Merge git://git.kernel.org/pub/scm/linux/kernel/git/lethal/sh-2.6
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 1;
98 #else
99 2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104 randomize_va_space = 0;
105 return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124 pud_ERROR(*pud);
125 pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132 }
133
134 /*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
149 {
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
153
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
162
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
170 }
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
182 {
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
186
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
195
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
203 }
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
210 }
211
212 /*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
220 {
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
250
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
279 {
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
307 vma = next;
308 }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
316
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
337 }
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
350 smp_wmb(); /* See comment in __pte_alloc */
351
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
356 }
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
380 {
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
387 }
388
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393
394 /*
395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
396 *
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
400 *
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
409 *
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
414 *
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
423 *
424 *
425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
435 */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
443 {
444 unsigned long pfn;
445
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
450 }
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
453 }
454
455 /* !HAVE_PTE_SPECIAL case follows: */
456
457 pfn = pte_pfn(pte);
458
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
471 }
472 }
473
474 VM_BUG_ON(!pfn_valid(pfn));
475
476 /*
477 * NOTE! We still have PageReserved() pages in the page tables.
478 *
479 * eg. VDSO mappings can cause them to exist.
480 */
481 out:
482 return pfn_to_page(pfn);
483 }
484
485 /*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
489 */
490
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 unsigned long addr, int *rss)
495 {
496 unsigned long vm_flags = vma->vm_flags;
497 pte_t pte = *src_pte;
498 struct page *page;
499
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
503 swp_entry_t entry = pte_to_swp_entry(pte);
504
505 swap_duplicate(entry);
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
512 spin_unlock(&mmlist_lock);
513 }
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
516 /*
517 * COW mappings require pages in both parent
518 * and child to be set to read.
519 */
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
523 }
524 }
525 goto out_set_pte;
526 }
527
528 /*
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
531 */
532 if (is_cow_mapping(vm_flags)) {
533 ptep_set_wrprotect(src_mm, addr, src_pte);
534 pte = pte_wrprotect(pte);
535 }
536
537 /*
538 * If it's a shared mapping, mark it clean in
539 * the child
540 */
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
544
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
548 page_dup_rmap(page, vma, addr);
549 rss[!!PageAnon(page)]++;
550 }
551
552 out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
559 {
560 pte_t *src_pte, *dst_pte;
561 spinlock_t *src_ptl, *dst_ptl;
562 int progress = 0;
563 int rss[2];
564
565 again:
566 rss[1] = rss[0] = 0;
567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
571 src_ptl = pte_lockptr(src_mm, src_pmd);
572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 arch_enter_lazy_mmu_mode();
574
575 do {
576 /*
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
579 */
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 break;
585 }
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
589 }
590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593
594 arch_leave_lazy_mmu_mode();
595 spin_unlock(src_ptl);
596 pte_unmap_nested(src_pte - 1);
597 add_mm_rss(dst_mm, rss[0], rss[1]);
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
600 if (addr != end)
601 goto again;
602 return 0;
603 }
604
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608 {
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
611
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
625 }
626
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
630 {
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
633
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
647 }
648
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
651 {
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
656 int ret;
657
658 /*
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
663 */
664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 if (!vma->anon_vma)
666 return 0;
667 }
668
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
672 /*
673 * We need to invalidate the secondary MMU mappings only when
674 * there could be a permission downgrade on the ptes of the
675 * parent mm. And a permission downgrade will only happen if
676 * is_cow_mapping() returns true.
677 */
678 if (is_cow_mapping(vma->vm_flags))
679 mmu_notifier_invalidate_range_start(src_mm, addr, end);
680
681 ret = 0;
682 dst_pgd = pgd_offset(dst_mm, addr);
683 src_pgd = pgd_offset(src_mm, addr);
684 do {
685 next = pgd_addr_end(addr, end);
686 if (pgd_none_or_clear_bad(src_pgd))
687 continue;
688 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 vma, addr, next))) {
690 ret = -ENOMEM;
691 break;
692 }
693 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
694
695 if (is_cow_mapping(vma->vm_flags))
696 mmu_notifier_invalidate_range_end(src_mm,
697 vma->vm_start, end);
698 return ret;
699 }
700
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702 struct vm_area_struct *vma, pmd_t *pmd,
703 unsigned long addr, unsigned long end,
704 long *zap_work, struct zap_details *details)
705 {
706 struct mm_struct *mm = tlb->mm;
707 pte_t *pte;
708 spinlock_t *ptl;
709 int file_rss = 0;
710 int anon_rss = 0;
711
712 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713 arch_enter_lazy_mmu_mode();
714 do {
715 pte_t ptent = *pte;
716 if (pte_none(ptent)) {
717 (*zap_work)--;
718 continue;
719 }
720
721 (*zap_work) -= PAGE_SIZE;
722
723 if (pte_present(ptent)) {
724 struct page *page;
725
726 page = vm_normal_page(vma, addr, ptent);
727 if (unlikely(details) && page) {
728 /*
729 * unmap_shared_mapping_pages() wants to
730 * invalidate cache without truncating:
731 * unmap shared but keep private pages.
732 */
733 if (details->check_mapping &&
734 details->check_mapping != page->mapping)
735 continue;
736 /*
737 * Each page->index must be checked when
738 * invalidating or truncating nonlinear.
739 */
740 if (details->nonlinear_vma &&
741 (page->index < details->first_index ||
742 page->index > details->last_index))
743 continue;
744 }
745 ptent = ptep_get_and_clear_full(mm, addr, pte,
746 tlb->fullmm);
747 tlb_remove_tlb_entry(tlb, pte, addr);
748 if (unlikely(!page))
749 continue;
750 if (unlikely(details) && details->nonlinear_vma
751 && linear_page_index(details->nonlinear_vma,
752 addr) != page->index)
753 set_pte_at(mm, addr, pte,
754 pgoff_to_pte(page->index));
755 if (PageAnon(page))
756 anon_rss--;
757 else {
758 if (pte_dirty(ptent))
759 set_page_dirty(page);
760 if (pte_young(ptent))
761 SetPageReferenced(page);
762 file_rss--;
763 }
764 page_remove_rmap(page, vma);
765 tlb_remove_page(tlb, page);
766 continue;
767 }
768 /*
769 * If details->check_mapping, we leave swap entries;
770 * if details->nonlinear_vma, we leave file entries.
771 */
772 if (unlikely(details))
773 continue;
774 if (!pte_file(ptent))
775 free_swap_and_cache(pte_to_swp_entry(ptent));
776 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778
779 add_mm_rss(mm, file_rss, anon_rss);
780 arch_leave_lazy_mmu_mode();
781 pte_unmap_unlock(pte - 1, ptl);
782
783 return addr;
784 }
785
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787 struct vm_area_struct *vma, pud_t *pud,
788 unsigned long addr, unsigned long end,
789 long *zap_work, struct zap_details *details)
790 {
791 pmd_t *pmd;
792 unsigned long next;
793
794 pmd = pmd_offset(pud, addr);
795 do {
796 next = pmd_addr_end(addr, end);
797 if (pmd_none_or_clear_bad(pmd)) {
798 (*zap_work)--;
799 continue;
800 }
801 next = zap_pte_range(tlb, vma, pmd, addr, next,
802 zap_work, details);
803 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
804
805 return addr;
806 }
807
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809 struct vm_area_struct *vma, pgd_t *pgd,
810 unsigned long addr, unsigned long end,
811 long *zap_work, struct zap_details *details)
812 {
813 pud_t *pud;
814 unsigned long next;
815
816 pud = pud_offset(pgd, addr);
817 do {
818 next = pud_addr_end(addr, end);
819 if (pud_none_or_clear_bad(pud)) {
820 (*zap_work)--;
821 continue;
822 }
823 next = zap_pmd_range(tlb, vma, pud, addr, next,
824 zap_work, details);
825 } while (pud++, addr = next, (addr != end && *zap_work > 0));
826
827 return addr;
828 }
829
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 struct vm_area_struct *vma,
832 unsigned long addr, unsigned long end,
833 long *zap_work, struct zap_details *details)
834 {
835 pgd_t *pgd;
836 unsigned long next;
837
838 if (details && !details->check_mapping && !details->nonlinear_vma)
839 details = NULL;
840
841 BUG_ON(addr >= end);
842 tlb_start_vma(tlb, vma);
843 pgd = pgd_offset(vma->vm_mm, addr);
844 do {
845 next = pgd_addr_end(addr, end);
846 if (pgd_none_or_clear_bad(pgd)) {
847 (*zap_work)--;
848 continue;
849 }
850 next = zap_pud_range(tlb, vma, pgd, addr, next,
851 zap_work, details);
852 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
853 tlb_end_vma(tlb, vma);
854
855 return addr;
856 }
857
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
863 #endif
864
865 /**
866 * unmap_vmas - unmap a range of memory covered by a list of vma's
867 * @tlbp: address of the caller's struct mmu_gather
868 * @vma: the starting vma
869 * @start_addr: virtual address at which to start unmapping
870 * @end_addr: virtual address at which to end unmapping
871 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872 * @details: details of nonlinear truncation or shared cache invalidation
873 *
874 * Returns the end address of the unmapping (restart addr if interrupted).
875 *
876 * Unmap all pages in the vma list.
877 *
878 * We aim to not hold locks for too long (for scheduling latency reasons).
879 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
880 * return the ending mmu_gather to the caller.
881 *
882 * Only addresses between `start' and `end' will be unmapped.
883 *
884 * The VMA list must be sorted in ascending virtual address order.
885 *
886 * unmap_vmas() assumes that the caller will flush the whole unmapped address
887 * range after unmap_vmas() returns. So the only responsibility here is to
888 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889 * drops the lock and schedules.
890 */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892 struct vm_area_struct *vma, unsigned long start_addr,
893 unsigned long end_addr, unsigned long *nr_accounted,
894 struct zap_details *details)
895 {
896 long zap_work = ZAP_BLOCK_SIZE;
897 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
898 int tlb_start_valid = 0;
899 unsigned long start = start_addr;
900 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901 int fullmm = (*tlbp)->fullmm;
902 struct mm_struct *mm = vma->vm_mm;
903
904 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906 unsigned long end;
907
908 start = max(vma->vm_start, start_addr);
909 if (start >= vma->vm_end)
910 continue;
911 end = min(vma->vm_end, end_addr);
912 if (end <= vma->vm_start)
913 continue;
914
915 if (vma->vm_flags & VM_ACCOUNT)
916 *nr_accounted += (end - start) >> PAGE_SHIFT;
917
918 while (start != end) {
919 if (!tlb_start_valid) {
920 tlb_start = start;
921 tlb_start_valid = 1;
922 }
923
924 if (unlikely(is_vm_hugetlb_page(vma))) {
925 /*
926 * It is undesirable to test vma->vm_file as it
927 * should be non-null for valid hugetlb area.
928 * However, vm_file will be NULL in the error
929 * cleanup path of do_mmap_pgoff. When
930 * hugetlbfs ->mmap method fails,
931 * do_mmap_pgoff() nullifies vma->vm_file
932 * before calling this function to clean up.
933 * Since no pte has actually been setup, it is
934 * safe to do nothing in this case.
935 */
936 if (vma->vm_file) {
937 unmap_hugepage_range(vma, start, end, NULL);
938 zap_work -= (end - start) /
939 pages_per_huge_page(hstate_vma(vma));
940 }
941
942 start = end;
943 } else
944 start = unmap_page_range(*tlbp, vma,
945 start, end, &zap_work, details);
946
947 if (zap_work > 0) {
948 BUG_ON(start != end);
949 break;
950 }
951
952 tlb_finish_mmu(*tlbp, tlb_start, start);
953
954 if (need_resched() ||
955 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956 if (i_mmap_lock) {
957 *tlbp = NULL;
958 goto out;
959 }
960 cond_resched();
961 }
962
963 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964 tlb_start_valid = 0;
965 zap_work = ZAP_BLOCK_SIZE;
966 }
967 }
968 out:
969 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970 return start; /* which is now the end (or restart) address */
971 }
972
973 /**
974 * zap_page_range - remove user pages in a given range
975 * @vma: vm_area_struct holding the applicable pages
976 * @address: starting address of pages to zap
977 * @size: number of bytes to zap
978 * @details: details of nonlinear truncation or shared cache invalidation
979 */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981 unsigned long size, struct zap_details *details)
982 {
983 struct mm_struct *mm = vma->vm_mm;
984 struct mmu_gather *tlb;
985 unsigned long end = address + size;
986 unsigned long nr_accounted = 0;
987
988 lru_add_drain();
989 tlb = tlb_gather_mmu(mm, 0);
990 update_hiwater_rss(mm);
991 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 if (tlb)
993 tlb_finish_mmu(tlb, address, end);
994 return end;
995 }
996 EXPORT_SYMBOL_GPL(zap_page_range);
997
998 /**
999 * zap_vma_ptes - remove ptes mapping the vma
1000 * @vma: vm_area_struct holding ptes to be zapped
1001 * @address: starting address of pages to zap
1002 * @size: number of bytes to zap
1003 *
1004 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1005 *
1006 * The entire address range must be fully contained within the vma.
1007 *
1008 * Returns 0 if successful.
1009 */
1010 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1011 unsigned long size)
1012 {
1013 if (address < vma->vm_start || address + size > vma->vm_end ||
1014 !(vma->vm_flags & VM_PFNMAP))
1015 return -1;
1016 zap_page_range(vma, address, size, NULL);
1017 return 0;
1018 }
1019 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1020
1021 /*
1022 * Do a quick page-table lookup for a single page.
1023 */
1024 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1025 unsigned int flags)
1026 {
1027 pgd_t *pgd;
1028 pud_t *pud;
1029 pmd_t *pmd;
1030 pte_t *ptep, pte;
1031 spinlock_t *ptl;
1032 struct page *page;
1033 struct mm_struct *mm = vma->vm_mm;
1034
1035 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1036 if (!IS_ERR(page)) {
1037 BUG_ON(flags & FOLL_GET);
1038 goto out;
1039 }
1040
1041 page = NULL;
1042 pgd = pgd_offset(mm, address);
1043 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1044 goto no_page_table;
1045
1046 pud = pud_offset(pgd, address);
1047 if (pud_none(*pud))
1048 goto no_page_table;
1049 if (pud_huge(*pud)) {
1050 BUG_ON(flags & FOLL_GET);
1051 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1052 goto out;
1053 }
1054 if (unlikely(pud_bad(*pud)))
1055 goto no_page_table;
1056
1057 pmd = pmd_offset(pud, address);
1058 if (pmd_none(*pmd))
1059 goto no_page_table;
1060 if (pmd_huge(*pmd)) {
1061 BUG_ON(flags & FOLL_GET);
1062 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1063 goto out;
1064 }
1065 if (unlikely(pmd_bad(*pmd)))
1066 goto no_page_table;
1067
1068 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1069
1070 pte = *ptep;
1071 if (!pte_present(pte))
1072 goto no_page;
1073 if ((flags & FOLL_WRITE) && !pte_write(pte))
1074 goto unlock;
1075 page = vm_normal_page(vma, address, pte);
1076 if (unlikely(!page))
1077 goto bad_page;
1078
1079 if (flags & FOLL_GET)
1080 get_page(page);
1081 if (flags & FOLL_TOUCH) {
1082 if ((flags & FOLL_WRITE) &&
1083 !pte_dirty(pte) && !PageDirty(page))
1084 set_page_dirty(page);
1085 mark_page_accessed(page);
1086 }
1087 unlock:
1088 pte_unmap_unlock(ptep, ptl);
1089 out:
1090 return page;
1091
1092 bad_page:
1093 pte_unmap_unlock(ptep, ptl);
1094 return ERR_PTR(-EFAULT);
1095
1096 no_page:
1097 pte_unmap_unlock(ptep, ptl);
1098 if (!pte_none(pte))
1099 return page;
1100 /* Fall through to ZERO_PAGE handling */
1101 no_page_table:
1102 /*
1103 * When core dumping an enormous anonymous area that nobody
1104 * has touched so far, we don't want to allocate page tables.
1105 */
1106 if (flags & FOLL_ANON) {
1107 page = ZERO_PAGE(0);
1108 if (flags & FOLL_GET)
1109 get_page(page);
1110 BUG_ON(flags & FOLL_WRITE);
1111 }
1112 return page;
1113 }
1114 EXPORT_SYMBOL_GPL(follow_page);
1115
1116 /* Can we do the FOLL_ANON optimization? */
1117 static inline int use_zero_page(struct vm_area_struct *vma)
1118 {
1119 /*
1120 * We don't want to optimize FOLL_ANON for make_pages_present()
1121 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1122 * we want to get the page from the page tables to make sure
1123 * that we serialize and update with any other user of that
1124 * mapping.
1125 */
1126 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1127 return 0;
1128 /*
1129 * And if we have a fault routine, it's not an anonymous region.
1130 */
1131 return !vma->vm_ops || !vma->vm_ops->fault;
1132 }
1133
1134 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1135 unsigned long start, int len, int write, int force,
1136 struct page **pages, struct vm_area_struct **vmas)
1137 {
1138 int i;
1139 unsigned int vm_flags;
1140
1141 if (len <= 0)
1142 return 0;
1143 /*
1144 * Require read or write permissions.
1145 * If 'force' is set, we only require the "MAY" flags.
1146 */
1147 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1148 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1149 i = 0;
1150
1151 do {
1152 struct vm_area_struct *vma;
1153 unsigned int foll_flags;
1154
1155 vma = find_extend_vma(mm, start);
1156 if (!vma && in_gate_area(tsk, start)) {
1157 unsigned long pg = start & PAGE_MASK;
1158 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1159 pgd_t *pgd;
1160 pud_t *pud;
1161 pmd_t *pmd;
1162 pte_t *pte;
1163 if (write) /* user gate pages are read-only */
1164 return i ? : -EFAULT;
1165 if (pg > TASK_SIZE)
1166 pgd = pgd_offset_k(pg);
1167 else
1168 pgd = pgd_offset_gate(mm, pg);
1169 BUG_ON(pgd_none(*pgd));
1170 pud = pud_offset(pgd, pg);
1171 BUG_ON(pud_none(*pud));
1172 pmd = pmd_offset(pud, pg);
1173 if (pmd_none(*pmd))
1174 return i ? : -EFAULT;
1175 pte = pte_offset_map(pmd, pg);
1176 if (pte_none(*pte)) {
1177 pte_unmap(pte);
1178 return i ? : -EFAULT;
1179 }
1180 if (pages) {
1181 struct page *page = vm_normal_page(gate_vma, start, *pte);
1182 pages[i] = page;
1183 if (page)
1184 get_page(page);
1185 }
1186 pte_unmap(pte);
1187 if (vmas)
1188 vmas[i] = gate_vma;
1189 i++;
1190 start += PAGE_SIZE;
1191 len--;
1192 continue;
1193 }
1194
1195 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1196 || !(vm_flags & vma->vm_flags))
1197 return i ? : -EFAULT;
1198
1199 if (is_vm_hugetlb_page(vma)) {
1200 i = follow_hugetlb_page(mm, vma, pages, vmas,
1201 &start, &len, i, write);
1202 continue;
1203 }
1204
1205 foll_flags = FOLL_TOUCH;
1206 if (pages)
1207 foll_flags |= FOLL_GET;
1208 if (!write && use_zero_page(vma))
1209 foll_flags |= FOLL_ANON;
1210
1211 do {
1212 struct page *page;
1213
1214 /*
1215 * If tsk is ooming, cut off its access to large memory
1216 * allocations. It has a pending SIGKILL, but it can't
1217 * be processed until returning to user space.
1218 */
1219 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1220 return i ? i : -ENOMEM;
1221
1222 if (write)
1223 foll_flags |= FOLL_WRITE;
1224
1225 cond_resched();
1226 while (!(page = follow_page(vma, start, foll_flags))) {
1227 int ret;
1228 ret = handle_mm_fault(mm, vma, start,
1229 foll_flags & FOLL_WRITE);
1230 if (ret & VM_FAULT_ERROR) {
1231 if (ret & VM_FAULT_OOM)
1232 return i ? i : -ENOMEM;
1233 else if (ret & VM_FAULT_SIGBUS)
1234 return i ? i : -EFAULT;
1235 BUG();
1236 }
1237 if (ret & VM_FAULT_MAJOR)
1238 tsk->maj_flt++;
1239 else
1240 tsk->min_flt++;
1241
1242 /*
1243 * The VM_FAULT_WRITE bit tells us that
1244 * do_wp_page has broken COW when necessary,
1245 * even if maybe_mkwrite decided not to set
1246 * pte_write. We can thus safely do subsequent
1247 * page lookups as if they were reads.
1248 */
1249 if (ret & VM_FAULT_WRITE)
1250 foll_flags &= ~FOLL_WRITE;
1251
1252 cond_resched();
1253 }
1254 if (IS_ERR(page))
1255 return i ? i : PTR_ERR(page);
1256 if (pages) {
1257 pages[i] = page;
1258
1259 flush_anon_page(vma, page, start);
1260 flush_dcache_page(page);
1261 }
1262 if (vmas)
1263 vmas[i] = vma;
1264 i++;
1265 start += PAGE_SIZE;
1266 len--;
1267 } while (len && start < vma->vm_end);
1268 } while (len);
1269 return i;
1270 }
1271 EXPORT_SYMBOL(get_user_pages);
1272
1273 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1274 spinlock_t **ptl)
1275 {
1276 pgd_t * pgd = pgd_offset(mm, addr);
1277 pud_t * pud = pud_alloc(mm, pgd, addr);
1278 if (pud) {
1279 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1280 if (pmd)
1281 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1282 }
1283 return NULL;
1284 }
1285
1286 /*
1287 * This is the old fallback for page remapping.
1288 *
1289 * For historical reasons, it only allows reserved pages. Only
1290 * old drivers should use this, and they needed to mark their
1291 * pages reserved for the old functions anyway.
1292 */
1293 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1294 struct page *page, pgprot_t prot)
1295 {
1296 struct mm_struct *mm = vma->vm_mm;
1297 int retval;
1298 pte_t *pte;
1299 spinlock_t *ptl;
1300
1301 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1302 if (retval)
1303 goto out;
1304
1305 retval = -EINVAL;
1306 if (PageAnon(page))
1307 goto out_uncharge;
1308 retval = -ENOMEM;
1309 flush_dcache_page(page);
1310 pte = get_locked_pte(mm, addr, &ptl);
1311 if (!pte)
1312 goto out_uncharge;
1313 retval = -EBUSY;
1314 if (!pte_none(*pte))
1315 goto out_unlock;
1316
1317 /* Ok, finally just insert the thing.. */
1318 get_page(page);
1319 inc_mm_counter(mm, file_rss);
1320 page_add_file_rmap(page);
1321 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1322
1323 retval = 0;
1324 pte_unmap_unlock(pte, ptl);
1325 return retval;
1326 out_unlock:
1327 pte_unmap_unlock(pte, ptl);
1328 out_uncharge:
1329 mem_cgroup_uncharge_page(page);
1330 out:
1331 return retval;
1332 }
1333
1334 /**
1335 * vm_insert_page - insert single page into user vma
1336 * @vma: user vma to map to
1337 * @addr: target user address of this page
1338 * @page: source kernel page
1339 *
1340 * This allows drivers to insert individual pages they've allocated
1341 * into a user vma.
1342 *
1343 * The page has to be a nice clean _individual_ kernel allocation.
1344 * If you allocate a compound page, you need to have marked it as
1345 * such (__GFP_COMP), or manually just split the page up yourself
1346 * (see split_page()).
1347 *
1348 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1349 * took an arbitrary page protection parameter. This doesn't allow
1350 * that. Your vma protection will have to be set up correctly, which
1351 * means that if you want a shared writable mapping, you'd better
1352 * ask for a shared writable mapping!
1353 *
1354 * The page does not need to be reserved.
1355 */
1356 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1357 struct page *page)
1358 {
1359 if (addr < vma->vm_start || addr >= vma->vm_end)
1360 return -EFAULT;
1361 if (!page_count(page))
1362 return -EINVAL;
1363 vma->vm_flags |= VM_INSERTPAGE;
1364 return insert_page(vma, addr, page, vma->vm_page_prot);
1365 }
1366 EXPORT_SYMBOL(vm_insert_page);
1367
1368 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1369 unsigned long pfn, pgprot_t prot)
1370 {
1371 struct mm_struct *mm = vma->vm_mm;
1372 int retval;
1373 pte_t *pte, entry;
1374 spinlock_t *ptl;
1375
1376 retval = -ENOMEM;
1377 pte = get_locked_pte(mm, addr, &ptl);
1378 if (!pte)
1379 goto out;
1380 retval = -EBUSY;
1381 if (!pte_none(*pte))
1382 goto out_unlock;
1383
1384 /* Ok, finally just insert the thing.. */
1385 entry = pte_mkspecial(pfn_pte(pfn, prot));
1386 set_pte_at(mm, addr, pte, entry);
1387 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1388
1389 retval = 0;
1390 out_unlock:
1391 pte_unmap_unlock(pte, ptl);
1392 out:
1393 return retval;
1394 }
1395
1396 /**
1397 * vm_insert_pfn - insert single pfn into user vma
1398 * @vma: user vma to map to
1399 * @addr: target user address of this page
1400 * @pfn: source kernel pfn
1401 *
1402 * Similar to vm_inert_page, this allows drivers to insert individual pages
1403 * they've allocated into a user vma. Same comments apply.
1404 *
1405 * This function should only be called from a vm_ops->fault handler, and
1406 * in that case the handler should return NULL.
1407 *
1408 * vma cannot be a COW mapping.
1409 *
1410 * As this is called only for pages that do not currently exist, we
1411 * do not need to flush old virtual caches or the TLB.
1412 */
1413 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1414 unsigned long pfn)
1415 {
1416 /*
1417 * Technically, architectures with pte_special can avoid all these
1418 * restrictions (same for remap_pfn_range). However we would like
1419 * consistency in testing and feature parity among all, so we should
1420 * try to keep these invariants in place for everybody.
1421 */
1422 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1423 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1424 (VM_PFNMAP|VM_MIXEDMAP));
1425 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1426 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1427
1428 if (addr < vma->vm_start || addr >= vma->vm_end)
1429 return -EFAULT;
1430 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1431 }
1432 EXPORT_SYMBOL(vm_insert_pfn);
1433
1434 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1435 unsigned long pfn)
1436 {
1437 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1438
1439 if (addr < vma->vm_start || addr >= vma->vm_end)
1440 return -EFAULT;
1441
1442 /*
1443 * If we don't have pte special, then we have to use the pfn_valid()
1444 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1445 * refcount the page if pfn_valid is true (hence insert_page rather
1446 * than insert_pfn).
1447 */
1448 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1449 struct page *page;
1450
1451 page = pfn_to_page(pfn);
1452 return insert_page(vma, addr, page, vma->vm_page_prot);
1453 }
1454 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1455 }
1456 EXPORT_SYMBOL(vm_insert_mixed);
1457
1458 /*
1459 * maps a range of physical memory into the requested pages. the old
1460 * mappings are removed. any references to nonexistent pages results
1461 * in null mappings (currently treated as "copy-on-access")
1462 */
1463 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1464 unsigned long addr, unsigned long end,
1465 unsigned long pfn, pgprot_t prot)
1466 {
1467 pte_t *pte;
1468 spinlock_t *ptl;
1469
1470 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1471 if (!pte)
1472 return -ENOMEM;
1473 arch_enter_lazy_mmu_mode();
1474 do {
1475 BUG_ON(!pte_none(*pte));
1476 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1477 pfn++;
1478 } while (pte++, addr += PAGE_SIZE, addr != end);
1479 arch_leave_lazy_mmu_mode();
1480 pte_unmap_unlock(pte - 1, ptl);
1481 return 0;
1482 }
1483
1484 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1485 unsigned long addr, unsigned long end,
1486 unsigned long pfn, pgprot_t prot)
1487 {
1488 pmd_t *pmd;
1489 unsigned long next;
1490
1491 pfn -= addr >> PAGE_SHIFT;
1492 pmd = pmd_alloc(mm, pud, addr);
1493 if (!pmd)
1494 return -ENOMEM;
1495 do {
1496 next = pmd_addr_end(addr, end);
1497 if (remap_pte_range(mm, pmd, addr, next,
1498 pfn + (addr >> PAGE_SHIFT), prot))
1499 return -ENOMEM;
1500 } while (pmd++, addr = next, addr != end);
1501 return 0;
1502 }
1503
1504 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1505 unsigned long addr, unsigned long end,
1506 unsigned long pfn, pgprot_t prot)
1507 {
1508 pud_t *pud;
1509 unsigned long next;
1510
1511 pfn -= addr >> PAGE_SHIFT;
1512 pud = pud_alloc(mm, pgd, addr);
1513 if (!pud)
1514 return -ENOMEM;
1515 do {
1516 next = pud_addr_end(addr, end);
1517 if (remap_pmd_range(mm, pud, addr, next,
1518 pfn + (addr >> PAGE_SHIFT), prot))
1519 return -ENOMEM;
1520 } while (pud++, addr = next, addr != end);
1521 return 0;
1522 }
1523
1524 /**
1525 * remap_pfn_range - remap kernel memory to userspace
1526 * @vma: user vma to map to
1527 * @addr: target user address to start at
1528 * @pfn: physical address of kernel memory
1529 * @size: size of map area
1530 * @prot: page protection flags for this mapping
1531 *
1532 * Note: this is only safe if the mm semaphore is held when called.
1533 */
1534 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1535 unsigned long pfn, unsigned long size, pgprot_t prot)
1536 {
1537 pgd_t *pgd;
1538 unsigned long next;
1539 unsigned long end = addr + PAGE_ALIGN(size);
1540 struct mm_struct *mm = vma->vm_mm;
1541 int err;
1542
1543 /*
1544 * Physically remapped pages are special. Tell the
1545 * rest of the world about it:
1546 * VM_IO tells people not to look at these pages
1547 * (accesses can have side effects).
1548 * VM_RESERVED is specified all over the place, because
1549 * in 2.4 it kept swapout's vma scan off this vma; but
1550 * in 2.6 the LRU scan won't even find its pages, so this
1551 * flag means no more than count its pages in reserved_vm,
1552 * and omit it from core dump, even when VM_IO turned off.
1553 * VM_PFNMAP tells the core MM that the base pages are just
1554 * raw PFN mappings, and do not have a "struct page" associated
1555 * with them.
1556 *
1557 * There's a horrible special case to handle copy-on-write
1558 * behaviour that some programs depend on. We mark the "original"
1559 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1560 */
1561 if (is_cow_mapping(vma->vm_flags)) {
1562 if (addr != vma->vm_start || end != vma->vm_end)
1563 return -EINVAL;
1564 vma->vm_pgoff = pfn;
1565 }
1566
1567 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1568
1569 BUG_ON(addr >= end);
1570 pfn -= addr >> PAGE_SHIFT;
1571 pgd = pgd_offset(mm, addr);
1572 flush_cache_range(vma, addr, end);
1573 do {
1574 next = pgd_addr_end(addr, end);
1575 err = remap_pud_range(mm, pgd, addr, next,
1576 pfn + (addr >> PAGE_SHIFT), prot);
1577 if (err)
1578 break;
1579 } while (pgd++, addr = next, addr != end);
1580 return err;
1581 }
1582 EXPORT_SYMBOL(remap_pfn_range);
1583
1584 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1585 unsigned long addr, unsigned long end,
1586 pte_fn_t fn, void *data)
1587 {
1588 pte_t *pte;
1589 int err;
1590 pgtable_t token;
1591 spinlock_t *uninitialized_var(ptl);
1592
1593 pte = (mm == &init_mm) ?
1594 pte_alloc_kernel(pmd, addr) :
1595 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1596 if (!pte)
1597 return -ENOMEM;
1598
1599 BUG_ON(pmd_huge(*pmd));
1600
1601 token = pmd_pgtable(*pmd);
1602
1603 do {
1604 err = fn(pte, token, addr, data);
1605 if (err)
1606 break;
1607 } while (pte++, addr += PAGE_SIZE, addr != end);
1608
1609 if (mm != &init_mm)
1610 pte_unmap_unlock(pte-1, ptl);
1611 return err;
1612 }
1613
1614 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1615 unsigned long addr, unsigned long end,
1616 pte_fn_t fn, void *data)
1617 {
1618 pmd_t *pmd;
1619 unsigned long next;
1620 int err;
1621
1622 BUG_ON(pud_huge(*pud));
1623
1624 pmd = pmd_alloc(mm, pud, addr);
1625 if (!pmd)
1626 return -ENOMEM;
1627 do {
1628 next = pmd_addr_end(addr, end);
1629 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1630 if (err)
1631 break;
1632 } while (pmd++, addr = next, addr != end);
1633 return err;
1634 }
1635
1636 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1637 unsigned long addr, unsigned long end,
1638 pte_fn_t fn, void *data)
1639 {
1640 pud_t *pud;
1641 unsigned long next;
1642 int err;
1643
1644 pud = pud_alloc(mm, pgd, addr);
1645 if (!pud)
1646 return -ENOMEM;
1647 do {
1648 next = pud_addr_end(addr, end);
1649 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1650 if (err)
1651 break;
1652 } while (pud++, addr = next, addr != end);
1653 return err;
1654 }
1655
1656 /*
1657 * Scan a region of virtual memory, filling in page tables as necessary
1658 * and calling a provided function on each leaf page table.
1659 */
1660 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1661 unsigned long size, pte_fn_t fn, void *data)
1662 {
1663 pgd_t *pgd;
1664 unsigned long next;
1665 unsigned long start = addr, end = addr + size;
1666 int err;
1667
1668 BUG_ON(addr >= end);
1669 mmu_notifier_invalidate_range_start(mm, start, end);
1670 pgd = pgd_offset(mm, addr);
1671 do {
1672 next = pgd_addr_end(addr, end);
1673 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1674 if (err)
1675 break;
1676 } while (pgd++, addr = next, addr != end);
1677 mmu_notifier_invalidate_range_end(mm, start, end);
1678 return err;
1679 }
1680 EXPORT_SYMBOL_GPL(apply_to_page_range);
1681
1682 /*
1683 * handle_pte_fault chooses page fault handler according to an entry
1684 * which was read non-atomically. Before making any commitment, on
1685 * those architectures or configurations (e.g. i386 with PAE) which
1686 * might give a mix of unmatched parts, do_swap_page and do_file_page
1687 * must check under lock before unmapping the pte and proceeding
1688 * (but do_wp_page is only called after already making such a check;
1689 * and do_anonymous_page and do_no_page can safely check later on).
1690 */
1691 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1692 pte_t *page_table, pte_t orig_pte)
1693 {
1694 int same = 1;
1695 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1696 if (sizeof(pte_t) > sizeof(unsigned long)) {
1697 spinlock_t *ptl = pte_lockptr(mm, pmd);
1698 spin_lock(ptl);
1699 same = pte_same(*page_table, orig_pte);
1700 spin_unlock(ptl);
1701 }
1702 #endif
1703 pte_unmap(page_table);
1704 return same;
1705 }
1706
1707 /*
1708 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1709 * servicing faults for write access. In the normal case, do always want
1710 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1711 * that do not have writing enabled, when used by access_process_vm.
1712 */
1713 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1714 {
1715 if (likely(vma->vm_flags & VM_WRITE))
1716 pte = pte_mkwrite(pte);
1717 return pte;
1718 }
1719
1720 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1721 {
1722 /*
1723 * If the source page was a PFN mapping, we don't have
1724 * a "struct page" for it. We do a best-effort copy by
1725 * just copying from the original user address. If that
1726 * fails, we just zero-fill it. Live with it.
1727 */
1728 if (unlikely(!src)) {
1729 void *kaddr = kmap_atomic(dst, KM_USER0);
1730 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1731
1732 /*
1733 * This really shouldn't fail, because the page is there
1734 * in the page tables. But it might just be unreadable,
1735 * in which case we just give up and fill the result with
1736 * zeroes.
1737 */
1738 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1739 memset(kaddr, 0, PAGE_SIZE);
1740 kunmap_atomic(kaddr, KM_USER0);
1741 flush_dcache_page(dst);
1742 } else
1743 copy_user_highpage(dst, src, va, vma);
1744 }
1745
1746 /*
1747 * This routine handles present pages, when users try to write
1748 * to a shared page. It is done by copying the page to a new address
1749 * and decrementing the shared-page counter for the old page.
1750 *
1751 * Note that this routine assumes that the protection checks have been
1752 * done by the caller (the low-level page fault routine in most cases).
1753 * Thus we can safely just mark it writable once we've done any necessary
1754 * COW.
1755 *
1756 * We also mark the page dirty at this point even though the page will
1757 * change only once the write actually happens. This avoids a few races,
1758 * and potentially makes it more efficient.
1759 *
1760 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1761 * but allow concurrent faults), with pte both mapped and locked.
1762 * We return with mmap_sem still held, but pte unmapped and unlocked.
1763 */
1764 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1765 unsigned long address, pte_t *page_table, pmd_t *pmd,
1766 spinlock_t *ptl, pte_t orig_pte)
1767 {
1768 struct page *old_page, *new_page;
1769 pte_t entry;
1770 int reuse = 0, ret = 0;
1771 int page_mkwrite = 0;
1772 struct page *dirty_page = NULL;
1773
1774 old_page = vm_normal_page(vma, address, orig_pte);
1775 if (!old_page) {
1776 /*
1777 * VM_MIXEDMAP !pfn_valid() case
1778 *
1779 * We should not cow pages in a shared writeable mapping.
1780 * Just mark the pages writable as we can't do any dirty
1781 * accounting on raw pfn maps.
1782 */
1783 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1784 (VM_WRITE|VM_SHARED))
1785 goto reuse;
1786 goto gotten;
1787 }
1788
1789 /*
1790 * Take out anonymous pages first, anonymous shared vmas are
1791 * not dirty accountable.
1792 */
1793 if (PageAnon(old_page)) {
1794 if (!TestSetPageLocked(old_page)) {
1795 reuse = can_share_swap_page(old_page);
1796 unlock_page(old_page);
1797 }
1798 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1799 (VM_WRITE|VM_SHARED))) {
1800 /*
1801 * Only catch write-faults on shared writable pages,
1802 * read-only shared pages can get COWed by
1803 * get_user_pages(.write=1, .force=1).
1804 */
1805 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1806 /*
1807 * Notify the address space that the page is about to
1808 * become writable so that it can prohibit this or wait
1809 * for the page to get into an appropriate state.
1810 *
1811 * We do this without the lock held, so that it can
1812 * sleep if it needs to.
1813 */
1814 page_cache_get(old_page);
1815 pte_unmap_unlock(page_table, ptl);
1816
1817 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1818 goto unwritable_page;
1819
1820 /*
1821 * Since we dropped the lock we need to revalidate
1822 * the PTE as someone else may have changed it. If
1823 * they did, we just return, as we can count on the
1824 * MMU to tell us if they didn't also make it writable.
1825 */
1826 page_table = pte_offset_map_lock(mm, pmd, address,
1827 &ptl);
1828 page_cache_release(old_page);
1829 if (!pte_same(*page_table, orig_pte))
1830 goto unlock;
1831
1832 page_mkwrite = 1;
1833 }
1834 dirty_page = old_page;
1835 get_page(dirty_page);
1836 reuse = 1;
1837 }
1838
1839 if (reuse) {
1840 reuse:
1841 flush_cache_page(vma, address, pte_pfn(orig_pte));
1842 entry = pte_mkyoung(orig_pte);
1843 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1844 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1845 update_mmu_cache(vma, address, entry);
1846 ret |= VM_FAULT_WRITE;
1847 goto unlock;
1848 }
1849
1850 /*
1851 * Ok, we need to copy. Oh, well..
1852 */
1853 page_cache_get(old_page);
1854 gotten:
1855 pte_unmap_unlock(page_table, ptl);
1856
1857 if (unlikely(anon_vma_prepare(vma)))
1858 goto oom;
1859 VM_BUG_ON(old_page == ZERO_PAGE(0));
1860 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1861 if (!new_page)
1862 goto oom;
1863 cow_user_page(new_page, old_page, address, vma);
1864 __SetPageUptodate(new_page);
1865
1866 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1867 goto oom_free_new;
1868
1869 /*
1870 * Re-check the pte - we dropped the lock
1871 */
1872 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1873 if (likely(pte_same(*page_table, orig_pte))) {
1874 if (old_page) {
1875 if (!PageAnon(old_page)) {
1876 dec_mm_counter(mm, file_rss);
1877 inc_mm_counter(mm, anon_rss);
1878 }
1879 } else
1880 inc_mm_counter(mm, anon_rss);
1881 flush_cache_page(vma, address, pte_pfn(orig_pte));
1882 entry = mk_pte(new_page, vma->vm_page_prot);
1883 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1884 /*
1885 * Clear the pte entry and flush it first, before updating the
1886 * pte with the new entry. This will avoid a race condition
1887 * seen in the presence of one thread doing SMC and another
1888 * thread doing COW.
1889 */
1890 ptep_clear_flush_notify(vma, address, page_table);
1891 set_pte_at(mm, address, page_table, entry);
1892 update_mmu_cache(vma, address, entry);
1893 lru_cache_add_active(new_page);
1894 page_add_new_anon_rmap(new_page, vma, address);
1895
1896 if (old_page) {
1897 /*
1898 * Only after switching the pte to the new page may
1899 * we remove the mapcount here. Otherwise another
1900 * process may come and find the rmap count decremented
1901 * before the pte is switched to the new page, and
1902 * "reuse" the old page writing into it while our pte
1903 * here still points into it and can be read by other
1904 * threads.
1905 *
1906 * The critical issue is to order this
1907 * page_remove_rmap with the ptp_clear_flush above.
1908 * Those stores are ordered by (if nothing else,)
1909 * the barrier present in the atomic_add_negative
1910 * in page_remove_rmap.
1911 *
1912 * Then the TLB flush in ptep_clear_flush ensures that
1913 * no process can access the old page before the
1914 * decremented mapcount is visible. And the old page
1915 * cannot be reused until after the decremented
1916 * mapcount is visible. So transitively, TLBs to
1917 * old page will be flushed before it can be reused.
1918 */
1919 page_remove_rmap(old_page, vma);
1920 }
1921
1922 /* Free the old page.. */
1923 new_page = old_page;
1924 ret |= VM_FAULT_WRITE;
1925 } else
1926 mem_cgroup_uncharge_page(new_page);
1927
1928 if (new_page)
1929 page_cache_release(new_page);
1930 if (old_page)
1931 page_cache_release(old_page);
1932 unlock:
1933 pte_unmap_unlock(page_table, ptl);
1934 if (dirty_page) {
1935 if (vma->vm_file)
1936 file_update_time(vma->vm_file);
1937
1938 /*
1939 * Yes, Virginia, this is actually required to prevent a race
1940 * with clear_page_dirty_for_io() from clearing the page dirty
1941 * bit after it clear all dirty ptes, but before a racing
1942 * do_wp_page installs a dirty pte.
1943 *
1944 * do_no_page is protected similarly.
1945 */
1946 wait_on_page_locked(dirty_page);
1947 set_page_dirty_balance(dirty_page, page_mkwrite);
1948 put_page(dirty_page);
1949 }
1950 return ret;
1951 oom_free_new:
1952 page_cache_release(new_page);
1953 oom:
1954 if (old_page)
1955 page_cache_release(old_page);
1956 return VM_FAULT_OOM;
1957
1958 unwritable_page:
1959 page_cache_release(old_page);
1960 return VM_FAULT_SIGBUS;
1961 }
1962
1963 /*
1964 * Helper functions for unmap_mapping_range().
1965 *
1966 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1967 *
1968 * We have to restart searching the prio_tree whenever we drop the lock,
1969 * since the iterator is only valid while the lock is held, and anyway
1970 * a later vma might be split and reinserted earlier while lock dropped.
1971 *
1972 * The list of nonlinear vmas could be handled more efficiently, using
1973 * a placeholder, but handle it in the same way until a need is shown.
1974 * It is important to search the prio_tree before nonlinear list: a vma
1975 * may become nonlinear and be shifted from prio_tree to nonlinear list
1976 * while the lock is dropped; but never shifted from list to prio_tree.
1977 *
1978 * In order to make forward progress despite restarting the search,
1979 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1980 * quickly skip it next time around. Since the prio_tree search only
1981 * shows us those vmas affected by unmapping the range in question, we
1982 * can't efficiently keep all vmas in step with mapping->truncate_count:
1983 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1984 * mapping->truncate_count and vma->vm_truncate_count are protected by
1985 * i_mmap_lock.
1986 *
1987 * In order to make forward progress despite repeatedly restarting some
1988 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1989 * and restart from that address when we reach that vma again. It might
1990 * have been split or merged, shrunk or extended, but never shifted: so
1991 * restart_addr remains valid so long as it remains in the vma's range.
1992 * unmap_mapping_range forces truncate_count to leap over page-aligned
1993 * values so we can save vma's restart_addr in its truncate_count field.
1994 */
1995 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1996
1997 static void reset_vma_truncate_counts(struct address_space *mapping)
1998 {
1999 struct vm_area_struct *vma;
2000 struct prio_tree_iter iter;
2001
2002 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2003 vma->vm_truncate_count = 0;
2004 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2005 vma->vm_truncate_count = 0;
2006 }
2007
2008 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2009 unsigned long start_addr, unsigned long end_addr,
2010 struct zap_details *details)
2011 {
2012 unsigned long restart_addr;
2013 int need_break;
2014
2015 /*
2016 * files that support invalidating or truncating portions of the
2017 * file from under mmaped areas must have their ->fault function
2018 * return a locked page (and set VM_FAULT_LOCKED in the return).
2019 * This provides synchronisation against concurrent unmapping here.
2020 */
2021
2022 again:
2023 restart_addr = vma->vm_truncate_count;
2024 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2025 start_addr = restart_addr;
2026 if (start_addr >= end_addr) {
2027 /* Top of vma has been split off since last time */
2028 vma->vm_truncate_count = details->truncate_count;
2029 return 0;
2030 }
2031 }
2032
2033 restart_addr = zap_page_range(vma, start_addr,
2034 end_addr - start_addr, details);
2035 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2036
2037 if (restart_addr >= end_addr) {
2038 /* We have now completed this vma: mark it so */
2039 vma->vm_truncate_count = details->truncate_count;
2040 if (!need_break)
2041 return 0;
2042 } else {
2043 /* Note restart_addr in vma's truncate_count field */
2044 vma->vm_truncate_count = restart_addr;
2045 if (!need_break)
2046 goto again;
2047 }
2048
2049 spin_unlock(details->i_mmap_lock);
2050 cond_resched();
2051 spin_lock(details->i_mmap_lock);
2052 return -EINTR;
2053 }
2054
2055 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2056 struct zap_details *details)
2057 {
2058 struct vm_area_struct *vma;
2059 struct prio_tree_iter iter;
2060 pgoff_t vba, vea, zba, zea;
2061
2062 restart:
2063 vma_prio_tree_foreach(vma, &iter, root,
2064 details->first_index, details->last_index) {
2065 /* Skip quickly over those we have already dealt with */
2066 if (vma->vm_truncate_count == details->truncate_count)
2067 continue;
2068
2069 vba = vma->vm_pgoff;
2070 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2071 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2072 zba = details->first_index;
2073 if (zba < vba)
2074 zba = vba;
2075 zea = details->last_index;
2076 if (zea > vea)
2077 zea = vea;
2078
2079 if (unmap_mapping_range_vma(vma,
2080 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2081 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2082 details) < 0)
2083 goto restart;
2084 }
2085 }
2086
2087 static inline void unmap_mapping_range_list(struct list_head *head,
2088 struct zap_details *details)
2089 {
2090 struct vm_area_struct *vma;
2091
2092 /*
2093 * In nonlinear VMAs there is no correspondence between virtual address
2094 * offset and file offset. So we must perform an exhaustive search
2095 * across *all* the pages in each nonlinear VMA, not just the pages
2096 * whose virtual address lies outside the file truncation point.
2097 */
2098 restart:
2099 list_for_each_entry(vma, head, shared.vm_set.list) {
2100 /* Skip quickly over those we have already dealt with */
2101 if (vma->vm_truncate_count == details->truncate_count)
2102 continue;
2103 details->nonlinear_vma = vma;
2104 if (unmap_mapping_range_vma(vma, vma->vm_start,
2105 vma->vm_end, details) < 0)
2106 goto restart;
2107 }
2108 }
2109
2110 /**
2111 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2112 * @mapping: the address space containing mmaps to be unmapped.
2113 * @holebegin: byte in first page to unmap, relative to the start of
2114 * the underlying file. This will be rounded down to a PAGE_SIZE
2115 * boundary. Note that this is different from vmtruncate(), which
2116 * must keep the partial page. In contrast, we must get rid of
2117 * partial pages.
2118 * @holelen: size of prospective hole in bytes. This will be rounded
2119 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2120 * end of the file.
2121 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2122 * but 0 when invalidating pagecache, don't throw away private data.
2123 */
2124 void unmap_mapping_range(struct address_space *mapping,
2125 loff_t const holebegin, loff_t const holelen, int even_cows)
2126 {
2127 struct zap_details details;
2128 pgoff_t hba = holebegin >> PAGE_SHIFT;
2129 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2130
2131 /* Check for overflow. */
2132 if (sizeof(holelen) > sizeof(hlen)) {
2133 long long holeend =
2134 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2135 if (holeend & ~(long long)ULONG_MAX)
2136 hlen = ULONG_MAX - hba + 1;
2137 }
2138
2139 details.check_mapping = even_cows? NULL: mapping;
2140 details.nonlinear_vma = NULL;
2141 details.first_index = hba;
2142 details.last_index = hba + hlen - 1;
2143 if (details.last_index < details.first_index)
2144 details.last_index = ULONG_MAX;
2145 details.i_mmap_lock = &mapping->i_mmap_lock;
2146
2147 spin_lock(&mapping->i_mmap_lock);
2148
2149 /* Protect against endless unmapping loops */
2150 mapping->truncate_count++;
2151 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2152 if (mapping->truncate_count == 0)
2153 reset_vma_truncate_counts(mapping);
2154 mapping->truncate_count++;
2155 }
2156 details.truncate_count = mapping->truncate_count;
2157
2158 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2159 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2160 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2161 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2162 spin_unlock(&mapping->i_mmap_lock);
2163 }
2164 EXPORT_SYMBOL(unmap_mapping_range);
2165
2166 /**
2167 * vmtruncate - unmap mappings "freed" by truncate() syscall
2168 * @inode: inode of the file used
2169 * @offset: file offset to start truncating
2170 *
2171 * NOTE! We have to be ready to update the memory sharing
2172 * between the file and the memory map for a potential last
2173 * incomplete page. Ugly, but necessary.
2174 */
2175 int vmtruncate(struct inode * inode, loff_t offset)
2176 {
2177 if (inode->i_size < offset) {
2178 unsigned long limit;
2179
2180 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2181 if (limit != RLIM_INFINITY && offset > limit)
2182 goto out_sig;
2183 if (offset > inode->i_sb->s_maxbytes)
2184 goto out_big;
2185 i_size_write(inode, offset);
2186 } else {
2187 struct address_space *mapping = inode->i_mapping;
2188
2189 /*
2190 * truncation of in-use swapfiles is disallowed - it would
2191 * cause subsequent swapout to scribble on the now-freed
2192 * blocks.
2193 */
2194 if (IS_SWAPFILE(inode))
2195 return -ETXTBSY;
2196 i_size_write(inode, offset);
2197
2198 /*
2199 * unmap_mapping_range is called twice, first simply for
2200 * efficiency so that truncate_inode_pages does fewer
2201 * single-page unmaps. However after this first call, and
2202 * before truncate_inode_pages finishes, it is possible for
2203 * private pages to be COWed, which remain after
2204 * truncate_inode_pages finishes, hence the second
2205 * unmap_mapping_range call must be made for correctness.
2206 */
2207 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2208 truncate_inode_pages(mapping, offset);
2209 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2210 }
2211
2212 if (inode->i_op && inode->i_op->truncate)
2213 inode->i_op->truncate(inode);
2214 return 0;
2215
2216 out_sig:
2217 send_sig(SIGXFSZ, current, 0);
2218 out_big:
2219 return -EFBIG;
2220 }
2221 EXPORT_SYMBOL(vmtruncate);
2222
2223 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2224 {
2225 struct address_space *mapping = inode->i_mapping;
2226
2227 /*
2228 * If the underlying filesystem is not going to provide
2229 * a way to truncate a range of blocks (punch a hole) -
2230 * we should return failure right now.
2231 */
2232 if (!inode->i_op || !inode->i_op->truncate_range)
2233 return -ENOSYS;
2234
2235 mutex_lock(&inode->i_mutex);
2236 down_write(&inode->i_alloc_sem);
2237 unmap_mapping_range(mapping, offset, (end - offset), 1);
2238 truncate_inode_pages_range(mapping, offset, end);
2239 unmap_mapping_range(mapping, offset, (end - offset), 1);
2240 inode->i_op->truncate_range(inode, offset, end);
2241 up_write(&inode->i_alloc_sem);
2242 mutex_unlock(&inode->i_mutex);
2243
2244 return 0;
2245 }
2246
2247 /*
2248 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2249 * but allow concurrent faults), and pte mapped but not yet locked.
2250 * We return with mmap_sem still held, but pte unmapped and unlocked.
2251 */
2252 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2253 unsigned long address, pte_t *page_table, pmd_t *pmd,
2254 int write_access, pte_t orig_pte)
2255 {
2256 spinlock_t *ptl;
2257 struct page *page;
2258 swp_entry_t entry;
2259 pte_t pte;
2260 int ret = 0;
2261
2262 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2263 goto out;
2264
2265 entry = pte_to_swp_entry(orig_pte);
2266 if (is_migration_entry(entry)) {
2267 migration_entry_wait(mm, pmd, address);
2268 goto out;
2269 }
2270 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2271 page = lookup_swap_cache(entry);
2272 if (!page) {
2273 grab_swap_token(); /* Contend for token _before_ read-in */
2274 page = swapin_readahead(entry,
2275 GFP_HIGHUSER_MOVABLE, vma, address);
2276 if (!page) {
2277 /*
2278 * Back out if somebody else faulted in this pte
2279 * while we released the pte lock.
2280 */
2281 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2282 if (likely(pte_same(*page_table, orig_pte)))
2283 ret = VM_FAULT_OOM;
2284 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2285 goto unlock;
2286 }
2287
2288 /* Had to read the page from swap area: Major fault */
2289 ret = VM_FAULT_MAJOR;
2290 count_vm_event(PGMAJFAULT);
2291 }
2292
2293 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2294 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2295 ret = VM_FAULT_OOM;
2296 goto out;
2297 }
2298
2299 mark_page_accessed(page);
2300 lock_page(page);
2301 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2302
2303 /*
2304 * Back out if somebody else already faulted in this pte.
2305 */
2306 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2307 if (unlikely(!pte_same(*page_table, orig_pte)))
2308 goto out_nomap;
2309
2310 if (unlikely(!PageUptodate(page))) {
2311 ret = VM_FAULT_SIGBUS;
2312 goto out_nomap;
2313 }
2314
2315 /* The page isn't present yet, go ahead with the fault. */
2316
2317 inc_mm_counter(mm, anon_rss);
2318 pte = mk_pte(page, vma->vm_page_prot);
2319 if (write_access && can_share_swap_page(page)) {
2320 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2321 write_access = 0;
2322 }
2323
2324 flush_icache_page(vma, page);
2325 set_pte_at(mm, address, page_table, pte);
2326 page_add_anon_rmap(page, vma, address);
2327
2328 swap_free(entry);
2329 if (vm_swap_full())
2330 remove_exclusive_swap_page(page);
2331 unlock_page(page);
2332
2333 if (write_access) {
2334 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2335 if (ret & VM_FAULT_ERROR)
2336 ret &= VM_FAULT_ERROR;
2337 goto out;
2338 }
2339
2340 /* No need to invalidate - it was non-present before */
2341 update_mmu_cache(vma, address, pte);
2342 unlock:
2343 pte_unmap_unlock(page_table, ptl);
2344 out:
2345 return ret;
2346 out_nomap:
2347 mem_cgroup_uncharge_page(page);
2348 pte_unmap_unlock(page_table, ptl);
2349 unlock_page(page);
2350 page_cache_release(page);
2351 return ret;
2352 }
2353
2354 /*
2355 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2356 * but allow concurrent faults), and pte mapped but not yet locked.
2357 * We return with mmap_sem still held, but pte unmapped and unlocked.
2358 */
2359 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2360 unsigned long address, pte_t *page_table, pmd_t *pmd,
2361 int write_access)
2362 {
2363 struct page *page;
2364 spinlock_t *ptl;
2365 pte_t entry;
2366
2367 /* Allocate our own private page. */
2368 pte_unmap(page_table);
2369
2370 if (unlikely(anon_vma_prepare(vma)))
2371 goto oom;
2372 page = alloc_zeroed_user_highpage_movable(vma, address);
2373 if (!page)
2374 goto oom;
2375 __SetPageUptodate(page);
2376
2377 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2378 goto oom_free_page;
2379
2380 entry = mk_pte(page, vma->vm_page_prot);
2381 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2382
2383 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2384 if (!pte_none(*page_table))
2385 goto release;
2386 inc_mm_counter(mm, anon_rss);
2387 lru_cache_add_active(page);
2388 page_add_new_anon_rmap(page, vma, address);
2389 set_pte_at(mm, address, page_table, entry);
2390
2391 /* No need to invalidate - it was non-present before */
2392 update_mmu_cache(vma, address, entry);
2393 unlock:
2394 pte_unmap_unlock(page_table, ptl);
2395 return 0;
2396 release:
2397 mem_cgroup_uncharge_page(page);
2398 page_cache_release(page);
2399 goto unlock;
2400 oom_free_page:
2401 page_cache_release(page);
2402 oom:
2403 return VM_FAULT_OOM;
2404 }
2405
2406 /*
2407 * __do_fault() tries to create a new page mapping. It aggressively
2408 * tries to share with existing pages, but makes a separate copy if
2409 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2410 * the next page fault.
2411 *
2412 * As this is called only for pages that do not currently exist, we
2413 * do not need to flush old virtual caches or the TLB.
2414 *
2415 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2416 * but allow concurrent faults), and pte neither mapped nor locked.
2417 * We return with mmap_sem still held, but pte unmapped and unlocked.
2418 */
2419 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2420 unsigned long address, pmd_t *pmd,
2421 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2422 {
2423 pte_t *page_table;
2424 spinlock_t *ptl;
2425 struct page *page;
2426 pte_t entry;
2427 int anon = 0;
2428 struct page *dirty_page = NULL;
2429 struct vm_fault vmf;
2430 int ret;
2431 int page_mkwrite = 0;
2432
2433 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2434 vmf.pgoff = pgoff;
2435 vmf.flags = flags;
2436 vmf.page = NULL;
2437
2438 ret = vma->vm_ops->fault(vma, &vmf);
2439 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2440 return ret;
2441
2442 /*
2443 * For consistency in subsequent calls, make the faulted page always
2444 * locked.
2445 */
2446 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2447 lock_page(vmf.page);
2448 else
2449 VM_BUG_ON(!PageLocked(vmf.page));
2450
2451 /*
2452 * Should we do an early C-O-W break?
2453 */
2454 page = vmf.page;
2455 if (flags & FAULT_FLAG_WRITE) {
2456 if (!(vma->vm_flags & VM_SHARED)) {
2457 anon = 1;
2458 if (unlikely(anon_vma_prepare(vma))) {
2459 ret = VM_FAULT_OOM;
2460 goto out;
2461 }
2462 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2463 vma, address);
2464 if (!page) {
2465 ret = VM_FAULT_OOM;
2466 goto out;
2467 }
2468 copy_user_highpage(page, vmf.page, address, vma);
2469 __SetPageUptodate(page);
2470 } else {
2471 /*
2472 * If the page will be shareable, see if the backing
2473 * address space wants to know that the page is about
2474 * to become writable
2475 */
2476 if (vma->vm_ops->page_mkwrite) {
2477 unlock_page(page);
2478 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2479 ret = VM_FAULT_SIGBUS;
2480 anon = 1; /* no anon but release vmf.page */
2481 goto out_unlocked;
2482 }
2483 lock_page(page);
2484 /*
2485 * XXX: this is not quite right (racy vs
2486 * invalidate) to unlock and relock the page
2487 * like this, however a better fix requires
2488 * reworking page_mkwrite locking API, which
2489 * is better done later.
2490 */
2491 if (!page->mapping) {
2492 ret = 0;
2493 anon = 1; /* no anon but release vmf.page */
2494 goto out;
2495 }
2496 page_mkwrite = 1;
2497 }
2498 }
2499
2500 }
2501
2502 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2503 ret = VM_FAULT_OOM;
2504 goto out;
2505 }
2506
2507 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2508
2509 /*
2510 * This silly early PAGE_DIRTY setting removes a race
2511 * due to the bad i386 page protection. But it's valid
2512 * for other architectures too.
2513 *
2514 * Note that if write_access is true, we either now have
2515 * an exclusive copy of the page, or this is a shared mapping,
2516 * so we can make it writable and dirty to avoid having to
2517 * handle that later.
2518 */
2519 /* Only go through if we didn't race with anybody else... */
2520 if (likely(pte_same(*page_table, orig_pte))) {
2521 flush_icache_page(vma, page);
2522 entry = mk_pte(page, vma->vm_page_prot);
2523 if (flags & FAULT_FLAG_WRITE)
2524 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2525 set_pte_at(mm, address, page_table, entry);
2526 if (anon) {
2527 inc_mm_counter(mm, anon_rss);
2528 lru_cache_add_active(page);
2529 page_add_new_anon_rmap(page, vma, address);
2530 } else {
2531 inc_mm_counter(mm, file_rss);
2532 page_add_file_rmap(page);
2533 if (flags & FAULT_FLAG_WRITE) {
2534 dirty_page = page;
2535 get_page(dirty_page);
2536 }
2537 }
2538
2539 /* no need to invalidate: a not-present page won't be cached */
2540 update_mmu_cache(vma, address, entry);
2541 } else {
2542 mem_cgroup_uncharge_page(page);
2543 if (anon)
2544 page_cache_release(page);
2545 else
2546 anon = 1; /* no anon but release faulted_page */
2547 }
2548
2549 pte_unmap_unlock(page_table, ptl);
2550
2551 out:
2552 unlock_page(vmf.page);
2553 out_unlocked:
2554 if (anon)
2555 page_cache_release(vmf.page);
2556 else if (dirty_page) {
2557 if (vma->vm_file)
2558 file_update_time(vma->vm_file);
2559
2560 set_page_dirty_balance(dirty_page, page_mkwrite);
2561 put_page(dirty_page);
2562 }
2563
2564 return ret;
2565 }
2566
2567 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2568 unsigned long address, pte_t *page_table, pmd_t *pmd,
2569 int write_access, pte_t orig_pte)
2570 {
2571 pgoff_t pgoff = (((address & PAGE_MASK)
2572 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2573 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2574
2575 pte_unmap(page_table);
2576 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2577 }
2578
2579 /*
2580 * Fault of a previously existing named mapping. Repopulate the pte
2581 * from the encoded file_pte if possible. This enables swappable
2582 * nonlinear vmas.
2583 *
2584 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2585 * but allow concurrent faults), and pte mapped but not yet locked.
2586 * We return with mmap_sem still held, but pte unmapped and unlocked.
2587 */
2588 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2589 unsigned long address, pte_t *page_table, pmd_t *pmd,
2590 int write_access, pte_t orig_pte)
2591 {
2592 unsigned int flags = FAULT_FLAG_NONLINEAR |
2593 (write_access ? FAULT_FLAG_WRITE : 0);
2594 pgoff_t pgoff;
2595
2596 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2597 return 0;
2598
2599 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2600 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2601 /*
2602 * Page table corrupted: show pte and kill process.
2603 */
2604 print_bad_pte(vma, orig_pte, address);
2605 return VM_FAULT_OOM;
2606 }
2607
2608 pgoff = pte_to_pgoff(orig_pte);
2609 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2610 }
2611
2612 /*
2613 * These routines also need to handle stuff like marking pages dirty
2614 * and/or accessed for architectures that don't do it in hardware (most
2615 * RISC architectures). The early dirtying is also good on the i386.
2616 *
2617 * There is also a hook called "update_mmu_cache()" that architectures
2618 * with external mmu caches can use to update those (ie the Sparc or
2619 * PowerPC hashed page tables that act as extended TLBs).
2620 *
2621 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2622 * but allow concurrent faults), and pte mapped but not yet locked.
2623 * We return with mmap_sem still held, but pte unmapped and unlocked.
2624 */
2625 static inline int handle_pte_fault(struct mm_struct *mm,
2626 struct vm_area_struct *vma, unsigned long address,
2627 pte_t *pte, pmd_t *pmd, int write_access)
2628 {
2629 pte_t entry;
2630 spinlock_t *ptl;
2631
2632 entry = *pte;
2633 if (!pte_present(entry)) {
2634 if (pte_none(entry)) {
2635 if (vma->vm_ops) {
2636 if (likely(vma->vm_ops->fault))
2637 return do_linear_fault(mm, vma, address,
2638 pte, pmd, write_access, entry);
2639 }
2640 return do_anonymous_page(mm, vma, address,
2641 pte, pmd, write_access);
2642 }
2643 if (pte_file(entry))
2644 return do_nonlinear_fault(mm, vma, address,
2645 pte, pmd, write_access, entry);
2646 return do_swap_page(mm, vma, address,
2647 pte, pmd, write_access, entry);
2648 }
2649
2650 ptl = pte_lockptr(mm, pmd);
2651 spin_lock(ptl);
2652 if (unlikely(!pte_same(*pte, entry)))
2653 goto unlock;
2654 if (write_access) {
2655 if (!pte_write(entry))
2656 return do_wp_page(mm, vma, address,
2657 pte, pmd, ptl, entry);
2658 entry = pte_mkdirty(entry);
2659 }
2660 entry = pte_mkyoung(entry);
2661 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2662 update_mmu_cache(vma, address, entry);
2663 } else {
2664 /*
2665 * This is needed only for protection faults but the arch code
2666 * is not yet telling us if this is a protection fault or not.
2667 * This still avoids useless tlb flushes for .text page faults
2668 * with threads.
2669 */
2670 if (write_access)
2671 flush_tlb_page(vma, address);
2672 }
2673 unlock:
2674 pte_unmap_unlock(pte, ptl);
2675 return 0;
2676 }
2677
2678 /*
2679 * By the time we get here, we already hold the mm semaphore
2680 */
2681 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2682 unsigned long address, int write_access)
2683 {
2684 pgd_t *pgd;
2685 pud_t *pud;
2686 pmd_t *pmd;
2687 pte_t *pte;
2688
2689 __set_current_state(TASK_RUNNING);
2690
2691 count_vm_event(PGFAULT);
2692
2693 if (unlikely(is_vm_hugetlb_page(vma)))
2694 return hugetlb_fault(mm, vma, address, write_access);
2695
2696 pgd = pgd_offset(mm, address);
2697 pud = pud_alloc(mm, pgd, address);
2698 if (!pud)
2699 return VM_FAULT_OOM;
2700 pmd = pmd_alloc(mm, pud, address);
2701 if (!pmd)
2702 return VM_FAULT_OOM;
2703 pte = pte_alloc_map(mm, pmd, address);
2704 if (!pte)
2705 return VM_FAULT_OOM;
2706
2707 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2708 }
2709
2710 #ifndef __PAGETABLE_PUD_FOLDED
2711 /*
2712 * Allocate page upper directory.
2713 * We've already handled the fast-path in-line.
2714 */
2715 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2716 {
2717 pud_t *new = pud_alloc_one(mm, address);
2718 if (!new)
2719 return -ENOMEM;
2720
2721 smp_wmb(); /* See comment in __pte_alloc */
2722
2723 spin_lock(&mm->page_table_lock);
2724 if (pgd_present(*pgd)) /* Another has populated it */
2725 pud_free(mm, new);
2726 else
2727 pgd_populate(mm, pgd, new);
2728 spin_unlock(&mm->page_table_lock);
2729 return 0;
2730 }
2731 #endif /* __PAGETABLE_PUD_FOLDED */
2732
2733 #ifndef __PAGETABLE_PMD_FOLDED
2734 /*
2735 * Allocate page middle directory.
2736 * We've already handled the fast-path in-line.
2737 */
2738 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2739 {
2740 pmd_t *new = pmd_alloc_one(mm, address);
2741 if (!new)
2742 return -ENOMEM;
2743
2744 smp_wmb(); /* See comment in __pte_alloc */
2745
2746 spin_lock(&mm->page_table_lock);
2747 #ifndef __ARCH_HAS_4LEVEL_HACK
2748 if (pud_present(*pud)) /* Another has populated it */
2749 pmd_free(mm, new);
2750 else
2751 pud_populate(mm, pud, new);
2752 #else
2753 if (pgd_present(*pud)) /* Another has populated it */
2754 pmd_free(mm, new);
2755 else
2756 pgd_populate(mm, pud, new);
2757 #endif /* __ARCH_HAS_4LEVEL_HACK */
2758 spin_unlock(&mm->page_table_lock);
2759 return 0;
2760 }
2761 #endif /* __PAGETABLE_PMD_FOLDED */
2762
2763 int make_pages_present(unsigned long addr, unsigned long end)
2764 {
2765 int ret, len, write;
2766 struct vm_area_struct * vma;
2767
2768 vma = find_vma(current->mm, addr);
2769 if (!vma)
2770 return -1;
2771 write = (vma->vm_flags & VM_WRITE) != 0;
2772 BUG_ON(addr >= end);
2773 BUG_ON(end > vma->vm_end);
2774 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2775 ret = get_user_pages(current, current->mm, addr,
2776 len, write, 0, NULL, NULL);
2777 if (ret < 0)
2778 return ret;
2779 return ret == len ? 0 : -1;
2780 }
2781
2782 #if !defined(__HAVE_ARCH_GATE_AREA)
2783
2784 #if defined(AT_SYSINFO_EHDR)
2785 static struct vm_area_struct gate_vma;
2786
2787 static int __init gate_vma_init(void)
2788 {
2789 gate_vma.vm_mm = NULL;
2790 gate_vma.vm_start = FIXADDR_USER_START;
2791 gate_vma.vm_end = FIXADDR_USER_END;
2792 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2793 gate_vma.vm_page_prot = __P101;
2794 /*
2795 * Make sure the vDSO gets into every core dump.
2796 * Dumping its contents makes post-mortem fully interpretable later
2797 * without matching up the same kernel and hardware config to see
2798 * what PC values meant.
2799 */
2800 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2801 return 0;
2802 }
2803 __initcall(gate_vma_init);
2804 #endif
2805
2806 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2807 {
2808 #ifdef AT_SYSINFO_EHDR
2809 return &gate_vma;
2810 #else
2811 return NULL;
2812 #endif
2813 }
2814
2815 int in_gate_area_no_task(unsigned long addr)
2816 {
2817 #ifdef AT_SYSINFO_EHDR
2818 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2819 return 1;
2820 #endif
2821 return 0;
2822 }
2823
2824 #endif /* __HAVE_ARCH_GATE_AREA */
2825
2826 #ifdef CONFIG_HAVE_IOREMAP_PROT
2827 static resource_size_t follow_phys(struct vm_area_struct *vma,
2828 unsigned long address, unsigned int flags,
2829 unsigned long *prot)
2830 {
2831 pgd_t *pgd;
2832 pud_t *pud;
2833 pmd_t *pmd;
2834 pte_t *ptep, pte;
2835 spinlock_t *ptl;
2836 resource_size_t phys_addr = 0;
2837 struct mm_struct *mm = vma->vm_mm;
2838
2839 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2840
2841 pgd = pgd_offset(mm, address);
2842 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2843 goto no_page_table;
2844
2845 pud = pud_offset(pgd, address);
2846 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2847 goto no_page_table;
2848
2849 pmd = pmd_offset(pud, address);
2850 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2851 goto no_page_table;
2852
2853 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2854 if (pmd_huge(*pmd))
2855 goto no_page_table;
2856
2857 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2858 if (!ptep)
2859 goto out;
2860
2861 pte = *ptep;
2862 if (!pte_present(pte))
2863 goto unlock;
2864 if ((flags & FOLL_WRITE) && !pte_write(pte))
2865 goto unlock;
2866 phys_addr = pte_pfn(pte);
2867 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2868
2869 *prot = pgprot_val(pte_pgprot(pte));
2870
2871 unlock:
2872 pte_unmap_unlock(ptep, ptl);
2873 out:
2874 return phys_addr;
2875 no_page_table:
2876 return 0;
2877 }
2878
2879 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2880 void *buf, int len, int write)
2881 {
2882 resource_size_t phys_addr;
2883 unsigned long prot = 0;
2884 void *maddr;
2885 int offset = addr & (PAGE_SIZE-1);
2886
2887 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2888 return -EINVAL;
2889
2890 phys_addr = follow_phys(vma, addr, write, &prot);
2891
2892 if (!phys_addr)
2893 return -EINVAL;
2894
2895 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2896 if (write)
2897 memcpy_toio(maddr + offset, buf, len);
2898 else
2899 memcpy_fromio(buf, maddr + offset, len);
2900 iounmap(maddr);
2901
2902 return len;
2903 }
2904 #endif
2905
2906 /*
2907 * Access another process' address space.
2908 * Source/target buffer must be kernel space,
2909 * Do not walk the page table directly, use get_user_pages
2910 */
2911 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2912 {
2913 struct mm_struct *mm;
2914 struct vm_area_struct *vma;
2915 void *old_buf = buf;
2916
2917 mm = get_task_mm(tsk);
2918 if (!mm)
2919 return 0;
2920
2921 down_read(&mm->mmap_sem);
2922 /* ignore errors, just check how much was successfully transferred */
2923 while (len) {
2924 int bytes, ret, offset;
2925 void *maddr;
2926 struct page *page = NULL;
2927
2928 ret = get_user_pages(tsk, mm, addr, 1,
2929 write, 1, &page, &vma);
2930 if (ret <= 0) {
2931 /*
2932 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2933 * we can access using slightly different code.
2934 */
2935 #ifdef CONFIG_HAVE_IOREMAP_PROT
2936 vma = find_vma(mm, addr);
2937 if (!vma)
2938 break;
2939 if (vma->vm_ops && vma->vm_ops->access)
2940 ret = vma->vm_ops->access(vma, addr, buf,
2941 len, write);
2942 if (ret <= 0)
2943 #endif
2944 break;
2945 bytes = ret;
2946 } else {
2947 bytes = len;
2948 offset = addr & (PAGE_SIZE-1);
2949 if (bytes > PAGE_SIZE-offset)
2950 bytes = PAGE_SIZE-offset;
2951
2952 maddr = kmap(page);
2953 if (write) {
2954 copy_to_user_page(vma, page, addr,
2955 maddr + offset, buf, bytes);
2956 set_page_dirty_lock(page);
2957 } else {
2958 copy_from_user_page(vma, page, addr,
2959 buf, maddr + offset, bytes);
2960 }
2961 kunmap(page);
2962 page_cache_release(page);
2963 }
2964 len -= bytes;
2965 buf += bytes;
2966 addr += bytes;
2967 }
2968 up_read(&mm->mmap_sem);
2969 mmput(mm);
2970
2971 return buf - old_buf;
2972 }
2973
2974 /*
2975 * Print the name of a VMA.
2976 */
2977 void print_vma_addr(char *prefix, unsigned long ip)
2978 {
2979 struct mm_struct *mm = current->mm;
2980 struct vm_area_struct *vma;
2981
2982 /*
2983 * Do not print if we are in atomic
2984 * contexts (in exception stacks, etc.):
2985 */
2986 if (preempt_count())
2987 return;
2988
2989 down_read(&mm->mmap_sem);
2990 vma = find_vma(mm, ip);
2991 if (vma && vma->vm_file) {
2992 struct file *f = vma->vm_file;
2993 char *buf = (char *)__get_free_page(GFP_KERNEL);
2994 if (buf) {
2995 char *p, *s;
2996
2997 p = d_path(&f->f_path, buf, PAGE_SIZE);
2998 if (IS_ERR(p))
2999 p = "?";
3000 s = strrchr(p, '/');
3001 if (s)
3002 p = s+1;
3003 printk("%s%s[%lx+%lx]", prefix, p,
3004 vma->vm_start,
3005 vma->vm_end - vma->vm_start);
3006 free_page((unsigned long)buf);
3007 }
3008 }
3009 up_read(&current->mm->mmap_sem);
3010 }
This page took 0.131724 seconds and 6 git commands to generate.