush in ptep_clear_flush ensures that
2261 * no process can access the old page before the
2262 * decremented mapcount is visible. And the old page
2263 * cannot be reused until after the decremented
2264 * mapcount is visible. So transitively, TLBs to
2265 * old page will be flushed before it can be reused.
2266 */
2267 page_remove_rmap(old_page);
2268 }
2269
2270 /* Free the old page.. */
2271 new_page = old_page;
2272 ret |= VM_FAULT_WRITE;
2273 } else
2274 mem_cgroup_cancel_charge(new_page, memcg);
2275
2276 if (new_page)
2277 page_cache_release(new_page);
2278 unlock:
2279 pte_unmap_unlock(page_table, ptl);
2280 if (mmun_end > mmun_start)
2281 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2282 if (old_page) {
2283 /*
2284 * Don't let another task, with possibly unlocked vma,
2285 * keep the mlocked page.
2286 */
2287 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2288 lock_page(old_page); /* LRU manipulation */
2289 munlock_vma_page(old_page);
2290 unlock_page(old_page);
2291 }
2292 page_cache_release(old_page);
2293 }
2294 return ret;
2295 oom_free_new:
2296 page_cache_release(new_page);
2297 oom:
2298 if (old_page)
2299 page_cache_release(old_page);
2300 return VM_FAULT_OOM;
2301 }
2302
2303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2304 unsigned long start_addr, unsigned long end_addr,
2305 struct zap_details *details)
2306 {
2307 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2308 }
2309
2310 static inline void unmap_mapping_range_tree(struct rb_root *root,
2311 struct zap_details *details)
2312 {
2313 struct vm_area_struct *vma;
2314 pgoff_t vba, vea, zba, zea;
2315
2316 vma_interval_tree_foreach(vma, root,
2317 details->first_index, details->last_index) {
2318
2319 vba = vma->vm_pgoff;
2320 vea = vba + vma_pages(vma) - 1;
2321 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322 zba = details->first_index;
2323 if (zba < vba)
2324 zba = vba;
2325 zea = details->last_index;
2326 if (zea > vea)
2327 zea = vea;
2328
2329 unmap_mapping_range_vma(vma,
2330 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2331 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2332 details);
2333 }
2334 }
2335
2336 static inline void unmap_mapping_range_list(struct list_head *head,
2337 struct zap_details *details)
2338 {
2339 struct vm_area_struct *vma;
2340
2341 /*
2342 * In nonlinear VMAs there is no correspondence between virtual address
2343 * offset and file offset. So we must perform an exhaustive search
2344 * across *all* the pages in each nonlinear VMA, not just the pages
2345 * whose virtual address lies outside the file truncation point.
2346 */
2347 list_for_each_entry(vma, head, shared.nonlinear) {
2348 details->nonlinear_vma = vma;
2349 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2350 }
2351 }
2352
2353 /**
2354 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355 * @mapping: the address space containing mmaps to be unmapped.
2356 * @holebegin: byte in first page to unmap, relative to the start of
2357 * the underlying file. This will be rounded down to a PAGE_SIZE
2358 * boundary. Note that this is different from truncate_pagecache(), which
2359 * must keep the partial page. In contrast, we must get rid of
2360 * partial pages.
2361 * @holelen: size of prospective hole in bytes. This will be rounded
2362 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2363 * end of the file.
2364 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365 * but 0 when invalidating pagecache, don't throw away private data.
2366 */
2367 void unmap_mapping_range(struct address_space *mapping,
2368 loff_t const holebegin, loff_t const holelen, int even_cows)
2369 {
2370 struct zap_details details;
2371 pgoff_t hba = holebegin >> PAGE_SHIFT;
2372 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373
2374 /* Check for overflow. */
2375 if (sizeof(holelen) > sizeof(hlen)) {
2376 long long holeend =
2377 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378 if (holeend & ~(long long)ULONG_MAX)
2379 hlen = ULONG_MAX - hba + 1;
2380 }
2381
2382 details.check_mapping = even_cows? NULL: mapping;
2383 details.nonlinear_vma = NULL;
2384 details.first_index = hba;
2385 details.last_index = hba + hlen - 1;
2386 if (details.last_index < details.first_index)
2387 details.last_index = ULONG_MAX;
2388
2389
2390 mutex_lock(&mapping->i_mmap_mutex);
2391 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2392 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2393 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2394 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2395 mutex_unlock(&mapping->i_mmap_mutex);
2396 }
2397 EXPORT_SYMBOL(unmap_mapping_range);
2398
2399 /*
2400 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401 * but allow concurrent faults), and pte mapped but not yet locked.
2402 * We return with pte unmapped and unlocked.
2403 *
2404 * We return with the mmap_sem locked or unlocked in the same cases
2405 * as does filemap_fault().
2406 */
2407 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2408 unsigned long address, pte_t *page_table, pmd_t *pmd,
2409 unsigned int flags, pte_t orig_pte)
2410 {
2411 spinlock_t *ptl;
2412 struct page *page, *swapcache;
2413 struct mem_cgroup *memcg;
2414 swp_entry_t entry;
2415 pte_t pte;
2416 int locked;
2417 int exclusive = 0;
2418 int ret = 0;
2419
2420 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2421 goto out;
2422
2423 entry = pte_to_swp_entry(orig_pte);
2424 if (unlikely(non_swap_entry(entry))) {
2425 if (is_migration_entry(entry)) {
2426 migration_entry_wait(mm, pmd, address);
2427 } else if (is_hwpoison_entry(entry)) {
2428 ret = VM_FAULT_HWPOISON;
2429 } else {
2430 print_bad_pte(vma, address, orig_pte, NULL);
2431 ret = VM_FAULT_SIGBUS;
2432 }
2433 goto out;
2434 }
2435 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2436 page = lookup_swap_cache(entry);
2437 if (!page) {
2438 page = swapin_readahead(entry,
2439 GFP_HIGHUSER_MOVABLE, vma, address);
2440 if (!page) {
2441 /*
2442 * Back out if somebody else faulted in this pte
2443 * while we released the pte lock.
2444 */
2445 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2446 if (likely(pte_same(*page_table, orig_pte)))
2447 ret = VM_FAULT_OOM;
2448 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2449 goto unlock;
2450 }
2451
2452 /* Had to read the page from swap area: Major fault */
2453 ret = VM_FAULT_MAJOR;
2454 count_vm_event(PGMAJFAULT);
2455 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2456 } else if (PageHWPoison(page)) {
2457 /*
2458 * hwpoisoned dirty swapcache pages are kept for killing
2459 * owner processes (which may be unknown at hwpoison time)
2460 */
2461 ret = VM_FAULT_HWPOISON;
2462 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2463 swapcache = page;
2464 goto out_release;
2465 }
2466
2467 swapcache = page;
2468 locked = lock_page_or_retry(page, mm, flags);
2469
2470 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2471 if (!locked) {
2472 ret |= VM_FAULT_RETRY;
2473 goto out_release;
2474 }
2475
2476 /*
2477 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2478 * release the swapcache from under us. The page pin, and pte_same
2479 * test below, are not enough to exclude that. Even if it is still
2480 * swapcache, we need to check that the page's swap has not changed.
2481 */
2482 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2483 goto out_page;
2484
2485 page = ksm_might_need_to_copy(page, vma, address);
2486 if (unlikely(!page)) {
2487 ret = VM_FAULT_OOM;
2488 page = swapcache;
2489 goto out_page;
2490 }
2491
2492 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2493 ret = VM_FAULT_OOM;
2494 goto out_page;
2495 }
2496
2497 /*
2498 * Back out if somebody else already faulted in this pte.
2499 */
2500 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2501 if (unlikely(!pte_same(*page_table, orig_pte)))
2502 goto out_nomap;
2503
2504 if (unlikely(!PageUptodate(page))) {
2505 ret = VM_FAULT_SIGBUS;
2506 goto out_nomap;
2507 }
2508
2509 /*
2510 * The page isn't present yet, go ahead with the fault.
2511 *
2512 * Be careful about the sequence of operations here.
2513 * To get its accounting right, reuse_swap_page() must be called
2514 * while the page is counted on swap but not yet in mapcount i.e.
2515 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2516 * must be called after the swap_free(), or it will never succeed.
2517 */
2518
2519 inc_mm_counter_fast(mm, MM_ANONPAGES);
2520 dec_mm_counter_fast(mm, MM_SWAPENTS);
2521 pte = mk_pte(page, vma->vm_page_prot);
2522 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2523 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2524 flags &= ~FAULT_FLAG_WRITE;
2525 ret |= VM_FAULT_WRITE;
2526 exclusive = 1;
2527 }
2528 flush_icache_page(vma, page);
2529 if (pte_swp_soft_dirty(orig_pte))
2530 pte = pte_mksoft_dirty(pte);
2531 set_pte_at(mm, address, page_table, pte);
2532 if (page == swapcache) {
2533 do_page_add_anon_rmap(page, vma, address, exclusive);
2534 mem_cgroup_commit_charge(page, memcg, true);
2535 } else { /* ksm created a completely new copy */
2536 page_add_new_anon_rmap(page, vma, address);
2537 mem_cgroup_commit_charge(page, memcg, false);
2538 lru_cache_add_active_or_unevictable(page, vma);
2539 }
2540
2541 swap_free(entry);
2542 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2543 try_to_free_swap(page);
2544 unlock_page(page);
2545 if (page != swapcache) {
2546 /*
2547 * Hold the lock to avoid the swap entry to be reused
2548 * until we take the PT lock for the pte_same() check
2549 * (to avoid false positives from pte_same). For
2550 * further safety release the lock after the swap_free
2551 * so that the swap count won't change under a
2552 * parallel locked swapcache.
2553 */
2554 unlock_page(swapcache);
2555 page_cache_release(swapcache);
2556 }
2557
2558 if (flags & FAULT_FLAG_WRITE) {
2559 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2560 if (ret & VM_FAULT_ERROR)
2561 ret &= VM_FAULT_ERROR;
2562 goto out;
2563 }
2564
2565 /* No need to invalidate - it was non-present before */
2566 update_mmu_cache(vma, address, page_table);
2567 unlock:
2568 pte_unmap_unlock(page_table, ptl);
2569 out:
2570 return ret;
2571 out_nomap:
2572 mem_cgroup_cancel_charge(page, memcg);
2573 pte_unmap_unlock(page_table, ptl);
2574 out_page:
2575 unlock_page(page);
2576 out_release:
2577 page_cache_release(page);
2578 if (page != swapcache) {
2579 unlock_page(swapcache);
2580 page_cache_release(swapcache);
2581 }
2582 return ret;
2583 }
2584
2585 /*
2586 * This is like a special single-page "expand_{down|up}wards()",
2587 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2588 * doesn't hit another vma.
2589 */
2590 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2591 {
2592 address &= PAGE_MASK;
2593 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2594 struct vm_area_struct *prev = vma->vm_prev;
2595
2596 /*
2597 * Is there a mapping abutting this one below?
2598 *
2599 * That's only ok if it's the same stack mapping
2600 * that has gotten split..
2601 */
2602 if (prev && prev->vm_end == address)
2603 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2604
2605 expand_downwards(vma, address - PAGE_SIZE);
2606 }
2607 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2608 struct vm_area_struct *next = vma->vm_next;
2609
2610 /* As VM_GROWSDOWN but s/below/above/ */
2611 if (next && next->vm_start == address + PAGE_SIZE)
2612 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2613
2614 expand_upwards(vma, address + PAGE_SIZE);
2615 }
2616 return 0;
2617 }
2618
2619 /*
2620 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2621 * but allow concurrent faults), and pte mapped but not yet locked.
2622 * We return with mmap_sem still held, but pte unmapped and unlocked.
2623 */
2624 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2625 unsigned long address, pte_t *page_table, pmd_t *pmd,
2626 unsigned int flags)
2627 {
2628 struct mem_cgroup *memcg;
2629 struct page *page;
2630 spinlock_t *ptl;
2631 pte_t entry;
2632
2633 pte_unmap(page_table);
2634
2635 /* Check if we need to add a guard page to the stack */
2636 if (check_stack_guard_page(vma, address) < 0)
2637 return VM_FAULT_SIGBUS;
2638
2639 /* Use the zero-page for reads */
2640 if (!(flags & FAULT_FLAG_WRITE)) {
2641 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2642 vma->vm_page_prot));
2643 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644 if (!pte_none(*page_table))
2645 goto unlock;
2646 goto setpte;
2647 }
2648
2649 /* Allocate our own private page. */
2650 if (unlikely(anon_vma_prepare(vma)))
2651 goto oom;
2652 page = alloc_zeroed_user_highpage_movable(vma, address);
2653 if (!page)
2654 goto oom;
2655 /*
2656 * The memory barrier inside __SetPageUptodate makes sure that
2657 * preceeding stores to the page contents become visible before
2658 * the set_pte_at() write.
2659 */
2660 __SetPageUptodate(page);
2661
2662 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2663 goto oom_free_page;
2664
2665 entry = mk_pte(page, vma->vm_page_prot);
2666 if (vma->vm_flags & VM_WRITE)
2667 entry = pte_mkwrite(pte_mkdirty(entry));
2668
2669 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2670 if (!pte_none(*page_table))
2671 goto release;
2672
2673 inc_mm_counter_fast(mm, MM_ANONPAGES);
2674 page_add_new_anon_rmap(page, vma, address);
2675 mem_cgroup_commit_charge(page, memcg, false);
2676 lru_cache_add_active_or_unevictable(page, vma);
2677 setpte:
2678 set_pte_at(mm, address, page_table, entry);
2679
2680 /* No need to invalidate - it was non-present before */
2681 update_mmu_cache(vma, address, page_table);
2682 unlock:
2683 pte_unmap_unlock(page_table, ptl);
2684 return 0;
2685 release:
2686 mem_cgroup_cancel_charge(page, memcg);
2687 page_cache_release(page);
2688 goto unlock;
2689 oom_free_page:
2690 page_cache_release(page);
2691 oom:
2692 return VM_FAULT_OOM;
2693 }
2694
2695 /*
2696 * The mmap_sem must have been held on entry, and may have been
2697 * released depending on flags and vma->vm_ops->fault() return value.
2698 * See filemap_fault() and __lock_page_retry().
2699 */
2700 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2701 pgoff_t pgoff, unsigned int flags, struct page **page)
2702 {
2703 struct vm_fault vmf;
2704 int ret;
2705
2706 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2707 vmf.pgoff = pgoff;
2708 vmf.flags = flags;
2709 vmf.page = NULL;
2710
2711 ret = vma->vm_ops->fault(vma, &vmf);
2712 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2713 return ret;
2714
2715 if (unlikely(PageHWPoison(vmf.page))) {
2716 if (ret & VM_FAULT_LOCKED)
2717 unlock_page(vmf.page);
2718 page_cache_release(vmf.page);
2719 return VM_FAULT_HWPOISON;
2720 }
2721
2722 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2723 lock_page(vmf.page);
2724 else
2725 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2726
2727 *page = vmf.page;
2728 return ret;
2729 }
2730
2731 /**
2732 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2733 *
2734 * @vma: virtual memory area
2735 * @address: user virtual address
2736 * @page: page to map
2737 * @pte: pointer to target page table entry
2738 * @write: true, if new entry is writable
2739 * @anon: true, if it's anonymous page
2740 *
2741 * Caller must hold page table lock relevant for @pte.
2742 *
2743 * Target users are page handler itself and implementations of
2744 * vm_ops->map_pages.
2745 */
2746 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2747 struct page *page, pte_t *pte, bool write, bool anon)
2748 {
2749 pte_t entry;
2750
2751 flush_icache_page(vma, page);
2752 entry = mk_pte(page, vma->vm_page_prot);
2753 if (write)
2754 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2755 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2756 entry = pte_mksoft_dirty(entry);
2757 if (anon) {
2758 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2759 page_add_new_anon_rmap(page, vma, address);
2760 } else {
2761 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2762 page_add_file_rmap(page);
2763 }
2764 set_pte_at(vma->vm_mm, address, pte, entry);
2765
2766 /* no need to invalidate: a not-present page won't be cached */
2767 update_mmu_cache(vma, address, pte);
2768 }
2769
2770 static unsigned long fault_around_bytes __read_mostly =
2771 rounddown_pow_of_two(65536);
2772
2773 #ifdef CONFIG_DEBUG_FS
2774 static int fault_around_bytes_get(void *data, u64 *val)
2775 {
2776 *val = fault_around_bytes;
2777 return 0;
2778 }
2779
2780 /*
2781 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2782 * rounded down to nearest page order. It's what do_fault_around() expects to
2783 * see.
2784 */
2785 static int fault_around_bytes_set(void *data, u64 val)
2786 {
2787 if (val / PAGE_SIZE > PTRS_PER_PTE)
2788 return -EINVAL;
2789 if (val > PAGE_SIZE)
2790 fault_around_bytes = rounddown_pow_of_two(val);
2791 else
2792 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2793 return 0;
2794 }
2795 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2796 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2797
2798 static int __init fault_around_debugfs(void)
2799 {
2800 void *ret;
2801
2802 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2803 &fault_around_bytes_fops);
2804 if (!ret)
2805 pr_warn("Failed to create fault_around_bytes in debugfs");
2806 return 0;
2807 }
2808 late_initcall(fault_around_debugfs);
2809 #endif
2810
2811 /*
2812 * do_fault_around() tries to map few pages around the fault address. The hope
2813 * is that the pages will be needed soon and this will lower the number of
2814 * faults to handle.
2815 *
2816 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2817 * not ready to be mapped: not up-to-date, locked, etc.
2818 *
2819 * This function is called with the page table lock taken. In the split ptlock
2820 * case the page table lock only protects only those entries which belong to
2821 * the page table corresponding to the fault address.
2822 *
2823 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2824 * only once.
2825 *
2826 * fault_around_pages() defines how many pages we'll try to map.
2827 * do_fault_around() expects it to return a power of two less than or equal to
2828 * PTRS_PER_PTE.
2829 *
2830 * The virtual address of the area that we map is naturally aligned to the
2831 * fault_around_pages() value (and therefore to page order). This way it's
2832 * easier to guarantee that we don't cross page table boundaries.
2833 */
2834 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2835 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2836 {
2837 unsigned long start_addr, nr_pages, mask;
2838 pgoff_t max_pgoff;
2839 struct vm_fault vmf;
2840 int off;
2841
2842 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2843 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2844
2845 start_addr = max(address & mask, vma->vm_start);
2846 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2847 pte -= off;
2848 pgoff -= off;
2849
2850 /*
2851 * max_pgoff is either end of page table or end of vma
2852 * or fault_around_pages() from pgoff, depending what is nearest.
2853 */
2854 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2855 PTRS_PER_PTE - 1;
2856 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2857 pgoff + nr_pages - 1);
2858
2859 /* Check if it makes any sense to call ->map_pages */
2860 while (!pte_none(*pte)) {
2861 if (++pgoff > max_pgoff)
2862 return;
2863 start_addr += PAGE_SIZE;
2864 if (start_addr >= vma->vm_end)
2865 return;
2866 pte++;
2867 }
2868
2869 vmf.virtual_address = (void __user *) start_addr;
2870 vmf.pte = pte;
2871 vmf.pgoff = pgoff;
2872 vmf.max_pgoff = max_pgoff;
2873 vmf.flags = flags;
2874 vma->vm_ops->map_pages(vma, &vmf);
2875 }
2876
2877 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2878 unsigned long address, pmd_t *pmd,
2879 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2880 {
2881 struct page *fault_page;
2882 spinlock_t *ptl;
2883 pte_t *pte;
2884 int ret = 0;
2885
2886 /*
2887 * Let's call ->map_pages() first and use ->fault() as fallback
2888 * if page by the offset is not ready to be mapped (cold cache or
2889 * something).
2890 */
2891 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2892 fault_around_bytes >> PAGE_SHIFT > 1) {
2893 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2894 do_fault_around(vma, address, pte, pgoff, flags);
2895 if (!pte_same(*pte, orig_pte))
2896 goto unlock_out;
2897 pte_unmap_unlock(pte, ptl);
2898 }
2899
2900 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2901 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2902 return ret;
2903
2904 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2905 if (unlikely(!pte_same(*pte, orig_pte))) {
2906 pte_unmap_unlock(pte, ptl);
2907 unlock_page(fault_page);
2908 page_cache_release(fault_page);
2909 return ret;
2910 }
2911 do_set_pte(vma, address, fault_page, pte, false, false);
2912 unlock_page(fault_page);
2913 unlock_out:
2914 pte_unmap_unlock(pte, ptl);
2915 return ret;
2916 }
2917
2918 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2919 unsigned long address, pmd_t *pmd,
2920 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2921 {
2922 struct page *fault_page, *new_page;
2923 struct mem_cgroup *memcg;
2924 spinlock_t *ptl;
2925 pte_t *pte;
2926 int ret;
2927
2928 if (unlikely(anon_vma_prepare(vma)))
2929 return VM_FAULT_OOM;
2930
2931 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2932 if (!new_page)
2933 return VM_FAULT_OOM;
2934
2935 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2936 page_cache_release(new_page);
2937 return VM_FAULT_OOM;
2938 }
2939
2940 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2941 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2942 goto uncharge_out;
2943
2944 copy_user_highpage(new_page, fault_page, address, vma);
2945 __SetPageUptodate(new_page);
2946
2947 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2948 if (unlikely(!pte_same(*pte, orig_pte))) {
2949 pte_unmap_unlock(pte, ptl);
2950 unlock_page(fault_page);
2951 page_cache_release(fault_page);
2952 goto uncharge_out;
2953 }
2954 do_set_pte(vma, address, new_page, pte, true, true);
2955 mem_cgroup_commit_charge(new_page, memcg, false);
2956 lru_cache_add_active_or_unevictable(new_page, vma);
2957 pte_unmap_unlock(pte, ptl);
2958 unlock_page(fault_page);
2959 page_cache_release(fault_page);
2960 return ret;
2961 uncharge_out:
2962 mem_cgroup_cancel_charge(new_page, memcg);
2963 page_cache_release(new_page);
2964 return ret;
2965 }
2966
2967 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2968 unsigned long address, pmd_t *pmd,
2969 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2970 {
2971 struct page *fault_page;
2972 struct address_space *mapping;
2973 spinlock_t *ptl;
2974 pte_t *pte;
2975 int dirtied = 0;
2976 int ret, tmp;
2977
2978 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2979 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2980 return ret;
2981
2982 /*
2983 * Check if the backing address space wants to know that the page is
2984 * about to become writable
2985 */
2986 if (vma->vm_ops->page_mkwrite) {
2987 unlock_page(fault_page);
2988 tmp = do_page_mkwrite(vma, fault_page, address);
2989 if (unlikely(!tmp ||
2990 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2991 page_cache_release(fault_page);
2992 return tmp;
2993 }
2994 }
2995
2996 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2997 if (unlikely(!pte_same(*pte, orig_pte))) {
2998 pte_unmap_unlock(pte, ptl);
2999 unlock_page(fault_page);
3000 page_cache_release(fault_page);
3001 return ret;
3002 }
3003 do_set_pte(vma, address, fault_page, pte, true, false);
3004 pte_unmap_unlock(pte, ptl);
3005
3006 if (set_page_dirty(fault_page))
3007 dirtied = 1;
3008 mapping = fault_page->mapping;
3009 unlock_page(fault_page);
3010 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3011 /*
3012 * Some device drivers do not set page.mapping but still
3013 * dirty their pages
3014 */
3015 balance_dirty_pages_ratelimited(mapping);
3016 }
3017
3018 /* file_update_time outside page_lock */
3019 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3020 file_update_time(vma->vm_file);
3021
3022 return ret;
3023 }
3024
3025 /*
3026 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3027 * but allow concurrent faults).
3028 * The mmap_sem may have been released depending on flags and our
3029 * return value. See filemap_fault() and __lock_page_or_retry().
3030 */
3031 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3032 unsigned long address, pte_t *page_table, pmd_t *pmd,
3033 unsigned int flags, pte_t orig_pte)
3034 {
3035 pgoff_t pgoff = (((address & PAGE_MASK)
3036 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3037
3038 pte_unmap(page_table);
3039 if (!(flags & FAULT_FLAG_WRITE))
3040 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3041 orig_pte);
3042 if (!(vma->vm_flags & VM_SHARED))
3043 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3044 orig_pte);
3045 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3046 }
3047
3048 /*
3049 * Fault of a previously existing named mapping. Repopulate the pte
3050 * from the encoded file_pte if possible. This enables swappable
3051 * nonlinear vmas.
3052 *
3053 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054 * but allow concurrent faults), and pte mapped but not yet locked.
3055 * We return with pte unmapped and unlocked.
3056 * The mmap_sem may have been released depending on flags and our
3057 * return value. See filemap_fault() and __lock_page_or_retry().
3058 */
3059 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3060 unsigned long address, pte_t *page_table, pmd_t *pmd,
3061 unsigned int flags, pte_t orig_pte)
3062 {
3063 pgoff_t pgoff;
3064
3065 flags |= FAULT_FLAG_NONLINEAR;
3066
3067 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3068 return 0;
3069
3070 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3071 /*
3072 * Page table corrupted: show pte and kill process.
3073 */
3074 print_bad_pte(vma, address, orig_pte, NULL);
3075 return VM_FAULT_SIGBUS;
3076 }
3077
3078 pgoff = pte_to_pgoff(orig_pte);
3079 if (!(flags & FAULT_FLAG_WRITE))
3080 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3081 orig_pte);
3082 if (!(vma->vm_flags & VM_SHARED))
3083 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3084 orig_pte);
3085 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3086 }
3087
3088 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3089 unsigned long addr, int page_nid,
3090 int *flags)
3091 {
3092 get_page(page);
3093
3094 count_vm_numa_event(NUMA_HINT_FAULTS);
3095 if (page_nid == numa_node_id()) {
3096 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3097 *flags |= TNF_FAULT_LOCAL;
3098 }
3099
3100 return mpol_misplaced(page, vma, addr);
3101 }
3102
3103 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3104 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3105 {
3106 struct page *page = NULL;
3107 spinlock_t *ptl;
3108 int page_nid = -1;
3109 int last_cpupid;
3110 int target_nid;
3111 bool migrated = false;
3112 int flags = 0;
3113
3114 /*
3115 * The "pte" at this point cannot be used safely without
3116 * validation through pte_unmap_same(). It's of NUMA type but
3117 * the pfn may be screwed if the read is non atomic.
3118 *
3119 * ptep_modify_prot_start is not called as this is clearing
3120 * the _PAGE_NUMA bit and it is not really expected that there
3121 * would be concurrent hardware modifications to the PTE.
3122 */
3123 ptl = pte_lockptr(mm, pmd);
3124 spin_lock(ptl);
3125 if (unlikely(!pte_same(*ptep, pte))) {
3126 pte_unmap_unlock(ptep, ptl);
3127 goto out;
3128 }
3129
3130 pte = pte_mknonnuma(pte);
3131 set_pte_at(mm, addr, ptep, pte);
3132 update_mmu_cache(vma, addr, ptep);
3133
3134 page = vm_normal_page(vma, addr, pte);
3135 if (!page) {
3136 pte_unmap_unlock(ptep, ptl);
3137 return 0;
3138 }
3139 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3140
3141 /*
3142 * Avoid grouping on DSO/COW pages in specific and RO pages
3143 * in general, RO pages shouldn't hurt as much anyway since
3144 * they can be in shared cache state.
3145 */
3146 if (!pte_write(pte))
3147 flags |= TNF_NO_GROUP;
3148
3149 /*
3150 * Flag if the page is shared between multiple address spaces. This
3151 * is later used when determining whether to group tasks together
3152 */
3153 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3154 flags |= TNF_SHARED;
3155
3156 last_cpupid = page_cpupid_last(page);
3157 page_nid = page_to_nid(page);
3158 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3159 pte_unmap_unlock(ptep, ptl);
3160 if (target_nid == -1) {
3161 put_page(page);
3162 goto out;
3163 }
3164
3165 /* Migrate to the requested node */
3166 migrated = migrate_misplaced_page(page, vma, target_nid);
3167 if (migrated) {
3168 page_nid = target_nid;
3169 flags |= TNF_MIGRATED;
3170 }
3171
3172 out:
3173 if (page_nid != -1)
3174 task_numa_fault(last_cpupid, page_nid, 1, flags);
3175 return 0;
3176 }
3177
3178 /*
3179 * These routines also need to handle stuff like marking pages dirty
3180 * and/or accessed for architectures that don't do it in hardware (most
3181 * RISC architectures). The early dirtying is also good on the i386.
3182 *
3183 * There is also a hook called "update_mmu_cache()" that architectures
3184 * with external mmu caches can use to update those (ie the Sparc or
3185 * PowerPC hashed page tables that act as extended TLBs).
3186 *
3187 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3188 * but allow concurrent faults), and pte mapped but not yet locked.
3189 * We return with pte unmapped and unlocked.
3190 *
3191 * The mmap_sem may have been released depending on flags and our
3192 * return value. See filemap_fault() and __lock_page_or_retry().
3193 */
3194 static int handle_pte_fault(struct mm_struct *mm,
3195 struct vm_area_struct *vma, unsigned long address,
3196 pte_t *pte, pmd_t *pmd, unsigned int flags)
3197 {
3198 pte_t entry;
3199 spinlock_t *ptl;
3200
3201 entry = ACCESS_ONCE(*pte);
3202 if (!pte_present(entry)) {
3203 if (pte_none(entry)) {
3204 if (vma->vm_ops) {
3205 if (likely(vma->vm_ops->fault))
3206 return do_linear_fault(mm, vma, address,
3207 pte, pmd, flags, entry);
3208 }
3209 return do_anonymous_page(mm, vma, address,
3210 pte, pmd, flags);
3211 }
3212 if (pte_file(entry))
3213 return do_nonlinear_fault(mm, vma, address,
3214 pte, pmd, flags, entry);
3215 return do_swap_page(mm, vma, address,
3216 pte, pmd, flags, entry);
3217 }
3218
3219 if (pte_numa(entry))
3220 return do_numa_page(mm, vma, address, entry, pte, pmd);
3221
3222 ptl = pte_lockptr(mm, pmd);
3223 spin_lock(ptl);
3224 if (unlikely(!pte_same(*pte, entry)))
3225 goto unlock;
3226 if (flags & FAULT_FLAG_WRITE) {
3227 if (!pte_write(entry))
3228 return do_wp_page(mm, vma, address,
3229 pte, pmd, ptl, entry);
3230 entry = pte_mkdirty(entry);
3231 }
3232 entry = pte_mkyoung(entry);
3233 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3234 update_mmu_cache(vma, address, pte);
3235 } else {
3236 /*
3237 * This is needed only for protection faults but the arch code
3238 * is not yet telling us if this is a protection fault or not.
3239 * This still avoids useless tlb flushes for .text page faults
3240 * with threads.
3241 */
3242 if (flags & FAULT_FLAG_WRITE)
3243 flush_tlb_fix_spurious_fault(vma, address);
3244 }
3245 unlock:
3246 pte_unmap_unlock(pte, ptl);
3247 return 0;
3248 }
3249
3250 /*
3251 * By the time we get here, we already hold the mm semaphore
3252 *
3253 * The mmap_sem may have been released depending on flags and our
3254 * return value. See filemap_fault() and __lock_page_or_retry().
3255 */
3256 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3257 unsigned long address, unsigned int flags)
3258 {
3259 pgd_t *pgd;
3260 pud_t *pud;
3261 pmd_t *pmd;
3262 pte_t *pte;
3263
3264 if (unlikely(is_vm_hugetlb_page(vma)))
3265 return hugetlb_fault(mm, vma, address, flags);
3266
3267 pgd = pgd_offset(mm, address);
3268 pud = pud_alloc(mm, pgd, address);
3269 if (!pud)
3270 return VM_FAULT_OOM;
3271 pmd = pmd_alloc(mm, pud, address);
3272 if (!pmd)
3273 return VM_FAULT_OOM;
3274 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3275 int ret = VM_FAULT_FALLBACK;
3276 if (!vma->vm_ops)
3277 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3278 pmd, flags);
3279 if (!(ret & VM_FAULT_FALLBACK))
3280 return ret;
3281 } else {
3282 pmd_t orig_pmd = *pmd;
3283 int ret;
3284
3285 barrier();
3286 if (pmd_trans_huge(orig_pmd)) {
3287 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3288
3289 /*
3290 * If the pmd is splitting, return and retry the
3291 * the fault. Alternative: wait until the split
3292 * is done, and goto retry.
3293 */
3294 if (pmd_trans_splitting(orig_pmd))
3295 return 0;
3296
3297 if (pmd_numa(orig_pmd))
3298 return do_huge_pmd_numa_page(mm, vma, address,
3299 orig_pmd, pmd);
3300
3301 if (dirty && !pmd_write(orig_pmd)) {
3302 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3303 orig_pmd);
3304 if (!(ret & VM_FAULT_FALLBACK))
3305 return ret;
3306 } else {
3307 huge_pmd_set_accessed(mm, vma, address, pmd,
3308 orig_pmd, dirty);
3309 return 0;
3310 }
3311 }
3312 }
3313
3314 /*
3315 * Use __pte_alloc instead of pte_alloc_map, because we can't
3316 * run pte_offset_map on the pmd, if an huge pmd could
3317 * materialize from under us from a different thread.
3318 */
3319 if (unlikely(pmd_none(*pmd)) &&
3320 unlikely(__pte_alloc(mm, vma, pmd, address)))
3321 return VM_FAULT_OOM;
3322 /* if an huge pmd materialized from under us just retry later */
3323 if (unlikely(pmd_trans_huge(*pmd)))
3324 return 0;
3325 /*
3326 * A regular pmd is established and it can't morph into a huge pmd
3327 * from under us anymore at this point because we hold the mmap_sem
3328 * read mode and khugepaged takes it in write mode. So now it's
3329 * safe to run pte_offset_map().
3330 */
3331 pte = pte_offset_map(pmd, address);
3332
3333 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3334 }
3335
3336 /*
3337 * By the time we get here, we already hold the mm semaphore
3338 *
3339 * The mmap_sem may have been released depending on flags and our
3340 * return value. See filemap_fault() and __lock_page_or_retry().
3341 */
3342 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3343 unsigned long address, unsigned int flags)
3344 {
3345 int ret;
3346
3347 __set_current_state(TASK_RUNNING);
3348
3349 count_vm_event(PGFAULT);
3350 mem_cgroup_count_vm_event(mm, PGFAULT);
3351
3352 /* do counter updates before entering really critical section. */
3353 check_sync_rss_stat(current);
3354
3355 /*
3356 * Enable the memcg OOM handling for faults triggered in user
3357 * space. Kernel faults are handled more gracefully.
3358 */
3359 if (flags & FAULT_FLAG_USER)
3360 mem_cgroup_oom_enable();
3361
3362 ret = __handle_mm_fault(mm, vma, address, flags);
3363
3364 if (flags & FAULT_FLAG_USER) {
3365 mem_cgroup_oom_disable();
3366 /*
3367 * The task may have entered a memcg OOM situation but
3368 * if the allocation error was handled gracefully (no
3369 * VM_FAULT_OOM), there is no need to kill anything.
3370 * Just clean up the OOM state peacefully.
3371 */
3372 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3373 mem_cgroup_oom_synchronize(false);
3374 }
3375
3376 return ret;
3377 }
3378
3379 #ifndef __PAGETABLE_PUD_FOLDED
3380 /*
3381 * Allocate page upper directory.
3382 * We've already handled the fast-path in-line.
3383 */
3384 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3385 {
3386 pud_t *new = pud_alloc_one(mm, address);
3387 if (!new)
3388 return -ENOMEM;
3389
3390 smp_wmb(); /* See comment in __pte_alloc */
3391
3392 spin_lock(&mm->page_table_lock);
3393 if (pgd_present(*pgd)) /* Another has populated it */
3394 pud_free(mm, new);
3395 else
3396 pgd_populate(mm, pgd, new);
3397 spin_unlock(&mm->page_table_lock);
3398 return 0;
3399 }
3400 #endif /* __PAGETABLE_PUD_FOLDED */
3401
3402 #ifndef __PAGETABLE_PMD_FOLDED
3403 /*
3404 * Allocate page middle directory.
3405 * We've already handled the fast-path in-line.
3406 */
3407 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3408 {
3409 pmd_t *new = pmd_alloc_one(mm, address);
3410 if (!new)
3411 return -ENOMEM;
3412
3413 smp_wmb(); /* See comment in __pte_alloc */
3414
3415 spin_lock(&mm->page_table_lock);
3416 #ifndef __ARCH_HAS_4LEVEL_HACK
3417 if (pud_present(*pud)) /* Another has populated it */
3418 pmd_free(mm, new);
3419 else
3420 pud_populate(mm, pud, new);
3421 #else
3422 if (pgd_present(*pud)) /* Another has populated it */
3423 pmd_free(mm, new);
3424 else
3425 pgd_populate(mm, pud, new);
3426 #endif /* __ARCH_HAS_4LEVEL_HACK */
3427 spin_unlock(&mm->page_table_lock);
3428 return 0;
3429 }
3430 #endif /* __PAGETABLE_PMD_FOLDED */
3431
3432 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3433 pte_t **ptepp, spinlock_t **ptlp)
3434 {
3435 pgd_t *pgd;
3436 pud_t *pud;
3437 pmd_t *pmd;
3438 pte_t *ptep;
3439
3440 pgd = pgd_offset(mm, address);
3441 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3442 goto out;
3443
3444 pud = pud_offset(pgd, address);
3445 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3446 goto out;
3447
3448 pmd = pmd_offset(pud, address);
3449 VM_BUG_ON(pmd_trans_huge(*pmd));
3450 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3451 goto out;
3452
3453 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3454 if (pmd_huge(*pmd))
3455 goto out;
3456
3457 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3458 if (!ptep)
3459 goto out;
3460 if (!pte_present(*ptep))
3461 goto unlock;
3462 *ptepp = ptep;
3463 return 0;
3464 unlock:
3465 pte_unmap_unlock(ptep, *ptlp);
3466 out:
3467 return -EINVAL;
3468 }
3469
3470 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3471 pte_t **ptepp, spinlock_t **ptlp)
3472 {
3473 int res;
3474
3475 /* (void) is needed to make gcc happy */
3476 (void) __cond_lock(*ptlp,
3477 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3478 return res;
3479 }
3480
3481 /**
3482 * follow_pfn - look up PFN at a user virtual address
3483 * @vma: memory mapping
3484 * @address: user virtual address
3485 * @pfn: location to store found PFN
3486 *
3487 * Only IO mappings and raw PFN mappings are allowed.
3488 *
3489 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3490 */
3491 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3492 unsigned long *pfn)
3493 {
3494 int ret = -EINVAL;
3495 spinlock_t *ptl;
3496 pte_t *ptep;
3497
3498 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3499 return ret;
3500
3501 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3502 if (ret)
3503 return ret;
3504 *pfn = pte_pfn(*ptep);
3505 pte_unmap_unlock(ptep, ptl);
3506 return 0;
3507 }
3508 EXPORT_SYMBOL(follow_pfn);
3509
3510 #ifdef CONFIG_HAVE_IOREMAP_PROT
3511 int follow_phys(struct vm_area_struct *vma,
3512 unsigned long address, unsigned int flags,
3513 unsigned long *prot, resource_size_t *phys)
3514 {
3515 int ret = -EINVAL;
3516 pte_t *ptep, pte;
3517 spinlock_t *ptl;
3518
3519 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3520 goto out;
3521
3522 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3523 goto out;
3524 pte = *ptep;
3525
3526 if ((flags & FOLL_WRITE) && !pte_write(pte))
3527 goto unlock;
3528
3529 *prot = pgprot_val(pte_pgprot(pte));
3530 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3531
3532 ret = 0;
3533 unlock:
3534 pte_unmap_unlock(ptep, ptl);
3535 out:
3536 return ret;
3537 }
3538
3539 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3540 void *buf, int len, int write)
3541 {
3542 resource_size_t phys_addr;
3543 unsigned long prot = 0;
3544 void __iomem *maddr;
3545 int offset = addr & (PAGE_SIZE-1);
3546
3547 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3548 return -EINVAL;
3549
3550 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3551 if (write)
3552 memcpy_toio(maddr + offset, buf, len);
3553 else
3554 memcpy_fromio(buf, maddr + offset, len);
3555 iounmap(maddr);
3556
3557 return len;
3558 }
3559 EXPORT_SYMBOL_GPL(generic_access_phys);
3560 #endif
3561
3562 /*
3563 * Access another process' address space as given in mm. If non-NULL, use the
3564 * given task for page fault accounting.
3565 */
3566 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3567 unsigned long addr, void *buf, int len, int write)
3568 {
3569 struct vm_area_struct *vma;
3570 void *old_buf = buf;
3571
3572 down_read(&mm->mmap_sem);
3573 /* ignore errors, just check how much was successfully transferred */
3574 while (len) {
3575 int bytes, ret, offset;
3576 void *maddr;
3577 struct page *page = NULL;
3578
3579 ret = get_user_pages(tsk, mm, addr, 1,
3580 write, 1, &page, &vma);
3581 if (ret <= 0) {
3582 #ifndef CONFIG_HAVE_IOREMAP_PROT
3583 break;
3584 #else
3585 /*
3586 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3587 * we can access using slightly different code.
3588 */
3589 vma = find_vma(mm, addr);
3590 if (!vma || vma->vm_start > addr)
3591 break;
3592 if (vma->vm_ops && vma->vm_ops->access)
3593 ret = vma->vm_ops->access(vma, addr, buf,
3594 len, write);
3595 if (ret <= 0)
3596 break;
3597 bytes = ret;
3598 #endif
3599 } else {
3600 bytes = len;
3601 offset = addr & (PAGE_SIZE-1);
3602 if (bytes > PAGE_SIZE-offset)
3603 bytes = PAGE_SIZE-offset;
3604
3605 maddr = kmap(page);
3606 if (write) {
3607 copy_to_user_page(vma, page, addr,
3608 maddr + offset, buf, bytes);
3609 set_page_dirty_lock(page);
3610 } else {
3611 copy_from_user_page(vma, page, addr,
3612 buf, maddr + offset, bytes);
3613 }
3614 kunmap(page);
3615 page_cache_release(page);
3616 }
3617 len -= bytes;
3618 buf += bytes;
3619 addr += bytes;
3620 }
3621 up_read(&mm->mmap_sem);
3622
3623 return buf - old_buf;
3624 }
3625
3626 /**
3627 * access_remote_vm - access another process' address space
3628 * @mm: the mm_struct of the target address space
3629 * @addr: start address to access
3630 * @buf: source or destination buffer
3631 * @len: number of bytes to transfer
3632 * @write: whether the access is a write
3633 *
3634 * The caller must hold a reference on @mm.
3635 */
3636 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3637 void *buf, int len, int write)
3638 {
3639 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3640 }
3641
3642 /*
3643 * Access another process' address space.
3644 * Source/target buffer must be kernel space,
3645 * Do not walk the page table directly, use get_user_pages
3646 */
3647 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3648 void *buf, int len, int write)
3649 {
3650 struct mm_struct *mm;
3651 int ret;
3652
3653 mm = get_task_mm(tsk);
3654 if (!mm)
3655 return 0;
3656
3657 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3658 mmput(mm);
3659
3660 return ret;
3661 }
3662
3663 /*
3664 * Print the name of a VMA.
3665 */
3666 void print_vma_addr(char *prefix, unsigned long ip)
3667 {
3668 struct mm_struct *mm = current->mm;
3669 struct vm_area_struct *vma;
3670
3671 /*
3672 * Do not print if we are in atomic
3673 * contexts (in exception stacks, etc.):
3674 */
3675 if (preempt_count())
3676 return;
3677
3678 down_read(&mm->mmap_sem);
3679 vma = find_vma(mm, ip);
3680 if (vma && vma->vm_file) {
3681 struct file *f = vma->vm_file;
3682 char *buf = (char *)__get_free_page(GFP_KERNEL);
3683 if (buf) {
3684 char *p;
3685
3686 p = d_path(&f->f_path, buf, PAGE_SIZE);
3687 if (IS_ERR(p))
3688 p = "?";
3689 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3690 vma->vm_start,
3691 vma->vm_end - vma->vm_start);
3692 free_page((unsigned long)buf);
3693 }
3694 }
3695 up_read(&mm->mmap_sem);
3696 }
3697
3698 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3699 void might_fault(void)
3700 {
3701 /*
3702 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3703 * holding the mmap_sem, this is safe because kernel memory doesn't
3704 * get paged out, therefore we'll never actually fault, and the
3705 * below annotations will generate false positives.
3706 */
3707 if (segment_eq(get_fs(), KERNEL_DS))
3708 return;
3709
3710 /*
3711 * it would be nicer only to annotate paths which are not under
3712 * pagefault_disable, however that requires a larger audit and
3713 * providing helpers like get_user_atomic.
3714 */
3715 if (in_atomic())
3716 return;
3717
3718 __might_sleep(__FILE__, __LINE__, 0);
3719
3720 if (current->mm)
3721 might_lock_read(&current->mm->mmap_sem);
3722 }
3723 EXPORT_SYMBOL(might_fault);
3724 #endif
3725
3726 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3727 static void clear_gigantic_page(struct page *page,
3728 unsigned long addr,
3729 unsigned int pages_per_huge_page)
3730 {
3731 int i;
3732 struct page *p = page;
3733
3734 might_sleep();
3735 for (i = 0; i < pages_per_huge_page;
3736 i++, p = mem_map_next(p, page, i)) {
3737 cond_resched();
3738 clear_user_highpage(p, addr + i * PAGE_SIZE);
3739 }
3740 }
3741 void clear_huge_page(struct page *page,
3742 unsigned long addr, unsigned int pages_per_huge_page)
3743 {
3744 int i;
3745
3746 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3747 clear_gigantic_page(page, addr, pages_per_huge_page);
3748 return;
3749 }
3750
3751 might_sleep();
3752 for (i = 0; i < pages_per_huge_page; i++) {
3753 cond_resched();
3754 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3755 }
3756 }
3757
3758 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3759 unsigned long addr,
3760 struct vm_area_struct *vma,
3761 unsigned int pages_per_huge_page)
3762 {
3763 int i;
3764 struct page *dst_base = dst;
3765 struct page *src_base = src;
3766
3767 for (i = 0; i < pages_per_huge_page; ) {
3768 cond_resched();
3769 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3770
3771 i++;
3772 dst = mem_map_next(dst, dst_base, i);
3773 src = mem_map_next(src, src_base, i);
3774 }
3775 }
3776
3777 void copy_user_huge_page(struct page *dst, struct page *src,
3778 unsigned long addr, struct vm_area_struct *vma,
3779 unsigned int pages_per_huge_page)
3780 {
3781 int i;
3782
3783 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3784 copy_user_gigantic_page(dst, src, addr, vma,
3785 pages_per_huge_page);
3786 return;
3787 }
3788
3789 might_sleep();
3790 for (i = 0; i < pages_per_huge_page; i++) {
3791 cond_resched();
3792 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3793 }
3794 }
3795 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3796
3797 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3798
3799 static struct kmem_cache *page_ptl_cachep;
3800
3801 void __init ptlock_cache_init(void)
3802 {
3803 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3804 SLAB_PANIC, NULL);
3805 }
3806
3807 bool ptlock_alloc(struct page *page)
3808 {
3809 spinlock_t *ptl;
3810
3811 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3812 if (!ptl)
3813 return false;
3814 page->ptl = ptl;
3815 return true;
3816 }
3817
3818 void ptlock_free(struct page *page)
3819 {
3820 kmem_cache_free(page_ptl_cachep, page->ptl);
3821 }
3822 #endif
This page took 0.15639 seconds and 5 git commands to generate.