mm, compaction: do not recheck suitable_migration_target under lock
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->start = start;
224 tlb->end = end;
225 tlb->need_flush = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
243 #endif
244 }
245
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247 {
248 struct mmu_gather_batch *batch;
249
250 for (batch = &tlb->local; batch; batch = batch->next) {
251 free_pages_and_swap_cache(batch->pages, batch->nr);
252 batch->nr = 0;
253 }
254 tlb->active = &tlb->local;
255 }
256
257 void tlb_flush_mmu(struct mmu_gather *tlb)
258 {
259 if (!tlb->need_flush)
260 return;
261 tlb_flush_mmu_tlbonly(tlb);
262 tlb_flush_mmu_free(tlb);
263 }
264
265 /* tlb_finish_mmu
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
268 */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 struct mmu_gather_batch *batch, *next;
272
273 tlb_flush_mmu(tlb);
274
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
277
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
281 }
282 tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 struct mmu_gather_batch *batch;
294
295 VM_BUG_ON(!tlb->need_flush);
296
297 batch = tlb->active;
298 batch->pages[batch->nr++] = page;
299 if (batch->nr == batch->max) {
300 if (!tlb_next_batch(tlb))
301 return 0;
302 batch = tlb->active;
303 }
304 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305
306 return batch->max - batch->nr;
307 }
308
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313 /*
314 * See the comment near struct mmu_table_batch.
315 */
316
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 /* Simply deliver the interrupt */
320 }
321
322 static void tlb_remove_table_one(void *table)
323 {
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333 }
334
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346 }
347
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356 }
357
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 struct mmu_table_batch **batch = &tlb->batch;
361
362 tlb->need_flush = 1;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
394 {
395 pgtable_t token = pmd_pgtable(*pmd);
396 pmd_clear(pmd);
397 pte_free_tlb(tlb, token, addr);
398 atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
404 {
405 pmd_t *pmd;
406 unsigned long next;
407 unsigned long start;
408
409 start = addr;
410 pmd = pmd_offset(pud, addr);
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
415 free_pte_range(tlb, pmd, addr);
416 } while (pmd++, addr = next, addr != end);
417
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
425 }
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
431 pmd_free_tlb(tlb, pmd, start);
432 }
433
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
437 {
438 pud_t *pud;
439 unsigned long next;
440 unsigned long start;
441
442 start = addr;
443 pud = pud_offset(pgd, addr);
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 } while (pud++, addr = next, addr != end);
450
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
458 }
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
464 pud_free_tlb(tlb, pud, start);
465 }
466
467 /*
468 * This function frees user-level page tables of a process.
469 */
470 void free_pgd_range(struct mmu_gather *tlb,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
473 {
474 pgd_t *pgd;
475 unsigned long next;
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
502
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
519 pgd = pgd_offset(tlb->mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 } while (pgd++, addr = next, addr != end);
526 }
527
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 unsigned long floor, unsigned long ceiling)
530 {
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
535 /*
536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
538 */
539 unlink_anon_vmas(vma);
540 unlink_file_vma(vma);
541
542 if (is_vm_hugetlb_page(vma)) {
543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 && !is_vm_hugetlb_page(next)) {
551 vma = next;
552 next = vma->vm_next;
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
559 vma = next;
560 }
561 }
562
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
565 {
566 spinlock_t *ptl;
567 pgtable_t new = pte_alloc_one(mm, address);
568 int wait_split_huge_page;
569 if (!new)
570 return -ENOMEM;
571
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587 ptl = pmd_lock(mm, pmd);
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
600 return 0;
601 }
602
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
609 smp_wmb(); /* See comment in __pte_alloc */
610
611 spin_lock(&init_mm.page_table_lock);
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm, pmd, new);
614 new = NULL;
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
617 spin_unlock(&init_mm.page_table_lock);
618 if (new)
619 pte_free_kernel(&init_mm, new);
620 return 0;
621 }
622
623 static inline void init_rss_vec(int *rss)
624 {
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 int i;
631
632 if (current->mm == mm)
633 sync_mm_rss(mm);
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
637 }
638
639 /*
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
643 *
644 * The calling function must still handle the error.
645 */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
648 {
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685 if (page)
686 dump_page(page, "bad pte");
687 printk(KERN_ALERT
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 if (vma->vm_ops)
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
696 if (vma->vm_file)
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
759 return NULL;
760 if (!is_zero_pfn(pfn))
761 print_bad_pte(vma, addr, pte, NULL);
762 return NULL;
763 }
764
765 /* !HAVE_PTE_SPECIAL case follows: */
766
767 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
768 if (vma->vm_flags & VM_MIXEDMAP) {
769 if (!pfn_valid(pfn))
770 return NULL;
771 goto out;
772 } else {
773 unsigned long off;
774 off = (addr - vma->vm_start) >> PAGE_SHIFT;
775 if (pfn == vma->vm_pgoff + off)
776 return NULL;
777 if (!is_cow_mapping(vma->vm_flags))
778 return NULL;
779 }
780 }
781
782 if (is_zero_pfn(pfn))
783 return NULL;
784 check_pfn:
785 if (unlikely(pfn > highest_memmap_pfn)) {
786 print_bad_pte(vma, addr, pte, NULL);
787 return NULL;
788 }
789
790 /*
791 * NOTE! We still have PageReserved() pages in the page tables.
792 * eg. VDSO mappings can cause them to exist.
793 */
794 out:
795 return pfn_to_page(pfn);
796 }
797
798 /*
799 * copy one vm_area from one task to the other. Assumes the page tables
800 * already present in the new task to be cleared in the whole range
801 * covered by this vma.
802 */
803
804 static inline unsigned long
805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
807 unsigned long addr, int *rss)
808 {
809 unsigned long vm_flags = vma->vm_flags;
810 pte_t pte = *src_pte;
811 struct page *page;
812
813 /* pte contains position in swap or file, so copy. */
814 if (unlikely(!pte_present(pte))) {
815 if (!pte_file(pte)) {
816 swp_entry_t entry = pte_to_swp_entry(pte);
817
818 if (swap_duplicate(entry) < 0)
819 return entry.val;
820
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm->mmlist))) {
823 spin_lock(&mmlist_lock);
824 if (list_empty(&dst_mm->mmlist))
825 list_add(&dst_mm->mmlist,
826 &src_mm->mmlist);
827 spin_unlock(&mmlist_lock);
828 }
829 if (likely(!non_swap_entry(entry)))
830 rss[MM_SWAPENTS]++;
831 else if (is_migration_entry(entry)) {
832 page = migration_entry_to_page(entry);
833
834 if (PageAnon(page))
835 rss[MM_ANONPAGES]++;
836 else
837 rss[MM_FILEPAGES]++;
838
839 if (is_write_migration_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 /*
842 * COW mappings require pages in both
843 * parent and child to be set to read.
844 */
845 make_migration_entry_read(&entry);
846 pte = swp_entry_to_pte(entry);
847 if (pte_swp_soft_dirty(*src_pte))
848 pte = pte_swp_mksoft_dirty(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
850 }
851 }
852 }
853 goto out_set_pte;
854 }
855
856 /*
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
859 */
860 if (is_cow_mapping(vm_flags)) {
861 ptep_set_wrprotect(src_mm, addr, src_pte);
862 pte = pte_wrprotect(pte);
863 }
864
865 /*
866 * If it's a shared mapping, mark it clean in
867 * the child
868 */
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
872
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
876 page_dup_rmap(page);
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
881 }
882
883 out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
886 }
887
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
891 {
892 pte_t *orig_src_pte, *orig_dst_pte;
893 pte_t *src_pte, *dst_pte;
894 spinlock_t *src_ptl, *dst_ptl;
895 int progress = 0;
896 int rss[NR_MM_COUNTERS];
897 swp_entry_t entry = (swp_entry_t){0};
898
899 again:
900 init_rss_vec(rss);
901
902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 if (!dst_pte)
904 return -ENOMEM;
905 src_pte = pte_offset_map(src_pmd, addr);
906 src_ptl = pte_lockptr(src_mm, src_pmd);
907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
910 arch_enter_lazy_mmu_mode();
911
912 do {
913 /*
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
916 */
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 break;
922 }
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
926 }
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl);
936 pte_unmap(orig_src_pte);
937 add_mm_rss_vec(dst_mm, rss);
938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 cond_resched();
940
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
945 }
946 if (addr != end)
947 goto again;
948 return 0;
949 }
950
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
954 {
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
957
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
974 }
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
982 }
983
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
987 {
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
990
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1004 }
1005
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1008 {
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
1016 int ret;
1017
1018 /*
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1023 */
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1025 VM_PFNMAP | VM_MIXEDMAP))) {
1026 if (!vma->anon_vma)
1027 return 0;
1028 }
1029
1030 if (is_vm_hugetlb_page(vma))
1031 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032
1033 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 /*
1035 * We do not free on error cases below as remove_vma
1036 * gets called on error from higher level routine
1037 */
1038 ret = track_pfn_copy(vma);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 /*
1044 * We need to invalidate the secondary MMU mappings only when
1045 * there could be a permission downgrade on the ptes of the
1046 * parent mm. And a permission downgrade will only happen if
1047 * is_cow_mapping() returns true.
1048 */
1049 is_cow = is_cow_mapping(vma->vm_flags);
1050 mmun_start = addr;
1051 mmun_end = end;
1052 if (is_cow)
1053 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1054 mmun_end);
1055
1056 ret = 0;
1057 dst_pgd = pgd_offset(dst_mm, addr);
1058 src_pgd = pgd_offset(src_mm, addr);
1059 do {
1060 next = pgd_addr_end(addr, end);
1061 if (pgd_none_or_clear_bad(src_pgd))
1062 continue;
1063 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1064 vma, addr, next))) {
1065 ret = -ENOMEM;
1066 break;
1067 }
1068 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069
1070 if (is_cow)
1071 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1072 return ret;
1073 }
1074
1075 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1076 struct vm_area_struct *vma, pmd_t *pmd,
1077 unsigned long addr, unsigned long end,
1078 struct zap_details *details)
1079 {
1080 struct mm_struct *mm = tlb->mm;
1081 int force_flush = 0;
1082 int rss[NR_MM_COUNTERS];
1083 spinlock_t *ptl;
1084 pte_t *start_pte;
1085 pte_t *pte;
1086
1087 again:
1088 init_rss_vec(rss);
1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 pte = start_pte;
1091 arch_enter_lazy_mmu_mode();
1092 do {
1093 pte_t ptent = *pte;
1094 if (pte_none(ptent)) {
1095 continue;
1096 }
1097
1098 if (pte_present(ptent)) {
1099 struct page *page;
1100
1101 page = vm_normal_page(vma, addr, ptent);
1102 if (unlikely(details) && page) {
1103 /*
1104 * unmap_shared_mapping_pages() wants to
1105 * invalidate cache without truncating:
1106 * unmap shared but keep private pages.
1107 */
1108 if (details->check_mapping &&
1109 details->check_mapping != page->mapping)
1110 continue;
1111 /*
1112 * Each page->index must be checked when
1113 * invalidating or truncating nonlinear.
1114 */
1115 if (details->nonlinear_vma &&
1116 (page->index < details->first_index ||
1117 page->index > details->last_index))
1118 continue;
1119 }
1120 ptent = ptep_get_and_clear_full(mm, addr, pte,
1121 tlb->fullmm);
1122 tlb_remove_tlb_entry(tlb, pte, addr);
1123 if (unlikely(!page))
1124 continue;
1125 if (unlikely(details) && details->nonlinear_vma
1126 && linear_page_index(details->nonlinear_vma,
1127 addr) != page->index) {
1128 pte_t ptfile = pgoff_to_pte(page->index);
1129 if (pte_soft_dirty(ptent))
1130 ptfile = pte_file_mksoft_dirty(ptfile);
1131 set_pte_at(mm, addr, pte, ptfile);
1132 }
1133 if (PageAnon(page))
1134 rss[MM_ANONPAGES]--;
1135 else {
1136 if (pte_dirty(ptent)) {
1137 force_flush = 1;
1138 set_page_dirty(page);
1139 }
1140 if (pte_young(ptent) &&
1141 likely(!(vma->vm_flags & VM_SEQ_READ)))
1142 mark_page_accessed(page);
1143 rss[MM_FILEPAGES]--;
1144 }
1145 page_remove_rmap(page);
1146 if (unlikely(page_mapcount(page) < 0))
1147 print_bad_pte(vma, addr, ptent, page);
1148 if (unlikely(!__tlb_remove_page(tlb, page))) {
1149 force_flush = 1;
1150 break;
1151 }
1152 continue;
1153 }
1154 /*
1155 * If details->check_mapping, we leave swap entries;
1156 * if details->nonlinear_vma, we leave file entries.
1157 */
1158 if (unlikely(details))
1159 continue;
1160 if (pte_file(ptent)) {
1161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162 print_bad_pte(vma, addr, ptent, NULL);
1163 } else {
1164 swp_entry_t entry = pte_to_swp_entry(ptent);
1165
1166 if (!non_swap_entry(entry))
1167 rss[MM_SWAPENTS]--;
1168 else if (is_migration_entry(entry)) {
1169 struct page *page;
1170
1171 page = migration_entry_to_page(entry);
1172
1173 if (PageAnon(page))
1174 rss[MM_ANONPAGES]--;
1175 else
1176 rss[MM_FILEPAGES]--;
1177 }
1178 if (unlikely(!free_swap_and_cache(entry)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1180 }
1181 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182 } while (pte++, addr += PAGE_SIZE, addr != end);
1183
1184 add_mm_rss_vec(mm, rss);
1185 arch_leave_lazy_mmu_mode();
1186
1187 /* Do the actual TLB flush before dropping ptl */
1188 if (force_flush) {
1189 unsigned long old_end;
1190
1191 /*
1192 * Flush the TLB just for the previous segment,
1193 * then update the range to be the remaining
1194 * TLB range.
1195 */
1196 old_end = tlb->end;
1197 tlb->end = addr;
1198 tlb_flush_mmu_tlbonly(tlb);
1199 tlb->start = addr;
1200 tlb->end = old_end;
1201 }
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * If we forced a TLB flush (either due to running out of
1206 * batch buffers or because we needed to flush dirty TLB
1207 * entries before releasing the ptl), free the batched
1208 * memory too. Restart if we didn't do everything.
1209 */
1210 if (force_flush) {
1211 force_flush = 0;
1212 tlb_flush_mmu_free(tlb);
1213
1214 if (addr != end)
1215 goto again;
1216 }
1217
1218 return addr;
1219 }
1220
1221 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pud_t *pud,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1225 {
1226 pmd_t *pmd;
1227 unsigned long next;
1228
1229 pmd = pmd_offset(pud, addr);
1230 do {
1231 next = pmd_addr_end(addr, end);
1232 if (pmd_trans_huge(*pmd)) {
1233 if (next - addr != HPAGE_PMD_SIZE) {
1234 #ifdef CONFIG_DEBUG_VM
1235 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1236 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1237 __func__, addr, end,
1238 vma->vm_start,
1239 vma->vm_end);
1240 BUG();
1241 }
1242 #endif
1243 split_huge_page_pmd(vma, addr, pmd);
1244 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245 goto next;
1246 /* fall through */
1247 }
1248 /*
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1253 * mode.
1254 */
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 goto next;
1257 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259 cond_resched();
1260 } while (pmd++, addr = next, addr != end);
1261
1262 return addr;
1263 }
1264
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266 struct vm_area_struct *vma, pgd_t *pgd,
1267 unsigned long addr, unsigned long end,
1268 struct zap_details *details)
1269 {
1270 pud_t *pud;
1271 unsigned long next;
1272
1273 pud = pud_offset(pgd, addr);
1274 do {
1275 next = pud_addr_end(addr, end);
1276 if (pud_none_or_clear_bad(pud))
1277 continue;
1278 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 } while (pud++, addr = next, addr != end);
1280
1281 return addr;
1282 }
1283
1284 static void unmap_page_range(struct mmu_gather *tlb,
1285 struct vm_area_struct *vma,
1286 unsigned long addr, unsigned long end,
1287 struct zap_details *details)
1288 {
1289 pgd_t *pgd;
1290 unsigned long next;
1291
1292 if (details && !details->check_mapping && !details->nonlinear_vma)
1293 details = NULL;
1294
1295 BUG_ON(addr >= end);
1296 tlb_start_vma(tlb, vma);
1297 pgd = pgd_offset(vma->vm_mm, addr);
1298 do {
1299 next = pgd_addr_end(addr, end);
1300 if (pgd_none_or_clear_bad(pgd))
1301 continue;
1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 } while (pgd++, addr = next, addr != end);
1304 tlb_end_vma(tlb, vma);
1305 }
1306
1307
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309 struct vm_area_struct *vma, unsigned long start_addr,
1310 unsigned long end_addr,
1311 struct zap_details *details)
1312 {
1313 unsigned long start = max(vma->vm_start, start_addr);
1314 unsigned long end;
1315
1316 if (start >= vma->vm_end)
1317 return;
1318 end = min(vma->vm_end, end_addr);
1319 if (end <= vma->vm_start)
1320 return;
1321
1322 if (vma->vm_file)
1323 uprobe_munmap(vma, start, end);
1324
1325 if (unlikely(vma->vm_flags & VM_PFNMAP))
1326 untrack_pfn(vma, 0, 0);
1327
1328 if (start != end) {
1329 if (unlikely(is_vm_hugetlb_page(vma))) {
1330 /*
1331 * It is undesirable to test vma->vm_file as it
1332 * should be non-null for valid hugetlb area.
1333 * However, vm_file will be NULL in the error
1334 * cleanup path of mmap_region. When
1335 * hugetlbfs ->mmap method fails,
1336 * mmap_region() nullifies vma->vm_file
1337 * before calling this function to clean up.
1338 * Since no pte has actually been setup, it is
1339 * safe to do nothing in this case.
1340 */
1341 if (vma->vm_file) {
1342 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 }
1346 } else
1347 unmap_page_range(tlb, vma, start, end, details);
1348 }
1349 }
1350
1351 /**
1352 * unmap_vmas - unmap a range of memory covered by a list of vma's
1353 * @tlb: address of the caller's struct mmu_gather
1354 * @vma: the starting vma
1355 * @start_addr: virtual address at which to start unmapping
1356 * @end_addr: virtual address at which to end unmapping
1357 *
1358 * Unmap all pages in the vma list.
1359 *
1360 * Only addresses between `start' and `end' will be unmapped.
1361 *
1362 * The VMA list must be sorted in ascending virtual address order.
1363 *
1364 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365 * range after unmap_vmas() returns. So the only responsibility here is to
1366 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367 * drops the lock and schedules.
1368 */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370 struct vm_area_struct *vma, unsigned long start_addr,
1371 unsigned long end_addr)
1372 {
1373 struct mm_struct *mm = vma->vm_mm;
1374
1375 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380
1381 /**
1382 * zap_page_range - remove user pages in a given range
1383 * @vma: vm_area_struct holding the applicable pages
1384 * @start: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 * @details: details of nonlinear truncation or shared cache invalidation
1387 *
1388 * Caller must protect the VMA list
1389 */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391 unsigned long size, struct zap_details *details)
1392 {
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct mmu_gather tlb;
1395 unsigned long end = start + size;
1396
1397 lru_add_drain();
1398 tlb_gather_mmu(&tlb, mm, start, end);
1399 update_hiwater_rss(mm);
1400 mmu_notifier_invalidate_range_start(mm, start, end);
1401 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402 unmap_single_vma(&tlb, vma, start, end, details);
1403 mmu_notifier_invalidate_range_end(mm, start, end);
1404 tlb_finish_mmu(&tlb, start, end);
1405 }
1406
1407 /**
1408 * zap_page_range_single - remove user pages in a given range
1409 * @vma: vm_area_struct holding the applicable pages
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1412 * @details: details of nonlinear truncation or shared cache invalidation
1413 *
1414 * The range must fit into one VMA.
1415 */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417 unsigned long size, struct zap_details *details)
1418 {
1419 struct mm_struct *mm = vma->vm_mm;
1420 struct mmu_gather tlb;
1421 unsigned long end = address + size;
1422
1423 lru_add_drain();
1424 tlb_gather_mmu(&tlb, mm, address, end);
1425 update_hiwater_rss(mm);
1426 mmu_notifier_invalidate_range_start(mm, address, end);
1427 unmap_single_vma(&tlb, vma, address, end, details);
1428 mmu_notifier_invalidate_range_end(mm, address, end);
1429 tlb_finish_mmu(&tlb, address, end);
1430 }
1431
1432 /**
1433 * zap_vma_ptes - remove ptes mapping the vma
1434 * @vma: vm_area_struct holding ptes to be zapped
1435 * @address: starting address of pages to zap
1436 * @size: number of bytes to zap
1437 *
1438 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439 *
1440 * The entire address range must be fully contained within the vma.
1441 *
1442 * Returns 0 if successful.
1443 */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 unsigned long size)
1446 {
1447 if (address < vma->vm_start || address + size > vma->vm_end ||
1448 !(vma->vm_flags & VM_PFNMAP))
1449 return -1;
1450 zap_page_range_single(vma, address, size, NULL);
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454
1455 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1456 spinlock_t **ptl)
1457 {
1458 pgd_t * pgd = pgd_offset(mm, addr);
1459 pud_t * pud = pud_alloc(mm, pgd, addr);
1460 if (pud) {
1461 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1462 if (pmd) {
1463 VM_BUG_ON(pmd_trans_huge(*pmd));
1464 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1465 }
1466 }
1467 return NULL;
1468 }
1469
1470 /*
1471 * This is the old fallback for page remapping.
1472 *
1473 * For historical reasons, it only allows reserved pages. Only
1474 * old drivers should use this, and they needed to mark their
1475 * pages reserved for the old functions anyway.
1476 */
1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1478 struct page *page, pgprot_t prot)
1479 {
1480 struct mm_struct *mm = vma->vm_mm;
1481 int retval;
1482 pte_t *pte;
1483 spinlock_t *ptl;
1484
1485 retval = -EINVAL;
1486 if (PageAnon(page))
1487 goto out;
1488 retval = -ENOMEM;
1489 flush_dcache_page(page);
1490 pte = get_locked_pte(mm, addr, &ptl);
1491 if (!pte)
1492 goto out;
1493 retval = -EBUSY;
1494 if (!pte_none(*pte))
1495 goto out_unlock;
1496
1497 /* Ok, finally just insert the thing.. */
1498 get_page(page);
1499 inc_mm_counter_fast(mm, MM_FILEPAGES);
1500 page_add_file_rmap(page);
1501 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502
1503 retval = 0;
1504 pte_unmap_unlock(pte, ptl);
1505 return retval;
1506 out_unlock:
1507 pte_unmap_unlock(pte, ptl);
1508 out:
1509 return retval;
1510 }
1511
1512 /**
1513 * vm_insert_page - insert single page into user vma
1514 * @vma: user vma to map to
1515 * @addr: target user address of this page
1516 * @page: source kernel page
1517 *
1518 * This allows drivers to insert individual pages they've allocated
1519 * into a user vma.
1520 *
1521 * The page has to be a nice clean _individual_ kernel allocation.
1522 * If you allocate a compound page, you need to have marked it as
1523 * such (__GFP_COMP), or manually just split the page up yourself
1524 * (see split_page()).
1525 *
1526 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1527 * took an arbitrary page protection parameter. This doesn't allow
1528 * that. Your vma protection will have to be set up correctly, which
1529 * means that if you want a shared writable mapping, you'd better
1530 * ask for a shared writable mapping!
1531 *
1532 * The page does not need to be reserved.
1533 *
1534 * Usually this function is called from f_op->mmap() handler
1535 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1536 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1537 * function from other places, for example from page-fault handler.
1538 */
1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1540 struct page *page)
1541 {
1542 if (addr < vma->vm_start || addr >= vma->vm_end)
1543 return -EFAULT;
1544 if (!page_count(page))
1545 return -EINVAL;
1546 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1547 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1548 BUG_ON(vma->vm_flags & VM_PFNMAP);
1549 vma->vm_flags |= VM_MIXEDMAP;
1550 }
1551 return insert_page(vma, addr, page, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_page);
1554
1555 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556 unsigned long pfn, pgprot_t prot)
1557 {
1558 struct mm_struct *mm = vma->vm_mm;
1559 int retval;
1560 pte_t *pte, entry;
1561 spinlock_t *ptl;
1562
1563 retval = -ENOMEM;
1564 pte = get_locked_pte(mm, addr, &ptl);
1565 if (!pte)
1566 goto out;
1567 retval = -EBUSY;
1568 if (!pte_none(*pte))
1569 goto out_unlock;
1570
1571 /* Ok, finally just insert the thing.. */
1572 entry = pte_mkspecial(pfn_pte(pfn, prot));
1573 set_pte_at(mm, addr, pte, entry);
1574 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575
1576 retval = 0;
1577 out_unlock:
1578 pte_unmap_unlock(pte, ptl);
1579 out:
1580 return retval;
1581 }
1582
1583 /**
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1588 *
1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
1590 * they've allocated into a user vma. Same comments apply.
1591 *
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
1594 *
1595 * vma cannot be a COW mapping.
1596 *
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
1599 */
1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601 unsigned long pfn)
1602 {
1603 int ret;
1604 pgprot_t pgprot = vma->vm_page_prot;
1605 /*
1606 * Technically, architectures with pte_special can avoid all these
1607 * restrictions (same for remap_pfn_range). However we would like
1608 * consistency in testing and feature parity among all, so we should
1609 * try to keep these invariants in place for everybody.
1610 */
1611 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1612 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1613 (VM_PFNMAP|VM_MIXEDMAP));
1614 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1615 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1616
1617 if (addr < vma->vm_start || addr >= vma->vm_end)
1618 return -EFAULT;
1619 if (track_pfn_insert(vma, &pgprot, pfn))
1620 return -EINVAL;
1621
1622 ret = insert_pfn(vma, addr, pfn, pgprot);
1623
1624 return ret;
1625 }
1626 EXPORT_SYMBOL(vm_insert_pfn);
1627
1628 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1629 unsigned long pfn)
1630 {
1631 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1632
1633 if (addr < vma->vm_start || addr >= vma->vm_end)
1634 return -EFAULT;
1635
1636 /*
1637 * If we don't have pte special, then we have to use the pfn_valid()
1638 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1639 * refcount the page if pfn_valid is true (hence insert_page rather
1640 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1641 * without pte special, it would there be refcounted as a normal page.
1642 */
1643 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1644 struct page *page;
1645
1646 page = pfn_to_page(pfn);
1647 return insert_page(vma, addr, page, vma->vm_page_prot);
1648 }
1649 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1650 }
1651 EXPORT_SYMBOL(vm_insert_mixed);
1652
1653 /*
1654 * maps a range of physical memory into the requested pages. the old
1655 * mappings are removed. any references to nonexistent pages results
1656 * in null mappings (currently treated as "copy-on-access")
1657 */
1658 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1659 unsigned long addr, unsigned long end,
1660 unsigned long pfn, pgprot_t prot)
1661 {
1662 pte_t *pte;
1663 spinlock_t *ptl;
1664
1665 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1666 if (!pte)
1667 return -ENOMEM;
1668 arch_enter_lazy_mmu_mode();
1669 do {
1670 BUG_ON(!pte_none(*pte));
1671 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1672 pfn++;
1673 } while (pte++, addr += PAGE_SIZE, addr != end);
1674 arch_leave_lazy_mmu_mode();
1675 pte_unmap_unlock(pte - 1, ptl);
1676 return 0;
1677 }
1678
1679 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1680 unsigned long addr, unsigned long end,
1681 unsigned long pfn, pgprot_t prot)
1682 {
1683 pmd_t *pmd;
1684 unsigned long next;
1685
1686 pfn -= addr >> PAGE_SHIFT;
1687 pmd = pmd_alloc(mm, pud, addr);
1688 if (!pmd)
1689 return -ENOMEM;
1690 VM_BUG_ON(pmd_trans_huge(*pmd));
1691 do {
1692 next = pmd_addr_end(addr, end);
1693 if (remap_pte_range(mm, pmd, addr, next,
1694 pfn + (addr >> PAGE_SHIFT), prot))
1695 return -ENOMEM;
1696 } while (pmd++, addr = next, addr != end);
1697 return 0;
1698 }
1699
1700 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1701 unsigned long addr, unsigned long end,
1702 unsigned long pfn, pgprot_t prot)
1703 {
1704 pud_t *pud;
1705 unsigned long next;
1706
1707 pfn -= addr >> PAGE_SHIFT;
1708 pud = pud_alloc(mm, pgd, addr);
1709 if (!pud)
1710 return -ENOMEM;
1711 do {
1712 next = pud_addr_end(addr, end);
1713 if (remap_pmd_range(mm, pud, addr, next,
1714 pfn + (addr >> PAGE_SHIFT), prot))
1715 return -ENOMEM;
1716 } while (pud++, addr = next, addr != end);
1717 return 0;
1718 }
1719
1720 /**
1721 * remap_pfn_range - remap kernel memory to userspace
1722 * @vma: user vma to map to
1723 * @addr: target user address to start at
1724 * @pfn: physical address of kernel memory
1725 * @size: size of map area
1726 * @prot: page protection flags for this mapping
1727 *
1728 * Note: this is only safe if the mm semaphore is held when called.
1729 */
1730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1731 unsigned long pfn, unsigned long size, pgprot_t prot)
1732 {
1733 pgd_t *pgd;
1734 unsigned long next;
1735 unsigned long end = addr + PAGE_ALIGN(size);
1736 struct mm_struct *mm = vma->vm_mm;
1737 int err;
1738
1739 /*
1740 * Physically remapped pages are special. Tell the
1741 * rest of the world about it:
1742 * VM_IO tells people not to look at these pages
1743 * (accesses can have side effects).
1744 * VM_PFNMAP tells the core MM that the base pages are just
1745 * raw PFN mappings, and do not have a "struct page" associated
1746 * with them.
1747 * VM_DONTEXPAND
1748 * Disable vma merging and expanding with mremap().
1749 * VM_DONTDUMP
1750 * Omit vma from core dump, even when VM_IO turned off.
1751 *
1752 * There's a horrible special case to handle copy-on-write
1753 * behaviour that some programs depend on. We mark the "original"
1754 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1755 * See vm_normal_page() for details.
1756 */
1757 if (is_cow_mapping(vma->vm_flags)) {
1758 if (addr != vma->vm_start || end != vma->vm_end)
1759 return -EINVAL;
1760 vma->vm_pgoff = pfn;
1761 }
1762
1763 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1764 if (err)
1765 return -EINVAL;
1766
1767 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1768
1769 BUG_ON(addr >= end);
1770 pfn -= addr >> PAGE_SHIFT;
1771 pgd = pgd_offset(mm, addr);
1772 flush_cache_range(vma, addr, end);
1773 do {
1774 next = pgd_addr_end(addr, end);
1775 err = remap_pud_range(mm, pgd, addr, next,
1776 pfn + (addr >> PAGE_SHIFT), prot);
1777 if (err)
1778 break;
1779 } while (pgd++, addr = next, addr != end);
1780
1781 if (err)
1782 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1783
1784 return err;
1785 }
1786 EXPORT_SYMBOL(remap_pfn_range);
1787
1788 /**
1789 * vm_iomap_memory - remap memory to userspace
1790 * @vma: user vma to map to
1791 * @start: start of area
1792 * @len: size of area
1793 *
1794 * This is a simplified io_remap_pfn_range() for common driver use. The
1795 * driver just needs to give us the physical memory range to be mapped,
1796 * we'll figure out the rest from the vma information.
1797 *
1798 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1799 * whatever write-combining details or similar.
1800 */
1801 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1802 {
1803 unsigned long vm_len, pfn, pages;
1804
1805 /* Check that the physical memory area passed in looks valid */
1806 if (start + len < start)
1807 return -EINVAL;
1808 /*
1809 * You *really* shouldn't map things that aren't page-aligned,
1810 * but we've historically allowed it because IO memory might
1811 * just have smaller alignment.
1812 */
1813 len += start & ~PAGE_MASK;
1814 pfn = start >> PAGE_SHIFT;
1815 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1816 if (pfn + pages < pfn)
1817 return -EINVAL;
1818
1819 /* We start the mapping 'vm_pgoff' pages into the area */
1820 if (vma->vm_pgoff > pages)
1821 return -EINVAL;
1822 pfn += vma->vm_pgoff;
1823 pages -= vma->vm_pgoff;
1824
1825 /* Can we fit all of the mapping? */
1826 vm_len = vma->vm_end - vma->vm_start;
1827 if (vm_len >> PAGE_SHIFT > pages)
1828 return -EINVAL;
1829
1830 /* Ok, let it rip */
1831 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1832 }
1833 EXPORT_SYMBOL(vm_iomap_memory);
1834
1835 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1836 unsigned long addr, unsigned long end,
1837 pte_fn_t fn, void *data)
1838 {
1839 pte_t *pte;
1840 int err;
1841 pgtable_t token;
1842 spinlock_t *uninitialized_var(ptl);
1843
1844 pte = (mm == &init_mm) ?
1845 pte_alloc_kernel(pmd, addr) :
1846 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1847 if (!pte)
1848 return -ENOMEM;
1849
1850 BUG_ON(pmd_huge(*pmd));
1851
1852 arch_enter_lazy_mmu_mode();
1853
1854 token = pmd_pgtable(*pmd);
1855
1856 do {
1857 err = fn(pte++, token, addr, data);
1858 if (err)
1859 break;
1860 } while (addr += PAGE_SIZE, addr != end);
1861
1862 arch_leave_lazy_mmu_mode();
1863
1864 if (mm != &init_mm)
1865 pte_unmap_unlock(pte-1, ptl);
1866 return err;
1867 }
1868
1869 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1870 unsigned long addr, unsigned long end,
1871 pte_fn_t fn, void *data)
1872 {
1873 pmd_t *pmd;
1874 unsigned long next;
1875 int err;
1876
1877 BUG_ON(pud_huge(*pud));
1878
1879 pmd = pmd_alloc(mm, pud, addr);
1880 if (!pmd)
1881 return -ENOMEM;
1882 do {
1883 next = pmd_addr_end(addr, end);
1884 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1885 if (err)
1886 break;
1887 } while (pmd++, addr = next, addr != end);
1888 return err;
1889 }
1890
1891 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1892 unsigned long addr, unsigned long end,
1893 pte_fn_t fn, void *data)
1894 {
1895 pud_t *pud;
1896 unsigned long next;
1897 int err;
1898
1899 pud = pud_alloc(mm, pgd, addr);
1900 if (!pud)
1901 return -ENOMEM;
1902 do {
1903 next = pud_addr_end(addr, end);
1904 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1905 if (err)
1906 break;
1907 } while (pud++, addr = next, addr != end);
1908 return err;
1909 }
1910
1911 /*
1912 * Scan a region of virtual memory, filling in page tables as necessary
1913 * and calling a provided function on each leaf page table.
1914 */
1915 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1916 unsigned long size, pte_fn_t fn, void *data)
1917 {
1918 pgd_t *pgd;
1919 unsigned long next;
1920 unsigned long end = addr + size;
1921 int err;
1922
1923 BUG_ON(addr >= end);
1924 pgd = pgd_offset(mm, addr);
1925 do {
1926 next = pgd_addr_end(addr, end);
1927 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1928 if (err)
1929 break;
1930 } while (pgd++, addr = next, addr != end);
1931
1932 return err;
1933 }
1934 EXPORT_SYMBOL_GPL(apply_to_page_range);
1935
1936 /*
1937 * handle_pte_fault chooses page fault handler according to an entry
1938 * which was read non-atomically. Before making any commitment, on
1939 * those architectures or configurations (e.g. i386 with PAE) which
1940 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1941 * must check under lock before unmapping the pte and proceeding
1942 * (but do_wp_page is only called after already making such a check;
1943 * and do_anonymous_page can safely check later on).
1944 */
1945 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1946 pte_t *page_table, pte_t orig_pte)
1947 {
1948 int same = 1;
1949 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1950 if (sizeof(pte_t) > sizeof(unsigned long)) {
1951 spinlock_t *ptl = pte_lockptr(mm, pmd);
1952 spin_lock(ptl);
1953 same = pte_same(*page_table, orig_pte);
1954 spin_unlock(ptl);
1955 }
1956 #endif
1957 pte_unmap(page_table);
1958 return same;
1959 }
1960
1961 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1962 {
1963 debug_dma_assert_idle(src);
1964
1965 /*
1966 * If the source page was a PFN mapping, we don't have
1967 * a "struct page" for it. We do a best-effort copy by
1968 * just copying from the original user address. If that
1969 * fails, we just zero-fill it. Live with it.
1970 */
1971 if (unlikely(!src)) {
1972 void *kaddr = kmap_atomic(dst);
1973 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1974
1975 /*
1976 * This really shouldn't fail, because the page is there
1977 * in the page tables. But it might just be unreadable,
1978 * in which case we just give up and fill the result with
1979 * zeroes.
1980 */
1981 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1982 clear_page(kaddr);
1983 kunmap_atomic(kaddr);
1984 flush_dcache_page(dst);
1985 } else
1986 copy_user_highpage(dst, src, va, vma);
1987 }
1988
1989 /*
1990 * Notify the address space that the page is about to become writable so that
1991 * it can prohibit this or wait for the page to get into an appropriate state.
1992 *
1993 * We do this without the lock held, so that it can sleep if it needs to.
1994 */
1995 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1996 unsigned long address)
1997 {
1998 struct vm_fault vmf;
1999 int ret;
2000
2001 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2002 vmf.pgoff = page->index;
2003 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2004 vmf.page = page;
2005
2006 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2008 return ret;
2009 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2010 lock_page(page);
2011 if (!page->mapping) {
2012 unlock_page(page);
2013 return 0; /* retry */
2014 }
2015 ret |= VM_FAULT_LOCKED;
2016 } else
2017 VM_BUG_ON_PAGE(!PageLocked(page), page);
2018 return ret;
2019 }
2020
2021 /*
2022 * This routine handles present pages, when users try to write
2023 * to a shared page. It is done by copying the page to a new address
2024 * and decrementing the shared-page counter for the old page.
2025 *
2026 * Note that this routine assumes that the protection checks have been
2027 * done by the caller (the low-level page fault routine in most cases).
2028 * Thus we can safely just mark it writable once we've done any necessary
2029 * COW.
2030 *
2031 * We also mark the page dirty at this point even though the page will
2032 * change only once the write actually happens. This avoids a few races,
2033 * and potentially makes it more efficient.
2034 *
2035 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2036 * but allow concurrent faults), with pte both mapped and locked.
2037 * We return with mmap_sem still held, but pte unmapped and unlocked.
2038 */
2039 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2040 unsigned long address, pte_t *page_table, pmd_t *pmd,
2041 spinlock_t *ptl, pte_t orig_pte)
2042 __releases(ptl)
2043 {
2044 struct page *old_page, *new_page = NULL;
2045 pte_t entry;
2046 int ret = 0;
2047 int page_mkwrite = 0;
2048 struct page *dirty_page = NULL;
2049 unsigned long mmun_start = 0; /* For mmu_notifiers */
2050 unsigned long mmun_end = 0; /* For mmu_notifiers */
2051 struct mem_cgroup *memcg;
2052
2053 old_page = vm_normal_page(vma, address, orig_pte);
2054 if (!old_page) {
2055 /*
2056 * VM_MIXEDMAP !pfn_valid() case
2057 *
2058 * We should not cow pages in a shared writeable mapping.
2059 * Just mark the pages writable as we can't do any dirty
2060 * accounting on raw pfn maps.
2061 */
2062 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2063 (VM_WRITE|VM_SHARED))
2064 goto reuse;
2065 goto gotten;
2066 }
2067
2068 /*
2069 * Take out anonymous pages first, anonymous shared vmas are
2070 * not dirty accountable.
2071 */
2072 if (PageAnon(old_page) && !PageKsm(old_page)) {
2073 if (!trylock_page(old_page)) {
2074 page_cache_get(old_page);
2075 pte_unmap_unlock(page_table, ptl);
2076 lock_page(old_page);
2077 page_table = pte_offset_map_lock(mm, pmd, address,
2078 &ptl);
2079 if (!pte_same(*page_table, orig_pte)) {
2080 unlock_page(old_page);
2081 goto unlock;
2082 }
2083 page_cache_release(old_page);
2084 }
2085 if (reuse_swap_page(old_page)) {
2086 /*
2087 * The page is all ours. Move it to our anon_vma so
2088 * the rmap code will not search our parent or siblings.
2089 * Protected against the rmap code by the page lock.
2090 */
2091 page_move_anon_rmap(old_page, vma, address);
2092 unlock_page(old_page);
2093 goto reuse;
2094 }
2095 unlock_page(old_page);
2096 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2097 (VM_WRITE|VM_SHARED))) {
2098 /*
2099 * Only catch write-faults on shared writable pages,
2100 * read-only shared pages can get COWed by
2101 * get_user_pages(.write=1, .force=1).
2102 */
2103 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2104 int tmp;
2105 page_cache_get(old_page);
2106 pte_unmap_unlock(page_table, ptl);
2107 tmp = do_page_mkwrite(vma, old_page, address);
2108 if (unlikely(!tmp || (tmp &
2109 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2110 page_cache_release(old_page);
2111 return tmp;
2112 }
2113 /*
2114 * Since we dropped the lock we need to revalidate
2115 * the PTE as someone else may have changed it. If
2116 * they did, we just return, as we can count on the
2117 * MMU to tell us if they didn't also make it writable.
2118 */
2119 page_table = pte_offset_map_lock(mm, pmd, address,
2120 &ptl);
2121 if (!pte_same(*page_table, orig_pte)) {
2122 unlock_page(old_page);
2123 goto unlock;
2124 }
2125
2126 page_mkwrite = 1;
2127 }
2128 dirty_page = old_page;
2129 get_page(dirty_page);
2130
2131 reuse:
2132 /*
2133 * Clear the pages cpupid information as the existing
2134 * information potentially belongs to a now completely
2135 * unrelated process.
2136 */
2137 if (old_page)
2138 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2139
2140 flush_cache_page(vma, address, pte_pfn(orig_pte));
2141 entry = pte_mkyoung(orig_pte);
2142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2144 update_mmu_cache(vma, address, page_table);
2145 pte_unmap_unlock(page_table, ptl);
2146 ret |= VM_FAULT_WRITE;
2147
2148 if (!dirty_page)
2149 return ret;
2150
2151 /*
2152 * Yes, Virginia, this is actually required to prevent a race
2153 * with clear_page_dirty_for_io() from clearing the page dirty
2154 * bit after it clear all dirty ptes, but before a racing
2155 * do_wp_page installs a dirty pte.
2156 *
2157 * do_shared_fault is protected similarly.
2158 */
2159 if (!page_mkwrite) {
2160 wait_on_page_locked(dirty_page);
2161 set_page_dirty_balance(dirty_page);
2162 /* file_update_time outside page_lock */
2163 if (vma->vm_file)
2164 file_update_time(vma->vm_file);
2165 }
2166 put_page(dirty_page);
2167 if (page_mkwrite) {
2168 struct address_space *mapping = dirty_page->mapping;
2169
2170 set_page_dirty(dirty_page);
2171 unlock_page(dirty_page);
2172 page_cache_release(dirty_page);
2173 if (mapping) {
2174 /*
2175 * Some device drivers do not set page.mapping
2176 * but still dirty their pages
2177 */
2178 balance_dirty_pages_ratelimited(mapping);
2179 }
2180 }
2181
2182 return ret;
2183 }
2184
2185 /*
2186 * Ok, we need to copy. Oh, well..
2187 */
2188 page_cache_get(old_page);
2189 gotten:
2190 pte_unmap_unlock(page_table, ptl);
2191
2192 if (unlikely(anon_vma_prepare(vma)))
2193 goto oom;
2194
2195 if (is_zero_pfn(pte_pfn(orig_pte))) {
2196 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2197 if (!new_page)
2198 goto oom;
2199 } else {
2200 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2201 if (!new_page)
2202 goto oom;
2203 cow_user_page(new_page, old_page, address, vma);
2204 }
2205 __SetPageUptodate(new_page);
2206
2207 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2208 goto oom_free_new;
2209
2210 mmun_start = address & PAGE_MASK;
2211 mmun_end = mmun_start + PAGE_SIZE;
2212 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2213
2214 /*
2215 * Re-check the pte - we dropped the lock
2216 */
2217 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2218 if (likely(pte_same(*page_table, orig_pte))) {
2219 if (old_page) {
2220 if (!PageAnon(old_page)) {
2221 dec_mm_counter_fast(mm, MM_FILEPAGES);
2222 inc_mm_counter_fast(mm, MM_ANONPAGES);
2223 }
2224 } else
2225 inc_mm_counter_fast(mm, MM_ANONPAGES);
2226 flush_cache_page(vma, address, pte_pfn(orig_pte));
2227 entry = mk_pte(new_page, vma->vm_page_prot);
2228 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229 /*
2230 * Clear the pte entry and flush it first, before updating the
2231 * pte with the new entry. This will avoid a race condition
2232 * seen in the presence of one thread doing SMC and another
2233 * thread doing COW.
2234 */
2235 ptep_clear_flush(vma, address, page_table);
2236 page_add_new_anon_rmap(new_page, vma, address);
2237 mem_cgroup_commit_charge(new_page, memcg, false);
2238 lru_cache_add_active_or_unevictable(new_page, vma);
2239 /*
2240 * We call the notify macro here because, when using secondary
2241 * mmu page tables (such as kvm shadow page tables), we want the
2242 * new page to be mapped directly into the secondary page table.
2243 */
2244 set_pte_at_notify(mm, address, page_table, entry);
2245 update_mmu_cache(vma, address, page_table);
2246 if (old_page) {
2247 /*
2248 * Only after switching the pte to the new page may
2249 * we remove the mapcount here. Otherwise another
2250 * process may come and find the rmap count decremented
2251 * before the pte is switched to the new page, and
2252 * "reuse" the old page writing into it while our pte
2253 * here still points into it and can be read by other
2254 * threads.
2255 *
2256 * The critical issue is to order this
2257 * page_remove_rmap with the ptp_clear_flush above.
2258 * Those stores are ordered by (if nothing else,)
2259 * the barrier present in the atomic_add_negative
2260 * in page_remove_rmap.
2261 *
2262 * Then the TLB flush in ptep_clear_flush ensures that
2263 * no process can access the old page before the
2264 * decremented mapcount is visible. And the old page
2265 * cannot be reused until after the decremented
2266 * mapcount is visible. So transitively, TLBs to
2267 * old page will be flushed before it can be reused.
2268 */
2269 page_remove_rmap(old_page);
2270 }
2271
2272 /* Free the old page.. */
2273 new_page = old_page;
2274 ret |= VM_FAULT_WRITE;
2275 } else
2276 mem_cgroup_cancel_charge(new_page, memcg);
2277
2278 if (new_page)
2279 page_cache_release(new_page);
2280 unlock:
2281 pte_unmap_unlock(page_table, ptl);
2282 if (mmun_end > mmun_start)
2283 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2284 if (old_page) {
2285 /*
2286 * Don't let another task, with possibly unlocked vma,
2287 * keep the mlocked page.
2288 */
2289 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2290 lock_page(old_page); /* LRU manipulation */
2291 munlock_vma_page(old_page);
2292 unlock_page(old_page);
2293 }
2294 page_cache_release(old_page);
2295 }
2296 return ret;
2297 oom_free_new:
2298 page_cache_release(new_page);
2299 oom:
2300 if (old_page)
2301 page_cache_release(old_page);
2302 return VM_FAULT_OOM;
2303 }
2304
2305 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2306 unsigned long start_addr, unsigned long end_addr,
2307 struct zap_details *details)
2308 {
2309 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2310 }
2311
2312 static inline void unmap_mapping_range_tree(struct rb_root *root,
2313 struct zap_details *details)
2314 {
2315 struct vm_area_struct *vma;
2316 pgoff_t vba, vea, zba, zea;
2317
2318 vma_interval_tree_foreach(vma, root,
2319 details->first_index, details->last_index) {
2320
2321 vba = vma->vm_pgoff;
2322 vea = vba + vma_pages(vma) - 1;
2323 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2324 zba = details->first_index;
2325 if (zba < vba)
2326 zba = vba;
2327 zea = details->last_index;
2328 if (zea > vea)
2329 zea = vea;
2330
2331 unmap_mapping_range_vma(vma,
2332 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2333 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2334 details);
2335 }
2336 }
2337
2338 static inline void unmap_mapping_range_list(struct list_head *head,
2339 struct zap_details *details)
2340 {
2341 struct vm_area_struct *vma;
2342
2343 /*
2344 * In nonlinear VMAs there is no correspondence between virtual address
2345 * offset and file offset. So we must perform an exhaustive search
2346 * across *all* the pages in each nonlinear VMA, not just the pages
2347 * whose virtual address lies outside the file truncation point.
2348 */
2349 list_for_each_entry(vma, head, shared.nonlinear) {
2350 details->nonlinear_vma = vma;
2351 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2352 }
2353 }
2354
2355 /**
2356 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2357 * @mapping: the address space containing mmaps to be unmapped.
2358 * @holebegin: byte in first page to unmap, relative to the start of
2359 * the underlying file. This will be rounded down to a PAGE_SIZE
2360 * boundary. Note that this is different from truncate_pagecache(), which
2361 * must keep the partial page. In contrast, we must get rid of
2362 * partial pages.
2363 * @holelen: size of prospective hole in bytes. This will be rounded
2364 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2365 * end of the file.
2366 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2367 * but 0 when invalidating pagecache, don't throw away private data.
2368 */
2369 void unmap_mapping_range(struct address_space *mapping,
2370 loff_t const holebegin, loff_t const holelen, int even_cows)
2371 {
2372 struct zap_details details;
2373 pgoff_t hba = holebegin >> PAGE_SHIFT;
2374 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2375
2376 /* Check for overflow. */
2377 if (sizeof(holelen) > sizeof(hlen)) {
2378 long long holeend =
2379 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2380 if (holeend & ~(long long)ULONG_MAX)
2381 hlen = ULONG_MAX - hba + 1;
2382 }
2383
2384 details.check_mapping = even_cows? NULL: mapping;
2385 details.nonlinear_vma = NULL;
2386 details.first_index = hba;
2387 details.last_index = hba + hlen - 1;
2388 if (details.last_index < details.first_index)
2389 details.last_index = ULONG_MAX;
2390
2391
2392 mutex_lock(&mapping->i_mmap_mutex);
2393 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2394 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2395 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2396 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2397 mutex_unlock(&mapping->i_mmap_mutex);
2398 }
2399 EXPORT_SYMBOL(unmap_mapping_range);
2400
2401 /*
2402 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2403 * but allow concurrent faults), and pte mapped but not yet locked.
2404 * We return with pte unmapped and unlocked.
2405 *
2406 * We return with the mmap_sem locked or unlocked in the same cases
2407 * as does filemap_fault().
2408 */
2409 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2410 unsigned long address, pte_t *page_table, pmd_t *pmd,
2411 unsigned int flags, pte_t orig_pte)
2412 {
2413 spinlock_t *ptl;
2414 struct page *page, *swapcache;
2415 struct mem_cgroup *memcg;
2416 swp_entry_t entry;
2417 pte_t pte;
2418 int locked;
2419 int exclusive = 0;
2420 int ret = 0;
2421
2422 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2423 goto out;
2424
2425 entry = pte_to_swp_entry(orig_pte);
2426 if (unlikely(non_swap_entry(entry))) {
2427 if (is_migration_entry(entry)) {
2428 migration_entry_wait(mm, pmd, address);
2429 } else if (is_hwpoison_entry(entry)) {
2430 ret = VM_FAULT_HWPOISON;
2431 } else {
2432 print_bad_pte(vma, address, orig_pte, NULL);
2433 ret = VM_FAULT_SIGBUS;
2434 }
2435 goto out;
2436 }
2437 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2438 page = lookup_swap_cache(entry);
2439 if (!page) {
2440 page = swapin_readahead(entry,
2441 GFP_HIGHUSER_MOVABLE, vma, address);
2442 if (!page) {
2443 /*
2444 * Back out if somebody else faulted in this pte
2445 * while we released the pte lock.
2446 */
2447 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2448 if (likely(pte_same(*page_table, orig_pte)))
2449 ret = VM_FAULT_OOM;
2450 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2451 goto unlock;
2452 }
2453
2454 /* Had to read the page from swap area: Major fault */
2455 ret = VM_FAULT_MAJOR;
2456 count_vm_event(PGMAJFAULT);
2457 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2458 } else if (PageHWPoison(page)) {
2459 /*
2460 * hwpoisoned dirty swapcache pages are kept for killing
2461 * owner processes (which may be unknown at hwpoison time)
2462 */
2463 ret = VM_FAULT_HWPOISON;
2464 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2465 swapcache = page;
2466 goto out_release;
2467 }
2468
2469 swapcache = page;
2470 locked = lock_page_or_retry(page, mm, flags);
2471
2472 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2473 if (!locked) {
2474 ret |= VM_FAULT_RETRY;
2475 goto out_release;
2476 }
2477
2478 /*
2479 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2480 * release the swapcache from under us. The page pin, and pte_same
2481 * test below, are not enough to exclude that. Even if it is still
2482 * swapcache, we need to check that the page's swap has not changed.
2483 */
2484 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2485 goto out_page;
2486
2487 page = ksm_might_need_to_copy(page, vma, address);
2488 if (unlikely(!page)) {
2489 ret = VM_FAULT_OOM;
2490 page = swapcache;
2491 goto out_page;
2492 }
2493
2494 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2495 ret = VM_FAULT_OOM;
2496 goto out_page;
2497 }
2498
2499 /*
2500 * Back out if somebody else already faulted in this pte.
2501 */
2502 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2503 if (unlikely(!pte_same(*page_table, orig_pte)))
2504 goto out_nomap;
2505
2506 if (unlikely(!PageUptodate(page))) {
2507 ret = VM_FAULT_SIGBUS;
2508 goto out_nomap;
2509 }
2510
2511 /*
2512 * The page isn't present yet, go ahead with the fault.
2513 *
2514 * Be careful about the sequence of operations here.
2515 * To get its accounting right, reuse_swap_page() must be called
2516 * while the page is counted on swap but not yet in mapcount i.e.
2517 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2518 * must be called after the swap_free(), or it will never succeed.
2519 */
2520
2521 inc_mm_counter_fast(mm, MM_ANONPAGES);
2522 dec_mm_counter_fast(mm, MM_SWAPENTS);
2523 pte = mk_pte(page, vma->vm_page_prot);
2524 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2525 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2526 flags &= ~FAULT_FLAG_WRITE;
2527 ret |= VM_FAULT_WRITE;
2528 exclusive = 1;
2529 }
2530 flush_icache_page(vma, page);
2531 if (pte_swp_soft_dirty(orig_pte))
2532 pte = pte_mksoft_dirty(pte);
2533 set_pte_at(mm, address, page_table, pte);
2534 if (page == swapcache) {
2535 do_page_add_anon_rmap(page, vma, address, exclusive);
2536 mem_cgroup_commit_charge(page, memcg, true);
2537 } else { /* ksm created a completely new copy */
2538 page_add_new_anon_rmap(page, vma, address);
2539 mem_cgroup_commit_charge(page, memcg, false);
2540 lru_cache_add_active_or_unevictable(page, vma);
2541 }
2542
2543 swap_free(entry);
2544 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2545 try_to_free_swap(page);
2546 unlock_page(page);
2547 if (page != swapcache) {
2548 /*
2549 * Hold the lock to avoid the swap entry to be reused
2550 * until we take the PT lock for the pte_same() check
2551 * (to avoid false positives from pte_same). For
2552 * further safety release the lock after the swap_free
2553 * so that the swap count won't change under a
2554 * parallel locked swapcache.
2555 */
2556 unlock_page(swapcache);
2557 page_cache_release(swapcache);
2558 }
2559
2560 if (flags & FAULT_FLAG_WRITE) {
2561 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2562 if (ret & VM_FAULT_ERROR)
2563 ret &= VM_FAULT_ERROR;
2564 goto out;
2565 }
2566
2567 /* No need to invalidate - it was non-present before */
2568 update_mmu_cache(vma, address, page_table);
2569 unlock:
2570 pte_unmap_unlock(page_table, ptl);
2571 out:
2572 return ret;
2573 out_nomap:
2574 mem_cgroup_cancel_charge(page, memcg);
2575 pte_unmap_unlock(page_table, ptl);
2576 out_page:
2577 unlock_page(page);
2578 out_release:
2579 page_cache_release(page);
2580 if (page != swapcache) {
2581 unlock_page(swapcache);
2582 page_cache_release(swapcache);
2583 }
2584 return ret;
2585 }
2586
2587 /*
2588 * This is like a special single-page "expand_{down|up}wards()",
2589 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2590 * doesn't hit another vma.
2591 */
2592 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2593 {
2594 address &= PAGE_MASK;
2595 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2596 struct vm_area_struct *prev = vma->vm_prev;
2597
2598 /*
2599 * Is there a mapping abutting this one below?
2600 *
2601 * That's only ok if it's the same stack mapping
2602 * that has gotten split..
2603 */
2604 if (prev && prev->vm_end == address)
2605 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2606
2607 expand_downwards(vma, address - PAGE_SIZE);
2608 }
2609 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2610 struct vm_area_struct *next = vma->vm_next;
2611
2612 /* As VM_GROWSDOWN but s/below/above/ */
2613 if (next && next->vm_start == address + PAGE_SIZE)
2614 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2615
2616 expand_upwards(vma, address + PAGE_SIZE);
2617 }
2618 return 0;
2619 }
2620
2621 /*
2622 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2623 * but allow concurrent faults), and pte mapped but not yet locked.
2624 * We return with mmap_sem still held, but pte unmapped and unlocked.
2625 */
2626 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2627 unsigned long address, pte_t *page_table, pmd_t *pmd,
2628 unsigned int flags)
2629 {
2630 struct mem_cgroup *memcg;
2631 struct page *page;
2632 spinlock_t *ptl;
2633 pte_t entry;
2634
2635 pte_unmap(page_table);
2636
2637 /* Check if we need to add a guard page to the stack */
2638 if (check_stack_guard_page(vma, address) < 0)
2639 return VM_FAULT_SIGBUS;
2640
2641 /* Use the zero-page for reads */
2642 if (!(flags & FAULT_FLAG_WRITE)) {
2643 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2644 vma->vm_page_prot));
2645 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2646 if (!pte_none(*page_table))
2647 goto unlock;
2648 goto setpte;
2649 }
2650
2651 /* Allocate our own private page. */
2652 if (unlikely(anon_vma_prepare(vma)))
2653 goto oom;
2654 page = alloc_zeroed_user_highpage_movable(vma, address);
2655 if (!page)
2656 goto oom;
2657 /*
2658 * The memory barrier inside __SetPageUptodate makes sure that
2659 * preceeding stores to the page contents become visible before
2660 * the set_pte_at() write.
2661 */
2662 __SetPageUptodate(page);
2663
2664 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2665 goto oom_free_page;
2666
2667 entry = mk_pte(page, vma->vm_page_prot);
2668 if (vma->vm_flags & VM_WRITE)
2669 entry = pte_mkwrite(pte_mkdirty(entry));
2670
2671 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2672 if (!pte_none(*page_table))
2673 goto release;
2674
2675 inc_mm_counter_fast(mm, MM_ANONPAGES);
2676 page_add_new_anon_rmap(page, vma, address);
2677 mem_cgroup_commit_charge(page, memcg, false);
2678 lru_cache_add_active_or_unevictable(page, vma);
2679 setpte:
2680 set_pte_at(mm, address, page_table, entry);
2681
2682 /* No need to invalidate - it was non-present before */
2683 update_mmu_cache(vma, address, page_table);
2684 unlock:
2685 pte_unmap_unlock(page_table, ptl);
2686 return 0;
2687 release:
2688 mem_cgroup_cancel_charge(page, memcg);
2689 page_cache_release(page);
2690 goto unlock;
2691 oom_free_page:
2692 page_cache_release(page);
2693 oom:
2694 return VM_FAULT_OOM;
2695 }
2696
2697 /*
2698 * The mmap_sem must have been held on entry, and may have been
2699 * released depending on flags and vma->vm_ops->fault() return value.
2700 * See filemap_fault() and __lock_page_retry().
2701 */
2702 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2703 pgoff_t pgoff, unsigned int flags, struct page **page)
2704 {
2705 struct vm_fault vmf;
2706 int ret;
2707
2708 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2709 vmf.pgoff = pgoff;
2710 vmf.flags = flags;
2711 vmf.page = NULL;
2712
2713 ret = vma->vm_ops->fault(vma, &vmf);
2714 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2715 return ret;
2716
2717 if (unlikely(PageHWPoison(vmf.page))) {
2718 if (ret & VM_FAULT_LOCKED)
2719 unlock_page(vmf.page);
2720 page_cache_release(vmf.page);
2721 return VM_FAULT_HWPOISON;
2722 }
2723
2724 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2725 lock_page(vmf.page);
2726 else
2727 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2728
2729 *page = vmf.page;
2730 return ret;
2731 }
2732
2733 /**
2734 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2735 *
2736 * @vma: virtual memory area
2737 * @address: user virtual address
2738 * @page: page to map
2739 * @pte: pointer to target page table entry
2740 * @write: true, if new entry is writable
2741 * @anon: true, if it's anonymous page
2742 *
2743 * Caller must hold page table lock relevant for @pte.
2744 *
2745 * Target users are page handler itself and implementations of
2746 * vm_ops->map_pages.
2747 */
2748 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2749 struct page *page, pte_t *pte, bool write, bool anon)
2750 {
2751 pte_t entry;
2752
2753 flush_icache_page(vma, page);
2754 entry = mk_pte(page, vma->vm_page_prot);
2755 if (write)
2756 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2758 entry = pte_mksoft_dirty(entry);
2759 if (anon) {
2760 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2761 page_add_new_anon_rmap(page, vma, address);
2762 } else {
2763 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2764 page_add_file_rmap(page);
2765 }
2766 set_pte_at(vma->vm_mm, address, pte, entry);
2767
2768 /* no need to invalidate: a not-present page won't be cached */
2769 update_mmu_cache(vma, address, pte);
2770 }
2771
2772 static unsigned long fault_around_bytes __read_mostly =
2773 rounddown_pow_of_two(65536);
2774
2775 #ifdef CONFIG_DEBUG_FS
2776 static int fault_around_bytes_get(void *data, u64 *val)
2777 {
2778 *val = fault_around_bytes;
2779 return 0;
2780 }
2781
2782 /*
2783 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2784 * rounded down to nearest page order. It's what do_fault_around() expects to
2785 * see.
2786 */
2787 static int fault_around_bytes_set(void *data, u64 val)
2788 {
2789 if (val / PAGE_SIZE > PTRS_PER_PTE)
2790 return -EINVAL;
2791 if (val > PAGE_SIZE)
2792 fault_around_bytes = rounddown_pow_of_two(val);
2793 else
2794 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2795 return 0;
2796 }
2797 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2798 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2799
2800 static int __init fault_around_debugfs(void)
2801 {
2802 void *ret;
2803
2804 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2805 &fault_around_bytes_fops);
2806 if (!ret)
2807 pr_warn("Failed to create fault_around_bytes in debugfs");
2808 return 0;
2809 }
2810 late_initcall(fault_around_debugfs);
2811 #endif
2812
2813 /*
2814 * do_fault_around() tries to map few pages around the fault address. The hope
2815 * is that the pages will be needed soon and this will lower the number of
2816 * faults to handle.
2817 *
2818 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2819 * not ready to be mapped: not up-to-date, locked, etc.
2820 *
2821 * This function is called with the page table lock taken. In the split ptlock
2822 * case the page table lock only protects only those entries which belong to
2823 * the page table corresponding to the fault address.
2824 *
2825 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2826 * only once.
2827 *
2828 * fault_around_pages() defines how many pages we'll try to map.
2829 * do_fault_around() expects it to return a power of two less than or equal to
2830 * PTRS_PER_PTE.
2831 *
2832 * The virtual address of the area that we map is naturally aligned to the
2833 * fault_around_pages() value (and therefore to page order). This way it's
2834 * easier to guarantee that we don't cross page table boundaries.
2835 */
2836 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2837 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2838 {
2839 unsigned long start_addr, nr_pages, mask;
2840 pgoff_t max_pgoff;
2841 struct vm_fault vmf;
2842 int off;
2843
2844 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2845 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2846
2847 start_addr = max(address & mask, vma->vm_start);
2848 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2849 pte -= off;
2850 pgoff -= off;
2851
2852 /*
2853 * max_pgoff is either end of page table or end of vma
2854 * or fault_around_pages() from pgoff, depending what is nearest.
2855 */
2856 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2857 PTRS_PER_PTE - 1;
2858 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2859 pgoff + nr_pages - 1);
2860
2861 /* Check if it makes any sense to call ->map_pages */
2862 while (!pte_none(*pte)) {
2863 if (++pgoff > max_pgoff)
2864 return;
2865 start_addr += PAGE_SIZE;
2866 if (start_addr >= vma->vm_end)
2867 return;
2868 pte++;
2869 }
2870
2871 vmf.virtual_address = (void __user *) start_addr;
2872 vmf.pte = pte;
2873 vmf.pgoff = pgoff;
2874 vmf.max_pgoff = max_pgoff;
2875 vmf.flags = flags;
2876 vma->vm_ops->map_pages(vma, &vmf);
2877 }
2878
2879 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2880 unsigned long address, pmd_t *pmd,
2881 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2882 {
2883 struct page *fault_page;
2884 spinlock_t *ptl;
2885 pte_t *pte;
2886 int ret = 0;
2887
2888 /*
2889 * Let's call ->map_pages() first and use ->fault() as fallback
2890 * if page by the offset is not ready to be mapped (cold cache or
2891 * something).
2892 */
2893 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2894 fault_around_bytes >> PAGE_SHIFT > 1) {
2895 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2896 do_fault_around(vma, address, pte, pgoff, flags);
2897 if (!pte_same(*pte, orig_pte))
2898 goto unlock_out;
2899 pte_unmap_unlock(pte, ptl);
2900 }
2901
2902 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2903 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2904 return ret;
2905
2906 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2907 if (unlikely(!pte_same(*pte, orig_pte))) {
2908 pte_unmap_unlock(pte, ptl);
2909 unlock_page(fault_page);
2910 page_cache_release(fault_page);
2911 return ret;
2912 }
2913 do_set_pte(vma, address, fault_page, pte, false, false);
2914 unlock_page(fault_page);
2915 unlock_out:
2916 pte_unmap_unlock(pte, ptl);
2917 return ret;
2918 }
2919
2920 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2921 unsigned long address, pmd_t *pmd,
2922 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2923 {
2924 struct page *fault_page, *new_page;
2925 struct mem_cgroup *memcg;
2926 spinlock_t *ptl;
2927 pte_t *pte;
2928 int ret;
2929
2930 if (unlikely(anon_vma_prepare(vma)))
2931 return VM_FAULT_OOM;
2932
2933 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2934 if (!new_page)
2935 return VM_FAULT_OOM;
2936
2937 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2938 page_cache_release(new_page);
2939 return VM_FAULT_OOM;
2940 }
2941
2942 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2943 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2944 goto uncharge_out;
2945
2946 copy_user_highpage(new_page, fault_page, address, vma);
2947 __SetPageUptodate(new_page);
2948
2949 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2950 if (unlikely(!pte_same(*pte, orig_pte))) {
2951 pte_unmap_unlock(pte, ptl);
2952 unlock_page(fault_page);
2953 page_cache_release(fault_page);
2954 goto uncharge_out;
2955 }
2956 do_set_pte(vma, address, new_page, pte, true, true);
2957 mem_cgroup_commit_charge(new_page, memcg, false);
2958 lru_cache_add_active_or_unevictable(new_page, vma);
2959 pte_unmap_unlock(pte, ptl);
2960 unlock_page(fault_page);
2961 page_cache_release(fault_page);
2962 return ret;
2963 uncharge_out:
2964 mem_cgroup_cancel_charge(new_page, memcg);
2965 page_cache_release(new_page);
2966 return ret;
2967 }
2968
2969 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2970 unsigned long address, pmd_t *pmd,
2971 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2972 {
2973 struct page *fault_page;
2974 struct address_space *mapping;
2975 spinlock_t *ptl;
2976 pte_t *pte;
2977 int dirtied = 0;
2978 int ret, tmp;
2979
2980 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2981 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2982 return ret;
2983
2984 /*
2985 * Check if the backing address space wants to know that the page is
2986 * about to become writable
2987 */
2988 if (vma->vm_ops->page_mkwrite) {
2989 unlock_page(fault_page);
2990 tmp = do_page_mkwrite(vma, fault_page, address);
2991 if (unlikely(!tmp ||
2992 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2993 page_cache_release(fault_page);
2994 return tmp;
2995 }
2996 }
2997
2998 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2999 if (unlikely(!pte_same(*pte, orig_pte))) {
3000 pte_unmap_unlock(pte, ptl);
3001 unlock_page(fault_page);
3002 page_cache_release(fault_page);
3003 return ret;
3004 }
3005 do_set_pte(vma, address, fault_page, pte, true, false);
3006 pte_unmap_unlock(pte, ptl);
3007
3008 if (set_page_dirty(fault_page))
3009 dirtied = 1;
3010 mapping = fault_page->mapping;
3011 unlock_page(fault_page);
3012 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3013 /*
3014 * Some device drivers do not set page.mapping but still
3015 * dirty their pages
3016 */
3017 balance_dirty_pages_ratelimited(mapping);
3018 }
3019
3020 /* file_update_time outside page_lock */
3021 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3022 file_update_time(vma->vm_file);
3023
3024 return ret;
3025 }
3026
3027 /*
3028 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3029 * but allow concurrent faults).
3030 * The mmap_sem may have been released depending on flags and our
3031 * return value. See filemap_fault() and __lock_page_or_retry().
3032 */
3033 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3034 unsigned long address, pte_t *page_table, pmd_t *pmd,
3035 unsigned int flags, pte_t orig_pte)
3036 {
3037 pgoff_t pgoff = (((address & PAGE_MASK)
3038 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3039
3040 pte_unmap(page_table);
3041 if (!(flags & FAULT_FLAG_WRITE))
3042 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3043 orig_pte);
3044 if (!(vma->vm_flags & VM_SHARED))
3045 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3046 orig_pte);
3047 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3048 }
3049
3050 /*
3051 * Fault of a previously existing named mapping. Repopulate the pte
3052 * from the encoded file_pte if possible. This enables swappable
3053 * nonlinear vmas.
3054 *
3055 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3056 * but allow concurrent faults), and pte mapped but not yet locked.
3057 * We return with pte unmapped and unlocked.
3058 * The mmap_sem may have been released depending on flags and our
3059 * return value. See filemap_fault() and __lock_page_or_retry().
3060 */
3061 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3062 unsigned long address, pte_t *page_table, pmd_t *pmd,
3063 unsigned int flags, pte_t orig_pte)
3064 {
3065 pgoff_t pgoff;
3066
3067 flags |= FAULT_FLAG_NONLINEAR;
3068
3069 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3070 return 0;
3071
3072 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3073 /*
3074 * Page table corrupted: show pte and kill process.
3075 */
3076 print_bad_pte(vma, address, orig_pte, NULL);
3077 return VM_FAULT_SIGBUS;
3078 }
3079
3080 pgoff = pte_to_pgoff(orig_pte);
3081 if (!(flags & FAULT_FLAG_WRITE))
3082 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3083 orig_pte);
3084 if (!(vma->vm_flags & VM_SHARED))
3085 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3086 orig_pte);
3087 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3088 }
3089
3090 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3091 unsigned long addr, int page_nid,
3092 int *flags)
3093 {
3094 get_page(page);
3095
3096 count_vm_numa_event(NUMA_HINT_FAULTS);
3097 if (page_nid == numa_node_id()) {
3098 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3099 *flags |= TNF_FAULT_LOCAL;
3100 }
3101
3102 return mpol_misplaced(page, vma, addr);
3103 }
3104
3105 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3107 {
3108 struct page *page = NULL;
3109 spinlock_t *ptl;
3110 int page_nid = -1;
3111 int last_cpupid;
3112 int target_nid;
3113 bool migrated = false;
3114 int flags = 0;
3115
3116 /*
3117 * The "pte" at this point cannot be used safely without
3118 * validation through pte_unmap_same(). It's of NUMA type but
3119 * the pfn may be screwed if the read is non atomic.
3120 *
3121 * ptep_modify_prot_start is not called as this is clearing
3122 * the _PAGE_NUMA bit and it is not really expected that there
3123 * would be concurrent hardware modifications to the PTE.
3124 */
3125 ptl = pte_lockptr(mm, pmd);
3126 spin_lock(ptl);
3127 if (unlikely(!pte_same(*ptep, pte))) {
3128 pte_unmap_unlock(ptep, ptl);
3129 goto out;
3130 }
3131
3132 pte = pte_mknonnuma(pte);
3133 set_pte_at(mm, addr, ptep, pte);
3134 update_mmu_cache(vma, addr, ptep);
3135
3136 page = vm_normal_page(vma, addr, pte);
3137 if (!page) {
3138 pte_unmap_unlock(ptep, ptl);
3139 return 0;
3140 }
3141 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3142
3143 /*
3144 * Avoid grouping on DSO/COW pages in specific and RO pages
3145 * in general, RO pages shouldn't hurt as much anyway since
3146 * they can be in shared cache state.
3147 */
3148 if (!pte_write(pte))
3149 flags |= TNF_NO_GROUP;
3150
3151 /*
3152 * Flag if the page is shared between multiple address spaces. This
3153 * is later used when determining whether to group tasks together
3154 */
3155 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3156 flags |= TNF_SHARED;
3157
3158 last_cpupid = page_cpupid_last(page);
3159 page_nid = page_to_nid(page);
3160 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3161 pte_unmap_unlock(ptep, ptl);
3162 if (target_nid == -1) {
3163 put_page(page);
3164 goto out;
3165 }
3166
3167 /* Migrate to the requested node */
3168 migrated = migrate_misplaced_page(page, vma, target_nid);
3169 if (migrated) {
3170 page_nid = target_nid;
3171 flags |= TNF_MIGRATED;
3172 }
3173
3174 out:
3175 if (page_nid != -1)
3176 task_numa_fault(last_cpupid, page_nid, 1, flags);
3177 return 0;
3178 }
3179
3180 /*
3181 * These routines also need to handle stuff like marking pages dirty
3182 * and/or accessed for architectures that don't do it in hardware (most
3183 * RISC architectures). The early dirtying is also good on the i386.
3184 *
3185 * There is also a hook called "update_mmu_cache()" that architectures
3186 * with external mmu caches can use to update those (ie the Sparc or
3187 * PowerPC hashed page tables that act as extended TLBs).
3188 *
3189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190 * but allow concurrent faults), and pte mapped but not yet locked.
3191 * We return with pte unmapped and unlocked.
3192 *
3193 * The mmap_sem may have been released depending on flags and our
3194 * return value. See filemap_fault() and __lock_page_or_retry().
3195 */
3196 static int handle_pte_fault(struct mm_struct *mm,
3197 struct vm_area_struct *vma, unsigned long address,
3198 pte_t *pte, pmd_t *pmd, unsigned int flags)
3199 {
3200 pte_t entry;
3201 spinlock_t *ptl;
3202
3203 entry = ACCESS_ONCE(*pte);
3204 if (!pte_present(entry)) {
3205 if (pte_none(entry)) {
3206 if (vma->vm_ops) {
3207 if (likely(vma->vm_ops->fault))
3208 return do_linear_fault(mm, vma, address,
3209 pte, pmd, flags, entry);
3210 }
3211 return do_anonymous_page(mm, vma, address,
3212 pte, pmd, flags);
3213 }
3214 if (pte_file(entry))
3215 return do_nonlinear_fault(mm, vma, address,
3216 pte, pmd, flags, entry);
3217 return do_swap_page(mm, vma, address,
3218 pte, pmd, flags, entry);
3219 }
3220
3221 if (pte_numa(entry))
3222 return do_numa_page(mm, vma, address, entry, pte, pmd);
3223
3224 ptl = pte_lockptr(mm, pmd);
3225 spin_lock(ptl);
3226 if (unlikely(!pte_same(*pte, entry)))
3227 goto unlock;
3228 if (flags & FAULT_FLAG_WRITE) {
3229 if (!pte_write(entry))
3230 return do_wp_page(mm, vma, address,
3231 pte, pmd, ptl, entry);
3232 entry = pte_mkdirty(entry);
3233 }
3234 entry = pte_mkyoung(entry);
3235 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3236 update_mmu_cache(vma, address, pte);
3237 } else {
3238 /*
3239 * This is needed only for protection faults but the arch code
3240 * is not yet telling us if this is a protection fault or not.
3241 * This still avoids useless tlb flushes for .text page faults
3242 * with threads.
3243 */
3244 if (flags & FAULT_FLAG_WRITE)
3245 flush_tlb_fix_spurious_fault(vma, address);
3246 }
3247 unlock:
3248 pte_unmap_unlock(pte, ptl);
3249 return 0;
3250 }
3251
3252 /*
3253 * By the time we get here, we already hold the mm semaphore
3254 *
3255 * The mmap_sem may have been released depending on flags and our
3256 * return value. See filemap_fault() and __lock_page_or_retry().
3257 */
3258 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3259 unsigned long address, unsigned int flags)
3260 {
3261 pgd_t *pgd;
3262 pud_t *pud;
3263 pmd_t *pmd;
3264 pte_t *pte;
3265
3266 if (unlikely(is_vm_hugetlb_page(vma)))
3267 return hugetlb_fault(mm, vma, address, flags);
3268
3269 pgd = pgd_offset(mm, address);
3270 pud = pud_alloc(mm, pgd, address);
3271 if (!pud)
3272 return VM_FAULT_OOM;
3273 pmd = pmd_alloc(mm, pud, address);
3274 if (!pmd)
3275 return VM_FAULT_OOM;
3276 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3277 int ret = VM_FAULT_FALLBACK;
3278 if (!vma->vm_ops)
3279 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3280 pmd, flags);
3281 if (!(ret & VM_FAULT_FALLBACK))
3282 return ret;
3283 } else {
3284 pmd_t orig_pmd = *pmd;
3285 int ret;
3286
3287 barrier();
3288 if (pmd_trans_huge(orig_pmd)) {
3289 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3290
3291 /*
3292 * If the pmd is splitting, return and retry the
3293 * the fault. Alternative: wait until the split
3294 * is done, and goto retry.
3295 */
3296 if (pmd_trans_splitting(orig_pmd))
3297 return 0;
3298
3299 if (pmd_numa(orig_pmd))
3300 return do_huge_pmd_numa_page(mm, vma, address,
3301 orig_pmd, pmd);
3302
3303 if (dirty && !pmd_write(orig_pmd)) {
3304 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3305 orig_pmd);
3306 if (!(ret & VM_FAULT_FALLBACK))
3307 return ret;
3308 } else {
3309 huge_pmd_set_accessed(mm, vma, address, pmd,
3310 orig_pmd, dirty);
3311 return 0;
3312 }
3313 }
3314 }
3315
3316 /*
3317 * Use __pte_alloc instead of pte_alloc_map, because we can't
3318 * run pte_offset_map on the pmd, if an huge pmd could
3319 * materialize from under us from a different thread.
3320 */
3321 if (unlikely(pmd_none(*pmd)) &&
3322 unlikely(__pte_alloc(mm, vma, pmd, address)))
3323 return VM_FAULT_OOM;
3324 /* if an huge pmd materialized from under us just retry later */
3325 if (unlikely(pmd_trans_huge(*pmd)))
3326 return 0;
3327 /*
3328 * A regular pmd is established and it can't morph into a huge pmd
3329 * from under us anymore at this point because we hold the mmap_sem
3330 * read mode and khugepaged takes it in write mode. So now it's
3331 * safe to run pte_offset_map().
3332 */
3333 pte = pte_offset_map(pmd, address);
3334
3335 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3336 }
3337
3338 /*
3339 * By the time we get here, we already hold the mm semaphore
3340 *
3341 * The mmap_sem may have been released depending on flags and our
3342 * return value. See filemap_fault() and __lock_page_or_retry().
3343 */
3344 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3345 unsigned long address, unsigned int flags)
3346 {
3347 int ret;
3348
3349 __set_current_state(TASK_RUNNING);
3350
3351 count_vm_event(PGFAULT);
3352 mem_cgroup_count_vm_event(mm, PGFAULT);
3353
3354 /* do counter updates before entering really critical section. */
3355 check_sync_rss_stat(current);
3356
3357 /*
3358 * Enable the memcg OOM handling for faults triggered in user
3359 * space. Kernel faults are handled more gracefully.
3360 */
3361 if (flags & FAULT_FLAG_USER)
3362 mem_cgroup_oom_enable();
3363
3364 ret = __handle_mm_fault(mm, vma, address, flags);
3365
3366 if (flags & FAULT_FLAG_USER) {
3367 mem_cgroup_oom_disable();
3368 /*
3369 * The task may have entered a memcg OOM situation but
3370 * if the allocation error was handled gracefully (no
3371 * VM_FAULT_OOM), there is no need to kill anything.
3372 * Just clean up the OOM state peacefully.
3373 */
3374 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3375 mem_cgroup_oom_synchronize(false);
3376 }
3377
3378 return ret;
3379 }
3380
3381 #ifndef __PAGETABLE_PUD_FOLDED
3382 /*
3383 * Allocate page upper directory.
3384 * We've already handled the fast-path in-line.
3385 */
3386 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3387 {
3388 pud_t *new = pud_alloc_one(mm, address);
3389 if (!new)
3390 return -ENOMEM;
3391
3392 smp_wmb(); /* See comment in __pte_alloc */
3393
3394 spin_lock(&mm->page_table_lock);
3395 if (pgd_present(*pgd)) /* Another has populated it */
3396 pud_free(mm, new);
3397 else
3398 pgd_populate(mm, pgd, new);
3399 spin_unlock(&mm->page_table_lock);
3400 return 0;
3401 }
3402 #endif /* __PAGETABLE_PUD_FOLDED */
3403
3404 #ifndef __PAGETABLE_PMD_FOLDED
3405 /*
3406 * Allocate page middle directory.
3407 * We've already handled the fast-path in-line.
3408 */
3409 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3410 {
3411 pmd_t *new = pmd_alloc_one(mm, address);
3412 if (!new)
3413 return -ENOMEM;
3414
3415 smp_wmb(); /* See comment in __pte_alloc */
3416
3417 spin_lock(&mm->page_table_lock);
3418 #ifndef __ARCH_HAS_4LEVEL_HACK
3419 if (pud_present(*pud)) /* Another has populated it */
3420 pmd_free(mm, new);
3421 else
3422 pud_populate(mm, pud, new);
3423 #else
3424 if (pgd_present(*pud)) /* Another has populated it */
3425 pmd_free(mm, new);
3426 else
3427 pgd_populate(mm, pud, new);
3428 #endif /* __ARCH_HAS_4LEVEL_HACK */
3429 spin_unlock(&mm->page_table_lock);
3430 return 0;
3431 }
3432 #endif /* __PAGETABLE_PMD_FOLDED */
3433
3434 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3435 pte_t **ptepp, spinlock_t **ptlp)
3436 {
3437 pgd_t *pgd;
3438 pud_t *pud;
3439 pmd_t *pmd;
3440 pte_t *ptep;
3441
3442 pgd = pgd_offset(mm, address);
3443 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3444 goto out;
3445
3446 pud = pud_offset(pgd, address);
3447 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3448 goto out;
3449
3450 pmd = pmd_offset(pud, address);
3451 VM_BUG_ON(pmd_trans_huge(*pmd));
3452 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3453 goto out;
3454
3455 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3456 if (pmd_huge(*pmd))
3457 goto out;
3458
3459 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3460 if (!ptep)
3461 goto out;
3462 if (!pte_present(*ptep))
3463 goto unlock;
3464 *ptepp = ptep;
3465 return 0;
3466 unlock:
3467 pte_unmap_unlock(ptep, *ptlp);
3468 out:
3469 return -EINVAL;
3470 }
3471
3472 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3473 pte_t **ptepp, spinlock_t **ptlp)
3474 {
3475 int res;
3476
3477 /* (void) is needed to make gcc happy */
3478 (void) __cond_lock(*ptlp,
3479 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3480 return res;
3481 }
3482
3483 /**
3484 * follow_pfn - look up PFN at a user virtual address
3485 * @vma: memory mapping
3486 * @address: user virtual address
3487 * @pfn: location to store found PFN
3488 *
3489 * Only IO mappings and raw PFN mappings are allowed.
3490 *
3491 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3492 */
3493 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3494 unsigned long *pfn)
3495 {
3496 int ret = -EINVAL;
3497 spinlock_t *ptl;
3498 pte_t *ptep;
3499
3500 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3501 return ret;
3502
3503 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3504 if (ret)
3505 return ret;
3506 *pfn = pte_pfn(*ptep);
3507 pte_unmap_unlock(ptep, ptl);
3508 return 0;
3509 }
3510 EXPORT_SYMBOL(follow_pfn);
3511
3512 #ifdef CONFIG_HAVE_IOREMAP_PROT
3513 int follow_phys(struct vm_area_struct *vma,
3514 unsigned long address, unsigned int flags,
3515 unsigned long *prot, resource_size_t *phys)
3516 {
3517 int ret = -EINVAL;
3518 pte_t *ptep, pte;
3519 spinlock_t *ptl;
3520
3521 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3522 goto out;
3523
3524 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3525 goto out;
3526 pte = *ptep;
3527
3528 if ((flags & FOLL_WRITE) && !pte_write(pte))
3529 goto unlock;
3530
3531 *prot = pgprot_val(pte_pgprot(pte));
3532 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3533
3534 ret = 0;
3535 unlock:
3536 pte_unmap_unlock(ptep, ptl);
3537 out:
3538 return ret;
3539 }
3540
3541 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3542 void *buf, int len, int write)
3543 {
3544 resource_size_t phys_addr;
3545 unsigned long prot = 0;
3546 void __iomem *maddr;
3547 int offset = addr & (PAGE_SIZE-1);
3548
3549 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3550 return -EINVAL;
3551
3552 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3553 if (write)
3554 memcpy_toio(maddr + offset, buf, len);
3555 else
3556 memcpy_fromio(buf, maddr + offset, len);
3557 iounmap(maddr);
3558
3559 return len;
3560 }
3561 EXPORT_SYMBOL_GPL(generic_access_phys);
3562 #endif
3563
3564 /*
3565 * Access another process' address space as given in mm. If non-NULL, use the
3566 * given task for page fault accounting.
3567 */
3568 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3569 unsigned long addr, void *buf, int len, int write)
3570 {
3571 struct vm_area_struct *vma;
3572 void *old_buf = buf;
3573
3574 down_read(&mm->mmap_sem);
3575 /* ignore errors, just check how much was successfully transferred */
3576 while (len) {
3577 int bytes, ret, offset;
3578 void *maddr;
3579 struct page *page = NULL;
3580
3581 ret = get_user_pages(tsk, mm, addr, 1,
3582 write, 1, &page, &vma);
3583 if (ret <= 0) {
3584 #ifndef CONFIG_HAVE_IOREMAP_PROT
3585 break;
3586 #else
3587 /*
3588 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3589 * we can access using slightly different code.
3590 */
3591 vma = find_vma(mm, addr);
3592 if (!vma || vma->vm_start > addr)
3593 break;
3594 if (vma->vm_ops && vma->vm_ops->access)
3595 ret = vma->vm_ops->access(vma, addr, buf,
3596 len, write);
3597 if (ret <= 0)
3598 break;
3599 bytes = ret;
3600 #endif
3601 } else {
3602 bytes = len;
3603 offset = addr & (PAGE_SIZE-1);
3604 if (bytes > PAGE_SIZE-offset)
3605 bytes = PAGE_SIZE-offset;
3606
3607 maddr = kmap(page);
3608 if (write) {
3609 copy_to_user_page(vma, page, addr,
3610 maddr + offset, buf, bytes);
3611 set_page_dirty_lock(page);
3612 } else {
3613 copy_from_user_page(vma, page, addr,
3614 buf, maddr + offset, bytes);
3615 }
3616 kunmap(page);
3617 page_cache_release(page);
3618 }
3619 len -= bytes;
3620 buf += bytes;
3621 addr += bytes;
3622 }
3623 up_read(&mm->mmap_sem);
3624
3625 return buf - old_buf;
3626 }
3627
3628 /**
3629 * access_remote_vm - access another process' address space
3630 * @mm: the mm_struct of the target address space
3631 * @addr: start address to access
3632 * @buf: source or destination buffer
3633 * @len: number of bytes to transfer
3634 * @write: whether the access is a write
3635 *
3636 * The caller must hold a reference on @mm.
3637 */
3638 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3639 void *buf, int len, int write)
3640 {
3641 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3642 }
3643
3644 /*
3645 * Access another process' address space.
3646 * Source/target buffer must be kernel space,
3647 * Do not walk the page table directly, use get_user_pages
3648 */
3649 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3650 void *buf, int len, int write)
3651 {
3652 struct mm_struct *mm;
3653 int ret;
3654
3655 mm = get_task_mm(tsk);
3656 if (!mm)
3657 return 0;
3658
3659 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3660 mmput(mm);
3661
3662 return ret;
3663 }
3664
3665 /*
3666 * Print the name of a VMA.
3667 */
3668 void print_vma_addr(char *prefix, unsigned long ip)
3669 {
3670 struct mm_struct *mm = current->mm;
3671 struct vm_area_struct *vma;
3672
3673 /*
3674 * Do not print if we are in atomic
3675 * contexts (in exception stacks, etc.):
3676 */
3677 if (preempt_count())
3678 return;
3679
3680 down_read(&mm->mmap_sem);
3681 vma = find_vma(mm, ip);
3682 if (vma && vma->vm_file) {
3683 struct file *f = vma->vm_file;
3684 char *buf = (char *)__get_free_page(GFP_KERNEL);
3685 if (buf) {
3686 char *p;
3687
3688 p = d_path(&f->f_path, buf, PAGE_SIZE);
3689 if (IS_ERR(p))
3690 p = "?";
3691 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3692 vma->vm_start,
3693 vma->vm_end - vma->vm_start);
3694 free_page((unsigned long)buf);
3695 }
3696 }
3697 up_read(&mm->mmap_sem);
3698 }
3699
3700 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3701 void might_fault(void)
3702 {
3703 /*
3704 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3705 * holding the mmap_sem, this is safe because kernel memory doesn't
3706 * get paged out, therefore we'll never actually fault, and the
3707 * below annotations will generate false positives.
3708 */
3709 if (segment_eq(get_fs(), KERNEL_DS))
3710 return;
3711
3712 /*
3713 * it would be nicer only to annotate paths which are not under
3714 * pagefault_disable, however that requires a larger audit and
3715 * providing helpers like get_user_atomic.
3716 */
3717 if (in_atomic())
3718 return;
3719
3720 __might_sleep(__FILE__, __LINE__, 0);
3721
3722 if (current->mm)
3723 might_lock_read(&current->mm->mmap_sem);
3724 }
3725 EXPORT_SYMBOL(might_fault);
3726 #endif
3727
3728 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3729 static void clear_gigantic_page(struct page *page,
3730 unsigned long addr,
3731 unsigned int pages_per_huge_page)
3732 {
3733 int i;
3734 struct page *p = page;
3735
3736 might_sleep();
3737 for (i = 0; i < pages_per_huge_page;
3738 i++, p = mem_map_next(p, page, i)) {
3739 cond_resched();
3740 clear_user_highpage(p, addr + i * PAGE_SIZE);
3741 }
3742 }
3743 void clear_huge_page(struct page *page,
3744 unsigned long addr, unsigned int pages_per_huge_page)
3745 {
3746 int i;
3747
3748 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3749 clear_gigantic_page(page, addr, pages_per_huge_page);
3750 return;
3751 }
3752
3753 might_sleep();
3754 for (i = 0; i < pages_per_huge_page; i++) {
3755 cond_resched();
3756 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3757 }
3758 }
3759
3760 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3761 unsigned long addr,
3762 struct vm_area_struct *vma,
3763 unsigned int pages_per_huge_page)
3764 {
3765 int i;
3766 struct page *dst_base = dst;
3767 struct page *src_base = src;
3768
3769 for (i = 0; i < pages_per_huge_page; ) {
3770 cond_resched();
3771 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3772
3773 i++;
3774 dst = mem_map_next(dst, dst_base, i);
3775 src = mem_map_next(src, src_base, i);
3776 }
3777 }
3778
3779 void copy_user_huge_page(struct page *dst, struct page *src,
3780 unsigned long addr, struct vm_area_struct *vma,
3781 unsigned int pages_per_huge_page)
3782 {
3783 int i;
3784
3785 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3786 copy_user_gigantic_page(dst, src, addr, vma,
3787 pages_per_huge_page);
3788 return;
3789 }
3790
3791 might_sleep();
3792 for (i = 0; i < pages_per_huge_page; i++) {
3793 cond_resched();
3794 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3795 }
3796 }
3797 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3798
3799 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3800
3801 static struct kmem_cache *page_ptl_cachep;
3802
3803 void __init ptlock_cache_init(void)
3804 {
3805 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3806 SLAB_PANIC, NULL);
3807 }
3808
3809 bool ptlock_alloc(struct page *page)
3810 {
3811 spinlock_t *ptl;
3812
3813 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3814 if (!ptl)
3815 return false;
3816 page->ptl = ptl;
3817 return true;
3818 }
3819
3820 void ptlock_free(struct page *page)
3821 {
3822 kmem_cache_free(page_ptl_cachep, page->ptl);
3823 }
3824 #endif
This page took 0.109673 seconds and 5 git commands to generate.