Merge branch 'linus' into timers/hpet
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 1;
98 #else
99 2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104 randomize_va_space = 0;
105 return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124 pud_ERROR(*pud);
125 pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132 }
133
134 /*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
149 {
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
153
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
162
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
170 }
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
182 {
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
186
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
195
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
203 }
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
210 }
211
212 /*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
220 {
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
250
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
279 {
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
307 vma = next;
308 }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
316
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
337 }
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
350 smp_wmb(); /* See comment in __pte_alloc */
351
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
356 }
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
380 {
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
387 }
388
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393
394 /*
395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
396 *
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
400 *
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
409 *
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
414 *
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
423 *
424 *
425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
435 */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
443 {
444 unsigned long pfn;
445
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
450 }
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
453 }
454
455 /* !HAVE_PTE_SPECIAL case follows: */
456
457 pfn = pte_pfn(pte);
458
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
471 }
472 }
473
474 VM_BUG_ON(!pfn_valid(pfn));
475
476 /*
477 * NOTE! We still have PageReserved() pages in the page tables.
478 *
479 * eg. VDSO mappings can cause them to exist.
480 */
481 out:
482 return pfn_to_page(pfn);
483 }
484
485 /*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
489 */
490
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 unsigned long addr, int *rss)
495 {
496 unsigned long vm_flags = vma->vm_flags;
497 pte_t pte = *src_pte;
498 struct page *page;
499
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
503 swp_entry_t entry = pte_to_swp_entry(pte);
504
505 swap_duplicate(entry);
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
512 spin_unlock(&mmlist_lock);
513 }
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
516 /*
517 * COW mappings require pages in both parent
518 * and child to be set to read.
519 */
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
523 }
524 }
525 goto out_set_pte;
526 }
527
528 /*
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
531 */
532 if (is_cow_mapping(vm_flags)) {
533 ptep_set_wrprotect(src_mm, addr, src_pte);
534 pte = pte_wrprotect(pte);
535 }
536
537 /*
538 * If it's a shared mapping, mark it clean in
539 * the child
540 */
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
544
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
548 page_dup_rmap(page, vma, addr);
549 rss[!!PageAnon(page)]++;
550 }
551
552 out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
559 {
560 pte_t *src_pte, *dst_pte;
561 spinlock_t *src_ptl, *dst_ptl;
562 int progress = 0;
563 int rss[2];
564
565 again:
566 rss[1] = rss[0] = 0;
567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
571 src_ptl = pte_lockptr(src_mm, src_pmd);
572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 arch_enter_lazy_mmu_mode();
574
575 do {
576 /*
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
579 */
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 break;
585 }
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
589 }
590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593
594 arch_leave_lazy_mmu_mode();
595 spin_unlock(src_ptl);
596 pte_unmap_nested(src_pte - 1);
597 add_mm_rss(dst_mm, rss[0], rss[1]);
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
600 if (addr != end)
601 goto again;
602 return 0;
603 }
604
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608 {
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
611
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
625 }
626
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
630 {
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
633
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
647 }
648
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
651 {
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
656 int ret;
657
658 /*
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
663 */
664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 if (!vma->anon_vma)
666 return 0;
667 }
668
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
672 /*
673 * We need to invalidate the secondary MMU mappings only when
674 * there could be a permission downgrade on the ptes of the
675 * parent mm. And a permission downgrade will only happen if
676 * is_cow_mapping() returns true.
677 */
678 if (is_cow_mapping(vma->vm_flags))
679 mmu_notifier_invalidate_range_start(src_mm, addr, end);
680
681 ret = 0;
682 dst_pgd = pgd_offset(dst_mm, addr);
683 src_pgd = pgd_offset(src_mm, addr);
684 do {
685 next = pgd_addr_end(addr, end);
686 if (pgd_none_or_clear_bad(src_pgd))
687 continue;
688 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 vma, addr, next))) {
690 ret = -ENOMEM;
691 break;
692 }
693 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
694
695 if (is_cow_mapping(vma->vm_flags))
696 mmu_notifier_invalidate_range_end(src_mm,
697 vma->vm_start, end);
698 return ret;
699 }
700
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702 struct vm_area_struct *vma, pmd_t *pmd,
703 unsigned long addr, unsigned long end,
704 long *zap_work, struct zap_details *details)
705 {
706 struct mm_struct *mm = tlb->mm;
707 pte_t *pte;
708 spinlock_t *ptl;
709 int file_rss = 0;
710 int anon_rss = 0;
711
712 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713 arch_enter_lazy_mmu_mode();
714 do {
715 pte_t ptent = *pte;
716 if (pte_none(ptent)) {
717 (*zap_work)--;
718 continue;
719 }
720
721 (*zap_work) -= PAGE_SIZE;
722
723 if (pte_present(ptent)) {
724 struct page *page;
725
726 page = vm_normal_page(vma, addr, ptent);
727 if (unlikely(details) && page) {
728 /*
729 * unmap_shared_mapping_pages() wants to
730 * invalidate cache without truncating:
731 * unmap shared but keep private pages.
732 */
733 if (details->check_mapping &&
734 details->check_mapping != page->mapping)
735 continue;
736 /*
737 * Each page->index must be checked when
738 * invalidating or truncating nonlinear.
739 */
740 if (details->nonlinear_vma &&
741 (page->index < details->first_index ||
742 page->index > details->last_index))
743 continue;
744 }
745 ptent = ptep_get_and_clear_full(mm, addr, pte,
746 tlb->fullmm);
747 tlb_remove_tlb_entry(tlb, pte, addr);
748 if (unlikely(!page))
749 continue;
750 if (unlikely(details) && details->nonlinear_vma
751 && linear_page_index(details->nonlinear_vma,
752 addr) != page->index)
753 set_pte_at(mm, addr, pte,
754 pgoff_to_pte(page->index));
755 if (PageAnon(page))
756 anon_rss--;
757 else {
758 if (pte_dirty(ptent))
759 set_page_dirty(page);
760 if (pte_young(ptent))
761 SetPageReferenced(page);
762 file_rss--;
763 }
764 page_remove_rmap(page, vma);
765 tlb_remove_page(tlb, page);
766 continue;
767 }
768 /*
769 * If details->check_mapping, we leave swap entries;
770 * if details->nonlinear_vma, we leave file entries.
771 */
772 if (unlikely(details))
773 continue;
774 if (!pte_file(ptent))
775 free_swap_and_cache(pte_to_swp_entry(ptent));
776 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778
779 add_mm_rss(mm, file_rss, anon_rss);
780 arch_leave_lazy_mmu_mode();
781 pte_unmap_unlock(pte - 1, ptl);
782
783 return addr;
784 }
785
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787 struct vm_area_struct *vma, pud_t *pud,
788 unsigned long addr, unsigned long end,
789 long *zap_work, struct zap_details *details)
790 {
791 pmd_t *pmd;
792 unsigned long next;
793
794 pmd = pmd_offset(pud, addr);
795 do {
796 next = pmd_addr_end(addr, end);
797 if (pmd_none_or_clear_bad(pmd)) {
798 (*zap_work)--;
799 continue;
800 }
801 next = zap_pte_range(tlb, vma, pmd, addr, next,
802 zap_work, details);
803 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
804
805 return addr;
806 }
807
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809 struct vm_area_struct *vma, pgd_t *pgd,
810 unsigned long addr, unsigned long end,
811 long *zap_work, struct zap_details *details)
812 {
813 pud_t *pud;
814 unsigned long next;
815
816 pud = pud_offset(pgd, addr);
817 do {
818 next = pud_addr_end(addr, end);
819 if (pud_none_or_clear_bad(pud)) {
820 (*zap_work)--;
821 continue;
822 }
823 next = zap_pmd_range(tlb, vma, pud, addr, next,
824 zap_work, details);
825 } while (pud++, addr = next, (addr != end && *zap_work > 0));
826
827 return addr;
828 }
829
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 struct vm_area_struct *vma,
832 unsigned long addr, unsigned long end,
833 long *zap_work, struct zap_details *details)
834 {
835 pgd_t *pgd;
836 unsigned long next;
837
838 if (details && !details->check_mapping && !details->nonlinear_vma)
839 details = NULL;
840
841 BUG_ON(addr >= end);
842 tlb_start_vma(tlb, vma);
843 pgd = pgd_offset(vma->vm_mm, addr);
844 do {
845 next = pgd_addr_end(addr, end);
846 if (pgd_none_or_clear_bad(pgd)) {
847 (*zap_work)--;
848 continue;
849 }
850 next = zap_pud_range(tlb, vma, pgd, addr, next,
851 zap_work, details);
852 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
853 tlb_end_vma(tlb, vma);
854
855 return addr;
856 }
857
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
863 #endif
864
865 /**
866 * unmap_vmas - unmap a range of memory covered by a list of vma's
867 * @tlbp: address of the caller's struct mmu_gather
868 * @vma: the starting vma
869 * @start_addr: virtual address at which to start unmapping
870 * @end_addr: virtual address at which to end unmapping
871 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872 * @details: details of nonlinear truncation or shared cache invalidation
873 *
874 * Returns the end address of the unmapping (restart addr if interrupted).
875 *
876 * Unmap all pages in the vma list.
877 *
878 * We aim to not hold locks for too long (for scheduling latency reasons).
879 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
880 * return the ending mmu_gather to the caller.
881 *
882 * Only addresses between `start' and `end' will be unmapped.
883 *
884 * The VMA list must be sorted in ascending virtual address order.
885 *
886 * unmap_vmas() assumes that the caller will flush the whole unmapped address
887 * range after unmap_vmas() returns. So the only responsibility here is to
888 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889 * drops the lock and schedules.
890 */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892 struct vm_area_struct *vma, unsigned long start_addr,
893 unsigned long end_addr, unsigned long *nr_accounted,
894 struct zap_details *details)
895 {
896 long zap_work = ZAP_BLOCK_SIZE;
897 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
898 int tlb_start_valid = 0;
899 unsigned long start = start_addr;
900 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901 int fullmm = (*tlbp)->fullmm;
902 struct mm_struct *mm = vma->vm_mm;
903
904 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906 unsigned long end;
907
908 start = max(vma->vm_start, start_addr);
909 if (start >= vma->vm_end)
910 continue;
911 end = min(vma->vm_end, end_addr);
912 if (end <= vma->vm_start)
913 continue;
914
915 if (vma->vm_flags & VM_ACCOUNT)
916 *nr_accounted += (end - start) >> PAGE_SHIFT;
917
918 while (start != end) {
919 if (!tlb_start_valid) {
920 tlb_start = start;
921 tlb_start_valid = 1;
922 }
923
924 if (unlikely(is_vm_hugetlb_page(vma))) {
925 /*
926 * It is undesirable to test vma->vm_file as it
927 * should be non-null for valid hugetlb area.
928 * However, vm_file will be NULL in the error
929 * cleanup path of do_mmap_pgoff. When
930 * hugetlbfs ->mmap method fails,
931 * do_mmap_pgoff() nullifies vma->vm_file
932 * before calling this function to clean up.
933 * Since no pte has actually been setup, it is
934 * safe to do nothing in this case.
935 */
936 if (vma->vm_file) {
937 unmap_hugepage_range(vma, start, end, NULL);
938 zap_work -= (end - start) /
939 pages_per_huge_page(hstate_vma(vma));
940 }
941
942 start = end;
943 } else
944 start = unmap_page_range(*tlbp, vma,
945 start, end, &zap_work, details);
946
947 if (zap_work > 0) {
948 BUG_ON(start != end);
949 break;
950 }
951
952 tlb_finish_mmu(*tlbp, tlb_start, start);
953
954 if (need_resched() ||
955 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956 if (i_mmap_lock) {
957 *tlbp = NULL;
958 goto out;
959 }
960 cond_resched();
961 }
962
963 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964 tlb_start_valid = 0;
965 zap_work = ZAP_BLOCK_SIZE;
966 }
967 }
968 out:
969 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970 return start; /* which is now the end (or restart) address */
971 }
972
973 /**
974 * zap_page_range - remove user pages in a given range
975 * @vma: vm_area_struct holding the applicable pages
976 * @address: starting address of pages to zap
977 * @size: number of bytes to zap
978 * @details: details of nonlinear truncation or shared cache invalidation
979 */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981 unsigned long size, struct zap_details *details)
982 {
983 struct mm_struct *mm = vma->vm_mm;
984 struct mmu_gather *tlb;
985 unsigned long end = address + size;
986 unsigned long nr_accounted = 0;
987
988 lru_add_drain();
989 tlb = tlb_gather_mmu(mm, 0);
990 update_hiwater_rss(mm);
991 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 if (tlb)
993 tlb_finish_mmu(tlb, address, end);
994 return end;
995 }
996
997 /*
998 * Do a quick page-table lookup for a single page.
999 */
1000 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1001 unsigned int flags)
1002 {
1003 pgd_t *pgd;
1004 pud_t *pud;
1005 pmd_t *pmd;
1006 pte_t *ptep, pte;
1007 spinlock_t *ptl;
1008 struct page *page;
1009 struct mm_struct *mm = vma->vm_mm;
1010
1011 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1012 if (!IS_ERR(page)) {
1013 BUG_ON(flags & FOLL_GET);
1014 goto out;
1015 }
1016
1017 page = NULL;
1018 pgd = pgd_offset(mm, address);
1019 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1020 goto no_page_table;
1021
1022 pud = pud_offset(pgd, address);
1023 if (pud_none(*pud))
1024 goto no_page_table;
1025 if (pud_huge(*pud)) {
1026 BUG_ON(flags & FOLL_GET);
1027 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1028 goto out;
1029 }
1030 if (unlikely(pud_bad(*pud)))
1031 goto no_page_table;
1032
1033 pmd = pmd_offset(pud, address);
1034 if (pmd_none(*pmd))
1035 goto no_page_table;
1036 if (pmd_huge(*pmd)) {
1037 BUG_ON(flags & FOLL_GET);
1038 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1039 goto out;
1040 }
1041 if (unlikely(pmd_bad(*pmd)))
1042 goto no_page_table;
1043
1044 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1045
1046 pte = *ptep;
1047 if (!pte_present(pte))
1048 goto no_page;
1049 if ((flags & FOLL_WRITE) && !pte_write(pte))
1050 goto unlock;
1051 page = vm_normal_page(vma, address, pte);
1052 if (unlikely(!page))
1053 goto bad_page;
1054
1055 if (flags & FOLL_GET)
1056 get_page(page);
1057 if (flags & FOLL_TOUCH) {
1058 if ((flags & FOLL_WRITE) &&
1059 !pte_dirty(pte) && !PageDirty(page))
1060 set_page_dirty(page);
1061 mark_page_accessed(page);
1062 }
1063 unlock:
1064 pte_unmap_unlock(ptep, ptl);
1065 out:
1066 return page;
1067
1068 bad_page:
1069 pte_unmap_unlock(ptep, ptl);
1070 return ERR_PTR(-EFAULT);
1071
1072 no_page:
1073 pte_unmap_unlock(ptep, ptl);
1074 if (!pte_none(pte))
1075 return page;
1076 /* Fall through to ZERO_PAGE handling */
1077 no_page_table:
1078 /*
1079 * When core dumping an enormous anonymous area that nobody
1080 * has touched so far, we don't want to allocate page tables.
1081 */
1082 if (flags & FOLL_ANON) {
1083 page = ZERO_PAGE(0);
1084 if (flags & FOLL_GET)
1085 get_page(page);
1086 BUG_ON(flags & FOLL_WRITE);
1087 }
1088 return page;
1089 }
1090
1091 /* Can we do the FOLL_ANON optimization? */
1092 static inline int use_zero_page(struct vm_area_struct *vma)
1093 {
1094 /*
1095 * We don't want to optimize FOLL_ANON for make_pages_present()
1096 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1097 * we want to get the page from the page tables to make sure
1098 * that we serialize and update with any other user of that
1099 * mapping.
1100 */
1101 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1102 return 0;
1103 /*
1104 * And if we have a fault routine, it's not an anonymous region.
1105 */
1106 return !vma->vm_ops || !vma->vm_ops->fault;
1107 }
1108
1109 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1110 unsigned long start, int len, int write, int force,
1111 struct page **pages, struct vm_area_struct **vmas)
1112 {
1113 int i;
1114 unsigned int vm_flags;
1115
1116 if (len <= 0)
1117 return 0;
1118 /*
1119 * Require read or write permissions.
1120 * If 'force' is set, we only require the "MAY" flags.
1121 */
1122 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1123 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1124 i = 0;
1125
1126 do {
1127 struct vm_area_struct *vma;
1128 unsigned int foll_flags;
1129
1130 vma = find_extend_vma(mm, start);
1131 if (!vma && in_gate_area(tsk, start)) {
1132 unsigned long pg = start & PAGE_MASK;
1133 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1134 pgd_t *pgd;
1135 pud_t *pud;
1136 pmd_t *pmd;
1137 pte_t *pte;
1138 if (write) /* user gate pages are read-only */
1139 return i ? : -EFAULT;
1140 if (pg > TASK_SIZE)
1141 pgd = pgd_offset_k(pg);
1142 else
1143 pgd = pgd_offset_gate(mm, pg);
1144 BUG_ON(pgd_none(*pgd));
1145 pud = pud_offset(pgd, pg);
1146 BUG_ON(pud_none(*pud));
1147 pmd = pmd_offset(pud, pg);
1148 if (pmd_none(*pmd))
1149 return i ? : -EFAULT;
1150 pte = pte_offset_map(pmd, pg);
1151 if (pte_none(*pte)) {
1152 pte_unmap(pte);
1153 return i ? : -EFAULT;
1154 }
1155 if (pages) {
1156 struct page *page = vm_normal_page(gate_vma, start, *pte);
1157 pages[i] = page;
1158 if (page)
1159 get_page(page);
1160 }
1161 pte_unmap(pte);
1162 if (vmas)
1163 vmas[i] = gate_vma;
1164 i++;
1165 start += PAGE_SIZE;
1166 len--;
1167 continue;
1168 }
1169
1170 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1171 || !(vm_flags & vma->vm_flags))
1172 return i ? : -EFAULT;
1173
1174 if (is_vm_hugetlb_page(vma)) {
1175 i = follow_hugetlb_page(mm, vma, pages, vmas,
1176 &start, &len, i, write);
1177 continue;
1178 }
1179
1180 foll_flags = FOLL_TOUCH;
1181 if (pages)
1182 foll_flags |= FOLL_GET;
1183 if (!write && use_zero_page(vma))
1184 foll_flags |= FOLL_ANON;
1185
1186 do {
1187 struct page *page;
1188
1189 /*
1190 * If tsk is ooming, cut off its access to large memory
1191 * allocations. It has a pending SIGKILL, but it can't
1192 * be processed until returning to user space.
1193 */
1194 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1195 return i ? i : -ENOMEM;
1196
1197 if (write)
1198 foll_flags |= FOLL_WRITE;
1199
1200 cond_resched();
1201 while (!(page = follow_page(vma, start, foll_flags))) {
1202 int ret;
1203 ret = handle_mm_fault(mm, vma, start,
1204 foll_flags & FOLL_WRITE);
1205 if (ret & VM_FAULT_ERROR) {
1206 if (ret & VM_FAULT_OOM)
1207 return i ? i : -ENOMEM;
1208 else if (ret & VM_FAULT_SIGBUS)
1209 return i ? i : -EFAULT;
1210 BUG();
1211 }
1212 if (ret & VM_FAULT_MAJOR)
1213 tsk->maj_flt++;
1214 else
1215 tsk->min_flt++;
1216
1217 /*
1218 * The VM_FAULT_WRITE bit tells us that
1219 * do_wp_page has broken COW when necessary,
1220 * even if maybe_mkwrite decided not to set
1221 * pte_write. We can thus safely do subsequent
1222 * page lookups as if they were reads.
1223 */
1224 if (ret & VM_FAULT_WRITE)
1225 foll_flags &= ~FOLL_WRITE;
1226
1227 cond_resched();
1228 }
1229 if (IS_ERR(page))
1230 return i ? i : PTR_ERR(page);
1231 if (pages) {
1232 pages[i] = page;
1233
1234 flush_anon_page(vma, page, start);
1235 flush_dcache_page(page);
1236 }
1237 if (vmas)
1238 vmas[i] = vma;
1239 i++;
1240 start += PAGE_SIZE;
1241 len--;
1242 } while (len && start < vma->vm_end);
1243 } while (len);
1244 return i;
1245 }
1246 EXPORT_SYMBOL(get_user_pages);
1247
1248 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1249 spinlock_t **ptl)
1250 {
1251 pgd_t * pgd = pgd_offset(mm, addr);
1252 pud_t * pud = pud_alloc(mm, pgd, addr);
1253 if (pud) {
1254 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1255 if (pmd)
1256 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1257 }
1258 return NULL;
1259 }
1260
1261 /*
1262 * This is the old fallback for page remapping.
1263 *
1264 * For historical reasons, it only allows reserved pages. Only
1265 * old drivers should use this, and they needed to mark their
1266 * pages reserved for the old functions anyway.
1267 */
1268 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1269 struct page *page, pgprot_t prot)
1270 {
1271 struct mm_struct *mm = vma->vm_mm;
1272 int retval;
1273 pte_t *pte;
1274 spinlock_t *ptl;
1275
1276 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1277 if (retval)
1278 goto out;
1279
1280 retval = -EINVAL;
1281 if (PageAnon(page))
1282 goto out_uncharge;
1283 retval = -ENOMEM;
1284 flush_dcache_page(page);
1285 pte = get_locked_pte(mm, addr, &ptl);
1286 if (!pte)
1287 goto out_uncharge;
1288 retval = -EBUSY;
1289 if (!pte_none(*pte))
1290 goto out_unlock;
1291
1292 /* Ok, finally just insert the thing.. */
1293 get_page(page);
1294 inc_mm_counter(mm, file_rss);
1295 page_add_file_rmap(page);
1296 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1297
1298 retval = 0;
1299 pte_unmap_unlock(pte, ptl);
1300 return retval;
1301 out_unlock:
1302 pte_unmap_unlock(pte, ptl);
1303 out_uncharge:
1304 mem_cgroup_uncharge_page(page);
1305 out:
1306 return retval;
1307 }
1308
1309 /**
1310 * vm_insert_page - insert single page into user vma
1311 * @vma: user vma to map to
1312 * @addr: target user address of this page
1313 * @page: source kernel page
1314 *
1315 * This allows drivers to insert individual pages they've allocated
1316 * into a user vma.
1317 *
1318 * The page has to be a nice clean _individual_ kernel allocation.
1319 * If you allocate a compound page, you need to have marked it as
1320 * such (__GFP_COMP), or manually just split the page up yourself
1321 * (see split_page()).
1322 *
1323 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1324 * took an arbitrary page protection parameter. This doesn't allow
1325 * that. Your vma protection will have to be set up correctly, which
1326 * means that if you want a shared writable mapping, you'd better
1327 * ask for a shared writable mapping!
1328 *
1329 * The page does not need to be reserved.
1330 */
1331 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1332 struct page *page)
1333 {
1334 if (addr < vma->vm_start || addr >= vma->vm_end)
1335 return -EFAULT;
1336 if (!page_count(page))
1337 return -EINVAL;
1338 vma->vm_flags |= VM_INSERTPAGE;
1339 return insert_page(vma, addr, page, vma->vm_page_prot);
1340 }
1341 EXPORT_SYMBOL(vm_insert_page);
1342
1343 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1344 unsigned long pfn, pgprot_t prot)
1345 {
1346 struct mm_struct *mm = vma->vm_mm;
1347 int retval;
1348 pte_t *pte, entry;
1349 spinlock_t *ptl;
1350
1351 retval = -ENOMEM;
1352 pte = get_locked_pte(mm, addr, &ptl);
1353 if (!pte)
1354 goto out;
1355 retval = -EBUSY;
1356 if (!pte_none(*pte))
1357 goto out_unlock;
1358
1359 /* Ok, finally just insert the thing.. */
1360 entry = pte_mkspecial(pfn_pte(pfn, prot));
1361 set_pte_at(mm, addr, pte, entry);
1362 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1363
1364 retval = 0;
1365 out_unlock:
1366 pte_unmap_unlock(pte, ptl);
1367 out:
1368 return retval;
1369 }
1370
1371 /**
1372 * vm_insert_pfn - insert single pfn into user vma
1373 * @vma: user vma to map to
1374 * @addr: target user address of this page
1375 * @pfn: source kernel pfn
1376 *
1377 * Similar to vm_inert_page, this allows drivers to insert individual pages
1378 * they've allocated into a user vma. Same comments apply.
1379 *
1380 * This function should only be called from a vm_ops->fault handler, and
1381 * in that case the handler should return NULL.
1382 *
1383 * vma cannot be a COW mapping.
1384 *
1385 * As this is called only for pages that do not currently exist, we
1386 * do not need to flush old virtual caches or the TLB.
1387 */
1388 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1389 unsigned long pfn)
1390 {
1391 /*
1392 * Technically, architectures with pte_special can avoid all these
1393 * restrictions (same for remap_pfn_range). However we would like
1394 * consistency in testing and feature parity among all, so we should
1395 * try to keep these invariants in place for everybody.
1396 */
1397 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1398 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1399 (VM_PFNMAP|VM_MIXEDMAP));
1400 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1401 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1402
1403 if (addr < vma->vm_start || addr >= vma->vm_end)
1404 return -EFAULT;
1405 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1406 }
1407 EXPORT_SYMBOL(vm_insert_pfn);
1408
1409 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1410 unsigned long pfn)
1411 {
1412 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1413
1414 if (addr < vma->vm_start || addr >= vma->vm_end)
1415 return -EFAULT;
1416
1417 /*
1418 * If we don't have pte special, then we have to use the pfn_valid()
1419 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1420 * refcount the page if pfn_valid is true (hence insert_page rather
1421 * than insert_pfn).
1422 */
1423 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1424 struct page *page;
1425
1426 page = pfn_to_page(pfn);
1427 return insert_page(vma, addr, page, vma->vm_page_prot);
1428 }
1429 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1430 }
1431 EXPORT_SYMBOL(vm_insert_mixed);
1432
1433 /*
1434 * maps a range of physical memory into the requested pages. the old
1435 * mappings are removed. any references to nonexistent pages results
1436 * in null mappings (currently treated as "copy-on-access")
1437 */
1438 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1439 unsigned long addr, unsigned long end,
1440 unsigned long pfn, pgprot_t prot)
1441 {
1442 pte_t *pte;
1443 spinlock_t *ptl;
1444
1445 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1446 if (!pte)
1447 return -ENOMEM;
1448 arch_enter_lazy_mmu_mode();
1449 do {
1450 BUG_ON(!pte_none(*pte));
1451 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1452 pfn++;
1453 } while (pte++, addr += PAGE_SIZE, addr != end);
1454 arch_leave_lazy_mmu_mode();
1455 pte_unmap_unlock(pte - 1, ptl);
1456 return 0;
1457 }
1458
1459 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1460 unsigned long addr, unsigned long end,
1461 unsigned long pfn, pgprot_t prot)
1462 {
1463 pmd_t *pmd;
1464 unsigned long next;
1465
1466 pfn -= addr >> PAGE_SHIFT;
1467 pmd = pmd_alloc(mm, pud, addr);
1468 if (!pmd)
1469 return -ENOMEM;
1470 do {
1471 next = pmd_addr_end(addr, end);
1472 if (remap_pte_range(mm, pmd, addr, next,
1473 pfn + (addr >> PAGE_SHIFT), prot))
1474 return -ENOMEM;
1475 } while (pmd++, addr = next, addr != end);
1476 return 0;
1477 }
1478
1479 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1480 unsigned long addr, unsigned long end,
1481 unsigned long pfn, pgprot_t prot)
1482 {
1483 pud_t *pud;
1484 unsigned long next;
1485
1486 pfn -= addr >> PAGE_SHIFT;
1487 pud = pud_alloc(mm, pgd, addr);
1488 if (!pud)
1489 return -ENOMEM;
1490 do {
1491 next = pud_addr_end(addr, end);
1492 if (remap_pmd_range(mm, pud, addr, next,
1493 pfn + (addr >> PAGE_SHIFT), prot))
1494 return -ENOMEM;
1495 } while (pud++, addr = next, addr != end);
1496 return 0;
1497 }
1498
1499 /**
1500 * remap_pfn_range - remap kernel memory to userspace
1501 * @vma: user vma to map to
1502 * @addr: target user address to start at
1503 * @pfn: physical address of kernel memory
1504 * @size: size of map area
1505 * @prot: page protection flags for this mapping
1506 *
1507 * Note: this is only safe if the mm semaphore is held when called.
1508 */
1509 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1510 unsigned long pfn, unsigned long size, pgprot_t prot)
1511 {
1512 pgd_t *pgd;
1513 unsigned long next;
1514 unsigned long end = addr + PAGE_ALIGN(size);
1515 struct mm_struct *mm = vma->vm_mm;
1516 int err;
1517
1518 /*
1519 * Physically remapped pages are special. Tell the
1520 * rest of the world about it:
1521 * VM_IO tells people not to look at these pages
1522 * (accesses can have side effects).
1523 * VM_RESERVED is specified all over the place, because
1524 * in 2.4 it kept swapout's vma scan off this vma; but
1525 * in 2.6 the LRU scan won't even find its pages, so this
1526 * flag means no more than count its pages in reserved_vm,
1527 * and omit it from core dump, even when VM_IO turned off.
1528 * VM_PFNMAP tells the core MM that the base pages are just
1529 * raw PFN mappings, and do not have a "struct page" associated
1530 * with them.
1531 *
1532 * There's a horrible special case to handle copy-on-write
1533 * behaviour that some programs depend on. We mark the "original"
1534 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1535 */
1536 if (is_cow_mapping(vma->vm_flags)) {
1537 if (addr != vma->vm_start || end != vma->vm_end)
1538 return -EINVAL;
1539 vma->vm_pgoff = pfn;
1540 }
1541
1542 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1543
1544 BUG_ON(addr >= end);
1545 pfn -= addr >> PAGE_SHIFT;
1546 pgd = pgd_offset(mm, addr);
1547 flush_cache_range(vma, addr, end);
1548 do {
1549 next = pgd_addr_end(addr, end);
1550 err = remap_pud_range(mm, pgd, addr, next,
1551 pfn + (addr >> PAGE_SHIFT), prot);
1552 if (err)
1553 break;
1554 } while (pgd++, addr = next, addr != end);
1555 return err;
1556 }
1557 EXPORT_SYMBOL(remap_pfn_range);
1558
1559 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1560 unsigned long addr, unsigned long end,
1561 pte_fn_t fn, void *data)
1562 {
1563 pte_t *pte;
1564 int err;
1565 pgtable_t token;
1566 spinlock_t *uninitialized_var(ptl);
1567
1568 pte = (mm == &init_mm) ?
1569 pte_alloc_kernel(pmd, addr) :
1570 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1571 if (!pte)
1572 return -ENOMEM;
1573
1574 BUG_ON(pmd_huge(*pmd));
1575
1576 token = pmd_pgtable(*pmd);
1577
1578 do {
1579 err = fn(pte, token, addr, data);
1580 if (err)
1581 break;
1582 } while (pte++, addr += PAGE_SIZE, addr != end);
1583
1584 if (mm != &init_mm)
1585 pte_unmap_unlock(pte-1, ptl);
1586 return err;
1587 }
1588
1589 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1590 unsigned long addr, unsigned long end,
1591 pte_fn_t fn, void *data)
1592 {
1593 pmd_t *pmd;
1594 unsigned long next;
1595 int err;
1596
1597 BUG_ON(pud_huge(*pud));
1598
1599 pmd = pmd_alloc(mm, pud, addr);
1600 if (!pmd)
1601 return -ENOMEM;
1602 do {
1603 next = pmd_addr_end(addr, end);
1604 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1605 if (err)
1606 break;
1607 } while (pmd++, addr = next, addr != end);
1608 return err;
1609 }
1610
1611 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1612 unsigned long addr, unsigned long end,
1613 pte_fn_t fn, void *data)
1614 {
1615 pud_t *pud;
1616 unsigned long next;
1617 int err;
1618
1619 pud = pud_alloc(mm, pgd, addr);
1620 if (!pud)
1621 return -ENOMEM;
1622 do {
1623 next = pud_addr_end(addr, end);
1624 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1625 if (err)
1626 break;
1627 } while (pud++, addr = next, addr != end);
1628 return err;
1629 }
1630
1631 /*
1632 * Scan a region of virtual memory, filling in page tables as necessary
1633 * and calling a provided function on each leaf page table.
1634 */
1635 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1636 unsigned long size, pte_fn_t fn, void *data)
1637 {
1638 pgd_t *pgd;
1639 unsigned long next;
1640 unsigned long start = addr, end = addr + size;
1641 int err;
1642
1643 BUG_ON(addr >= end);
1644 mmu_notifier_invalidate_range_start(mm, start, end);
1645 pgd = pgd_offset(mm, addr);
1646 do {
1647 next = pgd_addr_end(addr, end);
1648 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1649 if (err)
1650 break;
1651 } while (pgd++, addr = next, addr != end);
1652 mmu_notifier_invalidate_range_end(mm, start, end);
1653 return err;
1654 }
1655 EXPORT_SYMBOL_GPL(apply_to_page_range);
1656
1657 /*
1658 * handle_pte_fault chooses page fault handler according to an entry
1659 * which was read non-atomically. Before making any commitment, on
1660 * those architectures or configurations (e.g. i386 with PAE) which
1661 * might give a mix of unmatched parts, do_swap_page and do_file_page
1662 * must check under lock before unmapping the pte and proceeding
1663 * (but do_wp_page is only called after already making such a check;
1664 * and do_anonymous_page and do_no_page can safely check later on).
1665 */
1666 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1667 pte_t *page_table, pte_t orig_pte)
1668 {
1669 int same = 1;
1670 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1671 if (sizeof(pte_t) > sizeof(unsigned long)) {
1672 spinlock_t *ptl = pte_lockptr(mm, pmd);
1673 spin_lock(ptl);
1674 same = pte_same(*page_table, orig_pte);
1675 spin_unlock(ptl);
1676 }
1677 #endif
1678 pte_unmap(page_table);
1679 return same;
1680 }
1681
1682 /*
1683 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1684 * servicing faults for write access. In the normal case, do always want
1685 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1686 * that do not have writing enabled, when used by access_process_vm.
1687 */
1688 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1689 {
1690 if (likely(vma->vm_flags & VM_WRITE))
1691 pte = pte_mkwrite(pte);
1692 return pte;
1693 }
1694
1695 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1696 {
1697 /*
1698 * If the source page was a PFN mapping, we don't have
1699 * a "struct page" for it. We do a best-effort copy by
1700 * just copying from the original user address. If that
1701 * fails, we just zero-fill it. Live with it.
1702 */
1703 if (unlikely(!src)) {
1704 void *kaddr = kmap_atomic(dst, KM_USER0);
1705 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1706
1707 /*
1708 * This really shouldn't fail, because the page is there
1709 * in the page tables. But it might just be unreadable,
1710 * in which case we just give up and fill the result with
1711 * zeroes.
1712 */
1713 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1714 memset(kaddr, 0, PAGE_SIZE);
1715 kunmap_atomic(kaddr, KM_USER0);
1716 flush_dcache_page(dst);
1717 } else
1718 copy_user_highpage(dst, src, va, vma);
1719 }
1720
1721 /*
1722 * This routine handles present pages, when users try to write
1723 * to a shared page. It is done by copying the page to a new address
1724 * and decrementing the shared-page counter for the old page.
1725 *
1726 * Note that this routine assumes that the protection checks have been
1727 * done by the caller (the low-level page fault routine in most cases).
1728 * Thus we can safely just mark it writable once we've done any necessary
1729 * COW.
1730 *
1731 * We also mark the page dirty at this point even though the page will
1732 * change only once the write actually happens. This avoids a few races,
1733 * and potentially makes it more efficient.
1734 *
1735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1736 * but allow concurrent faults), with pte both mapped and locked.
1737 * We return with mmap_sem still held, but pte unmapped and unlocked.
1738 */
1739 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1740 unsigned long address, pte_t *page_table, pmd_t *pmd,
1741 spinlock_t *ptl, pte_t orig_pte)
1742 {
1743 struct page *old_page, *new_page;
1744 pte_t entry;
1745 int reuse = 0, ret = 0;
1746 int page_mkwrite = 0;
1747 struct page *dirty_page = NULL;
1748
1749 old_page = vm_normal_page(vma, address, orig_pte);
1750 if (!old_page) {
1751 /*
1752 * VM_MIXEDMAP !pfn_valid() case
1753 *
1754 * We should not cow pages in a shared writeable mapping.
1755 * Just mark the pages writable as we can't do any dirty
1756 * accounting on raw pfn maps.
1757 */
1758 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1759 (VM_WRITE|VM_SHARED))
1760 goto reuse;
1761 goto gotten;
1762 }
1763
1764 /*
1765 * Take out anonymous pages first, anonymous shared vmas are
1766 * not dirty accountable.
1767 */
1768 if (PageAnon(old_page)) {
1769 if (!TestSetPageLocked(old_page)) {
1770 reuse = can_share_swap_page(old_page);
1771 unlock_page(old_page);
1772 }
1773 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1774 (VM_WRITE|VM_SHARED))) {
1775 /*
1776 * Only catch write-faults on shared writable pages,
1777 * read-only shared pages can get COWed by
1778 * get_user_pages(.write=1, .force=1).
1779 */
1780 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1781 /*
1782 * Notify the address space that the page is about to
1783 * become writable so that it can prohibit this or wait
1784 * for the page to get into an appropriate state.
1785 *
1786 * We do this without the lock held, so that it can
1787 * sleep if it needs to.
1788 */
1789 page_cache_get(old_page);
1790 pte_unmap_unlock(page_table, ptl);
1791
1792 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1793 goto unwritable_page;
1794
1795 /*
1796 * Since we dropped the lock we need to revalidate
1797 * the PTE as someone else may have changed it. If
1798 * they did, we just return, as we can count on the
1799 * MMU to tell us if they didn't also make it writable.
1800 */
1801 page_table = pte_offset_map_lock(mm, pmd, address,
1802 &ptl);
1803 page_cache_release(old_page);
1804 if (!pte_same(*page_table, orig_pte))
1805 goto unlock;
1806
1807 page_mkwrite = 1;
1808 }
1809 dirty_page = old_page;
1810 get_page(dirty_page);
1811 reuse = 1;
1812 }
1813
1814 if (reuse) {
1815 reuse:
1816 flush_cache_page(vma, address, pte_pfn(orig_pte));
1817 entry = pte_mkyoung(orig_pte);
1818 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1819 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1820 update_mmu_cache(vma, address, entry);
1821 ret |= VM_FAULT_WRITE;
1822 goto unlock;
1823 }
1824
1825 /*
1826 * Ok, we need to copy. Oh, well..
1827 */
1828 page_cache_get(old_page);
1829 gotten:
1830 pte_unmap_unlock(page_table, ptl);
1831
1832 if (unlikely(anon_vma_prepare(vma)))
1833 goto oom;
1834 VM_BUG_ON(old_page == ZERO_PAGE(0));
1835 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1836 if (!new_page)
1837 goto oom;
1838 cow_user_page(new_page, old_page, address, vma);
1839 __SetPageUptodate(new_page);
1840
1841 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1842 goto oom_free_new;
1843
1844 /*
1845 * Re-check the pte - we dropped the lock
1846 */
1847 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1848 if (likely(pte_same(*page_table, orig_pte))) {
1849 if (old_page) {
1850 if (!PageAnon(old_page)) {
1851 dec_mm_counter(mm, file_rss);
1852 inc_mm_counter(mm, anon_rss);
1853 }
1854 } else
1855 inc_mm_counter(mm, anon_rss);
1856 flush_cache_page(vma, address, pte_pfn(orig_pte));
1857 entry = mk_pte(new_page, vma->vm_page_prot);
1858 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1859 /*
1860 * Clear the pte entry and flush it first, before updating the
1861 * pte with the new entry. This will avoid a race condition
1862 * seen in the presence of one thread doing SMC and another
1863 * thread doing COW.
1864 */
1865 ptep_clear_flush_notify(vma, address, page_table);
1866 set_pte_at(mm, address, page_table, entry);
1867 update_mmu_cache(vma, address, entry);
1868 lru_cache_add_active(new_page);
1869 page_add_new_anon_rmap(new_page, vma, address);
1870
1871 if (old_page) {
1872 /*
1873 * Only after switching the pte to the new page may
1874 * we remove the mapcount here. Otherwise another
1875 * process may come and find the rmap count decremented
1876 * before the pte is switched to the new page, and
1877 * "reuse" the old page writing into it while our pte
1878 * here still points into it and can be read by other
1879 * threads.
1880 *
1881 * The critical issue is to order this
1882 * page_remove_rmap with the ptp_clear_flush above.
1883 * Those stores are ordered by (if nothing else,)
1884 * the barrier present in the atomic_add_negative
1885 * in page_remove_rmap.
1886 *
1887 * Then the TLB flush in ptep_clear_flush ensures that
1888 * no process can access the old page before the
1889 * decremented mapcount is visible. And the old page
1890 * cannot be reused until after the decremented
1891 * mapcount is visible. So transitively, TLBs to
1892 * old page will be flushed before it can be reused.
1893 */
1894 page_remove_rmap(old_page, vma);
1895 }
1896
1897 /* Free the old page.. */
1898 new_page = old_page;
1899 ret |= VM_FAULT_WRITE;
1900 } else
1901 mem_cgroup_uncharge_page(new_page);
1902
1903 if (new_page)
1904 page_cache_release(new_page);
1905 if (old_page)
1906 page_cache_release(old_page);
1907 unlock:
1908 pte_unmap_unlock(page_table, ptl);
1909 if (dirty_page) {
1910 if (vma->vm_file)
1911 file_update_time(vma->vm_file);
1912
1913 /*
1914 * Yes, Virginia, this is actually required to prevent a race
1915 * with clear_page_dirty_for_io() from clearing the page dirty
1916 * bit after it clear all dirty ptes, but before a racing
1917 * do_wp_page installs a dirty pte.
1918 *
1919 * do_no_page is protected similarly.
1920 */
1921 wait_on_page_locked(dirty_page);
1922 set_page_dirty_balance(dirty_page, page_mkwrite);
1923 put_page(dirty_page);
1924 }
1925 return ret;
1926 oom_free_new:
1927 page_cache_release(new_page);
1928 oom:
1929 if (old_page)
1930 page_cache_release(old_page);
1931 return VM_FAULT_OOM;
1932
1933 unwritable_page:
1934 page_cache_release(old_page);
1935 return VM_FAULT_SIGBUS;
1936 }
1937
1938 /*
1939 * Helper functions for unmap_mapping_range().
1940 *
1941 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1942 *
1943 * We have to restart searching the prio_tree whenever we drop the lock,
1944 * since the iterator is only valid while the lock is held, and anyway
1945 * a later vma might be split and reinserted earlier while lock dropped.
1946 *
1947 * The list of nonlinear vmas could be handled more efficiently, using
1948 * a placeholder, but handle it in the same way until a need is shown.
1949 * It is important to search the prio_tree before nonlinear list: a vma
1950 * may become nonlinear and be shifted from prio_tree to nonlinear list
1951 * while the lock is dropped; but never shifted from list to prio_tree.
1952 *
1953 * In order to make forward progress despite restarting the search,
1954 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1955 * quickly skip it next time around. Since the prio_tree search only
1956 * shows us those vmas affected by unmapping the range in question, we
1957 * can't efficiently keep all vmas in step with mapping->truncate_count:
1958 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1959 * mapping->truncate_count and vma->vm_truncate_count are protected by
1960 * i_mmap_lock.
1961 *
1962 * In order to make forward progress despite repeatedly restarting some
1963 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1964 * and restart from that address when we reach that vma again. It might
1965 * have been split or merged, shrunk or extended, but never shifted: so
1966 * restart_addr remains valid so long as it remains in the vma's range.
1967 * unmap_mapping_range forces truncate_count to leap over page-aligned
1968 * values so we can save vma's restart_addr in its truncate_count field.
1969 */
1970 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1971
1972 static void reset_vma_truncate_counts(struct address_space *mapping)
1973 {
1974 struct vm_area_struct *vma;
1975 struct prio_tree_iter iter;
1976
1977 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1978 vma->vm_truncate_count = 0;
1979 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1980 vma->vm_truncate_count = 0;
1981 }
1982
1983 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1984 unsigned long start_addr, unsigned long end_addr,
1985 struct zap_details *details)
1986 {
1987 unsigned long restart_addr;
1988 int need_break;
1989
1990 /*
1991 * files that support invalidating or truncating portions of the
1992 * file from under mmaped areas must have their ->fault function
1993 * return a locked page (and set VM_FAULT_LOCKED in the return).
1994 * This provides synchronisation against concurrent unmapping here.
1995 */
1996
1997 again:
1998 restart_addr = vma->vm_truncate_count;
1999 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2000 start_addr = restart_addr;
2001 if (start_addr >= end_addr) {
2002 /* Top of vma has been split off since last time */
2003 vma->vm_truncate_count = details->truncate_count;
2004 return 0;
2005 }
2006 }
2007
2008 restart_addr = zap_page_range(vma, start_addr,
2009 end_addr - start_addr, details);
2010 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2011
2012 if (restart_addr >= end_addr) {
2013 /* We have now completed this vma: mark it so */
2014 vma->vm_truncate_count = details->truncate_count;
2015 if (!need_break)
2016 return 0;
2017 } else {
2018 /* Note restart_addr in vma's truncate_count field */
2019 vma->vm_truncate_count = restart_addr;
2020 if (!need_break)
2021 goto again;
2022 }
2023
2024 spin_unlock(details->i_mmap_lock);
2025 cond_resched();
2026 spin_lock(details->i_mmap_lock);
2027 return -EINTR;
2028 }
2029
2030 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2031 struct zap_details *details)
2032 {
2033 struct vm_area_struct *vma;
2034 struct prio_tree_iter iter;
2035 pgoff_t vba, vea, zba, zea;
2036
2037 restart:
2038 vma_prio_tree_foreach(vma, &iter, root,
2039 details->first_index, details->last_index) {
2040 /* Skip quickly over those we have already dealt with */
2041 if (vma->vm_truncate_count == details->truncate_count)
2042 continue;
2043
2044 vba = vma->vm_pgoff;
2045 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2046 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2047 zba = details->first_index;
2048 if (zba < vba)
2049 zba = vba;
2050 zea = details->last_index;
2051 if (zea > vea)
2052 zea = vea;
2053
2054 if (unmap_mapping_range_vma(vma,
2055 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2056 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2057 details) < 0)
2058 goto restart;
2059 }
2060 }
2061
2062 static inline void unmap_mapping_range_list(struct list_head *head,
2063 struct zap_details *details)
2064 {
2065 struct vm_area_struct *vma;
2066
2067 /*
2068 * In nonlinear VMAs there is no correspondence between virtual address
2069 * offset and file offset. So we must perform an exhaustive search
2070 * across *all* the pages in each nonlinear VMA, not just the pages
2071 * whose virtual address lies outside the file truncation point.
2072 */
2073 restart:
2074 list_for_each_entry(vma, head, shared.vm_set.list) {
2075 /* Skip quickly over those we have already dealt with */
2076 if (vma->vm_truncate_count == details->truncate_count)
2077 continue;
2078 details->nonlinear_vma = vma;
2079 if (unmap_mapping_range_vma(vma, vma->vm_start,
2080 vma->vm_end, details) < 0)
2081 goto restart;
2082 }
2083 }
2084
2085 /**
2086 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2087 * @mapping: the address space containing mmaps to be unmapped.
2088 * @holebegin: byte in first page to unmap, relative to the start of
2089 * the underlying file. This will be rounded down to a PAGE_SIZE
2090 * boundary. Note that this is different from vmtruncate(), which
2091 * must keep the partial page. In contrast, we must get rid of
2092 * partial pages.
2093 * @holelen: size of prospective hole in bytes. This will be rounded
2094 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2095 * end of the file.
2096 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2097 * but 0 when invalidating pagecache, don't throw away private data.
2098 */
2099 void unmap_mapping_range(struct address_space *mapping,
2100 loff_t const holebegin, loff_t const holelen, int even_cows)
2101 {
2102 struct zap_details details;
2103 pgoff_t hba = holebegin >> PAGE_SHIFT;
2104 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2105
2106 /* Check for overflow. */
2107 if (sizeof(holelen) > sizeof(hlen)) {
2108 long long holeend =
2109 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2110 if (holeend & ~(long long)ULONG_MAX)
2111 hlen = ULONG_MAX - hba + 1;
2112 }
2113
2114 details.check_mapping = even_cows? NULL: mapping;
2115 details.nonlinear_vma = NULL;
2116 details.first_index = hba;
2117 details.last_index = hba + hlen - 1;
2118 if (details.last_index < details.first_index)
2119 details.last_index = ULONG_MAX;
2120 details.i_mmap_lock = &mapping->i_mmap_lock;
2121
2122 spin_lock(&mapping->i_mmap_lock);
2123
2124 /* Protect against endless unmapping loops */
2125 mapping->truncate_count++;
2126 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2127 if (mapping->truncate_count == 0)
2128 reset_vma_truncate_counts(mapping);
2129 mapping->truncate_count++;
2130 }
2131 details.truncate_count = mapping->truncate_count;
2132
2133 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2134 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2135 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2136 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2137 spin_unlock(&mapping->i_mmap_lock);
2138 }
2139 EXPORT_SYMBOL(unmap_mapping_range);
2140
2141 /**
2142 * vmtruncate - unmap mappings "freed" by truncate() syscall
2143 * @inode: inode of the file used
2144 * @offset: file offset to start truncating
2145 *
2146 * NOTE! We have to be ready to update the memory sharing
2147 * between the file and the memory map for a potential last
2148 * incomplete page. Ugly, but necessary.
2149 */
2150 int vmtruncate(struct inode * inode, loff_t offset)
2151 {
2152 if (inode->i_size < offset) {
2153 unsigned long limit;
2154
2155 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2156 if (limit != RLIM_INFINITY && offset > limit)
2157 goto out_sig;
2158 if (offset > inode->i_sb->s_maxbytes)
2159 goto out_big;
2160 i_size_write(inode, offset);
2161 } else {
2162 struct address_space *mapping = inode->i_mapping;
2163
2164 /*
2165 * truncation of in-use swapfiles is disallowed - it would
2166 * cause subsequent swapout to scribble on the now-freed
2167 * blocks.
2168 */
2169 if (IS_SWAPFILE(inode))
2170 return -ETXTBSY;
2171 i_size_write(inode, offset);
2172
2173 /*
2174 * unmap_mapping_range is called twice, first simply for
2175 * efficiency so that truncate_inode_pages does fewer
2176 * single-page unmaps. However after this first call, and
2177 * before truncate_inode_pages finishes, it is possible for
2178 * private pages to be COWed, which remain after
2179 * truncate_inode_pages finishes, hence the second
2180 * unmap_mapping_range call must be made for correctness.
2181 */
2182 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2183 truncate_inode_pages(mapping, offset);
2184 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2185 }
2186
2187 if (inode->i_op && inode->i_op->truncate)
2188 inode->i_op->truncate(inode);
2189 return 0;
2190
2191 out_sig:
2192 send_sig(SIGXFSZ, current, 0);
2193 out_big:
2194 return -EFBIG;
2195 }
2196 EXPORT_SYMBOL(vmtruncate);
2197
2198 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2199 {
2200 struct address_space *mapping = inode->i_mapping;
2201
2202 /*
2203 * If the underlying filesystem is not going to provide
2204 * a way to truncate a range of blocks (punch a hole) -
2205 * we should return failure right now.
2206 */
2207 if (!inode->i_op || !inode->i_op->truncate_range)
2208 return -ENOSYS;
2209
2210 mutex_lock(&inode->i_mutex);
2211 down_write(&inode->i_alloc_sem);
2212 unmap_mapping_range(mapping, offset, (end - offset), 1);
2213 truncate_inode_pages_range(mapping, offset, end);
2214 unmap_mapping_range(mapping, offset, (end - offset), 1);
2215 inode->i_op->truncate_range(inode, offset, end);
2216 up_write(&inode->i_alloc_sem);
2217 mutex_unlock(&inode->i_mutex);
2218
2219 return 0;
2220 }
2221
2222 /*
2223 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2224 * but allow concurrent faults), and pte mapped but not yet locked.
2225 * We return with mmap_sem still held, but pte unmapped and unlocked.
2226 */
2227 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2228 unsigned long address, pte_t *page_table, pmd_t *pmd,
2229 int write_access, pte_t orig_pte)
2230 {
2231 spinlock_t *ptl;
2232 struct page *page;
2233 swp_entry_t entry;
2234 pte_t pte;
2235 int ret = 0;
2236
2237 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2238 goto out;
2239
2240 entry = pte_to_swp_entry(orig_pte);
2241 if (is_migration_entry(entry)) {
2242 migration_entry_wait(mm, pmd, address);
2243 goto out;
2244 }
2245 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2246 page = lookup_swap_cache(entry);
2247 if (!page) {
2248 grab_swap_token(); /* Contend for token _before_ read-in */
2249 page = swapin_readahead(entry,
2250 GFP_HIGHUSER_MOVABLE, vma, address);
2251 if (!page) {
2252 /*
2253 * Back out if somebody else faulted in this pte
2254 * while we released the pte lock.
2255 */
2256 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2257 if (likely(pte_same(*page_table, orig_pte)))
2258 ret = VM_FAULT_OOM;
2259 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2260 goto unlock;
2261 }
2262
2263 /* Had to read the page from swap area: Major fault */
2264 ret = VM_FAULT_MAJOR;
2265 count_vm_event(PGMAJFAULT);
2266 }
2267
2268 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2269 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2270 ret = VM_FAULT_OOM;
2271 goto out;
2272 }
2273
2274 mark_page_accessed(page);
2275 lock_page(page);
2276 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2277
2278 /*
2279 * Back out if somebody else already faulted in this pte.
2280 */
2281 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2282 if (unlikely(!pte_same(*page_table, orig_pte)))
2283 goto out_nomap;
2284
2285 if (unlikely(!PageUptodate(page))) {
2286 ret = VM_FAULT_SIGBUS;
2287 goto out_nomap;
2288 }
2289
2290 /* The page isn't present yet, go ahead with the fault. */
2291
2292 inc_mm_counter(mm, anon_rss);
2293 pte = mk_pte(page, vma->vm_page_prot);
2294 if (write_access && can_share_swap_page(page)) {
2295 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2296 write_access = 0;
2297 }
2298
2299 flush_icache_page(vma, page);
2300 set_pte_at(mm, address, page_table, pte);
2301 page_add_anon_rmap(page, vma, address);
2302
2303 swap_free(entry);
2304 if (vm_swap_full())
2305 remove_exclusive_swap_page(page);
2306 unlock_page(page);
2307
2308 if (write_access) {
2309 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2310 if (ret & VM_FAULT_ERROR)
2311 ret &= VM_FAULT_ERROR;
2312 goto out;
2313 }
2314
2315 /* No need to invalidate - it was non-present before */
2316 update_mmu_cache(vma, address, pte);
2317 unlock:
2318 pte_unmap_unlock(page_table, ptl);
2319 out:
2320 return ret;
2321 out_nomap:
2322 mem_cgroup_uncharge_page(page);
2323 pte_unmap_unlock(page_table, ptl);
2324 unlock_page(page);
2325 page_cache_release(page);
2326 return ret;
2327 }
2328
2329 /*
2330 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2331 * but allow concurrent faults), and pte mapped but not yet locked.
2332 * We return with mmap_sem still held, but pte unmapped and unlocked.
2333 */
2334 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2335 unsigned long address, pte_t *page_table, pmd_t *pmd,
2336 int write_access)
2337 {
2338 struct page *page;
2339 spinlock_t *ptl;
2340 pte_t entry;
2341
2342 /* Allocate our own private page. */
2343 pte_unmap(page_table);
2344
2345 if (unlikely(anon_vma_prepare(vma)))
2346 goto oom;
2347 page = alloc_zeroed_user_highpage_movable(vma, address);
2348 if (!page)
2349 goto oom;
2350 __SetPageUptodate(page);
2351
2352 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2353 goto oom_free_page;
2354
2355 entry = mk_pte(page, vma->vm_page_prot);
2356 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2357
2358 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2359 if (!pte_none(*page_table))
2360 goto release;
2361 inc_mm_counter(mm, anon_rss);
2362 lru_cache_add_active(page);
2363 page_add_new_anon_rmap(page, vma, address);
2364 set_pte_at(mm, address, page_table, entry);
2365
2366 /* No need to invalidate - it was non-present before */
2367 update_mmu_cache(vma, address, entry);
2368 unlock:
2369 pte_unmap_unlock(page_table, ptl);
2370 return 0;
2371 release:
2372 mem_cgroup_uncharge_page(page);
2373 page_cache_release(page);
2374 goto unlock;
2375 oom_free_page:
2376 page_cache_release(page);
2377 oom:
2378 return VM_FAULT_OOM;
2379 }
2380
2381 /*
2382 * __do_fault() tries to create a new page mapping. It aggressively
2383 * tries to share with existing pages, but makes a separate copy if
2384 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2385 * the next page fault.
2386 *
2387 * As this is called only for pages that do not currently exist, we
2388 * do not need to flush old virtual caches or the TLB.
2389 *
2390 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2391 * but allow concurrent faults), and pte neither mapped nor locked.
2392 * We return with mmap_sem still held, but pte unmapped and unlocked.
2393 */
2394 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2395 unsigned long address, pmd_t *pmd,
2396 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2397 {
2398 pte_t *page_table;
2399 spinlock_t *ptl;
2400 struct page *page;
2401 pte_t entry;
2402 int anon = 0;
2403 struct page *dirty_page = NULL;
2404 struct vm_fault vmf;
2405 int ret;
2406 int page_mkwrite = 0;
2407
2408 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2409 vmf.pgoff = pgoff;
2410 vmf.flags = flags;
2411 vmf.page = NULL;
2412
2413 ret = vma->vm_ops->fault(vma, &vmf);
2414 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2415 return ret;
2416
2417 /*
2418 * For consistency in subsequent calls, make the faulted page always
2419 * locked.
2420 */
2421 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2422 lock_page(vmf.page);
2423 else
2424 VM_BUG_ON(!PageLocked(vmf.page));
2425
2426 /*
2427 * Should we do an early C-O-W break?
2428 */
2429 page = vmf.page;
2430 if (flags & FAULT_FLAG_WRITE) {
2431 if (!(vma->vm_flags & VM_SHARED)) {
2432 anon = 1;
2433 if (unlikely(anon_vma_prepare(vma))) {
2434 ret = VM_FAULT_OOM;
2435 goto out;
2436 }
2437 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2438 vma, address);
2439 if (!page) {
2440 ret = VM_FAULT_OOM;
2441 goto out;
2442 }
2443 copy_user_highpage(page, vmf.page, address, vma);
2444 __SetPageUptodate(page);
2445 } else {
2446 /*
2447 * If the page will be shareable, see if the backing
2448 * address space wants to know that the page is about
2449 * to become writable
2450 */
2451 if (vma->vm_ops->page_mkwrite) {
2452 unlock_page(page);
2453 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2454 ret = VM_FAULT_SIGBUS;
2455 anon = 1; /* no anon but release vmf.page */
2456 goto out_unlocked;
2457 }
2458 lock_page(page);
2459 /*
2460 * XXX: this is not quite right (racy vs
2461 * invalidate) to unlock and relock the page
2462 * like this, however a better fix requires
2463 * reworking page_mkwrite locking API, which
2464 * is better done later.
2465 */
2466 if (!page->mapping) {
2467 ret = 0;
2468 anon = 1; /* no anon but release vmf.page */
2469 goto out;
2470 }
2471 page_mkwrite = 1;
2472 }
2473 }
2474
2475 }
2476
2477 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2478 ret = VM_FAULT_OOM;
2479 goto out;
2480 }
2481
2482 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2483
2484 /*
2485 * This silly early PAGE_DIRTY setting removes a race
2486 * due to the bad i386 page protection. But it's valid
2487 * for other architectures too.
2488 *
2489 * Note that if write_access is true, we either now have
2490 * an exclusive copy of the page, or this is a shared mapping,
2491 * so we can make it writable and dirty to avoid having to
2492 * handle that later.
2493 */
2494 /* Only go through if we didn't race with anybody else... */
2495 if (likely(pte_same(*page_table, orig_pte))) {
2496 flush_icache_page(vma, page);
2497 entry = mk_pte(page, vma->vm_page_prot);
2498 if (flags & FAULT_FLAG_WRITE)
2499 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2500 set_pte_at(mm, address, page_table, entry);
2501 if (anon) {
2502 inc_mm_counter(mm, anon_rss);
2503 lru_cache_add_active(page);
2504 page_add_new_anon_rmap(page, vma, address);
2505 } else {
2506 inc_mm_counter(mm, file_rss);
2507 page_add_file_rmap(page);
2508 if (flags & FAULT_FLAG_WRITE) {
2509 dirty_page = page;
2510 get_page(dirty_page);
2511 }
2512 }
2513
2514 /* no need to invalidate: a not-present page won't be cached */
2515 update_mmu_cache(vma, address, entry);
2516 } else {
2517 mem_cgroup_uncharge_page(page);
2518 if (anon)
2519 page_cache_release(page);
2520 else
2521 anon = 1; /* no anon but release faulted_page */
2522 }
2523
2524 pte_unmap_unlock(page_table, ptl);
2525
2526 out:
2527 unlock_page(vmf.page);
2528 out_unlocked:
2529 if (anon)
2530 page_cache_release(vmf.page);
2531 else if (dirty_page) {
2532 if (vma->vm_file)
2533 file_update_time(vma->vm_file);
2534
2535 set_page_dirty_balance(dirty_page, page_mkwrite);
2536 put_page(dirty_page);
2537 }
2538
2539 return ret;
2540 }
2541
2542 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2543 unsigned long address, pte_t *page_table, pmd_t *pmd,
2544 int write_access, pte_t orig_pte)
2545 {
2546 pgoff_t pgoff = (((address & PAGE_MASK)
2547 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2548 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2549
2550 pte_unmap(page_table);
2551 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2552 }
2553
2554 /*
2555 * Fault of a previously existing named mapping. Repopulate the pte
2556 * from the encoded file_pte if possible. This enables swappable
2557 * nonlinear vmas.
2558 *
2559 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2560 * but allow concurrent faults), and pte mapped but not yet locked.
2561 * We return with mmap_sem still held, but pte unmapped and unlocked.
2562 */
2563 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2564 unsigned long address, pte_t *page_table, pmd_t *pmd,
2565 int write_access, pte_t orig_pte)
2566 {
2567 unsigned int flags = FAULT_FLAG_NONLINEAR |
2568 (write_access ? FAULT_FLAG_WRITE : 0);
2569 pgoff_t pgoff;
2570
2571 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2572 return 0;
2573
2574 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2575 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2576 /*
2577 * Page table corrupted: show pte and kill process.
2578 */
2579 print_bad_pte(vma, orig_pte, address);
2580 return VM_FAULT_OOM;
2581 }
2582
2583 pgoff = pte_to_pgoff(orig_pte);
2584 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2585 }
2586
2587 /*
2588 * These routines also need to handle stuff like marking pages dirty
2589 * and/or accessed for architectures that don't do it in hardware (most
2590 * RISC architectures). The early dirtying is also good on the i386.
2591 *
2592 * There is also a hook called "update_mmu_cache()" that architectures
2593 * with external mmu caches can use to update those (ie the Sparc or
2594 * PowerPC hashed page tables that act as extended TLBs).
2595 *
2596 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2597 * but allow concurrent faults), and pte mapped but not yet locked.
2598 * We return with mmap_sem still held, but pte unmapped and unlocked.
2599 */
2600 static inline int handle_pte_fault(struct mm_struct *mm,
2601 struct vm_area_struct *vma, unsigned long address,
2602 pte_t *pte, pmd_t *pmd, int write_access)
2603 {
2604 pte_t entry;
2605 spinlock_t *ptl;
2606
2607 entry = *pte;
2608 if (!pte_present(entry)) {
2609 if (pte_none(entry)) {
2610 if (vma->vm_ops) {
2611 if (likely(vma->vm_ops->fault))
2612 return do_linear_fault(mm, vma, address,
2613 pte, pmd, write_access, entry);
2614 }
2615 return do_anonymous_page(mm, vma, address,
2616 pte, pmd, write_access);
2617 }
2618 if (pte_file(entry))
2619 return do_nonlinear_fault(mm, vma, address,
2620 pte, pmd, write_access, entry);
2621 return do_swap_page(mm, vma, address,
2622 pte, pmd, write_access, entry);
2623 }
2624
2625 ptl = pte_lockptr(mm, pmd);
2626 spin_lock(ptl);
2627 if (unlikely(!pte_same(*pte, entry)))
2628 goto unlock;
2629 if (write_access) {
2630 if (!pte_write(entry))
2631 return do_wp_page(mm, vma, address,
2632 pte, pmd, ptl, entry);
2633 entry = pte_mkdirty(entry);
2634 }
2635 entry = pte_mkyoung(entry);
2636 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2637 update_mmu_cache(vma, address, entry);
2638 } else {
2639 /*
2640 * This is needed only for protection faults but the arch code
2641 * is not yet telling us if this is a protection fault or not.
2642 * This still avoids useless tlb flushes for .text page faults
2643 * with threads.
2644 */
2645 if (write_access)
2646 flush_tlb_page(vma, address);
2647 }
2648 unlock:
2649 pte_unmap_unlock(pte, ptl);
2650 return 0;
2651 }
2652
2653 /*
2654 * By the time we get here, we already hold the mm semaphore
2655 */
2656 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2657 unsigned long address, int write_access)
2658 {
2659 pgd_t *pgd;
2660 pud_t *pud;
2661 pmd_t *pmd;
2662 pte_t *pte;
2663
2664 __set_current_state(TASK_RUNNING);
2665
2666 count_vm_event(PGFAULT);
2667
2668 if (unlikely(is_vm_hugetlb_page(vma)))
2669 return hugetlb_fault(mm, vma, address, write_access);
2670
2671 pgd = pgd_offset(mm, address);
2672 pud = pud_alloc(mm, pgd, address);
2673 if (!pud)
2674 return VM_FAULT_OOM;
2675 pmd = pmd_alloc(mm, pud, address);
2676 if (!pmd)
2677 return VM_FAULT_OOM;
2678 pte = pte_alloc_map(mm, pmd, address);
2679 if (!pte)
2680 return VM_FAULT_OOM;
2681
2682 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2683 }
2684
2685 #ifndef __PAGETABLE_PUD_FOLDED
2686 /*
2687 * Allocate page upper directory.
2688 * We've already handled the fast-path in-line.
2689 */
2690 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2691 {
2692 pud_t *new = pud_alloc_one(mm, address);
2693 if (!new)
2694 return -ENOMEM;
2695
2696 smp_wmb(); /* See comment in __pte_alloc */
2697
2698 spin_lock(&mm->page_table_lock);
2699 if (pgd_present(*pgd)) /* Another has populated it */
2700 pud_free(mm, new);
2701 else
2702 pgd_populate(mm, pgd, new);
2703 spin_unlock(&mm->page_table_lock);
2704 return 0;
2705 }
2706 #endif /* __PAGETABLE_PUD_FOLDED */
2707
2708 #ifndef __PAGETABLE_PMD_FOLDED
2709 /*
2710 * Allocate page middle directory.
2711 * We've already handled the fast-path in-line.
2712 */
2713 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2714 {
2715 pmd_t *new = pmd_alloc_one(mm, address);
2716 if (!new)
2717 return -ENOMEM;
2718
2719 smp_wmb(); /* See comment in __pte_alloc */
2720
2721 spin_lock(&mm->page_table_lock);
2722 #ifndef __ARCH_HAS_4LEVEL_HACK
2723 if (pud_present(*pud)) /* Another has populated it */
2724 pmd_free(mm, new);
2725 else
2726 pud_populate(mm, pud, new);
2727 #else
2728 if (pgd_present(*pud)) /* Another has populated it */
2729 pmd_free(mm, new);
2730 else
2731 pgd_populate(mm, pud, new);
2732 #endif /* __ARCH_HAS_4LEVEL_HACK */
2733 spin_unlock(&mm->page_table_lock);
2734 return 0;
2735 }
2736 #endif /* __PAGETABLE_PMD_FOLDED */
2737
2738 int make_pages_present(unsigned long addr, unsigned long end)
2739 {
2740 int ret, len, write;
2741 struct vm_area_struct * vma;
2742
2743 vma = find_vma(current->mm, addr);
2744 if (!vma)
2745 return -1;
2746 write = (vma->vm_flags & VM_WRITE) != 0;
2747 BUG_ON(addr >= end);
2748 BUG_ON(end > vma->vm_end);
2749 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2750 ret = get_user_pages(current, current->mm, addr,
2751 len, write, 0, NULL, NULL);
2752 if (ret < 0)
2753 return ret;
2754 return ret == len ? 0 : -1;
2755 }
2756
2757 #if !defined(__HAVE_ARCH_GATE_AREA)
2758
2759 #if defined(AT_SYSINFO_EHDR)
2760 static struct vm_area_struct gate_vma;
2761
2762 static int __init gate_vma_init(void)
2763 {
2764 gate_vma.vm_mm = NULL;
2765 gate_vma.vm_start = FIXADDR_USER_START;
2766 gate_vma.vm_end = FIXADDR_USER_END;
2767 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2768 gate_vma.vm_page_prot = __P101;
2769 /*
2770 * Make sure the vDSO gets into every core dump.
2771 * Dumping its contents makes post-mortem fully interpretable later
2772 * without matching up the same kernel and hardware config to see
2773 * what PC values meant.
2774 */
2775 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2776 return 0;
2777 }
2778 __initcall(gate_vma_init);
2779 #endif
2780
2781 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2782 {
2783 #ifdef AT_SYSINFO_EHDR
2784 return &gate_vma;
2785 #else
2786 return NULL;
2787 #endif
2788 }
2789
2790 int in_gate_area_no_task(unsigned long addr)
2791 {
2792 #ifdef AT_SYSINFO_EHDR
2793 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2794 return 1;
2795 #endif
2796 return 0;
2797 }
2798
2799 #endif /* __HAVE_ARCH_GATE_AREA */
2800
2801 #ifdef CONFIG_HAVE_IOREMAP_PROT
2802 static resource_size_t follow_phys(struct vm_area_struct *vma,
2803 unsigned long address, unsigned int flags,
2804 unsigned long *prot)
2805 {
2806 pgd_t *pgd;
2807 pud_t *pud;
2808 pmd_t *pmd;
2809 pte_t *ptep, pte;
2810 spinlock_t *ptl;
2811 resource_size_t phys_addr = 0;
2812 struct mm_struct *mm = vma->vm_mm;
2813
2814 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2815
2816 pgd = pgd_offset(mm, address);
2817 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2818 goto no_page_table;
2819
2820 pud = pud_offset(pgd, address);
2821 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2822 goto no_page_table;
2823
2824 pmd = pmd_offset(pud, address);
2825 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2826 goto no_page_table;
2827
2828 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2829 if (pmd_huge(*pmd))
2830 goto no_page_table;
2831
2832 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2833 if (!ptep)
2834 goto out;
2835
2836 pte = *ptep;
2837 if (!pte_present(pte))
2838 goto unlock;
2839 if ((flags & FOLL_WRITE) && !pte_write(pte))
2840 goto unlock;
2841 phys_addr = pte_pfn(pte);
2842 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2843
2844 *prot = pgprot_val(pte_pgprot(pte));
2845
2846 unlock:
2847 pte_unmap_unlock(ptep, ptl);
2848 out:
2849 return phys_addr;
2850 no_page_table:
2851 return 0;
2852 }
2853
2854 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2855 void *buf, int len, int write)
2856 {
2857 resource_size_t phys_addr;
2858 unsigned long prot = 0;
2859 void *maddr;
2860 int offset = addr & (PAGE_SIZE-1);
2861
2862 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2863 return -EINVAL;
2864
2865 phys_addr = follow_phys(vma, addr, write, &prot);
2866
2867 if (!phys_addr)
2868 return -EINVAL;
2869
2870 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2871 if (write)
2872 memcpy_toio(maddr + offset, buf, len);
2873 else
2874 memcpy_fromio(buf, maddr + offset, len);
2875 iounmap(maddr);
2876
2877 return len;
2878 }
2879 #endif
2880
2881 /*
2882 * Access another process' address space.
2883 * Source/target buffer must be kernel space,
2884 * Do not walk the page table directly, use get_user_pages
2885 */
2886 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2887 {
2888 struct mm_struct *mm;
2889 struct vm_area_struct *vma;
2890 void *old_buf = buf;
2891
2892 mm = get_task_mm(tsk);
2893 if (!mm)
2894 return 0;
2895
2896 down_read(&mm->mmap_sem);
2897 /* ignore errors, just check how much was successfully transferred */
2898 while (len) {
2899 int bytes, ret, offset;
2900 void *maddr;
2901 struct page *page = NULL;
2902
2903 ret = get_user_pages(tsk, mm, addr, 1,
2904 write, 1, &page, &vma);
2905 if (ret <= 0) {
2906 /*
2907 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2908 * we can access using slightly different code.
2909 */
2910 #ifdef CONFIG_HAVE_IOREMAP_PROT
2911 vma = find_vma(mm, addr);
2912 if (!vma)
2913 break;
2914 if (vma->vm_ops && vma->vm_ops->access)
2915 ret = vma->vm_ops->access(vma, addr, buf,
2916 len, write);
2917 if (ret <= 0)
2918 #endif
2919 break;
2920 bytes = ret;
2921 } else {
2922 bytes = len;
2923 offset = addr & (PAGE_SIZE-1);
2924 if (bytes > PAGE_SIZE-offset)
2925 bytes = PAGE_SIZE-offset;
2926
2927 maddr = kmap(page);
2928 if (write) {
2929 copy_to_user_page(vma, page, addr,
2930 maddr + offset, buf, bytes);
2931 set_page_dirty_lock(page);
2932 } else {
2933 copy_from_user_page(vma, page, addr,
2934 buf, maddr + offset, bytes);
2935 }
2936 kunmap(page);
2937 page_cache_release(page);
2938 }
2939 len -= bytes;
2940 buf += bytes;
2941 addr += bytes;
2942 }
2943 up_read(&mm->mmap_sem);
2944 mmput(mm);
2945
2946 return buf - old_buf;
2947 }
2948
2949 /*
2950 * Print the name of a VMA.
2951 */
2952 void print_vma_addr(char *prefix, unsigned long ip)
2953 {
2954 struct mm_struct *mm = current->mm;
2955 struct vm_area_struct *vma;
2956
2957 /*
2958 * Do not print if we are in atomic
2959 * contexts (in exception stacks, etc.):
2960 */
2961 if (preempt_count())
2962 return;
2963
2964 down_read(&mm->mmap_sem);
2965 vma = find_vma(mm, ip);
2966 if (vma && vma->vm_file) {
2967 struct file *f = vma->vm_file;
2968 char *buf = (char *)__get_free_page(GFP_KERNEL);
2969 if (buf) {
2970 char *p, *s;
2971
2972 p = d_path(&f->f_path, buf, PAGE_SIZE);
2973 if (IS_ERR(p))
2974 p = "?";
2975 s = strrchr(p, '/');
2976 if (s)
2977 p = s+1;
2978 printk("%s%s[%lx+%lx]", prefix, p,
2979 vma->vm_start,
2980 vma->vm_end - vma->vm_start);
2981 free_page((unsigned long)buf);
2982 }
2983 }
2984 up_read(&current->mm->mmap_sem);
2985 }
This page took 0.096407 seconds and 6 git commands to generate.