x86 PAT: remove PFNMAP type on track_pfn_vma_new() error
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64
65 #include "internal.h"
66
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75
76 unsigned long num_physpages;
77 /*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84 void * high_memory;
85
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88
89 /*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 1;
98 #else
99 2;
100 #endif
101
102 static int __init disable_randmaps(char *s)
103 {
104 randomize_va_space = 0;
105 return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108
109
110 /*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120 }
121
122 void pud_clear_bad(pud_t *pud)
123 {
124 pud_ERROR(*pud);
125 pud_clear(pud);
126 }
127
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132 }
133
134 /*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 pgtable_t token = pmd_pgtable(*pmd);
141 pmd_clear(pmd);
142 pte_free_tlb(tlb, token);
143 tlb->mm->nr_ptes--;
144 }
145
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
149 {
150 pmd_t *pmd;
151 unsigned long next;
152 unsigned long start;
153
154 start = addr;
155 pmd = pmd_offset(pud, addr);
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
160 free_pte_range(tlb, pmd);
161 } while (pmd++, addr = next, addr != end);
162
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
170 }
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
177 }
178
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
182 {
183 pud_t *pud;
184 unsigned long next;
185 unsigned long start;
186
187 start = addr;
188 pud = pud_offset(pgd, addr);
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 } while (pud++, addr = next, addr != end);
195
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
203 }
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
210 }
211
212 /*
213 * This function frees user-level page tables of a process.
214 *
215 * Must be called with pagetable lock held.
216 */
217 void free_pgd_range(struct mmu_gather *tlb,
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
220 {
221 pgd_t *pgd;
222 unsigned long next;
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
250
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
268 pgd = pgd_offset(tlb->mm, addr);
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 } while (pgd++, addr = next, addr != end);
275 }
276
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 unsigned long floor, unsigned long ceiling)
279 {
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
290 if (is_vm_hugetlb_page(vma)) {
291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 floor, next? next->vm_start: ceiling);
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 && !is_vm_hugetlb_page(next)) {
299 vma = next;
300 next = vma->vm_next;
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
307 vma = next;
308 }
309 }
310
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 pgtable_t new = pte_alloc_one(mm, address);
314 if (!new)
315 return -ENOMEM;
316
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
332 spin_lock(&mm->page_table_lock);
333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
334 mm->nr_ptes++;
335 pmd_populate(mm, pmd, new);
336 new = NULL;
337 }
338 spin_unlock(&mm->page_table_lock);
339 if (new)
340 pte_free(mm, new);
341 return 0;
342 }
343
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
350 smp_wmb(); /* See comment in __pte_alloc */
351
352 spin_lock(&init_mm.page_table_lock);
353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
354 pmd_populate_kernel(&init_mm, pmd, new);
355 new = NULL;
356 }
357 spin_unlock(&init_mm.page_table_lock);
358 if (new)
359 pte_free_kernel(&init_mm, new);
360 return 0;
361 }
362
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369 }
370
371 /*
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
375 *
376 * The calling function must still handle the error.
377 */
378 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
379 pte_t pte, struct page *page)
380 {
381 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
382 pud_t *pud = pud_offset(pgd, addr);
383 pmd_t *pmd = pmd_offset(pud, addr);
384 struct address_space *mapping;
385 pgoff_t index;
386 static unsigned long resume;
387 static unsigned long nr_shown;
388 static unsigned long nr_unshown;
389
390 /*
391 * Allow a burst of 60 reports, then keep quiet for that minute;
392 * or allow a steady drip of one report per second.
393 */
394 if (nr_shown == 60) {
395 if (time_before(jiffies, resume)) {
396 nr_unshown++;
397 return;
398 }
399 if (nr_unshown) {
400 printk(KERN_ALERT
401 "BUG: Bad page map: %lu messages suppressed\n",
402 nr_unshown);
403 nr_unshown = 0;
404 }
405 nr_shown = 0;
406 }
407 if (nr_shown++ == 0)
408 resume = jiffies + 60 * HZ;
409
410 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
411 index = linear_page_index(vma, addr);
412
413 printk(KERN_ALERT
414 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
415 current->comm,
416 (long long)pte_val(pte), (long long)pmd_val(*pmd));
417 if (page) {
418 printk(KERN_ALERT
419 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
420 page, (void *)page->flags, page_count(page),
421 page_mapcount(page), page->mapping, page->index);
422 }
423 printk(KERN_ALERT
424 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
425 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
426 /*
427 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
428 */
429 if (vma->vm_ops)
430 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
431 (unsigned long)vma->vm_ops->fault);
432 if (vma->vm_file && vma->vm_file->f_op)
433 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
434 (unsigned long)vma->vm_file->f_op->mmap);
435 dump_stack();
436 add_taint(TAINT_BAD_PAGE);
437 }
438
439 static inline int is_cow_mapping(unsigned int flags)
440 {
441 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
442 }
443
444 /*
445 * vm_normal_page -- This function gets the "struct page" associated with a pte.
446 *
447 * "Special" mappings do not wish to be associated with a "struct page" (either
448 * it doesn't exist, or it exists but they don't want to touch it). In this
449 * case, NULL is returned here. "Normal" mappings do have a struct page.
450 *
451 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
452 * pte bit, in which case this function is trivial. Secondly, an architecture
453 * may not have a spare pte bit, which requires a more complicated scheme,
454 * described below.
455 *
456 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
457 * special mapping (even if there are underlying and valid "struct pages").
458 * COWed pages of a VM_PFNMAP are always normal.
459 *
460 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
461 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
462 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
463 * mapping will always honor the rule
464 *
465 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
466 *
467 * And for normal mappings this is false.
468 *
469 * This restricts such mappings to be a linear translation from virtual address
470 * to pfn. To get around this restriction, we allow arbitrary mappings so long
471 * as the vma is not a COW mapping; in that case, we know that all ptes are
472 * special (because none can have been COWed).
473 *
474 *
475 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
476 *
477 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
478 * page" backing, however the difference is that _all_ pages with a struct
479 * page (that is, those where pfn_valid is true) are refcounted and considered
480 * normal pages by the VM. The disadvantage is that pages are refcounted
481 * (which can be slower and simply not an option for some PFNMAP users). The
482 * advantage is that we don't have to follow the strict linearity rule of
483 * PFNMAP mappings in order to support COWable mappings.
484 *
485 */
486 #ifdef __HAVE_ARCH_PTE_SPECIAL
487 # define HAVE_PTE_SPECIAL 1
488 #else
489 # define HAVE_PTE_SPECIAL 0
490 #endif
491 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte)
493 {
494 unsigned long pfn = pte_pfn(pte);
495
496 if (HAVE_PTE_SPECIAL) {
497 if (likely(!pte_special(pte)))
498 goto check_pfn;
499 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
500 print_bad_pte(vma, addr, pte, NULL);
501 return NULL;
502 }
503
504 /* !HAVE_PTE_SPECIAL case follows: */
505
506 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
507 if (vma->vm_flags & VM_MIXEDMAP) {
508 if (!pfn_valid(pfn))
509 return NULL;
510 goto out;
511 } else {
512 unsigned long off;
513 off = (addr - vma->vm_start) >> PAGE_SHIFT;
514 if (pfn == vma->vm_pgoff + off)
515 return NULL;
516 if (!is_cow_mapping(vma->vm_flags))
517 return NULL;
518 }
519 }
520
521 check_pfn:
522 if (unlikely(pfn > highest_memmap_pfn)) {
523 print_bad_pte(vma, addr, pte, NULL);
524 return NULL;
525 }
526
527 /*
528 * NOTE! We still have PageReserved() pages in the page tables.
529 * eg. VDSO mappings can cause them to exist.
530 */
531 out:
532 return pfn_to_page(pfn);
533 }
534
535 /*
536 * copy one vm_area from one task to the other. Assumes the page tables
537 * already present in the new task to be cleared in the whole range
538 * covered by this vma.
539 */
540
541 static inline void
542 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
543 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
544 unsigned long addr, int *rss)
545 {
546 unsigned long vm_flags = vma->vm_flags;
547 pte_t pte = *src_pte;
548 struct page *page;
549
550 /* pte contains position in swap or file, so copy. */
551 if (unlikely(!pte_present(pte))) {
552 if (!pte_file(pte)) {
553 swp_entry_t entry = pte_to_swp_entry(pte);
554
555 swap_duplicate(entry);
556 /* make sure dst_mm is on swapoff's mmlist. */
557 if (unlikely(list_empty(&dst_mm->mmlist))) {
558 spin_lock(&mmlist_lock);
559 if (list_empty(&dst_mm->mmlist))
560 list_add(&dst_mm->mmlist,
561 &src_mm->mmlist);
562 spin_unlock(&mmlist_lock);
563 }
564 if (is_write_migration_entry(entry) &&
565 is_cow_mapping(vm_flags)) {
566 /*
567 * COW mappings require pages in both parent
568 * and child to be set to read.
569 */
570 make_migration_entry_read(&entry);
571 pte = swp_entry_to_pte(entry);
572 set_pte_at(src_mm, addr, src_pte, pte);
573 }
574 }
575 goto out_set_pte;
576 }
577
578 /*
579 * If it's a COW mapping, write protect it both
580 * in the parent and the child
581 */
582 if (is_cow_mapping(vm_flags)) {
583 ptep_set_wrprotect(src_mm, addr, src_pte);
584 pte = pte_wrprotect(pte);
585 }
586
587 /*
588 * If it's a shared mapping, mark it clean in
589 * the child
590 */
591 if (vm_flags & VM_SHARED)
592 pte = pte_mkclean(pte);
593 pte = pte_mkold(pte);
594
595 page = vm_normal_page(vma, addr, pte);
596 if (page) {
597 get_page(page);
598 page_dup_rmap(page, vma, addr);
599 rss[!!PageAnon(page)]++;
600 }
601
602 out_set_pte:
603 set_pte_at(dst_mm, addr, dst_pte, pte);
604 }
605
606 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
607 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
608 unsigned long addr, unsigned long end)
609 {
610 pte_t *src_pte, *dst_pte;
611 spinlock_t *src_ptl, *dst_ptl;
612 int progress = 0;
613 int rss[2];
614
615 again:
616 rss[1] = rss[0] = 0;
617 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
618 if (!dst_pte)
619 return -ENOMEM;
620 src_pte = pte_offset_map_nested(src_pmd, addr);
621 src_ptl = pte_lockptr(src_mm, src_pmd);
622 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
623 arch_enter_lazy_mmu_mode();
624
625 do {
626 /*
627 * We are holding two locks at this point - either of them
628 * could generate latencies in another task on another CPU.
629 */
630 if (progress >= 32) {
631 progress = 0;
632 if (need_resched() ||
633 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
634 break;
635 }
636 if (pte_none(*src_pte)) {
637 progress++;
638 continue;
639 }
640 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
641 progress += 8;
642 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
643
644 arch_leave_lazy_mmu_mode();
645 spin_unlock(src_ptl);
646 pte_unmap_nested(src_pte - 1);
647 add_mm_rss(dst_mm, rss[0], rss[1]);
648 pte_unmap_unlock(dst_pte - 1, dst_ptl);
649 cond_resched();
650 if (addr != end)
651 goto again;
652 return 0;
653 }
654
655 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
656 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
657 unsigned long addr, unsigned long end)
658 {
659 pmd_t *src_pmd, *dst_pmd;
660 unsigned long next;
661
662 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
663 if (!dst_pmd)
664 return -ENOMEM;
665 src_pmd = pmd_offset(src_pud, addr);
666 do {
667 next = pmd_addr_end(addr, end);
668 if (pmd_none_or_clear_bad(src_pmd))
669 continue;
670 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
671 vma, addr, next))
672 return -ENOMEM;
673 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
674 return 0;
675 }
676
677 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
678 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
679 unsigned long addr, unsigned long end)
680 {
681 pud_t *src_pud, *dst_pud;
682 unsigned long next;
683
684 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
685 if (!dst_pud)
686 return -ENOMEM;
687 src_pud = pud_offset(src_pgd, addr);
688 do {
689 next = pud_addr_end(addr, end);
690 if (pud_none_or_clear_bad(src_pud))
691 continue;
692 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
693 vma, addr, next))
694 return -ENOMEM;
695 } while (dst_pud++, src_pud++, addr = next, addr != end);
696 return 0;
697 }
698
699 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
700 struct vm_area_struct *vma)
701 {
702 pgd_t *src_pgd, *dst_pgd;
703 unsigned long next;
704 unsigned long addr = vma->vm_start;
705 unsigned long end = vma->vm_end;
706 int ret;
707
708 /*
709 * Don't copy ptes where a page fault will fill them correctly.
710 * Fork becomes much lighter when there are big shared or private
711 * readonly mappings. The tradeoff is that copy_page_range is more
712 * efficient than faulting.
713 */
714 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
715 if (!vma->anon_vma)
716 return 0;
717 }
718
719 if (is_vm_hugetlb_page(vma))
720 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
721
722 if (unlikely(is_pfn_mapping(vma))) {
723 /*
724 * We do not free on error cases below as remove_vma
725 * gets called on error from higher level routine
726 */
727 ret = track_pfn_vma_copy(vma);
728 if (ret)
729 return ret;
730 }
731
732 /*
733 * We need to invalidate the secondary MMU mappings only when
734 * there could be a permission downgrade on the ptes of the
735 * parent mm. And a permission downgrade will only happen if
736 * is_cow_mapping() returns true.
737 */
738 if (is_cow_mapping(vma->vm_flags))
739 mmu_notifier_invalidate_range_start(src_mm, addr, end);
740
741 ret = 0;
742 dst_pgd = pgd_offset(dst_mm, addr);
743 src_pgd = pgd_offset(src_mm, addr);
744 do {
745 next = pgd_addr_end(addr, end);
746 if (pgd_none_or_clear_bad(src_pgd))
747 continue;
748 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
749 vma, addr, next))) {
750 ret = -ENOMEM;
751 break;
752 }
753 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
754
755 if (is_cow_mapping(vma->vm_flags))
756 mmu_notifier_invalidate_range_end(src_mm,
757 vma->vm_start, end);
758 return ret;
759 }
760
761 static unsigned long zap_pte_range(struct mmu_gather *tlb,
762 struct vm_area_struct *vma, pmd_t *pmd,
763 unsigned long addr, unsigned long end,
764 long *zap_work, struct zap_details *details)
765 {
766 struct mm_struct *mm = tlb->mm;
767 pte_t *pte;
768 spinlock_t *ptl;
769 int file_rss = 0;
770 int anon_rss = 0;
771
772 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
773 arch_enter_lazy_mmu_mode();
774 do {
775 pte_t ptent = *pte;
776 if (pte_none(ptent)) {
777 (*zap_work)--;
778 continue;
779 }
780
781 (*zap_work) -= PAGE_SIZE;
782
783 if (pte_present(ptent)) {
784 struct page *page;
785
786 page = vm_normal_page(vma, addr, ptent);
787 if (unlikely(details) && page) {
788 /*
789 * unmap_shared_mapping_pages() wants to
790 * invalidate cache without truncating:
791 * unmap shared but keep private pages.
792 */
793 if (details->check_mapping &&
794 details->check_mapping != page->mapping)
795 continue;
796 /*
797 * Each page->index must be checked when
798 * invalidating or truncating nonlinear.
799 */
800 if (details->nonlinear_vma &&
801 (page->index < details->first_index ||
802 page->index > details->last_index))
803 continue;
804 }
805 ptent = ptep_get_and_clear_full(mm, addr, pte,
806 tlb->fullmm);
807 tlb_remove_tlb_entry(tlb, pte, addr);
808 if (unlikely(!page))
809 continue;
810 if (unlikely(details) && details->nonlinear_vma
811 && linear_page_index(details->nonlinear_vma,
812 addr) != page->index)
813 set_pte_at(mm, addr, pte,
814 pgoff_to_pte(page->index));
815 if (PageAnon(page))
816 anon_rss--;
817 else {
818 if (pte_dirty(ptent))
819 set_page_dirty(page);
820 if (pte_young(ptent) &&
821 likely(!VM_SequentialReadHint(vma)))
822 mark_page_accessed(page);
823 file_rss--;
824 }
825 page_remove_rmap(page);
826 if (unlikely(page_mapcount(page) < 0))
827 print_bad_pte(vma, addr, ptent, page);
828 tlb_remove_page(tlb, page);
829 continue;
830 }
831 /*
832 * If details->check_mapping, we leave swap entries;
833 * if details->nonlinear_vma, we leave file entries.
834 */
835 if (unlikely(details))
836 continue;
837 if (pte_file(ptent)) {
838 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
839 print_bad_pte(vma, addr, ptent, NULL);
840 } else if
841 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
842 print_bad_pte(vma, addr, ptent, NULL);
843 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
844 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
845
846 add_mm_rss(mm, file_rss, anon_rss);
847 arch_leave_lazy_mmu_mode();
848 pte_unmap_unlock(pte - 1, ptl);
849
850 return addr;
851 }
852
853 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
854 struct vm_area_struct *vma, pud_t *pud,
855 unsigned long addr, unsigned long end,
856 long *zap_work, struct zap_details *details)
857 {
858 pmd_t *pmd;
859 unsigned long next;
860
861 pmd = pmd_offset(pud, addr);
862 do {
863 next = pmd_addr_end(addr, end);
864 if (pmd_none_or_clear_bad(pmd)) {
865 (*zap_work)--;
866 continue;
867 }
868 next = zap_pte_range(tlb, vma, pmd, addr, next,
869 zap_work, details);
870 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
871
872 return addr;
873 }
874
875 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
876 struct vm_area_struct *vma, pgd_t *pgd,
877 unsigned long addr, unsigned long end,
878 long *zap_work, struct zap_details *details)
879 {
880 pud_t *pud;
881 unsigned long next;
882
883 pud = pud_offset(pgd, addr);
884 do {
885 next = pud_addr_end(addr, end);
886 if (pud_none_or_clear_bad(pud)) {
887 (*zap_work)--;
888 continue;
889 }
890 next = zap_pmd_range(tlb, vma, pud, addr, next,
891 zap_work, details);
892 } while (pud++, addr = next, (addr != end && *zap_work > 0));
893
894 return addr;
895 }
896
897 static unsigned long unmap_page_range(struct mmu_gather *tlb,
898 struct vm_area_struct *vma,
899 unsigned long addr, unsigned long end,
900 long *zap_work, struct zap_details *details)
901 {
902 pgd_t *pgd;
903 unsigned long next;
904
905 if (details && !details->check_mapping && !details->nonlinear_vma)
906 details = NULL;
907
908 BUG_ON(addr >= end);
909 tlb_start_vma(tlb, vma);
910 pgd = pgd_offset(vma->vm_mm, addr);
911 do {
912 next = pgd_addr_end(addr, end);
913 if (pgd_none_or_clear_bad(pgd)) {
914 (*zap_work)--;
915 continue;
916 }
917 next = zap_pud_range(tlb, vma, pgd, addr, next,
918 zap_work, details);
919 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
920 tlb_end_vma(tlb, vma);
921
922 return addr;
923 }
924
925 #ifdef CONFIG_PREEMPT
926 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
927 #else
928 /* No preempt: go for improved straight-line efficiency */
929 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
930 #endif
931
932 /**
933 * unmap_vmas - unmap a range of memory covered by a list of vma's
934 * @tlbp: address of the caller's struct mmu_gather
935 * @vma: the starting vma
936 * @start_addr: virtual address at which to start unmapping
937 * @end_addr: virtual address at which to end unmapping
938 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
939 * @details: details of nonlinear truncation or shared cache invalidation
940 *
941 * Returns the end address of the unmapping (restart addr if interrupted).
942 *
943 * Unmap all pages in the vma list.
944 *
945 * We aim to not hold locks for too long (for scheduling latency reasons).
946 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
947 * return the ending mmu_gather to the caller.
948 *
949 * Only addresses between `start' and `end' will be unmapped.
950 *
951 * The VMA list must be sorted in ascending virtual address order.
952 *
953 * unmap_vmas() assumes that the caller will flush the whole unmapped address
954 * range after unmap_vmas() returns. So the only responsibility here is to
955 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
956 * drops the lock and schedules.
957 */
958 unsigned long unmap_vmas(struct mmu_gather **tlbp,
959 struct vm_area_struct *vma, unsigned long start_addr,
960 unsigned long end_addr, unsigned long *nr_accounted,
961 struct zap_details *details)
962 {
963 long zap_work = ZAP_BLOCK_SIZE;
964 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
965 int tlb_start_valid = 0;
966 unsigned long start = start_addr;
967 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
968 int fullmm = (*tlbp)->fullmm;
969 struct mm_struct *mm = vma->vm_mm;
970
971 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
972 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
973 unsigned long end;
974
975 start = max(vma->vm_start, start_addr);
976 if (start >= vma->vm_end)
977 continue;
978 end = min(vma->vm_end, end_addr);
979 if (end <= vma->vm_start)
980 continue;
981
982 if (vma->vm_flags & VM_ACCOUNT)
983 *nr_accounted += (end - start) >> PAGE_SHIFT;
984
985 if (unlikely(is_pfn_mapping(vma)))
986 untrack_pfn_vma(vma, 0, 0);
987
988 while (start != end) {
989 if (!tlb_start_valid) {
990 tlb_start = start;
991 tlb_start_valid = 1;
992 }
993
994 if (unlikely(is_vm_hugetlb_page(vma))) {
995 /*
996 * It is undesirable to test vma->vm_file as it
997 * should be non-null for valid hugetlb area.
998 * However, vm_file will be NULL in the error
999 * cleanup path of do_mmap_pgoff. When
1000 * hugetlbfs ->mmap method fails,
1001 * do_mmap_pgoff() nullifies vma->vm_file
1002 * before calling this function to clean up.
1003 * Since no pte has actually been setup, it is
1004 * safe to do nothing in this case.
1005 */
1006 if (vma->vm_file) {
1007 unmap_hugepage_range(vma, start, end, NULL);
1008 zap_work -= (end - start) /
1009 pages_per_huge_page(hstate_vma(vma));
1010 }
1011
1012 start = end;
1013 } else
1014 start = unmap_page_range(*tlbp, vma,
1015 start, end, &zap_work, details);
1016
1017 if (zap_work > 0) {
1018 BUG_ON(start != end);
1019 break;
1020 }
1021
1022 tlb_finish_mmu(*tlbp, tlb_start, start);
1023
1024 if (need_resched() ||
1025 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1026 if (i_mmap_lock) {
1027 *tlbp = NULL;
1028 goto out;
1029 }
1030 cond_resched();
1031 }
1032
1033 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1034 tlb_start_valid = 0;
1035 zap_work = ZAP_BLOCK_SIZE;
1036 }
1037 }
1038 out:
1039 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1040 return start; /* which is now the end (or restart) address */
1041 }
1042
1043 /**
1044 * zap_page_range - remove user pages in a given range
1045 * @vma: vm_area_struct holding the applicable pages
1046 * @address: starting address of pages to zap
1047 * @size: number of bytes to zap
1048 * @details: details of nonlinear truncation or shared cache invalidation
1049 */
1050 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1051 unsigned long size, struct zap_details *details)
1052 {
1053 struct mm_struct *mm = vma->vm_mm;
1054 struct mmu_gather *tlb;
1055 unsigned long end = address + size;
1056 unsigned long nr_accounted = 0;
1057
1058 lru_add_drain();
1059 tlb = tlb_gather_mmu(mm, 0);
1060 update_hiwater_rss(mm);
1061 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1062 if (tlb)
1063 tlb_finish_mmu(tlb, address, end);
1064 return end;
1065 }
1066
1067 /**
1068 * zap_vma_ptes - remove ptes mapping the vma
1069 * @vma: vm_area_struct holding ptes to be zapped
1070 * @address: starting address of pages to zap
1071 * @size: number of bytes to zap
1072 *
1073 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1074 *
1075 * The entire address range must be fully contained within the vma.
1076 *
1077 * Returns 0 if successful.
1078 */
1079 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1080 unsigned long size)
1081 {
1082 if (address < vma->vm_start || address + size > vma->vm_end ||
1083 !(vma->vm_flags & VM_PFNMAP))
1084 return -1;
1085 zap_page_range(vma, address, size, NULL);
1086 return 0;
1087 }
1088 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1089
1090 /*
1091 * Do a quick page-table lookup for a single page.
1092 */
1093 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1094 unsigned int flags)
1095 {
1096 pgd_t *pgd;
1097 pud_t *pud;
1098 pmd_t *pmd;
1099 pte_t *ptep, pte;
1100 spinlock_t *ptl;
1101 struct page *page;
1102 struct mm_struct *mm = vma->vm_mm;
1103
1104 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1105 if (!IS_ERR(page)) {
1106 BUG_ON(flags & FOLL_GET);
1107 goto out;
1108 }
1109
1110 page = NULL;
1111 pgd = pgd_offset(mm, address);
1112 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1113 goto no_page_table;
1114
1115 pud = pud_offset(pgd, address);
1116 if (pud_none(*pud))
1117 goto no_page_table;
1118 if (pud_huge(*pud)) {
1119 BUG_ON(flags & FOLL_GET);
1120 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1121 goto out;
1122 }
1123 if (unlikely(pud_bad(*pud)))
1124 goto no_page_table;
1125
1126 pmd = pmd_offset(pud, address);
1127 if (pmd_none(*pmd))
1128 goto no_page_table;
1129 if (pmd_huge(*pmd)) {
1130 BUG_ON(flags & FOLL_GET);
1131 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1132 goto out;
1133 }
1134 if (unlikely(pmd_bad(*pmd)))
1135 goto no_page_table;
1136
1137 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1138
1139 pte = *ptep;
1140 if (!pte_present(pte))
1141 goto no_page;
1142 if ((flags & FOLL_WRITE) && !pte_write(pte))
1143 goto unlock;
1144 page = vm_normal_page(vma, address, pte);
1145 if (unlikely(!page))
1146 goto bad_page;
1147
1148 if (flags & FOLL_GET)
1149 get_page(page);
1150 if (flags & FOLL_TOUCH) {
1151 if ((flags & FOLL_WRITE) &&
1152 !pte_dirty(pte) && !PageDirty(page))
1153 set_page_dirty(page);
1154 mark_page_accessed(page);
1155 }
1156 unlock:
1157 pte_unmap_unlock(ptep, ptl);
1158 out:
1159 return page;
1160
1161 bad_page:
1162 pte_unmap_unlock(ptep, ptl);
1163 return ERR_PTR(-EFAULT);
1164
1165 no_page:
1166 pte_unmap_unlock(ptep, ptl);
1167 if (!pte_none(pte))
1168 return page;
1169 /* Fall through to ZERO_PAGE handling */
1170 no_page_table:
1171 /*
1172 * When core dumping an enormous anonymous area that nobody
1173 * has touched so far, we don't want to allocate page tables.
1174 */
1175 if (flags & FOLL_ANON) {
1176 page = ZERO_PAGE(0);
1177 if (flags & FOLL_GET)
1178 get_page(page);
1179 BUG_ON(flags & FOLL_WRITE);
1180 }
1181 return page;
1182 }
1183
1184 /* Can we do the FOLL_ANON optimization? */
1185 static inline int use_zero_page(struct vm_area_struct *vma)
1186 {
1187 /*
1188 * We don't want to optimize FOLL_ANON for make_pages_present()
1189 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1190 * we want to get the page from the page tables to make sure
1191 * that we serialize and update with any other user of that
1192 * mapping.
1193 */
1194 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1195 return 0;
1196 /*
1197 * And if we have a fault routine, it's not an anonymous region.
1198 */
1199 return !vma->vm_ops || !vma->vm_ops->fault;
1200 }
1201
1202
1203
1204 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1205 unsigned long start, int len, int flags,
1206 struct page **pages, struct vm_area_struct **vmas)
1207 {
1208 int i;
1209 unsigned int vm_flags = 0;
1210 int write = !!(flags & GUP_FLAGS_WRITE);
1211 int force = !!(flags & GUP_FLAGS_FORCE);
1212 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1213 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1214
1215 if (len <= 0)
1216 return 0;
1217 /*
1218 * Require read or write permissions.
1219 * If 'force' is set, we only require the "MAY" flags.
1220 */
1221 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1222 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1223 i = 0;
1224
1225 do {
1226 struct vm_area_struct *vma;
1227 unsigned int foll_flags;
1228
1229 vma = find_extend_vma(mm, start);
1230 if (!vma && in_gate_area(tsk, start)) {
1231 unsigned long pg = start & PAGE_MASK;
1232 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1233 pgd_t *pgd;
1234 pud_t *pud;
1235 pmd_t *pmd;
1236 pte_t *pte;
1237
1238 /* user gate pages are read-only */
1239 if (!ignore && write)
1240 return i ? : -EFAULT;
1241 if (pg > TASK_SIZE)
1242 pgd = pgd_offset_k(pg);
1243 else
1244 pgd = pgd_offset_gate(mm, pg);
1245 BUG_ON(pgd_none(*pgd));
1246 pud = pud_offset(pgd, pg);
1247 BUG_ON(pud_none(*pud));
1248 pmd = pmd_offset(pud, pg);
1249 if (pmd_none(*pmd))
1250 return i ? : -EFAULT;
1251 pte = pte_offset_map(pmd, pg);
1252 if (pte_none(*pte)) {
1253 pte_unmap(pte);
1254 return i ? : -EFAULT;
1255 }
1256 if (pages) {
1257 struct page *page = vm_normal_page(gate_vma, start, *pte);
1258 pages[i] = page;
1259 if (page)
1260 get_page(page);
1261 }
1262 pte_unmap(pte);
1263 if (vmas)
1264 vmas[i] = gate_vma;
1265 i++;
1266 start += PAGE_SIZE;
1267 len--;
1268 continue;
1269 }
1270
1271 if (!vma ||
1272 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1273 (!ignore && !(vm_flags & vma->vm_flags)))
1274 return i ? : -EFAULT;
1275
1276 if (is_vm_hugetlb_page(vma)) {
1277 i = follow_hugetlb_page(mm, vma, pages, vmas,
1278 &start, &len, i, write);
1279 continue;
1280 }
1281
1282 foll_flags = FOLL_TOUCH;
1283 if (pages)
1284 foll_flags |= FOLL_GET;
1285 if (!write && use_zero_page(vma))
1286 foll_flags |= FOLL_ANON;
1287
1288 do {
1289 struct page *page;
1290
1291 /*
1292 * If we have a pending SIGKILL, don't keep faulting
1293 * pages and potentially allocating memory, unless
1294 * current is handling munlock--e.g., on exit. In
1295 * that case, we are not allocating memory. Rather,
1296 * we're only unlocking already resident/mapped pages.
1297 */
1298 if (unlikely(!ignore_sigkill &&
1299 fatal_signal_pending(current)))
1300 return i ? i : -ERESTARTSYS;
1301
1302 if (write)
1303 foll_flags |= FOLL_WRITE;
1304
1305 cond_resched();
1306 while (!(page = follow_page(vma, start, foll_flags))) {
1307 int ret;
1308 ret = handle_mm_fault(mm, vma, start,
1309 foll_flags & FOLL_WRITE);
1310 if (ret & VM_FAULT_ERROR) {
1311 if (ret & VM_FAULT_OOM)
1312 return i ? i : -ENOMEM;
1313 else if (ret & VM_FAULT_SIGBUS)
1314 return i ? i : -EFAULT;
1315 BUG();
1316 }
1317 if (ret & VM_FAULT_MAJOR)
1318 tsk->maj_flt++;
1319 else
1320 tsk->min_flt++;
1321
1322 /*
1323 * The VM_FAULT_WRITE bit tells us that
1324 * do_wp_page has broken COW when necessary,
1325 * even if maybe_mkwrite decided not to set
1326 * pte_write. We can thus safely do subsequent
1327 * page lookups as if they were reads. But only
1328 * do so when looping for pte_write is futile:
1329 * in some cases userspace may also be wanting
1330 * to write to the gotten user page, which a
1331 * read fault here might prevent (a readonly
1332 * page might get reCOWed by userspace write).
1333 */
1334 if ((ret & VM_FAULT_WRITE) &&
1335 !(vma->vm_flags & VM_WRITE))
1336 foll_flags &= ~FOLL_WRITE;
1337
1338 cond_resched();
1339 }
1340 if (IS_ERR(page))
1341 return i ? i : PTR_ERR(page);
1342 if (pages) {
1343 pages[i] = page;
1344
1345 flush_anon_page(vma, page, start);
1346 flush_dcache_page(page);
1347 }
1348 if (vmas)
1349 vmas[i] = vma;
1350 i++;
1351 start += PAGE_SIZE;
1352 len--;
1353 } while (len && start < vma->vm_end);
1354 } while (len);
1355 return i;
1356 }
1357
1358 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1359 unsigned long start, int len, int write, int force,
1360 struct page **pages, struct vm_area_struct **vmas)
1361 {
1362 int flags = 0;
1363
1364 if (write)
1365 flags |= GUP_FLAGS_WRITE;
1366 if (force)
1367 flags |= GUP_FLAGS_FORCE;
1368
1369 return __get_user_pages(tsk, mm,
1370 start, len, flags,
1371 pages, vmas);
1372 }
1373
1374 EXPORT_SYMBOL(get_user_pages);
1375
1376 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1377 spinlock_t **ptl)
1378 {
1379 pgd_t * pgd = pgd_offset(mm, addr);
1380 pud_t * pud = pud_alloc(mm, pgd, addr);
1381 if (pud) {
1382 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1383 if (pmd)
1384 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1385 }
1386 return NULL;
1387 }
1388
1389 /*
1390 * This is the old fallback for page remapping.
1391 *
1392 * For historical reasons, it only allows reserved pages. Only
1393 * old drivers should use this, and they needed to mark their
1394 * pages reserved for the old functions anyway.
1395 */
1396 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1397 struct page *page, pgprot_t prot)
1398 {
1399 struct mm_struct *mm = vma->vm_mm;
1400 int retval;
1401 pte_t *pte;
1402 spinlock_t *ptl;
1403
1404 retval = -EINVAL;
1405 if (PageAnon(page))
1406 goto out;
1407 retval = -ENOMEM;
1408 flush_dcache_page(page);
1409 pte = get_locked_pte(mm, addr, &ptl);
1410 if (!pte)
1411 goto out;
1412 retval = -EBUSY;
1413 if (!pte_none(*pte))
1414 goto out_unlock;
1415
1416 /* Ok, finally just insert the thing.. */
1417 get_page(page);
1418 inc_mm_counter(mm, file_rss);
1419 page_add_file_rmap(page);
1420 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1421
1422 retval = 0;
1423 pte_unmap_unlock(pte, ptl);
1424 return retval;
1425 out_unlock:
1426 pte_unmap_unlock(pte, ptl);
1427 out:
1428 return retval;
1429 }
1430
1431 /**
1432 * vm_insert_page - insert single page into user vma
1433 * @vma: user vma to map to
1434 * @addr: target user address of this page
1435 * @page: source kernel page
1436 *
1437 * This allows drivers to insert individual pages they've allocated
1438 * into a user vma.
1439 *
1440 * The page has to be a nice clean _individual_ kernel allocation.
1441 * If you allocate a compound page, you need to have marked it as
1442 * such (__GFP_COMP), or manually just split the page up yourself
1443 * (see split_page()).
1444 *
1445 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1446 * took an arbitrary page protection parameter. This doesn't allow
1447 * that. Your vma protection will have to be set up correctly, which
1448 * means that if you want a shared writable mapping, you'd better
1449 * ask for a shared writable mapping!
1450 *
1451 * The page does not need to be reserved.
1452 */
1453 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1454 struct page *page)
1455 {
1456 if (addr < vma->vm_start || addr >= vma->vm_end)
1457 return -EFAULT;
1458 if (!page_count(page))
1459 return -EINVAL;
1460 vma->vm_flags |= VM_INSERTPAGE;
1461 return insert_page(vma, addr, page, vma->vm_page_prot);
1462 }
1463 EXPORT_SYMBOL(vm_insert_page);
1464
1465 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1466 unsigned long pfn, pgprot_t prot)
1467 {
1468 struct mm_struct *mm = vma->vm_mm;
1469 int retval;
1470 pte_t *pte, entry;
1471 spinlock_t *ptl;
1472
1473 retval = -ENOMEM;
1474 pte = get_locked_pte(mm, addr, &ptl);
1475 if (!pte)
1476 goto out;
1477 retval = -EBUSY;
1478 if (!pte_none(*pte))
1479 goto out_unlock;
1480
1481 /* Ok, finally just insert the thing.. */
1482 entry = pte_mkspecial(pfn_pte(pfn, prot));
1483 set_pte_at(mm, addr, pte, entry);
1484 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1485
1486 retval = 0;
1487 out_unlock:
1488 pte_unmap_unlock(pte, ptl);
1489 out:
1490 return retval;
1491 }
1492
1493 /**
1494 * vm_insert_pfn - insert single pfn into user vma
1495 * @vma: user vma to map to
1496 * @addr: target user address of this page
1497 * @pfn: source kernel pfn
1498 *
1499 * Similar to vm_inert_page, this allows drivers to insert individual pages
1500 * they've allocated into a user vma. Same comments apply.
1501 *
1502 * This function should only be called from a vm_ops->fault handler, and
1503 * in that case the handler should return NULL.
1504 *
1505 * vma cannot be a COW mapping.
1506 *
1507 * As this is called only for pages that do not currently exist, we
1508 * do not need to flush old virtual caches or the TLB.
1509 */
1510 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1511 unsigned long pfn)
1512 {
1513 int ret;
1514 /*
1515 * Technically, architectures with pte_special can avoid all these
1516 * restrictions (same for remap_pfn_range). However we would like
1517 * consistency in testing and feature parity among all, so we should
1518 * try to keep these invariants in place for everybody.
1519 */
1520 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1521 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1522 (VM_PFNMAP|VM_MIXEDMAP));
1523 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1524 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1525
1526 if (addr < vma->vm_start || addr >= vma->vm_end)
1527 return -EFAULT;
1528 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1529 return -EINVAL;
1530
1531 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1532
1533 if (ret)
1534 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1535
1536 return ret;
1537 }
1538 EXPORT_SYMBOL(vm_insert_pfn);
1539
1540 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1541 unsigned long pfn)
1542 {
1543 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1544
1545 if (addr < vma->vm_start || addr >= vma->vm_end)
1546 return -EFAULT;
1547
1548 /*
1549 * If we don't have pte special, then we have to use the pfn_valid()
1550 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1551 * refcount the page if pfn_valid is true (hence insert_page rather
1552 * than insert_pfn).
1553 */
1554 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1555 struct page *page;
1556
1557 page = pfn_to_page(pfn);
1558 return insert_page(vma, addr, page, vma->vm_page_prot);
1559 }
1560 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1561 }
1562 EXPORT_SYMBOL(vm_insert_mixed);
1563
1564 /*
1565 * maps a range of physical memory into the requested pages. the old
1566 * mappings are removed. any references to nonexistent pages results
1567 * in null mappings (currently treated as "copy-on-access")
1568 */
1569 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1570 unsigned long addr, unsigned long end,
1571 unsigned long pfn, pgprot_t prot)
1572 {
1573 pte_t *pte;
1574 spinlock_t *ptl;
1575
1576 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1577 if (!pte)
1578 return -ENOMEM;
1579 arch_enter_lazy_mmu_mode();
1580 do {
1581 BUG_ON(!pte_none(*pte));
1582 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1583 pfn++;
1584 } while (pte++, addr += PAGE_SIZE, addr != end);
1585 arch_leave_lazy_mmu_mode();
1586 pte_unmap_unlock(pte - 1, ptl);
1587 return 0;
1588 }
1589
1590 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1591 unsigned long addr, unsigned long end,
1592 unsigned long pfn, pgprot_t prot)
1593 {
1594 pmd_t *pmd;
1595 unsigned long next;
1596
1597 pfn -= addr >> PAGE_SHIFT;
1598 pmd = pmd_alloc(mm, pud, addr);
1599 if (!pmd)
1600 return -ENOMEM;
1601 do {
1602 next = pmd_addr_end(addr, end);
1603 if (remap_pte_range(mm, pmd, addr, next,
1604 pfn + (addr >> PAGE_SHIFT), prot))
1605 return -ENOMEM;
1606 } while (pmd++, addr = next, addr != end);
1607 return 0;
1608 }
1609
1610 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1611 unsigned long addr, unsigned long end,
1612 unsigned long pfn, pgprot_t prot)
1613 {
1614 pud_t *pud;
1615 unsigned long next;
1616
1617 pfn -= addr >> PAGE_SHIFT;
1618 pud = pud_alloc(mm, pgd, addr);
1619 if (!pud)
1620 return -ENOMEM;
1621 do {
1622 next = pud_addr_end(addr, end);
1623 if (remap_pmd_range(mm, pud, addr, next,
1624 pfn + (addr >> PAGE_SHIFT), prot))
1625 return -ENOMEM;
1626 } while (pud++, addr = next, addr != end);
1627 return 0;
1628 }
1629
1630 /**
1631 * remap_pfn_range - remap kernel memory to userspace
1632 * @vma: user vma to map to
1633 * @addr: target user address to start at
1634 * @pfn: physical address of kernel memory
1635 * @size: size of map area
1636 * @prot: page protection flags for this mapping
1637 *
1638 * Note: this is only safe if the mm semaphore is held when called.
1639 */
1640 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1641 unsigned long pfn, unsigned long size, pgprot_t prot)
1642 {
1643 pgd_t *pgd;
1644 unsigned long next;
1645 unsigned long end = addr + PAGE_ALIGN(size);
1646 struct mm_struct *mm = vma->vm_mm;
1647 int err;
1648
1649 /*
1650 * Physically remapped pages are special. Tell the
1651 * rest of the world about it:
1652 * VM_IO tells people not to look at these pages
1653 * (accesses can have side effects).
1654 * VM_RESERVED is specified all over the place, because
1655 * in 2.4 it kept swapout's vma scan off this vma; but
1656 * in 2.6 the LRU scan won't even find its pages, so this
1657 * flag means no more than count its pages in reserved_vm,
1658 * and omit it from core dump, even when VM_IO turned off.
1659 * VM_PFNMAP tells the core MM that the base pages are just
1660 * raw PFN mappings, and do not have a "struct page" associated
1661 * with them.
1662 *
1663 * There's a horrible special case to handle copy-on-write
1664 * behaviour that some programs depend on. We mark the "original"
1665 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1666 */
1667 if (addr == vma->vm_start && end == vma->vm_end)
1668 vma->vm_pgoff = pfn;
1669 else if (is_cow_mapping(vma->vm_flags))
1670 return -EINVAL;
1671
1672 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1673
1674 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1675 if (err) {
1676 /*
1677 * To indicate that track_pfn related cleanup is not
1678 * needed from higher level routine calling unmap_vmas
1679 */
1680 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1681 return -EINVAL;
1682 }
1683
1684 BUG_ON(addr >= end);
1685 pfn -= addr >> PAGE_SHIFT;
1686 pgd = pgd_offset(mm, addr);
1687 flush_cache_range(vma, addr, end);
1688 do {
1689 next = pgd_addr_end(addr, end);
1690 err = remap_pud_range(mm, pgd, addr, next,
1691 pfn + (addr >> PAGE_SHIFT), prot);
1692 if (err)
1693 break;
1694 } while (pgd++, addr = next, addr != end);
1695
1696 if (err)
1697 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1698
1699 return err;
1700 }
1701 EXPORT_SYMBOL(remap_pfn_range);
1702
1703 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1704 unsigned long addr, unsigned long end,
1705 pte_fn_t fn, void *data)
1706 {
1707 pte_t *pte;
1708 int err;
1709 pgtable_t token;
1710 spinlock_t *uninitialized_var(ptl);
1711
1712 pte = (mm == &init_mm) ?
1713 pte_alloc_kernel(pmd, addr) :
1714 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1715 if (!pte)
1716 return -ENOMEM;
1717
1718 BUG_ON(pmd_huge(*pmd));
1719
1720 arch_enter_lazy_mmu_mode();
1721
1722 token = pmd_pgtable(*pmd);
1723
1724 do {
1725 err = fn(pte, token, addr, data);
1726 if (err)
1727 break;
1728 } while (pte++, addr += PAGE_SIZE, addr != end);
1729
1730 arch_leave_lazy_mmu_mode();
1731
1732 if (mm != &init_mm)
1733 pte_unmap_unlock(pte-1, ptl);
1734 return err;
1735 }
1736
1737 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1738 unsigned long addr, unsigned long end,
1739 pte_fn_t fn, void *data)
1740 {
1741 pmd_t *pmd;
1742 unsigned long next;
1743 int err;
1744
1745 BUG_ON(pud_huge(*pud));
1746
1747 pmd = pmd_alloc(mm, pud, addr);
1748 if (!pmd)
1749 return -ENOMEM;
1750 do {
1751 next = pmd_addr_end(addr, end);
1752 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1753 if (err)
1754 break;
1755 } while (pmd++, addr = next, addr != end);
1756 return err;
1757 }
1758
1759 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1760 unsigned long addr, unsigned long end,
1761 pte_fn_t fn, void *data)
1762 {
1763 pud_t *pud;
1764 unsigned long next;
1765 int err;
1766
1767 pud = pud_alloc(mm, pgd, addr);
1768 if (!pud)
1769 return -ENOMEM;
1770 do {
1771 next = pud_addr_end(addr, end);
1772 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1773 if (err)
1774 break;
1775 } while (pud++, addr = next, addr != end);
1776 return err;
1777 }
1778
1779 /*
1780 * Scan a region of virtual memory, filling in page tables as necessary
1781 * and calling a provided function on each leaf page table.
1782 */
1783 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1784 unsigned long size, pte_fn_t fn, void *data)
1785 {
1786 pgd_t *pgd;
1787 unsigned long next;
1788 unsigned long start = addr, end = addr + size;
1789 int err;
1790
1791 BUG_ON(addr >= end);
1792 mmu_notifier_invalidate_range_start(mm, start, end);
1793 pgd = pgd_offset(mm, addr);
1794 do {
1795 next = pgd_addr_end(addr, end);
1796 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1797 if (err)
1798 break;
1799 } while (pgd++, addr = next, addr != end);
1800 mmu_notifier_invalidate_range_end(mm, start, end);
1801 return err;
1802 }
1803 EXPORT_SYMBOL_GPL(apply_to_page_range);
1804
1805 /*
1806 * handle_pte_fault chooses page fault handler according to an entry
1807 * which was read non-atomically. Before making any commitment, on
1808 * those architectures or configurations (e.g. i386 with PAE) which
1809 * might give a mix of unmatched parts, do_swap_page and do_file_page
1810 * must check under lock before unmapping the pte and proceeding
1811 * (but do_wp_page is only called after already making such a check;
1812 * and do_anonymous_page and do_no_page can safely check later on).
1813 */
1814 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1815 pte_t *page_table, pte_t orig_pte)
1816 {
1817 int same = 1;
1818 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1819 if (sizeof(pte_t) > sizeof(unsigned long)) {
1820 spinlock_t *ptl = pte_lockptr(mm, pmd);
1821 spin_lock(ptl);
1822 same = pte_same(*page_table, orig_pte);
1823 spin_unlock(ptl);
1824 }
1825 #endif
1826 pte_unmap(page_table);
1827 return same;
1828 }
1829
1830 /*
1831 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1832 * servicing faults for write access. In the normal case, do always want
1833 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1834 * that do not have writing enabled, when used by access_process_vm.
1835 */
1836 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1837 {
1838 if (likely(vma->vm_flags & VM_WRITE))
1839 pte = pte_mkwrite(pte);
1840 return pte;
1841 }
1842
1843 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1844 {
1845 /*
1846 * If the source page was a PFN mapping, we don't have
1847 * a "struct page" for it. We do a best-effort copy by
1848 * just copying from the original user address. If that
1849 * fails, we just zero-fill it. Live with it.
1850 */
1851 if (unlikely(!src)) {
1852 void *kaddr = kmap_atomic(dst, KM_USER0);
1853 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1854
1855 /*
1856 * This really shouldn't fail, because the page is there
1857 * in the page tables. But it might just be unreadable,
1858 * in which case we just give up and fill the result with
1859 * zeroes.
1860 */
1861 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1862 memset(kaddr, 0, PAGE_SIZE);
1863 kunmap_atomic(kaddr, KM_USER0);
1864 flush_dcache_page(dst);
1865 } else
1866 copy_user_highpage(dst, src, va, vma);
1867 }
1868
1869 /*
1870 * This routine handles present pages, when users try to write
1871 * to a shared page. It is done by copying the page to a new address
1872 * and decrementing the shared-page counter for the old page.
1873 *
1874 * Note that this routine assumes that the protection checks have been
1875 * done by the caller (the low-level page fault routine in most cases).
1876 * Thus we can safely just mark it writable once we've done any necessary
1877 * COW.
1878 *
1879 * We also mark the page dirty at this point even though the page will
1880 * change only once the write actually happens. This avoids a few races,
1881 * and potentially makes it more efficient.
1882 *
1883 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1884 * but allow concurrent faults), with pte both mapped and locked.
1885 * We return with mmap_sem still held, but pte unmapped and unlocked.
1886 */
1887 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1888 unsigned long address, pte_t *page_table, pmd_t *pmd,
1889 spinlock_t *ptl, pte_t orig_pte)
1890 {
1891 struct page *old_page, *new_page;
1892 pte_t entry;
1893 int reuse = 0, ret = 0;
1894 int page_mkwrite = 0;
1895 struct page *dirty_page = NULL;
1896
1897 old_page = vm_normal_page(vma, address, orig_pte);
1898 if (!old_page) {
1899 /*
1900 * VM_MIXEDMAP !pfn_valid() case
1901 *
1902 * We should not cow pages in a shared writeable mapping.
1903 * Just mark the pages writable as we can't do any dirty
1904 * accounting on raw pfn maps.
1905 */
1906 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1907 (VM_WRITE|VM_SHARED))
1908 goto reuse;
1909 goto gotten;
1910 }
1911
1912 /*
1913 * Take out anonymous pages first, anonymous shared vmas are
1914 * not dirty accountable.
1915 */
1916 if (PageAnon(old_page)) {
1917 if (!trylock_page(old_page)) {
1918 page_cache_get(old_page);
1919 pte_unmap_unlock(page_table, ptl);
1920 lock_page(old_page);
1921 page_table = pte_offset_map_lock(mm, pmd, address,
1922 &ptl);
1923 if (!pte_same(*page_table, orig_pte)) {
1924 unlock_page(old_page);
1925 page_cache_release(old_page);
1926 goto unlock;
1927 }
1928 page_cache_release(old_page);
1929 }
1930 reuse = reuse_swap_page(old_page);
1931 unlock_page(old_page);
1932 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1933 (VM_WRITE|VM_SHARED))) {
1934 /*
1935 * Only catch write-faults on shared writable pages,
1936 * read-only shared pages can get COWed by
1937 * get_user_pages(.write=1, .force=1).
1938 */
1939 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1940 /*
1941 * Notify the address space that the page is about to
1942 * become writable so that it can prohibit this or wait
1943 * for the page to get into an appropriate state.
1944 *
1945 * We do this without the lock held, so that it can
1946 * sleep if it needs to.
1947 */
1948 page_cache_get(old_page);
1949 pte_unmap_unlock(page_table, ptl);
1950
1951 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1952 goto unwritable_page;
1953
1954 /*
1955 * Since we dropped the lock we need to revalidate
1956 * the PTE as someone else may have changed it. If
1957 * they did, we just return, as we can count on the
1958 * MMU to tell us if they didn't also make it writable.
1959 */
1960 page_table = pte_offset_map_lock(mm, pmd, address,
1961 &ptl);
1962 page_cache_release(old_page);
1963 if (!pte_same(*page_table, orig_pte))
1964 goto unlock;
1965
1966 page_mkwrite = 1;
1967 }
1968 dirty_page = old_page;
1969 get_page(dirty_page);
1970 reuse = 1;
1971 }
1972
1973 if (reuse) {
1974 reuse:
1975 flush_cache_page(vma, address, pte_pfn(orig_pte));
1976 entry = pte_mkyoung(orig_pte);
1977 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1978 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1979 update_mmu_cache(vma, address, entry);
1980 ret |= VM_FAULT_WRITE;
1981 goto unlock;
1982 }
1983
1984 /*
1985 * Ok, we need to copy. Oh, well..
1986 */
1987 page_cache_get(old_page);
1988 gotten:
1989 pte_unmap_unlock(page_table, ptl);
1990
1991 if (unlikely(anon_vma_prepare(vma)))
1992 goto oom;
1993 VM_BUG_ON(old_page == ZERO_PAGE(0));
1994 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1995 if (!new_page)
1996 goto oom;
1997 /*
1998 * Don't let another task, with possibly unlocked vma,
1999 * keep the mlocked page.
2000 */
2001 if (vma->vm_flags & VM_LOCKED) {
2002 lock_page(old_page); /* for LRU manipulation */
2003 clear_page_mlock(old_page);
2004 unlock_page(old_page);
2005 }
2006 cow_user_page(new_page, old_page, address, vma);
2007 __SetPageUptodate(new_page);
2008
2009 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2010 goto oom_free_new;
2011
2012 /*
2013 * Re-check the pte - we dropped the lock
2014 */
2015 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2016 if (likely(pte_same(*page_table, orig_pte))) {
2017 if (old_page) {
2018 if (!PageAnon(old_page)) {
2019 dec_mm_counter(mm, file_rss);
2020 inc_mm_counter(mm, anon_rss);
2021 }
2022 } else
2023 inc_mm_counter(mm, anon_rss);
2024 flush_cache_page(vma, address, pte_pfn(orig_pte));
2025 entry = mk_pte(new_page, vma->vm_page_prot);
2026 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2027 /*
2028 * Clear the pte entry and flush it first, before updating the
2029 * pte with the new entry. This will avoid a race condition
2030 * seen in the presence of one thread doing SMC and another
2031 * thread doing COW.
2032 */
2033 ptep_clear_flush_notify(vma, address, page_table);
2034 page_add_new_anon_rmap(new_page, vma, address);
2035 set_pte_at(mm, address, page_table, entry);
2036 update_mmu_cache(vma, address, entry);
2037 if (old_page) {
2038 /*
2039 * Only after switching the pte to the new page may
2040 * we remove the mapcount here. Otherwise another
2041 * process may come and find the rmap count decremented
2042 * before the pte is switched to the new page, and
2043 * "reuse" the old page writing into it while our pte
2044 * here still points into it and can be read by other
2045 * threads.
2046 *
2047 * The critical issue is to order this
2048 * page_remove_rmap with the ptp_clear_flush above.
2049 * Those stores are ordered by (if nothing else,)
2050 * the barrier present in the atomic_add_negative
2051 * in page_remove_rmap.
2052 *
2053 * Then the TLB flush in ptep_clear_flush ensures that
2054 * no process can access the old page before the
2055 * decremented mapcount is visible. And the old page
2056 * cannot be reused until after the decremented
2057 * mapcount is visible. So transitively, TLBs to
2058 * old page will be flushed before it can be reused.
2059 */
2060 page_remove_rmap(old_page);
2061 }
2062
2063 /* Free the old page.. */
2064 new_page = old_page;
2065 ret |= VM_FAULT_WRITE;
2066 } else
2067 mem_cgroup_uncharge_page(new_page);
2068
2069 if (new_page)
2070 page_cache_release(new_page);
2071 if (old_page)
2072 page_cache_release(old_page);
2073 unlock:
2074 pte_unmap_unlock(page_table, ptl);
2075 if (dirty_page) {
2076 if (vma->vm_file)
2077 file_update_time(vma->vm_file);
2078
2079 /*
2080 * Yes, Virginia, this is actually required to prevent a race
2081 * with clear_page_dirty_for_io() from clearing the page dirty
2082 * bit after it clear all dirty ptes, but before a racing
2083 * do_wp_page installs a dirty pte.
2084 *
2085 * do_no_page is protected similarly.
2086 */
2087 wait_on_page_locked(dirty_page);
2088 set_page_dirty_balance(dirty_page, page_mkwrite);
2089 put_page(dirty_page);
2090 }
2091 return ret;
2092 oom_free_new:
2093 page_cache_release(new_page);
2094 oom:
2095 if (old_page)
2096 page_cache_release(old_page);
2097 return VM_FAULT_OOM;
2098
2099 unwritable_page:
2100 page_cache_release(old_page);
2101 return VM_FAULT_SIGBUS;
2102 }
2103
2104 /*
2105 * Helper functions for unmap_mapping_range().
2106 *
2107 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2108 *
2109 * We have to restart searching the prio_tree whenever we drop the lock,
2110 * since the iterator is only valid while the lock is held, and anyway
2111 * a later vma might be split and reinserted earlier while lock dropped.
2112 *
2113 * The list of nonlinear vmas could be handled more efficiently, using
2114 * a placeholder, but handle it in the same way until a need is shown.
2115 * It is important to search the prio_tree before nonlinear list: a vma
2116 * may become nonlinear and be shifted from prio_tree to nonlinear list
2117 * while the lock is dropped; but never shifted from list to prio_tree.
2118 *
2119 * In order to make forward progress despite restarting the search,
2120 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2121 * quickly skip it next time around. Since the prio_tree search only
2122 * shows us those vmas affected by unmapping the range in question, we
2123 * can't efficiently keep all vmas in step with mapping->truncate_count:
2124 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2125 * mapping->truncate_count and vma->vm_truncate_count are protected by
2126 * i_mmap_lock.
2127 *
2128 * In order to make forward progress despite repeatedly restarting some
2129 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2130 * and restart from that address when we reach that vma again. It might
2131 * have been split or merged, shrunk or extended, but never shifted: so
2132 * restart_addr remains valid so long as it remains in the vma's range.
2133 * unmap_mapping_range forces truncate_count to leap over page-aligned
2134 * values so we can save vma's restart_addr in its truncate_count field.
2135 */
2136 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2137
2138 static void reset_vma_truncate_counts(struct address_space *mapping)
2139 {
2140 struct vm_area_struct *vma;
2141 struct prio_tree_iter iter;
2142
2143 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2144 vma->vm_truncate_count = 0;
2145 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2146 vma->vm_truncate_count = 0;
2147 }
2148
2149 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2150 unsigned long start_addr, unsigned long end_addr,
2151 struct zap_details *details)
2152 {
2153 unsigned long restart_addr;
2154 int need_break;
2155
2156 /*
2157 * files that support invalidating or truncating portions of the
2158 * file from under mmaped areas must have their ->fault function
2159 * return a locked page (and set VM_FAULT_LOCKED in the return).
2160 * This provides synchronisation against concurrent unmapping here.
2161 */
2162
2163 again:
2164 restart_addr = vma->vm_truncate_count;
2165 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2166 start_addr = restart_addr;
2167 if (start_addr >= end_addr) {
2168 /* Top of vma has been split off since last time */
2169 vma->vm_truncate_count = details->truncate_count;
2170 return 0;
2171 }
2172 }
2173
2174 restart_addr = zap_page_range(vma, start_addr,
2175 end_addr - start_addr, details);
2176 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2177
2178 if (restart_addr >= end_addr) {
2179 /* We have now completed this vma: mark it so */
2180 vma->vm_truncate_count = details->truncate_count;
2181 if (!need_break)
2182 return 0;
2183 } else {
2184 /* Note restart_addr in vma's truncate_count field */
2185 vma->vm_truncate_count = restart_addr;
2186 if (!need_break)
2187 goto again;
2188 }
2189
2190 spin_unlock(details->i_mmap_lock);
2191 cond_resched();
2192 spin_lock(details->i_mmap_lock);
2193 return -EINTR;
2194 }
2195
2196 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2197 struct zap_details *details)
2198 {
2199 struct vm_area_struct *vma;
2200 struct prio_tree_iter iter;
2201 pgoff_t vba, vea, zba, zea;
2202
2203 restart:
2204 vma_prio_tree_foreach(vma, &iter, root,
2205 details->first_index, details->last_index) {
2206 /* Skip quickly over those we have already dealt with */
2207 if (vma->vm_truncate_count == details->truncate_count)
2208 continue;
2209
2210 vba = vma->vm_pgoff;
2211 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2212 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2213 zba = details->first_index;
2214 if (zba < vba)
2215 zba = vba;
2216 zea = details->last_index;
2217 if (zea > vea)
2218 zea = vea;
2219
2220 if (unmap_mapping_range_vma(vma,
2221 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2222 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2223 details) < 0)
2224 goto restart;
2225 }
2226 }
2227
2228 static inline void unmap_mapping_range_list(struct list_head *head,
2229 struct zap_details *details)
2230 {
2231 struct vm_area_struct *vma;
2232
2233 /*
2234 * In nonlinear VMAs there is no correspondence between virtual address
2235 * offset and file offset. So we must perform an exhaustive search
2236 * across *all* the pages in each nonlinear VMA, not just the pages
2237 * whose virtual address lies outside the file truncation point.
2238 */
2239 restart:
2240 list_for_each_entry(vma, head, shared.vm_set.list) {
2241 /* Skip quickly over those we have already dealt with */
2242 if (vma->vm_truncate_count == details->truncate_count)
2243 continue;
2244 details->nonlinear_vma = vma;
2245 if (unmap_mapping_range_vma(vma, vma->vm_start,
2246 vma->vm_end, details) < 0)
2247 goto restart;
2248 }
2249 }
2250
2251 /**
2252 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2253 * @mapping: the address space containing mmaps to be unmapped.
2254 * @holebegin: byte in first page to unmap, relative to the start of
2255 * the underlying file. This will be rounded down to a PAGE_SIZE
2256 * boundary. Note that this is different from vmtruncate(), which
2257 * must keep the partial page. In contrast, we must get rid of
2258 * partial pages.
2259 * @holelen: size of prospective hole in bytes. This will be rounded
2260 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2261 * end of the file.
2262 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2263 * but 0 when invalidating pagecache, don't throw away private data.
2264 */
2265 void unmap_mapping_range(struct address_space *mapping,
2266 loff_t const holebegin, loff_t const holelen, int even_cows)
2267 {
2268 struct zap_details details;
2269 pgoff_t hba = holebegin >> PAGE_SHIFT;
2270 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2271
2272 /* Check for overflow. */
2273 if (sizeof(holelen) > sizeof(hlen)) {
2274 long long holeend =
2275 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2276 if (holeend & ~(long long)ULONG_MAX)
2277 hlen = ULONG_MAX - hba + 1;
2278 }
2279
2280 details.check_mapping = even_cows? NULL: mapping;
2281 details.nonlinear_vma = NULL;
2282 details.first_index = hba;
2283 details.last_index = hba + hlen - 1;
2284 if (details.last_index < details.first_index)
2285 details.last_index = ULONG_MAX;
2286 details.i_mmap_lock = &mapping->i_mmap_lock;
2287
2288 spin_lock(&mapping->i_mmap_lock);
2289
2290 /* Protect against endless unmapping loops */
2291 mapping->truncate_count++;
2292 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2293 if (mapping->truncate_count == 0)
2294 reset_vma_truncate_counts(mapping);
2295 mapping->truncate_count++;
2296 }
2297 details.truncate_count = mapping->truncate_count;
2298
2299 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2300 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2301 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2302 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2303 spin_unlock(&mapping->i_mmap_lock);
2304 }
2305 EXPORT_SYMBOL(unmap_mapping_range);
2306
2307 /**
2308 * vmtruncate - unmap mappings "freed" by truncate() syscall
2309 * @inode: inode of the file used
2310 * @offset: file offset to start truncating
2311 *
2312 * NOTE! We have to be ready to update the memory sharing
2313 * between the file and the memory map for a potential last
2314 * incomplete page. Ugly, but necessary.
2315 */
2316 int vmtruncate(struct inode * inode, loff_t offset)
2317 {
2318 if (inode->i_size < offset) {
2319 unsigned long limit;
2320
2321 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2322 if (limit != RLIM_INFINITY && offset > limit)
2323 goto out_sig;
2324 if (offset > inode->i_sb->s_maxbytes)
2325 goto out_big;
2326 i_size_write(inode, offset);
2327 } else {
2328 struct address_space *mapping = inode->i_mapping;
2329
2330 /*
2331 * truncation of in-use swapfiles is disallowed - it would
2332 * cause subsequent swapout to scribble on the now-freed
2333 * blocks.
2334 */
2335 if (IS_SWAPFILE(inode))
2336 return -ETXTBSY;
2337 i_size_write(inode, offset);
2338
2339 /*
2340 * unmap_mapping_range is called twice, first simply for
2341 * efficiency so that truncate_inode_pages does fewer
2342 * single-page unmaps. However after this first call, and
2343 * before truncate_inode_pages finishes, it is possible for
2344 * private pages to be COWed, which remain after
2345 * truncate_inode_pages finishes, hence the second
2346 * unmap_mapping_range call must be made for correctness.
2347 */
2348 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2349 truncate_inode_pages(mapping, offset);
2350 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2351 }
2352
2353 if (inode->i_op->truncate)
2354 inode->i_op->truncate(inode);
2355 return 0;
2356
2357 out_sig:
2358 send_sig(SIGXFSZ, current, 0);
2359 out_big:
2360 return -EFBIG;
2361 }
2362 EXPORT_SYMBOL(vmtruncate);
2363
2364 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2365 {
2366 struct address_space *mapping = inode->i_mapping;
2367
2368 /*
2369 * If the underlying filesystem is not going to provide
2370 * a way to truncate a range of blocks (punch a hole) -
2371 * we should return failure right now.
2372 */
2373 if (!inode->i_op->truncate_range)
2374 return -ENOSYS;
2375
2376 mutex_lock(&inode->i_mutex);
2377 down_write(&inode->i_alloc_sem);
2378 unmap_mapping_range(mapping, offset, (end - offset), 1);
2379 truncate_inode_pages_range(mapping, offset, end);
2380 unmap_mapping_range(mapping, offset, (end - offset), 1);
2381 inode->i_op->truncate_range(inode, offset, end);
2382 up_write(&inode->i_alloc_sem);
2383 mutex_unlock(&inode->i_mutex);
2384
2385 return 0;
2386 }
2387
2388 /*
2389 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2390 * but allow concurrent faults), and pte mapped but not yet locked.
2391 * We return with mmap_sem still held, but pte unmapped and unlocked.
2392 */
2393 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2394 unsigned long address, pte_t *page_table, pmd_t *pmd,
2395 int write_access, pte_t orig_pte)
2396 {
2397 spinlock_t *ptl;
2398 struct page *page;
2399 swp_entry_t entry;
2400 pte_t pte;
2401 struct mem_cgroup *ptr = NULL;
2402 int ret = 0;
2403
2404 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2405 goto out;
2406
2407 entry = pte_to_swp_entry(orig_pte);
2408 if (is_migration_entry(entry)) {
2409 migration_entry_wait(mm, pmd, address);
2410 goto out;
2411 }
2412 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2413 page = lookup_swap_cache(entry);
2414 if (!page) {
2415 grab_swap_token(); /* Contend for token _before_ read-in */
2416 page = swapin_readahead(entry,
2417 GFP_HIGHUSER_MOVABLE, vma, address);
2418 if (!page) {
2419 /*
2420 * Back out if somebody else faulted in this pte
2421 * while we released the pte lock.
2422 */
2423 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2424 if (likely(pte_same(*page_table, orig_pte)))
2425 ret = VM_FAULT_OOM;
2426 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2427 goto unlock;
2428 }
2429
2430 /* Had to read the page from swap area: Major fault */
2431 ret = VM_FAULT_MAJOR;
2432 count_vm_event(PGMAJFAULT);
2433 }
2434
2435 mark_page_accessed(page);
2436
2437 lock_page(page);
2438 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2439
2440 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2441 ret = VM_FAULT_OOM;
2442 unlock_page(page);
2443 goto out;
2444 }
2445
2446 /*
2447 * Back out if somebody else already faulted in this pte.
2448 */
2449 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2450 if (unlikely(!pte_same(*page_table, orig_pte)))
2451 goto out_nomap;
2452
2453 if (unlikely(!PageUptodate(page))) {
2454 ret = VM_FAULT_SIGBUS;
2455 goto out_nomap;
2456 }
2457
2458 /*
2459 * The page isn't present yet, go ahead with the fault.
2460 *
2461 * Be careful about the sequence of operations here.
2462 * To get its accounting right, reuse_swap_page() must be called
2463 * while the page is counted on swap but not yet in mapcount i.e.
2464 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2465 * must be called after the swap_free(), or it will never succeed.
2466 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2467 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2468 * in page->private. In this case, a record in swap_cgroup is silently
2469 * discarded at swap_free().
2470 */
2471
2472 inc_mm_counter(mm, anon_rss);
2473 pte = mk_pte(page, vma->vm_page_prot);
2474 if (write_access && reuse_swap_page(page)) {
2475 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2476 write_access = 0;
2477 }
2478 flush_icache_page(vma, page);
2479 set_pte_at(mm, address, page_table, pte);
2480 page_add_anon_rmap(page, vma, address);
2481 /* It's better to call commit-charge after rmap is established */
2482 mem_cgroup_commit_charge_swapin(page, ptr);
2483
2484 swap_free(entry);
2485 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2486 try_to_free_swap(page);
2487 unlock_page(page);
2488
2489 if (write_access) {
2490 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2491 if (ret & VM_FAULT_ERROR)
2492 ret &= VM_FAULT_ERROR;
2493 goto out;
2494 }
2495
2496 /* No need to invalidate - it was non-present before */
2497 update_mmu_cache(vma, address, pte);
2498 unlock:
2499 pte_unmap_unlock(page_table, ptl);
2500 out:
2501 return ret;
2502 out_nomap:
2503 mem_cgroup_cancel_charge_swapin(ptr);
2504 pte_unmap_unlock(page_table, ptl);
2505 unlock_page(page);
2506 page_cache_release(page);
2507 return ret;
2508 }
2509
2510 /*
2511 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2512 * but allow concurrent faults), and pte mapped but not yet locked.
2513 * We return with mmap_sem still held, but pte unmapped and unlocked.
2514 */
2515 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2516 unsigned long address, pte_t *page_table, pmd_t *pmd,
2517 int write_access)
2518 {
2519 struct page *page;
2520 spinlock_t *ptl;
2521 pte_t entry;
2522
2523 /* Allocate our own private page. */
2524 pte_unmap(page_table);
2525
2526 if (unlikely(anon_vma_prepare(vma)))
2527 goto oom;
2528 page = alloc_zeroed_user_highpage_movable(vma, address);
2529 if (!page)
2530 goto oom;
2531 __SetPageUptodate(page);
2532
2533 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2534 goto oom_free_page;
2535
2536 entry = mk_pte(page, vma->vm_page_prot);
2537 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2538
2539 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2540 if (!pte_none(*page_table))
2541 goto release;
2542 inc_mm_counter(mm, anon_rss);
2543 page_add_new_anon_rmap(page, vma, address);
2544 set_pte_at(mm, address, page_table, entry);
2545
2546 /* No need to invalidate - it was non-present before */
2547 update_mmu_cache(vma, address, entry);
2548 unlock:
2549 pte_unmap_unlock(page_table, ptl);
2550 return 0;
2551 release:
2552 mem_cgroup_uncharge_page(page);
2553 page_cache_release(page);
2554 goto unlock;
2555 oom_free_page:
2556 page_cache_release(page);
2557 oom:
2558 return VM_FAULT_OOM;
2559 }
2560
2561 /*
2562 * __do_fault() tries to create a new page mapping. It aggressively
2563 * tries to share with existing pages, but makes a separate copy if
2564 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2565 * the next page fault.
2566 *
2567 * As this is called only for pages that do not currently exist, we
2568 * do not need to flush old virtual caches or the TLB.
2569 *
2570 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2571 * but allow concurrent faults), and pte neither mapped nor locked.
2572 * We return with mmap_sem still held, but pte unmapped and unlocked.
2573 */
2574 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2575 unsigned long address, pmd_t *pmd,
2576 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2577 {
2578 pte_t *page_table;
2579 spinlock_t *ptl;
2580 struct page *page;
2581 pte_t entry;
2582 int anon = 0;
2583 int charged = 0;
2584 struct page *dirty_page = NULL;
2585 struct vm_fault vmf;
2586 int ret;
2587 int page_mkwrite = 0;
2588
2589 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2590 vmf.pgoff = pgoff;
2591 vmf.flags = flags;
2592 vmf.page = NULL;
2593
2594 ret = vma->vm_ops->fault(vma, &vmf);
2595 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2596 return ret;
2597
2598 /*
2599 * For consistency in subsequent calls, make the faulted page always
2600 * locked.
2601 */
2602 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2603 lock_page(vmf.page);
2604 else
2605 VM_BUG_ON(!PageLocked(vmf.page));
2606
2607 /*
2608 * Should we do an early C-O-W break?
2609 */
2610 page = vmf.page;
2611 if (flags & FAULT_FLAG_WRITE) {
2612 if (!(vma->vm_flags & VM_SHARED)) {
2613 anon = 1;
2614 if (unlikely(anon_vma_prepare(vma))) {
2615 ret = VM_FAULT_OOM;
2616 goto out;
2617 }
2618 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2619 vma, address);
2620 if (!page) {
2621 ret = VM_FAULT_OOM;
2622 goto out;
2623 }
2624 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2625 ret = VM_FAULT_OOM;
2626 page_cache_release(page);
2627 goto out;
2628 }
2629 charged = 1;
2630 /*
2631 * Don't let another task, with possibly unlocked vma,
2632 * keep the mlocked page.
2633 */
2634 if (vma->vm_flags & VM_LOCKED)
2635 clear_page_mlock(vmf.page);
2636 copy_user_highpage(page, vmf.page, address, vma);
2637 __SetPageUptodate(page);
2638 } else {
2639 /*
2640 * If the page will be shareable, see if the backing
2641 * address space wants to know that the page is about
2642 * to become writable
2643 */
2644 if (vma->vm_ops->page_mkwrite) {
2645 unlock_page(page);
2646 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2647 ret = VM_FAULT_SIGBUS;
2648 anon = 1; /* no anon but release vmf.page */
2649 goto out_unlocked;
2650 }
2651 lock_page(page);
2652 /*
2653 * XXX: this is not quite right (racy vs
2654 * invalidate) to unlock and relock the page
2655 * like this, however a better fix requires
2656 * reworking page_mkwrite locking API, which
2657 * is better done later.
2658 */
2659 if (!page->mapping) {
2660 ret = 0;
2661 anon = 1; /* no anon but release vmf.page */
2662 goto out;
2663 }
2664 page_mkwrite = 1;
2665 }
2666 }
2667
2668 }
2669
2670 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2671
2672 /*
2673 * This silly early PAGE_DIRTY setting removes a race
2674 * due to the bad i386 page protection. But it's valid
2675 * for other architectures too.
2676 *
2677 * Note that if write_access is true, we either now have
2678 * an exclusive copy of the page, or this is a shared mapping,
2679 * so we can make it writable and dirty to avoid having to
2680 * handle that later.
2681 */
2682 /* Only go through if we didn't race with anybody else... */
2683 if (likely(pte_same(*page_table, orig_pte))) {
2684 flush_icache_page(vma, page);
2685 entry = mk_pte(page, vma->vm_page_prot);
2686 if (flags & FAULT_FLAG_WRITE)
2687 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2688 if (anon) {
2689 inc_mm_counter(mm, anon_rss);
2690 page_add_new_anon_rmap(page, vma, address);
2691 } else {
2692 inc_mm_counter(mm, file_rss);
2693 page_add_file_rmap(page);
2694 if (flags & FAULT_FLAG_WRITE) {
2695 dirty_page = page;
2696 get_page(dirty_page);
2697 }
2698 }
2699 set_pte_at(mm, address, page_table, entry);
2700
2701 /* no need to invalidate: a not-present page won't be cached */
2702 update_mmu_cache(vma, address, entry);
2703 } else {
2704 if (charged)
2705 mem_cgroup_uncharge_page(page);
2706 if (anon)
2707 page_cache_release(page);
2708 else
2709 anon = 1; /* no anon but release faulted_page */
2710 }
2711
2712 pte_unmap_unlock(page_table, ptl);
2713
2714 out:
2715 unlock_page(vmf.page);
2716 out_unlocked:
2717 if (anon)
2718 page_cache_release(vmf.page);
2719 else if (dirty_page) {
2720 if (vma->vm_file)
2721 file_update_time(vma->vm_file);
2722
2723 set_page_dirty_balance(dirty_page, page_mkwrite);
2724 put_page(dirty_page);
2725 }
2726
2727 return ret;
2728 }
2729
2730 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2731 unsigned long address, pte_t *page_table, pmd_t *pmd,
2732 int write_access, pte_t orig_pte)
2733 {
2734 pgoff_t pgoff = (((address & PAGE_MASK)
2735 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2736 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2737
2738 pte_unmap(page_table);
2739 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2740 }
2741
2742 /*
2743 * Fault of a previously existing named mapping. Repopulate the pte
2744 * from the encoded file_pte if possible. This enables swappable
2745 * nonlinear vmas.
2746 *
2747 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2748 * but allow concurrent faults), and pte mapped but not yet locked.
2749 * We return with mmap_sem still held, but pte unmapped and unlocked.
2750 */
2751 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2752 unsigned long address, pte_t *page_table, pmd_t *pmd,
2753 int write_access, pte_t orig_pte)
2754 {
2755 unsigned int flags = FAULT_FLAG_NONLINEAR |
2756 (write_access ? FAULT_FLAG_WRITE : 0);
2757 pgoff_t pgoff;
2758
2759 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2760 return 0;
2761
2762 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2763 /*
2764 * Page table corrupted: show pte and kill process.
2765 */
2766 print_bad_pte(vma, address, orig_pte, NULL);
2767 return VM_FAULT_OOM;
2768 }
2769
2770 pgoff = pte_to_pgoff(orig_pte);
2771 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2772 }
2773
2774 /*
2775 * These routines also need to handle stuff like marking pages dirty
2776 * and/or accessed for architectures that don't do it in hardware (most
2777 * RISC architectures). The early dirtying is also good on the i386.
2778 *
2779 * There is also a hook called "update_mmu_cache()" that architectures
2780 * with external mmu caches can use to update those (ie the Sparc or
2781 * PowerPC hashed page tables that act as extended TLBs).
2782 *
2783 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2784 * but allow concurrent faults), and pte mapped but not yet locked.
2785 * We return with mmap_sem still held, but pte unmapped and unlocked.
2786 */
2787 static inline int handle_pte_fault(struct mm_struct *mm,
2788 struct vm_area_struct *vma, unsigned long address,
2789 pte_t *pte, pmd_t *pmd, int write_access)
2790 {
2791 pte_t entry;
2792 spinlock_t *ptl;
2793
2794 entry = *pte;
2795 if (!pte_present(entry)) {
2796 if (pte_none(entry)) {
2797 if (vma->vm_ops) {
2798 if (likely(vma->vm_ops->fault))
2799 return do_linear_fault(mm, vma, address,
2800 pte, pmd, write_access, entry);
2801 }
2802 return do_anonymous_page(mm, vma, address,
2803 pte, pmd, write_access);
2804 }
2805 if (pte_file(entry))
2806 return do_nonlinear_fault(mm, vma, address,
2807 pte, pmd, write_access, entry);
2808 return do_swap_page(mm, vma, address,
2809 pte, pmd, write_access, entry);
2810 }
2811
2812 ptl = pte_lockptr(mm, pmd);
2813 spin_lock(ptl);
2814 if (unlikely(!pte_same(*pte, entry)))
2815 goto unlock;
2816 if (write_access) {
2817 if (!pte_write(entry))
2818 return do_wp_page(mm, vma, address,
2819 pte, pmd, ptl, entry);
2820 entry = pte_mkdirty(entry);
2821 }
2822 entry = pte_mkyoung(entry);
2823 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2824 update_mmu_cache(vma, address, entry);
2825 } else {
2826 /*
2827 * This is needed only for protection faults but the arch code
2828 * is not yet telling us if this is a protection fault or not.
2829 * This still avoids useless tlb flushes for .text page faults
2830 * with threads.
2831 */
2832 if (write_access)
2833 flush_tlb_page(vma, address);
2834 }
2835 unlock:
2836 pte_unmap_unlock(pte, ptl);
2837 return 0;
2838 }
2839
2840 /*
2841 * By the time we get here, we already hold the mm semaphore
2842 */
2843 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2844 unsigned long address, int write_access)
2845 {
2846 pgd_t *pgd;
2847 pud_t *pud;
2848 pmd_t *pmd;
2849 pte_t *pte;
2850
2851 __set_current_state(TASK_RUNNING);
2852
2853 count_vm_event(PGFAULT);
2854
2855 if (unlikely(is_vm_hugetlb_page(vma)))
2856 return hugetlb_fault(mm, vma, address, write_access);
2857
2858 pgd = pgd_offset(mm, address);
2859 pud = pud_alloc(mm, pgd, address);
2860 if (!pud)
2861 return VM_FAULT_OOM;
2862 pmd = pmd_alloc(mm, pud, address);
2863 if (!pmd)
2864 return VM_FAULT_OOM;
2865 pte = pte_alloc_map(mm, pmd, address);
2866 if (!pte)
2867 return VM_FAULT_OOM;
2868
2869 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2870 }
2871
2872 #ifndef __PAGETABLE_PUD_FOLDED
2873 /*
2874 * Allocate page upper directory.
2875 * We've already handled the fast-path in-line.
2876 */
2877 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2878 {
2879 pud_t *new = pud_alloc_one(mm, address);
2880 if (!new)
2881 return -ENOMEM;
2882
2883 smp_wmb(); /* See comment in __pte_alloc */
2884
2885 spin_lock(&mm->page_table_lock);
2886 if (pgd_present(*pgd)) /* Another has populated it */
2887 pud_free(mm, new);
2888 else
2889 pgd_populate(mm, pgd, new);
2890 spin_unlock(&mm->page_table_lock);
2891 return 0;
2892 }
2893 #endif /* __PAGETABLE_PUD_FOLDED */
2894
2895 #ifndef __PAGETABLE_PMD_FOLDED
2896 /*
2897 * Allocate page middle directory.
2898 * We've already handled the fast-path in-line.
2899 */
2900 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2901 {
2902 pmd_t *new = pmd_alloc_one(mm, address);
2903 if (!new)
2904 return -ENOMEM;
2905
2906 smp_wmb(); /* See comment in __pte_alloc */
2907
2908 spin_lock(&mm->page_table_lock);
2909 #ifndef __ARCH_HAS_4LEVEL_HACK
2910 if (pud_present(*pud)) /* Another has populated it */
2911 pmd_free(mm, new);
2912 else
2913 pud_populate(mm, pud, new);
2914 #else
2915 if (pgd_present(*pud)) /* Another has populated it */
2916 pmd_free(mm, new);
2917 else
2918 pgd_populate(mm, pud, new);
2919 #endif /* __ARCH_HAS_4LEVEL_HACK */
2920 spin_unlock(&mm->page_table_lock);
2921 return 0;
2922 }
2923 #endif /* __PAGETABLE_PMD_FOLDED */
2924
2925 int make_pages_present(unsigned long addr, unsigned long end)
2926 {
2927 int ret, len, write;
2928 struct vm_area_struct * vma;
2929
2930 vma = find_vma(current->mm, addr);
2931 if (!vma)
2932 return -ENOMEM;
2933 write = (vma->vm_flags & VM_WRITE) != 0;
2934 BUG_ON(addr >= end);
2935 BUG_ON(end > vma->vm_end);
2936 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2937 ret = get_user_pages(current, current->mm, addr,
2938 len, write, 0, NULL, NULL);
2939 if (ret < 0)
2940 return ret;
2941 return ret == len ? 0 : -EFAULT;
2942 }
2943
2944 #if !defined(__HAVE_ARCH_GATE_AREA)
2945
2946 #if defined(AT_SYSINFO_EHDR)
2947 static struct vm_area_struct gate_vma;
2948
2949 static int __init gate_vma_init(void)
2950 {
2951 gate_vma.vm_mm = NULL;
2952 gate_vma.vm_start = FIXADDR_USER_START;
2953 gate_vma.vm_end = FIXADDR_USER_END;
2954 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2955 gate_vma.vm_page_prot = __P101;
2956 /*
2957 * Make sure the vDSO gets into every core dump.
2958 * Dumping its contents makes post-mortem fully interpretable later
2959 * without matching up the same kernel and hardware config to see
2960 * what PC values meant.
2961 */
2962 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2963 return 0;
2964 }
2965 __initcall(gate_vma_init);
2966 #endif
2967
2968 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2969 {
2970 #ifdef AT_SYSINFO_EHDR
2971 return &gate_vma;
2972 #else
2973 return NULL;
2974 #endif
2975 }
2976
2977 int in_gate_area_no_task(unsigned long addr)
2978 {
2979 #ifdef AT_SYSINFO_EHDR
2980 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2981 return 1;
2982 #endif
2983 return 0;
2984 }
2985
2986 #endif /* __HAVE_ARCH_GATE_AREA */
2987
2988 #ifdef CONFIG_HAVE_IOREMAP_PROT
2989 int follow_phys(struct vm_area_struct *vma,
2990 unsigned long address, unsigned int flags,
2991 unsigned long *prot, resource_size_t *phys)
2992 {
2993 pgd_t *pgd;
2994 pud_t *pud;
2995 pmd_t *pmd;
2996 pte_t *ptep, pte;
2997 spinlock_t *ptl;
2998 resource_size_t phys_addr = 0;
2999 struct mm_struct *mm = vma->vm_mm;
3000 int ret = -EINVAL;
3001
3002 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3003 goto out;
3004
3005 pgd = pgd_offset(mm, address);
3006 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3007 goto out;
3008
3009 pud = pud_offset(pgd, address);
3010 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3011 goto out;
3012
3013 pmd = pmd_offset(pud, address);
3014 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3015 goto out;
3016
3017 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3018 if (pmd_huge(*pmd))
3019 goto out;
3020
3021 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
3022 if (!ptep)
3023 goto out;
3024
3025 pte = *ptep;
3026 if (!pte_present(pte))
3027 goto unlock;
3028 if ((flags & FOLL_WRITE) && !pte_write(pte))
3029 goto unlock;
3030 phys_addr = pte_pfn(pte);
3031 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
3032
3033 *prot = pgprot_val(pte_pgprot(pte));
3034 *phys = phys_addr;
3035 ret = 0;
3036
3037 unlock:
3038 pte_unmap_unlock(ptep, ptl);
3039 out:
3040 return ret;
3041 }
3042
3043 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3044 void *buf, int len, int write)
3045 {
3046 resource_size_t phys_addr;
3047 unsigned long prot = 0;
3048 void __iomem *maddr;
3049 int offset = addr & (PAGE_SIZE-1);
3050
3051 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3052 return -EINVAL;
3053
3054 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3055 if (write)
3056 memcpy_toio(maddr + offset, buf, len);
3057 else
3058 memcpy_fromio(buf, maddr + offset, len);
3059 iounmap(maddr);
3060
3061 return len;
3062 }
3063 #endif
3064
3065 /*
3066 * Access another process' address space.
3067 * Source/target buffer must be kernel space,
3068 * Do not walk the page table directly, use get_user_pages
3069 */
3070 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3071 {
3072 struct mm_struct *mm;
3073 struct vm_area_struct *vma;
3074 void *old_buf = buf;
3075
3076 mm = get_task_mm(tsk);
3077 if (!mm)
3078 return 0;
3079
3080 down_read(&mm->mmap_sem);
3081 /* ignore errors, just check how much was successfully transferred */
3082 while (len) {
3083 int bytes, ret, offset;
3084 void *maddr;
3085 struct page *page = NULL;
3086
3087 ret = get_user_pages(tsk, mm, addr, 1,
3088 write, 1, &page, &vma);
3089 if (ret <= 0) {
3090 /*
3091 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3092 * we can access using slightly different code.
3093 */
3094 #ifdef CONFIG_HAVE_IOREMAP_PROT
3095 vma = find_vma(mm, addr);
3096 if (!vma)
3097 break;
3098 if (vma->vm_ops && vma->vm_ops->access)
3099 ret = vma->vm_ops->access(vma, addr, buf,
3100 len, write);
3101 if (ret <= 0)
3102 #endif
3103 break;
3104 bytes = ret;
3105 } else {
3106 bytes = len;
3107 offset = addr & (PAGE_SIZE-1);
3108 if (bytes > PAGE_SIZE-offset)
3109 bytes = PAGE_SIZE-offset;
3110
3111 maddr = kmap(page);
3112 if (write) {
3113 copy_to_user_page(vma, page, addr,
3114 maddr + offset, buf, bytes);
3115 set_page_dirty_lock(page);
3116 } else {
3117 copy_from_user_page(vma, page, addr,
3118 buf, maddr + offset, bytes);
3119 }
3120 kunmap(page);
3121 page_cache_release(page);
3122 }
3123 len -= bytes;
3124 buf += bytes;
3125 addr += bytes;
3126 }
3127 up_read(&mm->mmap_sem);
3128 mmput(mm);
3129
3130 return buf - old_buf;
3131 }
3132
3133 /*
3134 * Print the name of a VMA.
3135 */
3136 void print_vma_addr(char *prefix, unsigned long ip)
3137 {
3138 struct mm_struct *mm = current->mm;
3139 struct vm_area_struct *vma;
3140
3141 /*
3142 * Do not print if we are in atomic
3143 * contexts (in exception stacks, etc.):
3144 */
3145 if (preempt_count())
3146 return;
3147
3148 down_read(&mm->mmap_sem);
3149 vma = find_vma(mm, ip);
3150 if (vma && vma->vm_file) {
3151 struct file *f = vma->vm_file;
3152 char *buf = (char *)__get_free_page(GFP_KERNEL);
3153 if (buf) {
3154 char *p, *s;
3155
3156 p = d_path(&f->f_path, buf, PAGE_SIZE);
3157 if (IS_ERR(p))
3158 p = "?";
3159 s = strrchr(p, '/');
3160 if (s)
3161 p = s+1;
3162 printk("%s%s[%lx+%lx]", prefix, p,
3163 vma->vm_start,
3164 vma->vm_end - vma->vm_start);
3165 free_page((unsigned long)buf);
3166 }
3167 }
3168 up_read(&current->mm->mmap_sem);
3169 }
3170
3171 #ifdef CONFIG_PROVE_LOCKING
3172 void might_fault(void)
3173 {
3174 /*
3175 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3176 * holding the mmap_sem, this is safe because kernel memory doesn't
3177 * get paged out, therefore we'll never actually fault, and the
3178 * below annotations will generate false positives.
3179 */
3180 if (segment_eq(get_fs(), KERNEL_DS))
3181 return;
3182
3183 might_sleep();
3184 /*
3185 * it would be nicer only to annotate paths which are not under
3186 * pagefault_disable, however that requires a larger audit and
3187 * providing helpers like get_user_atomic.
3188 */
3189 if (!in_atomic() && current->mm)
3190 might_lock_read(&current->mm->mmap_sem);
3191 }
3192 EXPORT_SYMBOL(might_fault);
3193 #endif
This page took 0.090741 seconds and 6 git commands to generate.