mm: introduce pte_special pte bit
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
60
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63
64 #ifndef CONFIG_NEED_MULTIPLE_NODES
65 /* use the per-pgdat data instead for discontigmem - mbligh */
66 unsigned long max_mapnr;
67 struct page *mem_map;
68
69 EXPORT_SYMBOL(max_mapnr);
70 EXPORT_SYMBOL(mem_map);
71 #endif
72
73 unsigned long num_physpages;
74 /*
75 * A number of key systems in x86 including ioremap() rely on the assumption
76 * that high_memory defines the upper bound on direct map memory, then end
77 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
78 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
79 * and ZONE_HIGHMEM.
80 */
81 void * high_memory;
82
83 EXPORT_SYMBOL(num_physpages);
84 EXPORT_SYMBOL(high_memory);
85
86 /*
87 * Randomize the address space (stacks, mmaps, brk, etc.).
88 *
89 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
90 * as ancient (libc5 based) binaries can segfault. )
91 */
92 int randomize_va_space __read_mostly =
93 #ifdef CONFIG_COMPAT_BRK
94 1;
95 #else
96 2;
97 #endif
98
99 static int __init disable_randmaps(char *s)
100 {
101 randomize_va_space = 0;
102 return 1;
103 }
104 __setup("norandmaps", disable_randmaps);
105
106
107 /*
108 * If a p?d_bad entry is found while walking page tables, report
109 * the error, before resetting entry to p?d_none. Usually (but
110 * very seldom) called out from the p?d_none_or_clear_bad macros.
111 */
112
113 void pgd_clear_bad(pgd_t *pgd)
114 {
115 pgd_ERROR(*pgd);
116 pgd_clear(pgd);
117 }
118
119 void pud_clear_bad(pud_t *pud)
120 {
121 pud_ERROR(*pud);
122 pud_clear(pud);
123 }
124
125 void pmd_clear_bad(pmd_t *pmd)
126 {
127 pmd_ERROR(*pmd);
128 pmd_clear(pmd);
129 }
130
131 /*
132 * Note: this doesn't free the actual pages themselves. That
133 * has been handled earlier when unmapping all the memory regions.
134 */
135 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
136 {
137 pgtable_t token = pmd_pgtable(*pmd);
138 pmd_clear(pmd);
139 pte_free_tlb(tlb, token);
140 tlb->mm->nr_ptes--;
141 }
142
143 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
144 unsigned long addr, unsigned long end,
145 unsigned long floor, unsigned long ceiling)
146 {
147 pmd_t *pmd;
148 unsigned long next;
149 unsigned long start;
150
151 start = addr;
152 pmd = pmd_offset(pud, addr);
153 do {
154 next = pmd_addr_end(addr, end);
155 if (pmd_none_or_clear_bad(pmd))
156 continue;
157 free_pte_range(tlb, pmd);
158 } while (pmd++, addr = next, addr != end);
159
160 start &= PUD_MASK;
161 if (start < floor)
162 return;
163 if (ceiling) {
164 ceiling &= PUD_MASK;
165 if (!ceiling)
166 return;
167 }
168 if (end - 1 > ceiling - 1)
169 return;
170
171 pmd = pmd_offset(pud, start);
172 pud_clear(pud);
173 pmd_free_tlb(tlb, pmd);
174 }
175
176 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
177 unsigned long addr, unsigned long end,
178 unsigned long floor, unsigned long ceiling)
179 {
180 pud_t *pud;
181 unsigned long next;
182 unsigned long start;
183
184 start = addr;
185 pud = pud_offset(pgd, addr);
186 do {
187 next = pud_addr_end(addr, end);
188 if (pud_none_or_clear_bad(pud))
189 continue;
190 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
191 } while (pud++, addr = next, addr != end);
192
193 start &= PGDIR_MASK;
194 if (start < floor)
195 return;
196 if (ceiling) {
197 ceiling &= PGDIR_MASK;
198 if (!ceiling)
199 return;
200 }
201 if (end - 1 > ceiling - 1)
202 return;
203
204 pud = pud_offset(pgd, start);
205 pgd_clear(pgd);
206 pud_free_tlb(tlb, pud);
207 }
208
209 /*
210 * This function frees user-level page tables of a process.
211 *
212 * Must be called with pagetable lock held.
213 */
214 void free_pgd_range(struct mmu_gather **tlb,
215 unsigned long addr, unsigned long end,
216 unsigned long floor, unsigned long ceiling)
217 {
218 pgd_t *pgd;
219 unsigned long next;
220 unsigned long start;
221
222 /*
223 * The next few lines have given us lots of grief...
224 *
225 * Why are we testing PMD* at this top level? Because often
226 * there will be no work to do at all, and we'd prefer not to
227 * go all the way down to the bottom just to discover that.
228 *
229 * Why all these "- 1"s? Because 0 represents both the bottom
230 * of the address space and the top of it (using -1 for the
231 * top wouldn't help much: the masks would do the wrong thing).
232 * The rule is that addr 0 and floor 0 refer to the bottom of
233 * the address space, but end 0 and ceiling 0 refer to the top
234 * Comparisons need to use "end - 1" and "ceiling - 1" (though
235 * that end 0 case should be mythical).
236 *
237 * Wherever addr is brought up or ceiling brought down, we must
238 * be careful to reject "the opposite 0" before it confuses the
239 * subsequent tests. But what about where end is brought down
240 * by PMD_SIZE below? no, end can't go down to 0 there.
241 *
242 * Whereas we round start (addr) and ceiling down, by different
243 * masks at different levels, in order to test whether a table
244 * now has no other vmas using it, so can be freed, we don't
245 * bother to round floor or end up - the tests don't need that.
246 */
247
248 addr &= PMD_MASK;
249 if (addr < floor) {
250 addr += PMD_SIZE;
251 if (!addr)
252 return;
253 }
254 if (ceiling) {
255 ceiling &= PMD_MASK;
256 if (!ceiling)
257 return;
258 }
259 if (end - 1 > ceiling - 1)
260 end -= PMD_SIZE;
261 if (addr > end - 1)
262 return;
263
264 start = addr;
265 pgd = pgd_offset((*tlb)->mm, addr);
266 do {
267 next = pgd_addr_end(addr, end);
268 if (pgd_none_or_clear_bad(pgd))
269 continue;
270 free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
271 } while (pgd++, addr = next, addr != end);
272 }
273
274 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
275 unsigned long floor, unsigned long ceiling)
276 {
277 while (vma) {
278 struct vm_area_struct *next = vma->vm_next;
279 unsigned long addr = vma->vm_start;
280
281 /*
282 * Hide vma from rmap and vmtruncate before freeing pgtables
283 */
284 anon_vma_unlink(vma);
285 unlink_file_vma(vma);
286
287 if (is_vm_hugetlb_page(vma)) {
288 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
289 floor, next? next->vm_start: ceiling);
290 } else {
291 /*
292 * Optimization: gather nearby vmas into one call down
293 */
294 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
295 && !is_vm_hugetlb_page(next)) {
296 vma = next;
297 next = vma->vm_next;
298 anon_vma_unlink(vma);
299 unlink_file_vma(vma);
300 }
301 free_pgd_range(tlb, addr, vma->vm_end,
302 floor, next? next->vm_start: ceiling);
303 }
304 vma = next;
305 }
306 }
307
308 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
309 {
310 pgtable_t new = pte_alloc_one(mm, address);
311 if (!new)
312 return -ENOMEM;
313
314 spin_lock(&mm->page_table_lock);
315 if (!pmd_present(*pmd)) { /* Has another populated it ? */
316 mm->nr_ptes++;
317 pmd_populate(mm, pmd, new);
318 new = NULL;
319 }
320 spin_unlock(&mm->page_table_lock);
321 if (new)
322 pte_free(mm, new);
323 return 0;
324 }
325
326 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
327 {
328 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
329 if (!new)
330 return -ENOMEM;
331
332 spin_lock(&init_mm.page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 pmd_populate_kernel(&init_mm, pmd, new);
335 new = NULL;
336 }
337 spin_unlock(&init_mm.page_table_lock);
338 if (new)
339 pte_free_kernel(&init_mm, new);
340 return 0;
341 }
342
343 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
344 {
345 if (file_rss)
346 add_mm_counter(mm, file_rss, file_rss);
347 if (anon_rss)
348 add_mm_counter(mm, anon_rss, anon_rss);
349 }
350
351 /*
352 * This function is called to print an error when a bad pte
353 * is found. For example, we might have a PFN-mapped pte in
354 * a region that doesn't allow it.
355 *
356 * The calling function must still handle the error.
357 */
358 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
359 {
360 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
361 "vm_flags = %lx, vaddr = %lx\n",
362 (long long)pte_val(pte),
363 (vma->vm_mm == current->mm ? current->comm : "???"),
364 vma->vm_flags, vaddr);
365 dump_stack();
366 }
367
368 static inline int is_cow_mapping(unsigned int flags)
369 {
370 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
371 }
372
373 /*
374 * vm_normal_page -- This function gets the "struct page" associated with a pte.
375 *
376 * "Special" mappings do not wish to be associated with a "struct page" (either
377 * it doesn't exist, or it exists but they don't want to touch it). In this
378 * case, NULL is returned here. "Normal" mappings do have a struct page.
379 *
380 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
381 * pte bit, in which case this function is trivial. Secondly, an architecture
382 * may not have a spare pte bit, which requires a more complicated scheme,
383 * described below.
384 *
385 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
386 * special mapping (even if there are underlying and valid "struct pages").
387 * COWed pages of a VM_PFNMAP are always normal.
388 *
389 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
390 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
391 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
392 * mapping will always honor the rule
393 *
394 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
395 *
396 * And for normal mappings this is false.
397 *
398 * This restricts such mappings to be a linear translation from virtual address
399 * to pfn. To get around this restriction, we allow arbitrary mappings so long
400 * as the vma is not a COW mapping; in that case, we know that all ptes are
401 * special (because none can have been COWed).
402 *
403 *
404 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
405 *
406 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
407 * page" backing, however the difference is that _all_ pages with a struct
408 * page (that is, those where pfn_valid is true) are refcounted and considered
409 * normal pages by the VM. The disadvantage is that pages are refcounted
410 * (which can be slower and simply not an option for some PFNMAP users). The
411 * advantage is that we don't have to follow the strict linearity rule of
412 * PFNMAP mappings in order to support COWable mappings.
413 *
414 */
415 #ifdef __HAVE_ARCH_PTE_SPECIAL
416 # define HAVE_PTE_SPECIAL 1
417 #else
418 # define HAVE_PTE_SPECIAL 0
419 #endif
420 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
421 pte_t pte)
422 {
423 unsigned long pfn;
424
425 if (HAVE_PTE_SPECIAL) {
426 if (likely(!pte_special(pte))) {
427 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
428 return pte_page(pte);
429 }
430 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
431 return NULL;
432 }
433
434 /* !HAVE_PTE_SPECIAL case follows: */
435
436 pfn = pte_pfn(pte);
437
438 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
439 if (vma->vm_flags & VM_MIXEDMAP) {
440 if (!pfn_valid(pfn))
441 return NULL;
442 goto out;
443 } else {
444 unsigned long off;
445 off = (addr - vma->vm_start) >> PAGE_SHIFT;
446 if (pfn == vma->vm_pgoff + off)
447 return NULL;
448 if (!is_cow_mapping(vma->vm_flags))
449 return NULL;
450 }
451 }
452
453 VM_BUG_ON(!pfn_valid(pfn));
454
455 /*
456 * NOTE! We still have PageReserved() pages in the page tables.
457 *
458 * eg. VDSO mappings can cause them to exist.
459 */
460 out:
461 return pfn_to_page(pfn);
462 }
463
464 /*
465 * copy one vm_area from one task to the other. Assumes the page tables
466 * already present in the new task to be cleared in the whole range
467 * covered by this vma.
468 */
469
470 static inline void
471 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
472 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
473 unsigned long addr, int *rss)
474 {
475 unsigned long vm_flags = vma->vm_flags;
476 pte_t pte = *src_pte;
477 struct page *page;
478
479 /* pte contains position in swap or file, so copy. */
480 if (unlikely(!pte_present(pte))) {
481 if (!pte_file(pte)) {
482 swp_entry_t entry = pte_to_swp_entry(pte);
483
484 swap_duplicate(entry);
485 /* make sure dst_mm is on swapoff's mmlist. */
486 if (unlikely(list_empty(&dst_mm->mmlist))) {
487 spin_lock(&mmlist_lock);
488 if (list_empty(&dst_mm->mmlist))
489 list_add(&dst_mm->mmlist,
490 &src_mm->mmlist);
491 spin_unlock(&mmlist_lock);
492 }
493 if (is_write_migration_entry(entry) &&
494 is_cow_mapping(vm_flags)) {
495 /*
496 * COW mappings require pages in both parent
497 * and child to be set to read.
498 */
499 make_migration_entry_read(&entry);
500 pte = swp_entry_to_pte(entry);
501 set_pte_at(src_mm, addr, src_pte, pte);
502 }
503 }
504 goto out_set_pte;
505 }
506
507 /*
508 * If it's a COW mapping, write protect it both
509 * in the parent and the child
510 */
511 if (is_cow_mapping(vm_flags)) {
512 ptep_set_wrprotect(src_mm, addr, src_pte);
513 pte = pte_wrprotect(pte);
514 }
515
516 /*
517 * If it's a shared mapping, mark it clean in
518 * the child
519 */
520 if (vm_flags & VM_SHARED)
521 pte = pte_mkclean(pte);
522 pte = pte_mkold(pte);
523
524 page = vm_normal_page(vma, addr, pte);
525 if (page) {
526 get_page(page);
527 page_dup_rmap(page, vma, addr);
528 rss[!!PageAnon(page)]++;
529 }
530
531 out_set_pte:
532 set_pte_at(dst_mm, addr, dst_pte, pte);
533 }
534
535 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
536 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
537 unsigned long addr, unsigned long end)
538 {
539 pte_t *src_pte, *dst_pte;
540 spinlock_t *src_ptl, *dst_ptl;
541 int progress = 0;
542 int rss[2];
543
544 again:
545 rss[1] = rss[0] = 0;
546 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
547 if (!dst_pte)
548 return -ENOMEM;
549 src_pte = pte_offset_map_nested(src_pmd, addr);
550 src_ptl = pte_lockptr(src_mm, src_pmd);
551 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
552 arch_enter_lazy_mmu_mode();
553
554 do {
555 /*
556 * We are holding two locks at this point - either of them
557 * could generate latencies in another task on another CPU.
558 */
559 if (progress >= 32) {
560 progress = 0;
561 if (need_resched() ||
562 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
563 break;
564 }
565 if (pte_none(*src_pte)) {
566 progress++;
567 continue;
568 }
569 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
570 progress += 8;
571 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
572
573 arch_leave_lazy_mmu_mode();
574 spin_unlock(src_ptl);
575 pte_unmap_nested(src_pte - 1);
576 add_mm_rss(dst_mm, rss[0], rss[1]);
577 pte_unmap_unlock(dst_pte - 1, dst_ptl);
578 cond_resched();
579 if (addr != end)
580 goto again;
581 return 0;
582 }
583
584 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
585 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
586 unsigned long addr, unsigned long end)
587 {
588 pmd_t *src_pmd, *dst_pmd;
589 unsigned long next;
590
591 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
592 if (!dst_pmd)
593 return -ENOMEM;
594 src_pmd = pmd_offset(src_pud, addr);
595 do {
596 next = pmd_addr_end(addr, end);
597 if (pmd_none_or_clear_bad(src_pmd))
598 continue;
599 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
600 vma, addr, next))
601 return -ENOMEM;
602 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
603 return 0;
604 }
605
606 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
608 unsigned long addr, unsigned long end)
609 {
610 pud_t *src_pud, *dst_pud;
611 unsigned long next;
612
613 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
614 if (!dst_pud)
615 return -ENOMEM;
616 src_pud = pud_offset(src_pgd, addr);
617 do {
618 next = pud_addr_end(addr, end);
619 if (pud_none_or_clear_bad(src_pud))
620 continue;
621 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
622 vma, addr, next))
623 return -ENOMEM;
624 } while (dst_pud++, src_pud++, addr = next, addr != end);
625 return 0;
626 }
627
628 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
629 struct vm_area_struct *vma)
630 {
631 pgd_t *src_pgd, *dst_pgd;
632 unsigned long next;
633 unsigned long addr = vma->vm_start;
634 unsigned long end = vma->vm_end;
635
636 /*
637 * Don't copy ptes where a page fault will fill them correctly.
638 * Fork becomes much lighter when there are big shared or private
639 * readonly mappings. The tradeoff is that copy_page_range is more
640 * efficient than faulting.
641 */
642 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
643 if (!vma->anon_vma)
644 return 0;
645 }
646
647 if (is_vm_hugetlb_page(vma))
648 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
649
650 dst_pgd = pgd_offset(dst_mm, addr);
651 src_pgd = pgd_offset(src_mm, addr);
652 do {
653 next = pgd_addr_end(addr, end);
654 if (pgd_none_or_clear_bad(src_pgd))
655 continue;
656 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
657 vma, addr, next))
658 return -ENOMEM;
659 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
660 return 0;
661 }
662
663 static unsigned long zap_pte_range(struct mmu_gather *tlb,
664 struct vm_area_struct *vma, pmd_t *pmd,
665 unsigned long addr, unsigned long end,
666 long *zap_work, struct zap_details *details)
667 {
668 struct mm_struct *mm = tlb->mm;
669 pte_t *pte;
670 spinlock_t *ptl;
671 int file_rss = 0;
672 int anon_rss = 0;
673
674 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
675 arch_enter_lazy_mmu_mode();
676 do {
677 pte_t ptent = *pte;
678 if (pte_none(ptent)) {
679 (*zap_work)--;
680 continue;
681 }
682
683 (*zap_work) -= PAGE_SIZE;
684
685 if (pte_present(ptent)) {
686 struct page *page;
687
688 page = vm_normal_page(vma, addr, ptent);
689 if (unlikely(details) && page) {
690 /*
691 * unmap_shared_mapping_pages() wants to
692 * invalidate cache without truncating:
693 * unmap shared but keep private pages.
694 */
695 if (details->check_mapping &&
696 details->check_mapping != page->mapping)
697 continue;
698 /*
699 * Each page->index must be checked when
700 * invalidating or truncating nonlinear.
701 */
702 if (details->nonlinear_vma &&
703 (page->index < details->first_index ||
704 page->index > details->last_index))
705 continue;
706 }
707 ptent = ptep_get_and_clear_full(mm, addr, pte,
708 tlb->fullmm);
709 tlb_remove_tlb_entry(tlb, pte, addr);
710 if (unlikely(!page))
711 continue;
712 if (unlikely(details) && details->nonlinear_vma
713 && linear_page_index(details->nonlinear_vma,
714 addr) != page->index)
715 set_pte_at(mm, addr, pte,
716 pgoff_to_pte(page->index));
717 if (PageAnon(page))
718 anon_rss--;
719 else {
720 if (pte_dirty(ptent))
721 set_page_dirty(page);
722 if (pte_young(ptent))
723 SetPageReferenced(page);
724 file_rss--;
725 }
726 page_remove_rmap(page, vma);
727 tlb_remove_page(tlb, page);
728 continue;
729 }
730 /*
731 * If details->check_mapping, we leave swap entries;
732 * if details->nonlinear_vma, we leave file entries.
733 */
734 if (unlikely(details))
735 continue;
736 if (!pte_file(ptent))
737 free_swap_and_cache(pte_to_swp_entry(ptent));
738 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
739 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
740
741 add_mm_rss(mm, file_rss, anon_rss);
742 arch_leave_lazy_mmu_mode();
743 pte_unmap_unlock(pte - 1, ptl);
744
745 return addr;
746 }
747
748 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
749 struct vm_area_struct *vma, pud_t *pud,
750 unsigned long addr, unsigned long end,
751 long *zap_work, struct zap_details *details)
752 {
753 pmd_t *pmd;
754 unsigned long next;
755
756 pmd = pmd_offset(pud, addr);
757 do {
758 next = pmd_addr_end(addr, end);
759 if (pmd_none_or_clear_bad(pmd)) {
760 (*zap_work)--;
761 continue;
762 }
763 next = zap_pte_range(tlb, vma, pmd, addr, next,
764 zap_work, details);
765 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
766
767 return addr;
768 }
769
770 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
771 struct vm_area_struct *vma, pgd_t *pgd,
772 unsigned long addr, unsigned long end,
773 long *zap_work, struct zap_details *details)
774 {
775 pud_t *pud;
776 unsigned long next;
777
778 pud = pud_offset(pgd, addr);
779 do {
780 next = pud_addr_end(addr, end);
781 if (pud_none_or_clear_bad(pud)) {
782 (*zap_work)--;
783 continue;
784 }
785 next = zap_pmd_range(tlb, vma, pud, addr, next,
786 zap_work, details);
787 } while (pud++, addr = next, (addr != end && *zap_work > 0));
788
789 return addr;
790 }
791
792 static unsigned long unmap_page_range(struct mmu_gather *tlb,
793 struct vm_area_struct *vma,
794 unsigned long addr, unsigned long end,
795 long *zap_work, struct zap_details *details)
796 {
797 pgd_t *pgd;
798 unsigned long next;
799
800 if (details && !details->check_mapping && !details->nonlinear_vma)
801 details = NULL;
802
803 BUG_ON(addr >= end);
804 tlb_start_vma(tlb, vma);
805 pgd = pgd_offset(vma->vm_mm, addr);
806 do {
807 next = pgd_addr_end(addr, end);
808 if (pgd_none_or_clear_bad(pgd)) {
809 (*zap_work)--;
810 continue;
811 }
812 next = zap_pud_range(tlb, vma, pgd, addr, next,
813 zap_work, details);
814 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
815 tlb_end_vma(tlb, vma);
816
817 return addr;
818 }
819
820 #ifdef CONFIG_PREEMPT
821 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
822 #else
823 /* No preempt: go for improved straight-line efficiency */
824 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
825 #endif
826
827 /**
828 * unmap_vmas - unmap a range of memory covered by a list of vma's
829 * @tlbp: address of the caller's struct mmu_gather
830 * @vma: the starting vma
831 * @start_addr: virtual address at which to start unmapping
832 * @end_addr: virtual address at which to end unmapping
833 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
834 * @details: details of nonlinear truncation or shared cache invalidation
835 *
836 * Returns the end address of the unmapping (restart addr if interrupted).
837 *
838 * Unmap all pages in the vma list.
839 *
840 * We aim to not hold locks for too long (for scheduling latency reasons).
841 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
842 * return the ending mmu_gather to the caller.
843 *
844 * Only addresses between `start' and `end' will be unmapped.
845 *
846 * The VMA list must be sorted in ascending virtual address order.
847 *
848 * unmap_vmas() assumes that the caller will flush the whole unmapped address
849 * range after unmap_vmas() returns. So the only responsibility here is to
850 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
851 * drops the lock and schedules.
852 */
853 unsigned long unmap_vmas(struct mmu_gather **tlbp,
854 struct vm_area_struct *vma, unsigned long start_addr,
855 unsigned long end_addr, unsigned long *nr_accounted,
856 struct zap_details *details)
857 {
858 long zap_work = ZAP_BLOCK_SIZE;
859 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
860 int tlb_start_valid = 0;
861 unsigned long start = start_addr;
862 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
863 int fullmm = (*tlbp)->fullmm;
864
865 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
866 unsigned long end;
867
868 start = max(vma->vm_start, start_addr);
869 if (start >= vma->vm_end)
870 continue;
871 end = min(vma->vm_end, end_addr);
872 if (end <= vma->vm_start)
873 continue;
874
875 if (vma->vm_flags & VM_ACCOUNT)
876 *nr_accounted += (end - start) >> PAGE_SHIFT;
877
878 while (start != end) {
879 if (!tlb_start_valid) {
880 tlb_start = start;
881 tlb_start_valid = 1;
882 }
883
884 if (unlikely(is_vm_hugetlb_page(vma))) {
885 unmap_hugepage_range(vma, start, end);
886 zap_work -= (end - start) /
887 (HPAGE_SIZE / PAGE_SIZE);
888 start = end;
889 } else
890 start = unmap_page_range(*tlbp, vma,
891 start, end, &zap_work, details);
892
893 if (zap_work > 0) {
894 BUG_ON(start != end);
895 break;
896 }
897
898 tlb_finish_mmu(*tlbp, tlb_start, start);
899
900 if (need_resched() ||
901 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
902 if (i_mmap_lock) {
903 *tlbp = NULL;
904 goto out;
905 }
906 cond_resched();
907 }
908
909 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
910 tlb_start_valid = 0;
911 zap_work = ZAP_BLOCK_SIZE;
912 }
913 }
914 out:
915 return start; /* which is now the end (or restart) address */
916 }
917
918 /**
919 * zap_page_range - remove user pages in a given range
920 * @vma: vm_area_struct holding the applicable pages
921 * @address: starting address of pages to zap
922 * @size: number of bytes to zap
923 * @details: details of nonlinear truncation or shared cache invalidation
924 */
925 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
926 unsigned long size, struct zap_details *details)
927 {
928 struct mm_struct *mm = vma->vm_mm;
929 struct mmu_gather *tlb;
930 unsigned long end = address + size;
931 unsigned long nr_accounted = 0;
932
933 lru_add_drain();
934 tlb = tlb_gather_mmu(mm, 0);
935 update_hiwater_rss(mm);
936 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
937 if (tlb)
938 tlb_finish_mmu(tlb, address, end);
939 return end;
940 }
941
942 /*
943 * Do a quick page-table lookup for a single page.
944 */
945 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
946 unsigned int flags)
947 {
948 pgd_t *pgd;
949 pud_t *pud;
950 pmd_t *pmd;
951 pte_t *ptep, pte;
952 spinlock_t *ptl;
953 struct page *page;
954 struct mm_struct *mm = vma->vm_mm;
955
956 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
957 if (!IS_ERR(page)) {
958 BUG_ON(flags & FOLL_GET);
959 goto out;
960 }
961
962 page = NULL;
963 pgd = pgd_offset(mm, address);
964 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
965 goto no_page_table;
966
967 pud = pud_offset(pgd, address);
968 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
969 goto no_page_table;
970
971 pmd = pmd_offset(pud, address);
972 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
973 goto no_page_table;
974
975 if (pmd_huge(*pmd)) {
976 BUG_ON(flags & FOLL_GET);
977 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
978 goto out;
979 }
980
981 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
982 if (!ptep)
983 goto out;
984
985 pte = *ptep;
986 if (!pte_present(pte))
987 goto unlock;
988 if ((flags & FOLL_WRITE) && !pte_write(pte))
989 goto unlock;
990 page = vm_normal_page(vma, address, pte);
991 if (unlikely(!page))
992 goto unlock;
993
994 if (flags & FOLL_GET)
995 get_page(page);
996 if (flags & FOLL_TOUCH) {
997 if ((flags & FOLL_WRITE) &&
998 !pte_dirty(pte) && !PageDirty(page))
999 set_page_dirty(page);
1000 mark_page_accessed(page);
1001 }
1002 unlock:
1003 pte_unmap_unlock(ptep, ptl);
1004 out:
1005 return page;
1006
1007 no_page_table:
1008 /*
1009 * When core dumping an enormous anonymous area that nobody
1010 * has touched so far, we don't want to allocate page tables.
1011 */
1012 if (flags & FOLL_ANON) {
1013 page = ZERO_PAGE(0);
1014 if (flags & FOLL_GET)
1015 get_page(page);
1016 BUG_ON(flags & FOLL_WRITE);
1017 }
1018 return page;
1019 }
1020
1021 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1022 unsigned long start, int len, int write, int force,
1023 struct page **pages, struct vm_area_struct **vmas)
1024 {
1025 int i;
1026 unsigned int vm_flags;
1027
1028 if (len <= 0)
1029 return 0;
1030 /*
1031 * Require read or write permissions.
1032 * If 'force' is set, we only require the "MAY" flags.
1033 */
1034 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1035 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1036 i = 0;
1037
1038 do {
1039 struct vm_area_struct *vma;
1040 unsigned int foll_flags;
1041
1042 vma = find_extend_vma(mm, start);
1043 if (!vma && in_gate_area(tsk, start)) {
1044 unsigned long pg = start & PAGE_MASK;
1045 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1046 pgd_t *pgd;
1047 pud_t *pud;
1048 pmd_t *pmd;
1049 pte_t *pte;
1050 if (write) /* user gate pages are read-only */
1051 return i ? : -EFAULT;
1052 if (pg > TASK_SIZE)
1053 pgd = pgd_offset_k(pg);
1054 else
1055 pgd = pgd_offset_gate(mm, pg);
1056 BUG_ON(pgd_none(*pgd));
1057 pud = pud_offset(pgd, pg);
1058 BUG_ON(pud_none(*pud));
1059 pmd = pmd_offset(pud, pg);
1060 if (pmd_none(*pmd))
1061 return i ? : -EFAULT;
1062 pte = pte_offset_map(pmd, pg);
1063 if (pte_none(*pte)) {
1064 pte_unmap(pte);
1065 return i ? : -EFAULT;
1066 }
1067 if (pages) {
1068 struct page *page = vm_normal_page(gate_vma, start, *pte);
1069 pages[i] = page;
1070 if (page)
1071 get_page(page);
1072 }
1073 pte_unmap(pte);
1074 if (vmas)
1075 vmas[i] = gate_vma;
1076 i++;
1077 start += PAGE_SIZE;
1078 len--;
1079 continue;
1080 }
1081
1082 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1083 || !(vm_flags & vma->vm_flags))
1084 return i ? : -EFAULT;
1085
1086 if (is_vm_hugetlb_page(vma)) {
1087 i = follow_hugetlb_page(mm, vma, pages, vmas,
1088 &start, &len, i, write);
1089 continue;
1090 }
1091
1092 foll_flags = FOLL_TOUCH;
1093 if (pages)
1094 foll_flags |= FOLL_GET;
1095 if (!write && !(vma->vm_flags & VM_LOCKED) &&
1096 (!vma->vm_ops || !vma->vm_ops->fault))
1097 foll_flags |= FOLL_ANON;
1098
1099 do {
1100 struct page *page;
1101
1102 /*
1103 * If tsk is ooming, cut off its access to large memory
1104 * allocations. It has a pending SIGKILL, but it can't
1105 * be processed until returning to user space.
1106 */
1107 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1108 return -ENOMEM;
1109
1110 if (write)
1111 foll_flags |= FOLL_WRITE;
1112
1113 cond_resched();
1114 while (!(page = follow_page(vma, start, foll_flags))) {
1115 int ret;
1116 ret = handle_mm_fault(mm, vma, start,
1117 foll_flags & FOLL_WRITE);
1118 if (ret & VM_FAULT_ERROR) {
1119 if (ret & VM_FAULT_OOM)
1120 return i ? i : -ENOMEM;
1121 else if (ret & VM_FAULT_SIGBUS)
1122 return i ? i : -EFAULT;
1123 BUG();
1124 }
1125 if (ret & VM_FAULT_MAJOR)
1126 tsk->maj_flt++;
1127 else
1128 tsk->min_flt++;
1129
1130 /*
1131 * The VM_FAULT_WRITE bit tells us that
1132 * do_wp_page has broken COW when necessary,
1133 * even if maybe_mkwrite decided not to set
1134 * pte_write. We can thus safely do subsequent
1135 * page lookups as if they were reads.
1136 */
1137 if (ret & VM_FAULT_WRITE)
1138 foll_flags &= ~FOLL_WRITE;
1139
1140 cond_resched();
1141 }
1142 if (pages) {
1143 pages[i] = page;
1144
1145 flush_anon_page(vma, page, start);
1146 flush_dcache_page(page);
1147 }
1148 if (vmas)
1149 vmas[i] = vma;
1150 i++;
1151 start += PAGE_SIZE;
1152 len--;
1153 } while (len && start < vma->vm_end);
1154 } while (len);
1155 return i;
1156 }
1157 EXPORT_SYMBOL(get_user_pages);
1158
1159 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1160 spinlock_t **ptl)
1161 {
1162 pgd_t * pgd = pgd_offset(mm, addr);
1163 pud_t * pud = pud_alloc(mm, pgd, addr);
1164 if (pud) {
1165 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1166 if (pmd)
1167 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1168 }
1169 return NULL;
1170 }
1171
1172 /*
1173 * This is the old fallback for page remapping.
1174 *
1175 * For historical reasons, it only allows reserved pages. Only
1176 * old drivers should use this, and they needed to mark their
1177 * pages reserved for the old functions anyway.
1178 */
1179 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1180 {
1181 int retval;
1182 pte_t *pte;
1183 spinlock_t *ptl;
1184
1185 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1186 if (retval)
1187 goto out;
1188
1189 retval = -EINVAL;
1190 if (PageAnon(page))
1191 goto out_uncharge;
1192 retval = -ENOMEM;
1193 flush_dcache_page(page);
1194 pte = get_locked_pte(mm, addr, &ptl);
1195 if (!pte)
1196 goto out_uncharge;
1197 retval = -EBUSY;
1198 if (!pte_none(*pte))
1199 goto out_unlock;
1200
1201 /* Ok, finally just insert the thing.. */
1202 get_page(page);
1203 inc_mm_counter(mm, file_rss);
1204 page_add_file_rmap(page);
1205 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1206
1207 retval = 0;
1208 pte_unmap_unlock(pte, ptl);
1209 return retval;
1210 out_unlock:
1211 pte_unmap_unlock(pte, ptl);
1212 out_uncharge:
1213 mem_cgroup_uncharge_page(page);
1214 out:
1215 return retval;
1216 }
1217
1218 /**
1219 * vm_insert_page - insert single page into user vma
1220 * @vma: user vma to map to
1221 * @addr: target user address of this page
1222 * @page: source kernel page
1223 *
1224 * This allows drivers to insert individual pages they've allocated
1225 * into a user vma.
1226 *
1227 * The page has to be a nice clean _individual_ kernel allocation.
1228 * If you allocate a compound page, you need to have marked it as
1229 * such (__GFP_COMP), or manually just split the page up yourself
1230 * (see split_page()).
1231 *
1232 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1233 * took an arbitrary page protection parameter. This doesn't allow
1234 * that. Your vma protection will have to be set up correctly, which
1235 * means that if you want a shared writable mapping, you'd better
1236 * ask for a shared writable mapping!
1237 *
1238 * The page does not need to be reserved.
1239 */
1240 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1241 {
1242 if (addr < vma->vm_start || addr >= vma->vm_end)
1243 return -EFAULT;
1244 if (!page_count(page))
1245 return -EINVAL;
1246 vma->vm_flags |= VM_INSERTPAGE;
1247 return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1248 }
1249 EXPORT_SYMBOL(vm_insert_page);
1250
1251 /**
1252 * vm_insert_pfn - insert single pfn into user vma
1253 * @vma: user vma to map to
1254 * @addr: target user address of this page
1255 * @pfn: source kernel pfn
1256 *
1257 * Similar to vm_inert_page, this allows drivers to insert individual pages
1258 * they've allocated into a user vma. Same comments apply.
1259 *
1260 * This function should only be called from a vm_ops->fault handler, and
1261 * in that case the handler should return NULL.
1262 */
1263 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1264 unsigned long pfn)
1265 {
1266 struct mm_struct *mm = vma->vm_mm;
1267 int retval;
1268 pte_t *pte, entry;
1269 spinlock_t *ptl;
1270
1271 /*
1272 * Technically, architectures with pte_special can avoid all these
1273 * restrictions (same for remap_pfn_range). However we would like
1274 * consistency in testing and feature parity among all, so we should
1275 * try to keep these invariants in place for everybody.
1276 */
1277 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1278 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1279 (VM_PFNMAP|VM_MIXEDMAP));
1280 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1281 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1282
1283 retval = -ENOMEM;
1284 pte = get_locked_pte(mm, addr, &ptl);
1285 if (!pte)
1286 goto out;
1287 retval = -EBUSY;
1288 if (!pte_none(*pte))
1289 goto out_unlock;
1290
1291 /* Ok, finally just insert the thing.. */
1292 entry = pte_mkspecial(pfn_pte(pfn, vma->vm_page_prot));
1293 set_pte_at(mm, addr, pte, entry);
1294 update_mmu_cache(vma, addr, entry);
1295
1296 retval = 0;
1297 out_unlock:
1298 pte_unmap_unlock(pte, ptl);
1299
1300 out:
1301 return retval;
1302 }
1303 EXPORT_SYMBOL(vm_insert_pfn);
1304
1305 /*
1306 * maps a range of physical memory into the requested pages. the old
1307 * mappings are removed. any references to nonexistent pages results
1308 * in null mappings (currently treated as "copy-on-access")
1309 */
1310 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1311 unsigned long addr, unsigned long end,
1312 unsigned long pfn, pgprot_t prot)
1313 {
1314 pte_t *pte;
1315 spinlock_t *ptl;
1316
1317 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1318 if (!pte)
1319 return -ENOMEM;
1320 arch_enter_lazy_mmu_mode();
1321 do {
1322 BUG_ON(!pte_none(*pte));
1323 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1324 pfn++;
1325 } while (pte++, addr += PAGE_SIZE, addr != end);
1326 arch_leave_lazy_mmu_mode();
1327 pte_unmap_unlock(pte - 1, ptl);
1328 return 0;
1329 }
1330
1331 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1332 unsigned long addr, unsigned long end,
1333 unsigned long pfn, pgprot_t prot)
1334 {
1335 pmd_t *pmd;
1336 unsigned long next;
1337
1338 pfn -= addr >> PAGE_SHIFT;
1339 pmd = pmd_alloc(mm, pud, addr);
1340 if (!pmd)
1341 return -ENOMEM;
1342 do {
1343 next = pmd_addr_end(addr, end);
1344 if (remap_pte_range(mm, pmd, addr, next,
1345 pfn + (addr >> PAGE_SHIFT), prot))
1346 return -ENOMEM;
1347 } while (pmd++, addr = next, addr != end);
1348 return 0;
1349 }
1350
1351 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1352 unsigned long addr, unsigned long end,
1353 unsigned long pfn, pgprot_t prot)
1354 {
1355 pud_t *pud;
1356 unsigned long next;
1357
1358 pfn -= addr >> PAGE_SHIFT;
1359 pud = pud_alloc(mm, pgd, addr);
1360 if (!pud)
1361 return -ENOMEM;
1362 do {
1363 next = pud_addr_end(addr, end);
1364 if (remap_pmd_range(mm, pud, addr, next,
1365 pfn + (addr >> PAGE_SHIFT), prot))
1366 return -ENOMEM;
1367 } while (pud++, addr = next, addr != end);
1368 return 0;
1369 }
1370
1371 /**
1372 * remap_pfn_range - remap kernel memory to userspace
1373 * @vma: user vma to map to
1374 * @addr: target user address to start at
1375 * @pfn: physical address of kernel memory
1376 * @size: size of map area
1377 * @prot: page protection flags for this mapping
1378 *
1379 * Note: this is only safe if the mm semaphore is held when called.
1380 */
1381 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1382 unsigned long pfn, unsigned long size, pgprot_t prot)
1383 {
1384 pgd_t *pgd;
1385 unsigned long next;
1386 unsigned long end = addr + PAGE_ALIGN(size);
1387 struct mm_struct *mm = vma->vm_mm;
1388 int err;
1389
1390 /*
1391 * Physically remapped pages are special. Tell the
1392 * rest of the world about it:
1393 * VM_IO tells people not to look at these pages
1394 * (accesses can have side effects).
1395 * VM_RESERVED is specified all over the place, because
1396 * in 2.4 it kept swapout's vma scan off this vma; but
1397 * in 2.6 the LRU scan won't even find its pages, so this
1398 * flag means no more than count its pages in reserved_vm,
1399 * and omit it from core dump, even when VM_IO turned off.
1400 * VM_PFNMAP tells the core MM that the base pages are just
1401 * raw PFN mappings, and do not have a "struct page" associated
1402 * with them.
1403 *
1404 * There's a horrible special case to handle copy-on-write
1405 * behaviour that some programs depend on. We mark the "original"
1406 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1407 */
1408 if (is_cow_mapping(vma->vm_flags)) {
1409 if (addr != vma->vm_start || end != vma->vm_end)
1410 return -EINVAL;
1411 vma->vm_pgoff = pfn;
1412 }
1413
1414 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1415
1416 BUG_ON(addr >= end);
1417 pfn -= addr >> PAGE_SHIFT;
1418 pgd = pgd_offset(mm, addr);
1419 flush_cache_range(vma, addr, end);
1420 do {
1421 next = pgd_addr_end(addr, end);
1422 err = remap_pud_range(mm, pgd, addr, next,
1423 pfn + (addr >> PAGE_SHIFT), prot);
1424 if (err)
1425 break;
1426 } while (pgd++, addr = next, addr != end);
1427 return err;
1428 }
1429 EXPORT_SYMBOL(remap_pfn_range);
1430
1431 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1432 unsigned long addr, unsigned long end,
1433 pte_fn_t fn, void *data)
1434 {
1435 pte_t *pte;
1436 int err;
1437 pgtable_t token;
1438 spinlock_t *uninitialized_var(ptl);
1439
1440 pte = (mm == &init_mm) ?
1441 pte_alloc_kernel(pmd, addr) :
1442 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1443 if (!pte)
1444 return -ENOMEM;
1445
1446 BUG_ON(pmd_huge(*pmd));
1447
1448 token = pmd_pgtable(*pmd);
1449
1450 do {
1451 err = fn(pte, token, addr, data);
1452 if (err)
1453 break;
1454 } while (pte++, addr += PAGE_SIZE, addr != end);
1455
1456 if (mm != &init_mm)
1457 pte_unmap_unlock(pte-1, ptl);
1458 return err;
1459 }
1460
1461 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1462 unsigned long addr, unsigned long end,
1463 pte_fn_t fn, void *data)
1464 {
1465 pmd_t *pmd;
1466 unsigned long next;
1467 int err;
1468
1469 pmd = pmd_alloc(mm, pud, addr);
1470 if (!pmd)
1471 return -ENOMEM;
1472 do {
1473 next = pmd_addr_end(addr, end);
1474 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1475 if (err)
1476 break;
1477 } while (pmd++, addr = next, addr != end);
1478 return err;
1479 }
1480
1481 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1482 unsigned long addr, unsigned long end,
1483 pte_fn_t fn, void *data)
1484 {
1485 pud_t *pud;
1486 unsigned long next;
1487 int err;
1488
1489 pud = pud_alloc(mm, pgd, addr);
1490 if (!pud)
1491 return -ENOMEM;
1492 do {
1493 next = pud_addr_end(addr, end);
1494 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1495 if (err)
1496 break;
1497 } while (pud++, addr = next, addr != end);
1498 return err;
1499 }
1500
1501 /*
1502 * Scan a region of virtual memory, filling in page tables as necessary
1503 * and calling a provided function on each leaf page table.
1504 */
1505 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1506 unsigned long size, pte_fn_t fn, void *data)
1507 {
1508 pgd_t *pgd;
1509 unsigned long next;
1510 unsigned long end = addr + size;
1511 int err;
1512
1513 BUG_ON(addr >= end);
1514 pgd = pgd_offset(mm, addr);
1515 do {
1516 next = pgd_addr_end(addr, end);
1517 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1518 if (err)
1519 break;
1520 } while (pgd++, addr = next, addr != end);
1521 return err;
1522 }
1523 EXPORT_SYMBOL_GPL(apply_to_page_range);
1524
1525 /*
1526 * handle_pte_fault chooses page fault handler according to an entry
1527 * which was read non-atomically. Before making any commitment, on
1528 * those architectures or configurations (e.g. i386 with PAE) which
1529 * might give a mix of unmatched parts, do_swap_page and do_file_page
1530 * must check under lock before unmapping the pte and proceeding
1531 * (but do_wp_page is only called after already making such a check;
1532 * and do_anonymous_page and do_no_page can safely check later on).
1533 */
1534 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1535 pte_t *page_table, pte_t orig_pte)
1536 {
1537 int same = 1;
1538 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1539 if (sizeof(pte_t) > sizeof(unsigned long)) {
1540 spinlock_t *ptl = pte_lockptr(mm, pmd);
1541 spin_lock(ptl);
1542 same = pte_same(*page_table, orig_pte);
1543 spin_unlock(ptl);
1544 }
1545 #endif
1546 pte_unmap(page_table);
1547 return same;
1548 }
1549
1550 /*
1551 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1552 * servicing faults for write access. In the normal case, do always want
1553 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1554 * that do not have writing enabled, when used by access_process_vm.
1555 */
1556 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1557 {
1558 if (likely(vma->vm_flags & VM_WRITE))
1559 pte = pte_mkwrite(pte);
1560 return pte;
1561 }
1562
1563 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1564 {
1565 /*
1566 * If the source page was a PFN mapping, we don't have
1567 * a "struct page" for it. We do a best-effort copy by
1568 * just copying from the original user address. If that
1569 * fails, we just zero-fill it. Live with it.
1570 */
1571 if (unlikely(!src)) {
1572 void *kaddr = kmap_atomic(dst, KM_USER0);
1573 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1574
1575 /*
1576 * This really shouldn't fail, because the page is there
1577 * in the page tables. But it might just be unreadable,
1578 * in which case we just give up and fill the result with
1579 * zeroes.
1580 */
1581 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1582 memset(kaddr, 0, PAGE_SIZE);
1583 kunmap_atomic(kaddr, KM_USER0);
1584 flush_dcache_page(dst);
1585 } else
1586 copy_user_highpage(dst, src, va, vma);
1587 }
1588
1589 /*
1590 * This routine handles present pages, when users try to write
1591 * to a shared page. It is done by copying the page to a new address
1592 * and decrementing the shared-page counter for the old page.
1593 *
1594 * Note that this routine assumes that the protection checks have been
1595 * done by the caller (the low-level page fault routine in most cases).
1596 * Thus we can safely just mark it writable once we've done any necessary
1597 * COW.
1598 *
1599 * We also mark the page dirty at this point even though the page will
1600 * change only once the write actually happens. This avoids a few races,
1601 * and potentially makes it more efficient.
1602 *
1603 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1604 * but allow concurrent faults), with pte both mapped and locked.
1605 * We return with mmap_sem still held, but pte unmapped and unlocked.
1606 */
1607 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1608 unsigned long address, pte_t *page_table, pmd_t *pmd,
1609 spinlock_t *ptl, pte_t orig_pte)
1610 {
1611 struct page *old_page, *new_page;
1612 pte_t entry;
1613 int reuse = 0, ret = 0;
1614 int page_mkwrite = 0;
1615 struct page *dirty_page = NULL;
1616
1617 old_page = vm_normal_page(vma, address, orig_pte);
1618 if (!old_page)
1619 goto gotten;
1620
1621 /*
1622 * Take out anonymous pages first, anonymous shared vmas are
1623 * not dirty accountable.
1624 */
1625 if (PageAnon(old_page)) {
1626 if (!TestSetPageLocked(old_page)) {
1627 reuse = can_share_swap_page(old_page);
1628 unlock_page(old_page);
1629 }
1630 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1631 (VM_WRITE|VM_SHARED))) {
1632 /*
1633 * Only catch write-faults on shared writable pages,
1634 * read-only shared pages can get COWed by
1635 * get_user_pages(.write=1, .force=1).
1636 */
1637 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1638 /*
1639 * Notify the address space that the page is about to
1640 * become writable so that it can prohibit this or wait
1641 * for the page to get into an appropriate state.
1642 *
1643 * We do this without the lock held, so that it can
1644 * sleep if it needs to.
1645 */
1646 page_cache_get(old_page);
1647 pte_unmap_unlock(page_table, ptl);
1648
1649 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1650 goto unwritable_page;
1651
1652 /*
1653 * Since we dropped the lock we need to revalidate
1654 * the PTE as someone else may have changed it. If
1655 * they did, we just return, as we can count on the
1656 * MMU to tell us if they didn't also make it writable.
1657 */
1658 page_table = pte_offset_map_lock(mm, pmd, address,
1659 &ptl);
1660 page_cache_release(old_page);
1661 if (!pte_same(*page_table, orig_pte))
1662 goto unlock;
1663
1664 page_mkwrite = 1;
1665 }
1666 dirty_page = old_page;
1667 get_page(dirty_page);
1668 reuse = 1;
1669 }
1670
1671 if (reuse) {
1672 flush_cache_page(vma, address, pte_pfn(orig_pte));
1673 entry = pte_mkyoung(orig_pte);
1674 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1675 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1676 update_mmu_cache(vma, address, entry);
1677 ret |= VM_FAULT_WRITE;
1678 goto unlock;
1679 }
1680
1681 /*
1682 * Ok, we need to copy. Oh, well..
1683 */
1684 page_cache_get(old_page);
1685 gotten:
1686 pte_unmap_unlock(page_table, ptl);
1687
1688 if (unlikely(anon_vma_prepare(vma)))
1689 goto oom;
1690 VM_BUG_ON(old_page == ZERO_PAGE(0));
1691 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1692 if (!new_page)
1693 goto oom;
1694 cow_user_page(new_page, old_page, address, vma);
1695 __SetPageUptodate(new_page);
1696
1697 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1698 goto oom_free_new;
1699
1700 /*
1701 * Re-check the pte - we dropped the lock
1702 */
1703 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1704 if (likely(pte_same(*page_table, orig_pte))) {
1705 if (old_page) {
1706 page_remove_rmap(old_page, vma);
1707 if (!PageAnon(old_page)) {
1708 dec_mm_counter(mm, file_rss);
1709 inc_mm_counter(mm, anon_rss);
1710 }
1711 } else
1712 inc_mm_counter(mm, anon_rss);
1713 flush_cache_page(vma, address, pte_pfn(orig_pte));
1714 entry = mk_pte(new_page, vma->vm_page_prot);
1715 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1716 /*
1717 * Clear the pte entry and flush it first, before updating the
1718 * pte with the new entry. This will avoid a race condition
1719 * seen in the presence of one thread doing SMC and another
1720 * thread doing COW.
1721 */
1722 ptep_clear_flush(vma, address, page_table);
1723 set_pte_at(mm, address, page_table, entry);
1724 update_mmu_cache(vma, address, entry);
1725 lru_cache_add_active(new_page);
1726 page_add_new_anon_rmap(new_page, vma, address);
1727
1728 /* Free the old page.. */
1729 new_page = old_page;
1730 ret |= VM_FAULT_WRITE;
1731 } else
1732 mem_cgroup_uncharge_page(new_page);
1733
1734 if (new_page)
1735 page_cache_release(new_page);
1736 if (old_page)
1737 page_cache_release(old_page);
1738 unlock:
1739 pte_unmap_unlock(page_table, ptl);
1740 if (dirty_page) {
1741 if (vma->vm_file)
1742 file_update_time(vma->vm_file);
1743
1744 /*
1745 * Yes, Virginia, this is actually required to prevent a race
1746 * with clear_page_dirty_for_io() from clearing the page dirty
1747 * bit after it clear all dirty ptes, but before a racing
1748 * do_wp_page installs a dirty pte.
1749 *
1750 * do_no_page is protected similarly.
1751 */
1752 wait_on_page_locked(dirty_page);
1753 set_page_dirty_balance(dirty_page, page_mkwrite);
1754 put_page(dirty_page);
1755 }
1756 return ret;
1757 oom_free_new:
1758 page_cache_release(new_page);
1759 oom:
1760 if (old_page)
1761 page_cache_release(old_page);
1762 return VM_FAULT_OOM;
1763
1764 unwritable_page:
1765 page_cache_release(old_page);
1766 return VM_FAULT_SIGBUS;
1767 }
1768
1769 /*
1770 * Helper functions for unmap_mapping_range().
1771 *
1772 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1773 *
1774 * We have to restart searching the prio_tree whenever we drop the lock,
1775 * since the iterator is only valid while the lock is held, and anyway
1776 * a later vma might be split and reinserted earlier while lock dropped.
1777 *
1778 * The list of nonlinear vmas could be handled more efficiently, using
1779 * a placeholder, but handle it in the same way until a need is shown.
1780 * It is important to search the prio_tree before nonlinear list: a vma
1781 * may become nonlinear and be shifted from prio_tree to nonlinear list
1782 * while the lock is dropped; but never shifted from list to prio_tree.
1783 *
1784 * In order to make forward progress despite restarting the search,
1785 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1786 * quickly skip it next time around. Since the prio_tree search only
1787 * shows us those vmas affected by unmapping the range in question, we
1788 * can't efficiently keep all vmas in step with mapping->truncate_count:
1789 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1790 * mapping->truncate_count and vma->vm_truncate_count are protected by
1791 * i_mmap_lock.
1792 *
1793 * In order to make forward progress despite repeatedly restarting some
1794 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1795 * and restart from that address when we reach that vma again. It might
1796 * have been split or merged, shrunk or extended, but never shifted: so
1797 * restart_addr remains valid so long as it remains in the vma's range.
1798 * unmap_mapping_range forces truncate_count to leap over page-aligned
1799 * values so we can save vma's restart_addr in its truncate_count field.
1800 */
1801 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1802
1803 static void reset_vma_truncate_counts(struct address_space *mapping)
1804 {
1805 struct vm_area_struct *vma;
1806 struct prio_tree_iter iter;
1807
1808 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1809 vma->vm_truncate_count = 0;
1810 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1811 vma->vm_truncate_count = 0;
1812 }
1813
1814 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1815 unsigned long start_addr, unsigned long end_addr,
1816 struct zap_details *details)
1817 {
1818 unsigned long restart_addr;
1819 int need_break;
1820
1821 /*
1822 * files that support invalidating or truncating portions of the
1823 * file from under mmaped areas must have their ->fault function
1824 * return a locked page (and set VM_FAULT_LOCKED in the return).
1825 * This provides synchronisation against concurrent unmapping here.
1826 */
1827
1828 again:
1829 restart_addr = vma->vm_truncate_count;
1830 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1831 start_addr = restart_addr;
1832 if (start_addr >= end_addr) {
1833 /* Top of vma has been split off since last time */
1834 vma->vm_truncate_count = details->truncate_count;
1835 return 0;
1836 }
1837 }
1838
1839 restart_addr = zap_page_range(vma, start_addr,
1840 end_addr - start_addr, details);
1841 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1842
1843 if (restart_addr >= end_addr) {
1844 /* We have now completed this vma: mark it so */
1845 vma->vm_truncate_count = details->truncate_count;
1846 if (!need_break)
1847 return 0;
1848 } else {
1849 /* Note restart_addr in vma's truncate_count field */
1850 vma->vm_truncate_count = restart_addr;
1851 if (!need_break)
1852 goto again;
1853 }
1854
1855 spin_unlock(details->i_mmap_lock);
1856 cond_resched();
1857 spin_lock(details->i_mmap_lock);
1858 return -EINTR;
1859 }
1860
1861 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1862 struct zap_details *details)
1863 {
1864 struct vm_area_struct *vma;
1865 struct prio_tree_iter iter;
1866 pgoff_t vba, vea, zba, zea;
1867
1868 restart:
1869 vma_prio_tree_foreach(vma, &iter, root,
1870 details->first_index, details->last_index) {
1871 /* Skip quickly over those we have already dealt with */
1872 if (vma->vm_truncate_count == details->truncate_count)
1873 continue;
1874
1875 vba = vma->vm_pgoff;
1876 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1877 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1878 zba = details->first_index;
1879 if (zba < vba)
1880 zba = vba;
1881 zea = details->last_index;
1882 if (zea > vea)
1883 zea = vea;
1884
1885 if (unmap_mapping_range_vma(vma,
1886 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1887 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1888 details) < 0)
1889 goto restart;
1890 }
1891 }
1892
1893 static inline void unmap_mapping_range_list(struct list_head *head,
1894 struct zap_details *details)
1895 {
1896 struct vm_area_struct *vma;
1897
1898 /*
1899 * In nonlinear VMAs there is no correspondence between virtual address
1900 * offset and file offset. So we must perform an exhaustive search
1901 * across *all* the pages in each nonlinear VMA, not just the pages
1902 * whose virtual address lies outside the file truncation point.
1903 */
1904 restart:
1905 list_for_each_entry(vma, head, shared.vm_set.list) {
1906 /* Skip quickly over those we have already dealt with */
1907 if (vma->vm_truncate_count == details->truncate_count)
1908 continue;
1909 details->nonlinear_vma = vma;
1910 if (unmap_mapping_range_vma(vma, vma->vm_start,
1911 vma->vm_end, details) < 0)
1912 goto restart;
1913 }
1914 }
1915
1916 /**
1917 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1918 * @mapping: the address space containing mmaps to be unmapped.
1919 * @holebegin: byte in first page to unmap, relative to the start of
1920 * the underlying file. This will be rounded down to a PAGE_SIZE
1921 * boundary. Note that this is different from vmtruncate(), which
1922 * must keep the partial page. In contrast, we must get rid of
1923 * partial pages.
1924 * @holelen: size of prospective hole in bytes. This will be rounded
1925 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
1926 * end of the file.
1927 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1928 * but 0 when invalidating pagecache, don't throw away private data.
1929 */
1930 void unmap_mapping_range(struct address_space *mapping,
1931 loff_t const holebegin, loff_t const holelen, int even_cows)
1932 {
1933 struct zap_details details;
1934 pgoff_t hba = holebegin >> PAGE_SHIFT;
1935 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1936
1937 /* Check for overflow. */
1938 if (sizeof(holelen) > sizeof(hlen)) {
1939 long long holeend =
1940 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1941 if (holeend & ~(long long)ULONG_MAX)
1942 hlen = ULONG_MAX - hba + 1;
1943 }
1944
1945 details.check_mapping = even_cows? NULL: mapping;
1946 details.nonlinear_vma = NULL;
1947 details.first_index = hba;
1948 details.last_index = hba + hlen - 1;
1949 if (details.last_index < details.first_index)
1950 details.last_index = ULONG_MAX;
1951 details.i_mmap_lock = &mapping->i_mmap_lock;
1952
1953 spin_lock(&mapping->i_mmap_lock);
1954
1955 /* Protect against endless unmapping loops */
1956 mapping->truncate_count++;
1957 if (unlikely(is_restart_addr(mapping->truncate_count))) {
1958 if (mapping->truncate_count == 0)
1959 reset_vma_truncate_counts(mapping);
1960 mapping->truncate_count++;
1961 }
1962 details.truncate_count = mapping->truncate_count;
1963
1964 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1965 unmap_mapping_range_tree(&mapping->i_mmap, &details);
1966 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1967 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1968 spin_unlock(&mapping->i_mmap_lock);
1969 }
1970 EXPORT_SYMBOL(unmap_mapping_range);
1971
1972 /**
1973 * vmtruncate - unmap mappings "freed" by truncate() syscall
1974 * @inode: inode of the file used
1975 * @offset: file offset to start truncating
1976 *
1977 * NOTE! We have to be ready to update the memory sharing
1978 * between the file and the memory map for a potential last
1979 * incomplete page. Ugly, but necessary.
1980 */
1981 int vmtruncate(struct inode * inode, loff_t offset)
1982 {
1983 if (inode->i_size < offset) {
1984 unsigned long limit;
1985
1986 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1987 if (limit != RLIM_INFINITY && offset > limit)
1988 goto out_sig;
1989 if (offset > inode->i_sb->s_maxbytes)
1990 goto out_big;
1991 i_size_write(inode, offset);
1992 } else {
1993 struct address_space *mapping = inode->i_mapping;
1994
1995 /*
1996 * truncation of in-use swapfiles is disallowed - it would
1997 * cause subsequent swapout to scribble on the now-freed
1998 * blocks.
1999 */
2000 if (IS_SWAPFILE(inode))
2001 return -ETXTBSY;
2002 i_size_write(inode, offset);
2003
2004 /*
2005 * unmap_mapping_range is called twice, first simply for
2006 * efficiency so that truncate_inode_pages does fewer
2007 * single-page unmaps. However after this first call, and
2008 * before truncate_inode_pages finishes, it is possible for
2009 * private pages to be COWed, which remain after
2010 * truncate_inode_pages finishes, hence the second
2011 * unmap_mapping_range call must be made for correctness.
2012 */
2013 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2014 truncate_inode_pages(mapping, offset);
2015 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2016 }
2017
2018 if (inode->i_op && inode->i_op->truncate)
2019 inode->i_op->truncate(inode);
2020 return 0;
2021
2022 out_sig:
2023 send_sig(SIGXFSZ, current, 0);
2024 out_big:
2025 return -EFBIG;
2026 }
2027 EXPORT_SYMBOL(vmtruncate);
2028
2029 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2030 {
2031 struct address_space *mapping = inode->i_mapping;
2032
2033 /*
2034 * If the underlying filesystem is not going to provide
2035 * a way to truncate a range of blocks (punch a hole) -
2036 * we should return failure right now.
2037 */
2038 if (!inode->i_op || !inode->i_op->truncate_range)
2039 return -ENOSYS;
2040
2041 mutex_lock(&inode->i_mutex);
2042 down_write(&inode->i_alloc_sem);
2043 unmap_mapping_range(mapping, offset, (end - offset), 1);
2044 truncate_inode_pages_range(mapping, offset, end);
2045 unmap_mapping_range(mapping, offset, (end - offset), 1);
2046 inode->i_op->truncate_range(inode, offset, end);
2047 up_write(&inode->i_alloc_sem);
2048 mutex_unlock(&inode->i_mutex);
2049
2050 return 0;
2051 }
2052
2053 /*
2054 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2055 * but allow concurrent faults), and pte mapped but not yet locked.
2056 * We return with mmap_sem still held, but pte unmapped and unlocked.
2057 */
2058 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2059 unsigned long address, pte_t *page_table, pmd_t *pmd,
2060 int write_access, pte_t orig_pte)
2061 {
2062 spinlock_t *ptl;
2063 struct page *page;
2064 swp_entry_t entry;
2065 pte_t pte;
2066 int ret = 0;
2067
2068 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2069 goto out;
2070
2071 entry = pte_to_swp_entry(orig_pte);
2072 if (is_migration_entry(entry)) {
2073 migration_entry_wait(mm, pmd, address);
2074 goto out;
2075 }
2076 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2077 page = lookup_swap_cache(entry);
2078 if (!page) {
2079 grab_swap_token(); /* Contend for token _before_ read-in */
2080 page = swapin_readahead(entry,
2081 GFP_HIGHUSER_MOVABLE, vma, address);
2082 if (!page) {
2083 /*
2084 * Back out if somebody else faulted in this pte
2085 * while we released the pte lock.
2086 */
2087 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2088 if (likely(pte_same(*page_table, orig_pte)))
2089 ret = VM_FAULT_OOM;
2090 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2091 goto unlock;
2092 }
2093
2094 /* Had to read the page from swap area: Major fault */
2095 ret = VM_FAULT_MAJOR;
2096 count_vm_event(PGMAJFAULT);
2097 }
2098
2099 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2100 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2101 ret = VM_FAULT_OOM;
2102 goto out;
2103 }
2104
2105 mark_page_accessed(page);
2106 lock_page(page);
2107 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2108
2109 /*
2110 * Back out if somebody else already faulted in this pte.
2111 */
2112 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2113 if (unlikely(!pte_same(*page_table, orig_pte)))
2114 goto out_nomap;
2115
2116 if (unlikely(!PageUptodate(page))) {
2117 ret = VM_FAULT_SIGBUS;
2118 goto out_nomap;
2119 }
2120
2121 /* The page isn't present yet, go ahead with the fault. */
2122
2123 inc_mm_counter(mm, anon_rss);
2124 pte = mk_pte(page, vma->vm_page_prot);
2125 if (write_access && can_share_swap_page(page)) {
2126 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2127 write_access = 0;
2128 }
2129
2130 flush_icache_page(vma, page);
2131 set_pte_at(mm, address, page_table, pte);
2132 page_add_anon_rmap(page, vma, address);
2133
2134 swap_free(entry);
2135 if (vm_swap_full())
2136 remove_exclusive_swap_page(page);
2137 unlock_page(page);
2138
2139 if (write_access) {
2140 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2141 if (ret & VM_FAULT_ERROR)
2142 ret &= VM_FAULT_ERROR;
2143 goto out;
2144 }
2145
2146 /* No need to invalidate - it was non-present before */
2147 update_mmu_cache(vma, address, pte);
2148 unlock:
2149 pte_unmap_unlock(page_table, ptl);
2150 out:
2151 return ret;
2152 out_nomap:
2153 mem_cgroup_uncharge_page(page);
2154 pte_unmap_unlock(page_table, ptl);
2155 unlock_page(page);
2156 page_cache_release(page);
2157 return ret;
2158 }
2159
2160 /*
2161 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2162 * but allow concurrent faults), and pte mapped but not yet locked.
2163 * We return with mmap_sem still held, but pte unmapped and unlocked.
2164 */
2165 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2166 unsigned long address, pte_t *page_table, pmd_t *pmd,
2167 int write_access)
2168 {
2169 struct page *page;
2170 spinlock_t *ptl;
2171 pte_t entry;
2172
2173 /* Allocate our own private page. */
2174 pte_unmap(page_table);
2175
2176 if (unlikely(anon_vma_prepare(vma)))
2177 goto oom;
2178 page = alloc_zeroed_user_highpage_movable(vma, address);
2179 if (!page)
2180 goto oom;
2181 __SetPageUptodate(page);
2182
2183 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2184 goto oom_free_page;
2185
2186 entry = mk_pte(page, vma->vm_page_prot);
2187 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2188
2189 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2190 if (!pte_none(*page_table))
2191 goto release;
2192 inc_mm_counter(mm, anon_rss);
2193 lru_cache_add_active(page);
2194 page_add_new_anon_rmap(page, vma, address);
2195 set_pte_at(mm, address, page_table, entry);
2196
2197 /* No need to invalidate - it was non-present before */
2198 update_mmu_cache(vma, address, entry);
2199 unlock:
2200 pte_unmap_unlock(page_table, ptl);
2201 return 0;
2202 release:
2203 mem_cgroup_uncharge_page(page);
2204 page_cache_release(page);
2205 goto unlock;
2206 oom_free_page:
2207 page_cache_release(page);
2208 oom:
2209 return VM_FAULT_OOM;
2210 }
2211
2212 /*
2213 * __do_fault() tries to create a new page mapping. It aggressively
2214 * tries to share with existing pages, but makes a separate copy if
2215 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2216 * the next page fault.
2217 *
2218 * As this is called only for pages that do not currently exist, we
2219 * do not need to flush old virtual caches or the TLB.
2220 *
2221 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2222 * but allow concurrent faults), and pte neither mapped nor locked.
2223 * We return with mmap_sem still held, but pte unmapped and unlocked.
2224 */
2225 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2226 unsigned long address, pmd_t *pmd,
2227 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2228 {
2229 pte_t *page_table;
2230 spinlock_t *ptl;
2231 struct page *page;
2232 pte_t entry;
2233 int anon = 0;
2234 struct page *dirty_page = NULL;
2235 struct vm_fault vmf;
2236 int ret;
2237 int page_mkwrite = 0;
2238
2239 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2240 vmf.pgoff = pgoff;
2241 vmf.flags = flags;
2242 vmf.page = NULL;
2243
2244 BUG_ON(vma->vm_flags & VM_PFNMAP);
2245
2246 ret = vma->vm_ops->fault(vma, &vmf);
2247 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2248 return ret;
2249
2250 /*
2251 * For consistency in subsequent calls, make the faulted page always
2252 * locked.
2253 */
2254 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2255 lock_page(vmf.page);
2256 else
2257 VM_BUG_ON(!PageLocked(vmf.page));
2258
2259 /*
2260 * Should we do an early C-O-W break?
2261 */
2262 page = vmf.page;
2263 if (flags & FAULT_FLAG_WRITE) {
2264 if (!(vma->vm_flags & VM_SHARED)) {
2265 anon = 1;
2266 if (unlikely(anon_vma_prepare(vma))) {
2267 ret = VM_FAULT_OOM;
2268 goto out;
2269 }
2270 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2271 vma, address);
2272 if (!page) {
2273 ret = VM_FAULT_OOM;
2274 goto out;
2275 }
2276 copy_user_highpage(page, vmf.page, address, vma);
2277 __SetPageUptodate(page);
2278 } else {
2279 /*
2280 * If the page will be shareable, see if the backing
2281 * address space wants to know that the page is about
2282 * to become writable
2283 */
2284 if (vma->vm_ops->page_mkwrite) {
2285 unlock_page(page);
2286 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2287 ret = VM_FAULT_SIGBUS;
2288 anon = 1; /* no anon but release vmf.page */
2289 goto out_unlocked;
2290 }
2291 lock_page(page);
2292 /*
2293 * XXX: this is not quite right (racy vs
2294 * invalidate) to unlock and relock the page
2295 * like this, however a better fix requires
2296 * reworking page_mkwrite locking API, which
2297 * is better done later.
2298 */
2299 if (!page->mapping) {
2300 ret = 0;
2301 anon = 1; /* no anon but release vmf.page */
2302 goto out;
2303 }
2304 page_mkwrite = 1;
2305 }
2306 }
2307
2308 }
2309
2310 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2311 ret = VM_FAULT_OOM;
2312 goto out;
2313 }
2314
2315 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2316
2317 /*
2318 * This silly early PAGE_DIRTY setting removes a race
2319 * due to the bad i386 page protection. But it's valid
2320 * for other architectures too.
2321 *
2322 * Note that if write_access is true, we either now have
2323 * an exclusive copy of the page, or this is a shared mapping,
2324 * so we can make it writable and dirty to avoid having to
2325 * handle that later.
2326 */
2327 /* Only go through if we didn't race with anybody else... */
2328 if (likely(pte_same(*page_table, orig_pte))) {
2329 flush_icache_page(vma, page);
2330 entry = mk_pte(page, vma->vm_page_prot);
2331 if (flags & FAULT_FLAG_WRITE)
2332 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2333 set_pte_at(mm, address, page_table, entry);
2334 if (anon) {
2335 inc_mm_counter(mm, anon_rss);
2336 lru_cache_add_active(page);
2337 page_add_new_anon_rmap(page, vma, address);
2338 } else {
2339 inc_mm_counter(mm, file_rss);
2340 page_add_file_rmap(page);
2341 if (flags & FAULT_FLAG_WRITE) {
2342 dirty_page = page;
2343 get_page(dirty_page);
2344 }
2345 }
2346
2347 /* no need to invalidate: a not-present page won't be cached */
2348 update_mmu_cache(vma, address, entry);
2349 } else {
2350 mem_cgroup_uncharge_page(page);
2351 if (anon)
2352 page_cache_release(page);
2353 else
2354 anon = 1; /* no anon but release faulted_page */
2355 }
2356
2357 pte_unmap_unlock(page_table, ptl);
2358
2359 out:
2360 unlock_page(vmf.page);
2361 out_unlocked:
2362 if (anon)
2363 page_cache_release(vmf.page);
2364 else if (dirty_page) {
2365 if (vma->vm_file)
2366 file_update_time(vma->vm_file);
2367
2368 set_page_dirty_balance(dirty_page, page_mkwrite);
2369 put_page(dirty_page);
2370 }
2371
2372 return ret;
2373 }
2374
2375 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2376 unsigned long address, pte_t *page_table, pmd_t *pmd,
2377 int write_access, pte_t orig_pte)
2378 {
2379 pgoff_t pgoff = (((address & PAGE_MASK)
2380 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2381 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2382
2383 pte_unmap(page_table);
2384 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2385 }
2386
2387
2388 /*
2389 * do_no_pfn() tries to create a new page mapping for a page without
2390 * a struct_page backing it
2391 *
2392 * As this is called only for pages that do not currently exist, we
2393 * do not need to flush old virtual caches or the TLB.
2394 *
2395 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2396 * but allow concurrent faults), and pte mapped but not yet locked.
2397 * We return with mmap_sem still held, but pte unmapped and unlocked.
2398 *
2399 * It is expected that the ->nopfn handler always returns the same pfn
2400 * for a given virtual mapping.
2401 *
2402 * Mark this `noinline' to prevent it from bloating the main pagefault code.
2403 */
2404 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2405 unsigned long address, pte_t *page_table, pmd_t *pmd,
2406 int write_access)
2407 {
2408 spinlock_t *ptl;
2409 pte_t entry;
2410 unsigned long pfn;
2411
2412 pte_unmap(page_table);
2413 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2414 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2415
2416 pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2417
2418 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2419
2420 if (unlikely(pfn == NOPFN_OOM))
2421 return VM_FAULT_OOM;
2422 else if (unlikely(pfn == NOPFN_SIGBUS))
2423 return VM_FAULT_SIGBUS;
2424 else if (unlikely(pfn == NOPFN_REFAULT))
2425 return 0;
2426
2427 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2428
2429 /* Only go through if we didn't race with anybody else... */
2430 if (pte_none(*page_table)) {
2431 entry = pfn_pte(pfn, vma->vm_page_prot);
2432 if (write_access)
2433 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2434 set_pte_at(mm, address, page_table, entry);
2435 }
2436 pte_unmap_unlock(page_table, ptl);
2437 return 0;
2438 }
2439
2440 /*
2441 * Fault of a previously existing named mapping. Repopulate the pte
2442 * from the encoded file_pte if possible. This enables swappable
2443 * nonlinear vmas.
2444 *
2445 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2446 * but allow concurrent faults), and pte mapped but not yet locked.
2447 * We return with mmap_sem still held, but pte unmapped and unlocked.
2448 */
2449 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2450 unsigned long address, pte_t *page_table, pmd_t *pmd,
2451 int write_access, pte_t orig_pte)
2452 {
2453 unsigned int flags = FAULT_FLAG_NONLINEAR |
2454 (write_access ? FAULT_FLAG_WRITE : 0);
2455 pgoff_t pgoff;
2456
2457 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2458 return 0;
2459
2460 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2461 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2462 /*
2463 * Page table corrupted: show pte and kill process.
2464 */
2465 print_bad_pte(vma, orig_pte, address);
2466 return VM_FAULT_OOM;
2467 }
2468
2469 pgoff = pte_to_pgoff(orig_pte);
2470 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2471 }
2472
2473 /*
2474 * These routines also need to handle stuff like marking pages dirty
2475 * and/or accessed for architectures that don't do it in hardware (most
2476 * RISC architectures). The early dirtying is also good on the i386.
2477 *
2478 * There is also a hook called "update_mmu_cache()" that architectures
2479 * with external mmu caches can use to update those (ie the Sparc or
2480 * PowerPC hashed page tables that act as extended TLBs).
2481 *
2482 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2483 * but allow concurrent faults), and pte mapped but not yet locked.
2484 * We return with mmap_sem still held, but pte unmapped and unlocked.
2485 */
2486 static inline int handle_pte_fault(struct mm_struct *mm,
2487 struct vm_area_struct *vma, unsigned long address,
2488 pte_t *pte, pmd_t *pmd, int write_access)
2489 {
2490 pte_t entry;
2491 spinlock_t *ptl;
2492
2493 entry = *pte;
2494 if (!pte_present(entry)) {
2495 if (pte_none(entry)) {
2496 if (vma->vm_ops) {
2497 if (likely(vma->vm_ops->fault))
2498 return do_linear_fault(mm, vma, address,
2499 pte, pmd, write_access, entry);
2500 if (unlikely(vma->vm_ops->nopfn))
2501 return do_no_pfn(mm, vma, address, pte,
2502 pmd, write_access);
2503 }
2504 return do_anonymous_page(mm, vma, address,
2505 pte, pmd, write_access);
2506 }
2507 if (pte_file(entry))
2508 return do_nonlinear_fault(mm, vma, address,
2509 pte, pmd, write_access, entry);
2510 return do_swap_page(mm, vma, address,
2511 pte, pmd, write_access, entry);
2512 }
2513
2514 ptl = pte_lockptr(mm, pmd);
2515 spin_lock(ptl);
2516 if (unlikely(!pte_same(*pte, entry)))
2517 goto unlock;
2518 if (write_access) {
2519 if (!pte_write(entry))
2520 return do_wp_page(mm, vma, address,
2521 pte, pmd, ptl, entry);
2522 entry = pte_mkdirty(entry);
2523 }
2524 entry = pte_mkyoung(entry);
2525 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2526 update_mmu_cache(vma, address, entry);
2527 } else {
2528 /*
2529 * This is needed only for protection faults but the arch code
2530 * is not yet telling us if this is a protection fault or not.
2531 * This still avoids useless tlb flushes for .text page faults
2532 * with threads.
2533 */
2534 if (write_access)
2535 flush_tlb_page(vma, address);
2536 }
2537 unlock:
2538 pte_unmap_unlock(pte, ptl);
2539 return 0;
2540 }
2541
2542 /*
2543 * By the time we get here, we already hold the mm semaphore
2544 */
2545 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2546 unsigned long address, int write_access)
2547 {
2548 pgd_t *pgd;
2549 pud_t *pud;
2550 pmd_t *pmd;
2551 pte_t *pte;
2552
2553 __set_current_state(TASK_RUNNING);
2554
2555 count_vm_event(PGFAULT);
2556
2557 if (unlikely(is_vm_hugetlb_page(vma)))
2558 return hugetlb_fault(mm, vma, address, write_access);
2559
2560 pgd = pgd_offset(mm, address);
2561 pud = pud_alloc(mm, pgd, address);
2562 if (!pud)
2563 return VM_FAULT_OOM;
2564 pmd = pmd_alloc(mm, pud, address);
2565 if (!pmd)
2566 return VM_FAULT_OOM;
2567 pte = pte_alloc_map(mm, pmd, address);
2568 if (!pte)
2569 return VM_FAULT_OOM;
2570
2571 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2572 }
2573
2574 #ifndef __PAGETABLE_PUD_FOLDED
2575 /*
2576 * Allocate page upper directory.
2577 * We've already handled the fast-path in-line.
2578 */
2579 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2580 {
2581 pud_t *new = pud_alloc_one(mm, address);
2582 if (!new)
2583 return -ENOMEM;
2584
2585 spin_lock(&mm->page_table_lock);
2586 if (pgd_present(*pgd)) /* Another has populated it */
2587 pud_free(mm, new);
2588 else
2589 pgd_populate(mm, pgd, new);
2590 spin_unlock(&mm->page_table_lock);
2591 return 0;
2592 }
2593 #endif /* __PAGETABLE_PUD_FOLDED */
2594
2595 #ifndef __PAGETABLE_PMD_FOLDED
2596 /*
2597 * Allocate page middle directory.
2598 * We've already handled the fast-path in-line.
2599 */
2600 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2601 {
2602 pmd_t *new = pmd_alloc_one(mm, address);
2603 if (!new)
2604 return -ENOMEM;
2605
2606 spin_lock(&mm->page_table_lock);
2607 #ifndef __ARCH_HAS_4LEVEL_HACK
2608 if (pud_present(*pud)) /* Another has populated it */
2609 pmd_free(mm, new);
2610 else
2611 pud_populate(mm, pud, new);
2612 #else
2613 if (pgd_present(*pud)) /* Another has populated it */
2614 pmd_free(mm, new);
2615 else
2616 pgd_populate(mm, pud, new);
2617 #endif /* __ARCH_HAS_4LEVEL_HACK */
2618 spin_unlock(&mm->page_table_lock);
2619 return 0;
2620 }
2621 #endif /* __PAGETABLE_PMD_FOLDED */
2622
2623 int make_pages_present(unsigned long addr, unsigned long end)
2624 {
2625 int ret, len, write;
2626 struct vm_area_struct * vma;
2627
2628 vma = find_vma(current->mm, addr);
2629 if (!vma)
2630 return -1;
2631 write = (vma->vm_flags & VM_WRITE) != 0;
2632 BUG_ON(addr >= end);
2633 BUG_ON(end > vma->vm_end);
2634 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2635 ret = get_user_pages(current, current->mm, addr,
2636 len, write, 0, NULL, NULL);
2637 if (ret < 0)
2638 return ret;
2639 return ret == len ? 0 : -1;
2640 }
2641
2642 #if !defined(__HAVE_ARCH_GATE_AREA)
2643
2644 #if defined(AT_SYSINFO_EHDR)
2645 static struct vm_area_struct gate_vma;
2646
2647 static int __init gate_vma_init(void)
2648 {
2649 gate_vma.vm_mm = NULL;
2650 gate_vma.vm_start = FIXADDR_USER_START;
2651 gate_vma.vm_end = FIXADDR_USER_END;
2652 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2653 gate_vma.vm_page_prot = __P101;
2654 /*
2655 * Make sure the vDSO gets into every core dump.
2656 * Dumping its contents makes post-mortem fully interpretable later
2657 * without matching up the same kernel and hardware config to see
2658 * what PC values meant.
2659 */
2660 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2661 return 0;
2662 }
2663 __initcall(gate_vma_init);
2664 #endif
2665
2666 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2667 {
2668 #ifdef AT_SYSINFO_EHDR
2669 return &gate_vma;
2670 #else
2671 return NULL;
2672 #endif
2673 }
2674
2675 int in_gate_area_no_task(unsigned long addr)
2676 {
2677 #ifdef AT_SYSINFO_EHDR
2678 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2679 return 1;
2680 #endif
2681 return 0;
2682 }
2683
2684 #endif /* __HAVE_ARCH_GATE_AREA */
2685
2686 /*
2687 * Access another process' address space.
2688 * Source/target buffer must be kernel space,
2689 * Do not walk the page table directly, use get_user_pages
2690 */
2691 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2692 {
2693 struct mm_struct *mm;
2694 struct vm_area_struct *vma;
2695 struct page *page;
2696 void *old_buf = buf;
2697
2698 mm = get_task_mm(tsk);
2699 if (!mm)
2700 return 0;
2701
2702 down_read(&mm->mmap_sem);
2703 /* ignore errors, just check how much was successfully transferred */
2704 while (len) {
2705 int bytes, ret, offset;
2706 void *maddr;
2707
2708 ret = get_user_pages(tsk, mm, addr, 1,
2709 write, 1, &page, &vma);
2710 if (ret <= 0)
2711 break;
2712
2713 bytes = len;
2714 offset = addr & (PAGE_SIZE-1);
2715 if (bytes > PAGE_SIZE-offset)
2716 bytes = PAGE_SIZE-offset;
2717
2718 maddr = kmap(page);
2719 if (write) {
2720 copy_to_user_page(vma, page, addr,
2721 maddr + offset, buf, bytes);
2722 set_page_dirty_lock(page);
2723 } else {
2724 copy_from_user_page(vma, page, addr,
2725 buf, maddr + offset, bytes);
2726 }
2727 kunmap(page);
2728 page_cache_release(page);
2729 len -= bytes;
2730 buf += bytes;
2731 addr += bytes;
2732 }
2733 up_read(&mm->mmap_sem);
2734 mmput(mm);
2735
2736 return buf - old_buf;
2737 }
2738
2739 /*
2740 * Print the name of a VMA.
2741 */
2742 void print_vma_addr(char *prefix, unsigned long ip)
2743 {
2744 struct mm_struct *mm = current->mm;
2745 struct vm_area_struct *vma;
2746
2747 /*
2748 * Do not print if we are in atomic
2749 * contexts (in exception stacks, etc.):
2750 */
2751 if (preempt_count())
2752 return;
2753
2754 down_read(&mm->mmap_sem);
2755 vma = find_vma(mm, ip);
2756 if (vma && vma->vm_file) {
2757 struct file *f = vma->vm_file;
2758 char *buf = (char *)__get_free_page(GFP_KERNEL);
2759 if (buf) {
2760 char *p, *s;
2761
2762 p = d_path(&f->f_path, buf, PAGE_SIZE);
2763 if (IS_ERR(p))
2764 p = "?";
2765 s = strrchr(p, '/');
2766 if (s)
2767 p = s+1;
2768 printk("%s%s[%lx+%lx]", prefix, p,
2769 vma->vm_start,
2770 vma->vm_end - vma->vm_start);
2771 free_page((unsigned long)buf);
2772 }
2773 }
2774 up_read(&current->mm->mmap_sem);
2775 }
This page took 0.086053 seconds and 6 git commands to generate.