Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61
62 #include <asm/io.h>
63 #include <asm/pgalloc.h>
64 #include <asm/uaccess.h>
65 #include <asm/tlb.h>
66 #include <asm/tlbflush.h>
67 #include <asm/pgtable.h>
68
69 #include "internal.h"
70
71 #ifndef CONFIG_NEED_MULTIPLE_NODES
72 /* use the per-pgdat data instead for discontigmem - mbligh */
73 unsigned long max_mapnr;
74 struct page *mem_map;
75
76 EXPORT_SYMBOL(max_mapnr);
77 EXPORT_SYMBOL(mem_map);
78 #endif
79
80 unsigned long num_physpages;
81 /*
82 * A number of key systems in x86 including ioremap() rely on the assumption
83 * that high_memory defines the upper bound on direct map memory, then end
84 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
85 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
86 * and ZONE_HIGHMEM.
87 */
88 void * high_memory;
89
90 EXPORT_SYMBOL(num_physpages);
91 EXPORT_SYMBOL(high_memory);
92
93 /*
94 * Randomize the address space (stacks, mmaps, brk, etc.).
95 *
96 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
97 * as ancient (libc5 based) binaries can segfault. )
98 */
99 int randomize_va_space __read_mostly =
100 #ifdef CONFIG_COMPAT_BRK
101 1;
102 #else
103 2;
104 #endif
105
106 static int __init disable_randmaps(char *s)
107 {
108 randomize_va_space = 0;
109 return 1;
110 }
111 __setup("norandmaps", disable_randmaps);
112
113 unsigned long zero_pfn __read_mostly;
114 unsigned long highest_memmap_pfn __read_mostly;
115
116 /*
117 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 */
119 static int __init init_zero_pfn(void)
120 {
121 zero_pfn = page_to_pfn(ZERO_PAGE(0));
122 return 0;
123 }
124 core_initcall(init_zero_pfn);
125
126
127 #if defined(SPLIT_RSS_COUNTING)
128
129 void sync_mm_rss(struct mm_struct *mm)
130 {
131 int i;
132
133 for (i = 0; i < NR_MM_COUNTERS; i++) {
134 if (current->rss_stat.count[i]) {
135 add_mm_counter(mm, i, current->rss_stat.count[i]);
136 current->rss_stat.count[i] = 0;
137 }
138 }
139 current->rss_stat.events = 0;
140 }
141
142 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
143 {
144 struct task_struct *task = current;
145
146 if (likely(task->mm == mm))
147 task->rss_stat.count[member] += val;
148 else
149 add_mm_counter(mm, member, val);
150 }
151 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
152 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153
154 /* sync counter once per 64 page faults */
155 #define TASK_RSS_EVENTS_THRESH (64)
156 static void check_sync_rss_stat(struct task_struct *task)
157 {
158 if (unlikely(task != current))
159 return;
160 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
161 sync_mm_rss(task->mm);
162 }
163 #else /* SPLIT_RSS_COUNTING */
164
165 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
166 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
167
168 static void check_sync_rss_stat(struct task_struct *task)
169 {
170 }
171
172 #endif /* SPLIT_RSS_COUNTING */
173
174 #ifdef HAVE_GENERIC_MMU_GATHER
175
176 static int tlb_next_batch(struct mmu_gather *tlb)
177 {
178 struct mmu_gather_batch *batch;
179
180 batch = tlb->active;
181 if (batch->next) {
182 tlb->active = batch->next;
183 return 1;
184 }
185
186 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
187 if (!batch)
188 return 0;
189
190 batch->next = NULL;
191 batch->nr = 0;
192 batch->max = MAX_GATHER_BATCH;
193
194 tlb->active->next = batch;
195 tlb->active = batch;
196
197 return 1;
198 }
199
200 /* tlb_gather_mmu
201 * Called to initialize an (on-stack) mmu_gather structure for page-table
202 * tear-down from @mm. The @fullmm argument is used when @mm is without
203 * users and we're going to destroy the full address space (exit/execve).
204 */
205 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
206 {
207 tlb->mm = mm;
208
209 tlb->fullmm = fullmm;
210 tlb->start = -1UL;
211 tlb->end = 0;
212 tlb->need_flush = 0;
213 tlb->fast_mode = (num_possible_cpus() == 1);
214 tlb->local.next = NULL;
215 tlb->local.nr = 0;
216 tlb->local.max = ARRAY_SIZE(tlb->__pages);
217 tlb->active = &tlb->local;
218
219 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
220 tlb->batch = NULL;
221 #endif
222 }
223
224 void tlb_flush_mmu(struct mmu_gather *tlb)
225 {
226 struct mmu_gather_batch *batch;
227
228 if (!tlb->need_flush)
229 return;
230 tlb->need_flush = 0;
231 tlb_flush(tlb);
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb_table_flush(tlb);
234 #endif
235
236 if (tlb_fast_mode(tlb))
237 return;
238
239 for (batch = &tlb->local; batch; batch = batch->next) {
240 free_pages_and_swap_cache(batch->pages, batch->nr);
241 batch->nr = 0;
242 }
243 tlb->active = &tlb->local;
244 }
245
246 /* tlb_finish_mmu
247 * Called at the end of the shootdown operation to free up any resources
248 * that were required.
249 */
250 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
251 {
252 struct mmu_gather_batch *batch, *next;
253
254 tlb->start = start;
255 tlb->end = end;
256 tlb_flush_mmu(tlb);
257
258 /* keep the page table cache within bounds */
259 check_pgt_cache();
260
261 for (batch = tlb->local.next; batch; batch = next) {
262 next = batch->next;
263 free_pages((unsigned long)batch, 0);
264 }
265 tlb->local.next = NULL;
266 }
267
268 /* __tlb_remove_page
269 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
270 * handling the additional races in SMP caused by other CPUs caching valid
271 * mappings in their TLBs. Returns the number of free page slots left.
272 * When out of page slots we must call tlb_flush_mmu().
273 */
274 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
275 {
276 struct mmu_gather_batch *batch;
277
278 VM_BUG_ON(!tlb->need_flush);
279
280 if (tlb_fast_mode(tlb)) {
281 free_page_and_swap_cache(page);
282 return 1; /* avoid calling tlb_flush_mmu() */
283 }
284
285 batch = tlb->active;
286 batch->pages[batch->nr++] = page;
287 if (batch->nr == batch->max) {
288 if (!tlb_next_batch(tlb))
289 return 0;
290 batch = tlb->active;
291 }
292 VM_BUG_ON(batch->nr > batch->max);
293
294 return batch->max - batch->nr;
295 }
296
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300
301 /*
302 * See the comment near struct mmu_table_batch.
303 */
304
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 /* Simply deliver the interrupt */
308 }
309
310 static void tlb_remove_table_one(void *table)
311 {
312 /*
313 * This isn't an RCU grace period and hence the page-tables cannot be
314 * assumed to be actually RCU-freed.
315 *
316 * It is however sufficient for software page-table walkers that rely on
317 * IRQ disabling. See the comment near struct mmu_table_batch.
318 */
319 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 __tlb_remove_table(table);
321 }
322
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 struct mmu_table_batch *batch;
326 int i;
327
328 batch = container_of(head, struct mmu_table_batch, rcu);
329
330 for (i = 0; i < batch->nr; i++)
331 __tlb_remove_table(batch->tables[i]);
332
333 free_page((unsigned long)batch);
334 }
335
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 struct mmu_table_batch **batch = &tlb->batch;
339
340 if (*batch) {
341 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 *batch = NULL;
343 }
344 }
345
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 struct mmu_table_batch **batch = &tlb->batch;
349
350 tlb->need_flush = 1;
351
352 /*
353 * When there's less then two users of this mm there cannot be a
354 * concurrent page-table walk.
355 */
356 if (atomic_read(&tlb->mm->mm_users) < 2) {
357 __tlb_remove_table(table);
358 return;
359 }
360
361 if (*batch == NULL) {
362 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 if (*batch == NULL) {
364 tlb_remove_table_one(table);
365 return;
366 }
367 (*batch)->nr = 0;
368 }
369 (*batch)->tables[(*batch)->nr++] = table;
370 if ((*batch)->nr == MAX_TABLE_BATCH)
371 tlb_table_flush(tlb);
372 }
373
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375
376 /*
377 * If a p?d_bad entry is found while walking page tables, report
378 * the error, before resetting entry to p?d_none. Usually (but
379 * very seldom) called out from the p?d_none_or_clear_bad macros.
380 */
381
382 void pgd_clear_bad(pgd_t *pgd)
383 {
384 pgd_ERROR(*pgd);
385 pgd_clear(pgd);
386 }
387
388 void pud_clear_bad(pud_t *pud)
389 {
390 pud_ERROR(*pud);
391 pud_clear(pud);
392 }
393
394 void pmd_clear_bad(pmd_t *pmd)
395 {
396 pmd_ERROR(*pmd);
397 pmd_clear(pmd);
398 }
399
400 /*
401 * Note: this doesn't free the actual pages themselves. That
402 * has been handled earlier when unmapping all the memory regions.
403 */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 unsigned long addr)
406 {
407 pgtable_t token = pmd_pgtable(*pmd);
408 pmd_clear(pmd);
409 pte_free_tlb(tlb, token, addr);
410 tlb->mm->nr_ptes--;
411 }
412
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 unsigned long floor, unsigned long ceiling)
416 {
417 pmd_t *pmd;
418 unsigned long next;
419 unsigned long start;
420
421 start = addr;
422 pmd = pmd_offset(pud, addr);
423 do {
424 next = pmd_addr_end(addr, end);
425 if (pmd_none_or_clear_bad(pmd))
426 continue;
427 free_pte_range(tlb, pmd, addr);
428 } while (pmd++, addr = next, addr != end);
429
430 start &= PUD_MASK;
431 if (start < floor)
432 return;
433 if (ceiling) {
434 ceiling &= PUD_MASK;
435 if (!ceiling)
436 return;
437 }
438 if (end - 1 > ceiling - 1)
439 return;
440
441 pmd = pmd_offset(pud, start);
442 pud_clear(pud);
443 pmd_free_tlb(tlb, pmd, start);
444 }
445
446 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
447 unsigned long addr, unsigned long end,
448 unsigned long floor, unsigned long ceiling)
449 {
450 pud_t *pud;
451 unsigned long next;
452 unsigned long start;
453
454 start = addr;
455 pud = pud_offset(pgd, addr);
456 do {
457 next = pud_addr_end(addr, end);
458 if (pud_none_or_clear_bad(pud))
459 continue;
460 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
461 } while (pud++, addr = next, addr != end);
462
463 start &= PGDIR_MASK;
464 if (start < floor)
465 return;
466 if (ceiling) {
467 ceiling &= PGDIR_MASK;
468 if (!ceiling)
469 return;
470 }
471 if (end - 1 > ceiling - 1)
472 return;
473
474 pud = pud_offset(pgd, start);
475 pgd_clear(pgd);
476 pud_free_tlb(tlb, pud, start);
477 }
478
479 /*
480 * This function frees user-level page tables of a process.
481 *
482 * Must be called with pagetable lock held.
483 */
484 void free_pgd_range(struct mmu_gather *tlb,
485 unsigned long addr, unsigned long end,
486 unsigned long floor, unsigned long ceiling)
487 {
488 pgd_t *pgd;
489 unsigned long next;
490
491 /*
492 * The next few lines have given us lots of grief...
493 *
494 * Why are we testing PMD* at this top level? Because often
495 * there will be no work to do at all, and we'd prefer not to
496 * go all the way down to the bottom just to discover that.
497 *
498 * Why all these "- 1"s? Because 0 represents both the bottom
499 * of the address space and the top of it (using -1 for the
500 * top wouldn't help much: the masks would do the wrong thing).
501 * The rule is that addr 0 and floor 0 refer to the bottom of
502 * the address space, but end 0 and ceiling 0 refer to the top
503 * Comparisons need to use "end - 1" and "ceiling - 1" (though
504 * that end 0 case should be mythical).
505 *
506 * Wherever addr is brought up or ceiling brought down, we must
507 * be careful to reject "the opposite 0" before it confuses the
508 * subsequent tests. But what about where end is brought down
509 * by PMD_SIZE below? no, end can't go down to 0 there.
510 *
511 * Whereas we round start (addr) and ceiling down, by different
512 * masks at different levels, in order to test whether a table
513 * now has no other vmas using it, so can be freed, we don't
514 * bother to round floor or end up - the tests don't need that.
515 */
516
517 addr &= PMD_MASK;
518 if (addr < floor) {
519 addr += PMD_SIZE;
520 if (!addr)
521 return;
522 }
523 if (ceiling) {
524 ceiling &= PMD_MASK;
525 if (!ceiling)
526 return;
527 }
528 if (end - 1 > ceiling - 1)
529 end -= PMD_SIZE;
530 if (addr > end - 1)
531 return;
532
533 pgd = pgd_offset(tlb->mm, addr);
534 do {
535 next = pgd_addr_end(addr, end);
536 if (pgd_none_or_clear_bad(pgd))
537 continue;
538 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
539 } while (pgd++, addr = next, addr != end);
540 }
541
542 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
543 unsigned long floor, unsigned long ceiling)
544 {
545 while (vma) {
546 struct vm_area_struct *next = vma->vm_next;
547 unsigned long addr = vma->vm_start;
548
549 /*
550 * Hide vma from rmap and truncate_pagecache before freeing
551 * pgtables
552 */
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555
556 if (is_vm_hugetlb_page(vma)) {
557 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
558 floor, next? next->vm_start: ceiling);
559 } else {
560 /*
561 * Optimization: gather nearby vmas into one call down
562 */
563 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
564 && !is_vm_hugetlb_page(next)) {
565 vma = next;
566 next = vma->vm_next;
567 unlink_anon_vmas(vma);
568 unlink_file_vma(vma);
569 }
570 free_pgd_range(tlb, addr, vma->vm_end,
571 floor, next? next->vm_start: ceiling);
572 }
573 vma = next;
574 }
575 }
576
577 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
578 pmd_t *pmd, unsigned long address)
579 {
580 pgtable_t new = pte_alloc_one(mm, address);
581 int wait_split_huge_page;
582 if (!new)
583 return -ENOMEM;
584
585 /*
586 * Ensure all pte setup (eg. pte page lock and page clearing) are
587 * visible before the pte is made visible to other CPUs by being
588 * put into page tables.
589 *
590 * The other side of the story is the pointer chasing in the page
591 * table walking code (when walking the page table without locking;
592 * ie. most of the time). Fortunately, these data accesses consist
593 * of a chain of data-dependent loads, meaning most CPUs (alpha
594 * being the notable exception) will already guarantee loads are
595 * seen in-order. See the alpha page table accessors for the
596 * smp_read_barrier_depends() barriers in page table walking code.
597 */
598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
599
600 spin_lock(&mm->page_table_lock);
601 wait_split_huge_page = 0;
602 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
603 mm->nr_ptes++;
604 pmd_populate(mm, pmd, new);
605 new = NULL;
606 } else if (unlikely(pmd_trans_splitting(*pmd)))
607 wait_split_huge_page = 1;
608 spin_unlock(&mm->page_table_lock);
609 if (new)
610 pte_free(mm, new);
611 if (wait_split_huge_page)
612 wait_split_huge_page(vma->anon_vma, pmd);
613 return 0;
614 }
615
616 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
617 {
618 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
619 if (!new)
620 return -ENOMEM;
621
622 smp_wmb(); /* See comment in __pte_alloc */
623
624 spin_lock(&init_mm.page_table_lock);
625 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
626 pmd_populate_kernel(&init_mm, pmd, new);
627 new = NULL;
628 } else
629 VM_BUG_ON(pmd_trans_splitting(*pmd));
630 spin_unlock(&init_mm.page_table_lock);
631 if (new)
632 pte_free_kernel(&init_mm, new);
633 return 0;
634 }
635
636 static inline void init_rss_vec(int *rss)
637 {
638 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
639 }
640
641 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
642 {
643 int i;
644
645 if (current->mm == mm)
646 sync_mm_rss(mm);
647 for (i = 0; i < NR_MM_COUNTERS; i++)
648 if (rss[i])
649 add_mm_counter(mm, i, rss[i]);
650 }
651
652 /*
653 * This function is called to print an error when a bad pte
654 * is found. For example, we might have a PFN-mapped pte in
655 * a region that doesn't allow it.
656 *
657 * The calling function must still handle the error.
658 */
659 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
660 pte_t pte, struct page *page)
661 {
662 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
663 pud_t *pud = pud_offset(pgd, addr);
664 pmd_t *pmd = pmd_offset(pud, addr);
665 struct address_space *mapping;
666 pgoff_t index;
667 static unsigned long resume;
668 static unsigned long nr_shown;
669 static unsigned long nr_unshown;
670
671 /*
672 * Allow a burst of 60 reports, then keep quiet for that minute;
673 * or allow a steady drip of one report per second.
674 */
675 if (nr_shown == 60) {
676 if (time_before(jiffies, resume)) {
677 nr_unshown++;
678 return;
679 }
680 if (nr_unshown) {
681 printk(KERN_ALERT
682 "BUG: Bad page map: %lu messages suppressed\n",
683 nr_unshown);
684 nr_unshown = 0;
685 }
686 nr_shown = 0;
687 }
688 if (nr_shown++ == 0)
689 resume = jiffies + 60 * HZ;
690
691 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
692 index = linear_page_index(vma, addr);
693
694 printk(KERN_ALERT
695 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
696 current->comm,
697 (long long)pte_val(pte), (long long)pmd_val(*pmd));
698 if (page)
699 dump_page(page);
700 printk(KERN_ALERT
701 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
702 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
703 /*
704 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
705 */
706 if (vma->vm_ops)
707 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
708 (unsigned long)vma->vm_ops->fault);
709 if (vma->vm_file && vma->vm_file->f_op)
710 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
711 (unsigned long)vma->vm_file->f_op->mmap);
712 dump_stack();
713 add_taint(TAINT_BAD_PAGE);
714 }
715
716 static inline bool is_cow_mapping(vm_flags_t flags)
717 {
718 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
719 }
720
721 /*
722 * vm_normal_page -- This function gets the "struct page" associated with a pte.
723 *
724 * "Special" mappings do not wish to be associated with a "struct page" (either
725 * it doesn't exist, or it exists but they don't want to touch it). In this
726 * case, NULL is returned here. "Normal" mappings do have a struct page.
727 *
728 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
729 * pte bit, in which case this function is trivial. Secondly, an architecture
730 * may not have a spare pte bit, which requires a more complicated scheme,
731 * described below.
732 *
733 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
734 * special mapping (even if there are underlying and valid "struct pages").
735 * COWed pages of a VM_PFNMAP are always normal.
736 *
737 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
738 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
739 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
740 * mapping will always honor the rule
741 *
742 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
743 *
744 * And for normal mappings this is false.
745 *
746 * This restricts such mappings to be a linear translation from virtual address
747 * to pfn. To get around this restriction, we allow arbitrary mappings so long
748 * as the vma is not a COW mapping; in that case, we know that all ptes are
749 * special (because none can have been COWed).
750 *
751 *
752 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
753 *
754 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
755 * page" backing, however the difference is that _all_ pages with a struct
756 * page (that is, those where pfn_valid is true) are refcounted and considered
757 * normal pages by the VM. The disadvantage is that pages are refcounted
758 * (which can be slower and simply not an option for some PFNMAP users). The
759 * advantage is that we don't have to follow the strict linearity rule of
760 * PFNMAP mappings in order to support COWable mappings.
761 *
762 */
763 #ifdef __HAVE_ARCH_PTE_SPECIAL
764 # define HAVE_PTE_SPECIAL 1
765 #else
766 # define HAVE_PTE_SPECIAL 0
767 #endif
768 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
769 pte_t pte)
770 {
771 unsigned long pfn = pte_pfn(pte);
772
773 if (HAVE_PTE_SPECIAL) {
774 if (likely(!pte_special(pte)))
775 goto check_pfn;
776 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
777 return NULL;
778 if (!is_zero_pfn(pfn))
779 print_bad_pte(vma, addr, pte, NULL);
780 return NULL;
781 }
782
783 /* !HAVE_PTE_SPECIAL case follows: */
784
785 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
786 if (vma->vm_flags & VM_MIXEDMAP) {
787 if (!pfn_valid(pfn))
788 return NULL;
789 goto out;
790 } else {
791 unsigned long off;
792 off = (addr - vma->vm_start) >> PAGE_SHIFT;
793 if (pfn == vma->vm_pgoff + off)
794 return NULL;
795 if (!is_cow_mapping(vma->vm_flags))
796 return NULL;
797 }
798 }
799
800 if (is_zero_pfn(pfn))
801 return NULL;
802 check_pfn:
803 if (unlikely(pfn > highest_memmap_pfn)) {
804 print_bad_pte(vma, addr, pte, NULL);
805 return NULL;
806 }
807
808 /*
809 * NOTE! We still have PageReserved() pages in the page tables.
810 * eg. VDSO mappings can cause them to exist.
811 */
812 out:
813 return pfn_to_page(pfn);
814 }
815
816 /*
817 * copy one vm_area from one task to the other. Assumes the page tables
818 * already present in the new task to be cleared in the whole range
819 * covered by this vma.
820 */
821
822 static inline unsigned long
823 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
824 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
825 unsigned long addr, int *rss)
826 {
827 unsigned long vm_flags = vma->vm_flags;
828 pte_t pte = *src_pte;
829 struct page *page;
830
831 /* pte contains position in swap or file, so copy. */
832 if (unlikely(!pte_present(pte))) {
833 if (!pte_file(pte)) {
834 swp_entry_t entry = pte_to_swp_entry(pte);
835
836 if (swap_duplicate(entry) < 0)
837 return entry.val;
838
839 /* make sure dst_mm is on swapoff's mmlist. */
840 if (unlikely(list_empty(&dst_mm->mmlist))) {
841 spin_lock(&mmlist_lock);
842 if (list_empty(&dst_mm->mmlist))
843 list_add(&dst_mm->mmlist,
844 &src_mm->mmlist);
845 spin_unlock(&mmlist_lock);
846 }
847 if (likely(!non_swap_entry(entry)))
848 rss[MM_SWAPENTS]++;
849 else if (is_migration_entry(entry)) {
850 page = migration_entry_to_page(entry);
851
852 if (PageAnon(page))
853 rss[MM_ANONPAGES]++;
854 else
855 rss[MM_FILEPAGES]++;
856
857 if (is_write_migration_entry(entry) &&
858 is_cow_mapping(vm_flags)) {
859 /*
860 * COW mappings require pages in both
861 * parent and child to be set to read.
862 */
863 make_migration_entry_read(&entry);
864 pte = swp_entry_to_pte(entry);
865 set_pte_at(src_mm, addr, src_pte, pte);
866 }
867 }
868 }
869 goto out_set_pte;
870 }
871
872 /*
873 * If it's a COW mapping, write protect it both
874 * in the parent and the child
875 */
876 if (is_cow_mapping(vm_flags)) {
877 ptep_set_wrprotect(src_mm, addr, src_pte);
878 pte = pte_wrprotect(pte);
879 }
880
881 /*
882 * If it's a shared mapping, mark it clean in
883 * the child
884 */
885 if (vm_flags & VM_SHARED)
886 pte = pte_mkclean(pte);
887 pte = pte_mkold(pte);
888
889 page = vm_normal_page(vma, addr, pte);
890 if (page) {
891 get_page(page);
892 page_dup_rmap(page);
893 if (PageAnon(page))
894 rss[MM_ANONPAGES]++;
895 else
896 rss[MM_FILEPAGES]++;
897 }
898
899 out_set_pte:
900 set_pte_at(dst_mm, addr, dst_pte, pte);
901 return 0;
902 }
903
904 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
905 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
906 unsigned long addr, unsigned long end)
907 {
908 pte_t *orig_src_pte, *orig_dst_pte;
909 pte_t *src_pte, *dst_pte;
910 spinlock_t *src_ptl, *dst_ptl;
911 int progress = 0;
912 int rss[NR_MM_COUNTERS];
913 swp_entry_t entry = (swp_entry_t){0};
914
915 again:
916 init_rss_vec(rss);
917
918 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
919 if (!dst_pte)
920 return -ENOMEM;
921 src_pte = pte_offset_map(src_pmd, addr);
922 src_ptl = pte_lockptr(src_mm, src_pmd);
923 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
924 orig_src_pte = src_pte;
925 orig_dst_pte = dst_pte;
926 arch_enter_lazy_mmu_mode();
927
928 do {
929 /*
930 * We are holding two locks at this point - either of them
931 * could generate latencies in another task on another CPU.
932 */
933 if (progress >= 32) {
934 progress = 0;
935 if (need_resched() ||
936 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
937 break;
938 }
939 if (pte_none(*src_pte)) {
940 progress++;
941 continue;
942 }
943 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
944 vma, addr, rss);
945 if (entry.val)
946 break;
947 progress += 8;
948 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
949
950 arch_leave_lazy_mmu_mode();
951 spin_unlock(src_ptl);
952 pte_unmap(orig_src_pte);
953 add_mm_rss_vec(dst_mm, rss);
954 pte_unmap_unlock(orig_dst_pte, dst_ptl);
955 cond_resched();
956
957 if (entry.val) {
958 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
959 return -ENOMEM;
960 progress = 0;
961 }
962 if (addr != end)
963 goto again;
964 return 0;
965 }
966
967 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
969 unsigned long addr, unsigned long end)
970 {
971 pmd_t *src_pmd, *dst_pmd;
972 unsigned long next;
973
974 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
975 if (!dst_pmd)
976 return -ENOMEM;
977 src_pmd = pmd_offset(src_pud, addr);
978 do {
979 next = pmd_addr_end(addr, end);
980 if (pmd_trans_huge(*src_pmd)) {
981 int err;
982 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
983 err = copy_huge_pmd(dst_mm, src_mm,
984 dst_pmd, src_pmd, addr, vma);
985 if (err == -ENOMEM)
986 return -ENOMEM;
987 if (!err)
988 continue;
989 /* fall through */
990 }
991 if (pmd_none_or_clear_bad(src_pmd))
992 continue;
993 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
994 vma, addr, next))
995 return -ENOMEM;
996 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
997 return 0;
998 }
999
1000 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1001 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1002 unsigned long addr, unsigned long end)
1003 {
1004 pud_t *src_pud, *dst_pud;
1005 unsigned long next;
1006
1007 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1008 if (!dst_pud)
1009 return -ENOMEM;
1010 src_pud = pud_offset(src_pgd, addr);
1011 do {
1012 next = pud_addr_end(addr, end);
1013 if (pud_none_or_clear_bad(src_pud))
1014 continue;
1015 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1016 vma, addr, next))
1017 return -ENOMEM;
1018 } while (dst_pud++, src_pud++, addr = next, addr != end);
1019 return 0;
1020 }
1021
1022 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 struct vm_area_struct *vma)
1024 {
1025 pgd_t *src_pgd, *dst_pgd;
1026 unsigned long next;
1027 unsigned long addr = vma->vm_start;
1028 unsigned long end = vma->vm_end;
1029 unsigned long mmun_start; /* For mmu_notifiers */
1030 unsigned long mmun_end; /* For mmu_notifiers */
1031 bool is_cow;
1032 int ret;
1033
1034 /*
1035 * Don't copy ptes where a page fault will fill them correctly.
1036 * Fork becomes much lighter when there are big shared or private
1037 * readonly mappings. The tradeoff is that copy_page_range is more
1038 * efficient than faulting.
1039 */
1040 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1041 VM_PFNMAP | VM_MIXEDMAP))) {
1042 if (!vma->anon_vma)
1043 return 0;
1044 }
1045
1046 if (is_vm_hugetlb_page(vma))
1047 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1048
1049 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1050 /*
1051 * We do not free on error cases below as remove_vma
1052 * gets called on error from higher level routine
1053 */
1054 ret = track_pfn_copy(vma);
1055 if (ret)
1056 return ret;
1057 }
1058
1059 /*
1060 * We need to invalidate the secondary MMU mappings only when
1061 * there could be a permission downgrade on the ptes of the
1062 * parent mm. And a permission downgrade will only happen if
1063 * is_cow_mapping() returns true.
1064 */
1065 is_cow = is_cow_mapping(vma->vm_flags);
1066 mmun_start = addr;
1067 mmun_end = end;
1068 if (is_cow)
1069 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1070 mmun_end);
1071
1072 ret = 0;
1073 dst_pgd = pgd_offset(dst_mm, addr);
1074 src_pgd = pgd_offset(src_mm, addr);
1075 do {
1076 next = pgd_addr_end(addr, end);
1077 if (pgd_none_or_clear_bad(src_pgd))
1078 continue;
1079 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1080 vma, addr, next))) {
1081 ret = -ENOMEM;
1082 break;
1083 }
1084 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1085
1086 if (is_cow)
1087 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1088 return ret;
1089 }
1090
1091 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1092 struct vm_area_struct *vma, pmd_t *pmd,
1093 unsigned long addr, unsigned long end,
1094 struct zap_details *details)
1095 {
1096 struct mm_struct *mm = tlb->mm;
1097 int force_flush = 0;
1098 int rss[NR_MM_COUNTERS];
1099 spinlock_t *ptl;
1100 pte_t *start_pte;
1101 pte_t *pte;
1102
1103 again:
1104 init_rss_vec(rss);
1105 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1106 pte = start_pte;
1107 arch_enter_lazy_mmu_mode();
1108 do {
1109 pte_t ptent = *pte;
1110 if (pte_none(ptent)) {
1111 continue;
1112 }
1113
1114 if (pte_present(ptent)) {
1115 struct page *page;
1116
1117 page = vm_normal_page(vma, addr, ptent);
1118 if (unlikely(details) && page) {
1119 /*
1120 * unmap_shared_mapping_pages() wants to
1121 * invalidate cache without truncating:
1122 * unmap shared but keep private pages.
1123 */
1124 if (details->check_mapping &&
1125 details->check_mapping != page->mapping)
1126 continue;
1127 /*
1128 * Each page->index must be checked when
1129 * invalidating or truncating nonlinear.
1130 */
1131 if (details->nonlinear_vma &&
1132 (page->index < details->first_index ||
1133 page->index > details->last_index))
1134 continue;
1135 }
1136 ptent = ptep_get_and_clear_full(mm, addr, pte,
1137 tlb->fullmm);
1138 tlb_remove_tlb_entry(tlb, pte, addr);
1139 if (unlikely(!page))
1140 continue;
1141 if (unlikely(details) && details->nonlinear_vma
1142 && linear_page_index(details->nonlinear_vma,
1143 addr) != page->index)
1144 set_pte_at(mm, addr, pte,
1145 pgoff_to_pte(page->index));
1146 if (PageAnon(page))
1147 rss[MM_ANONPAGES]--;
1148 else {
1149 if (pte_dirty(ptent))
1150 set_page_dirty(page);
1151 if (pte_young(ptent) &&
1152 likely(!VM_SequentialReadHint(vma)))
1153 mark_page_accessed(page);
1154 rss[MM_FILEPAGES]--;
1155 }
1156 page_remove_rmap(page);
1157 if (unlikely(page_mapcount(page) < 0))
1158 print_bad_pte(vma, addr, ptent, page);
1159 force_flush = !__tlb_remove_page(tlb, page);
1160 if (force_flush)
1161 break;
1162 continue;
1163 }
1164 /*
1165 * If details->check_mapping, we leave swap entries;
1166 * if details->nonlinear_vma, we leave file entries.
1167 */
1168 if (unlikely(details))
1169 continue;
1170 if (pte_file(ptent)) {
1171 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1172 print_bad_pte(vma, addr, ptent, NULL);
1173 } else {
1174 swp_entry_t entry = pte_to_swp_entry(ptent);
1175
1176 if (!non_swap_entry(entry))
1177 rss[MM_SWAPENTS]--;
1178 else if (is_migration_entry(entry)) {
1179 struct page *page;
1180
1181 page = migration_entry_to_page(entry);
1182
1183 if (PageAnon(page))
1184 rss[MM_ANONPAGES]--;
1185 else
1186 rss[MM_FILEPAGES]--;
1187 }
1188 if (unlikely(!free_swap_and_cache(entry)))
1189 print_bad_pte(vma, addr, ptent, NULL);
1190 }
1191 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1192 } while (pte++, addr += PAGE_SIZE, addr != end);
1193
1194 add_mm_rss_vec(mm, rss);
1195 arch_leave_lazy_mmu_mode();
1196 pte_unmap_unlock(start_pte, ptl);
1197
1198 /*
1199 * mmu_gather ran out of room to batch pages, we break out of
1200 * the PTE lock to avoid doing the potential expensive TLB invalidate
1201 * and page-free while holding it.
1202 */
1203 if (force_flush) {
1204 force_flush = 0;
1205
1206 #ifdef HAVE_GENERIC_MMU_GATHER
1207 tlb->start = addr;
1208 tlb->end = end;
1209 #endif
1210 tlb_flush_mmu(tlb);
1211 if (addr != end)
1212 goto again;
1213 }
1214
1215 return addr;
1216 }
1217
1218 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1219 struct vm_area_struct *vma, pud_t *pud,
1220 unsigned long addr, unsigned long end,
1221 struct zap_details *details)
1222 {
1223 pmd_t *pmd;
1224 unsigned long next;
1225
1226 pmd = pmd_offset(pud, addr);
1227 do {
1228 next = pmd_addr_end(addr, end);
1229 if (pmd_trans_huge(*pmd)) {
1230 if (next - addr != HPAGE_PMD_SIZE) {
1231 #ifdef CONFIG_DEBUG_VM
1232 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1233 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1234 __func__, addr, end,
1235 vma->vm_start,
1236 vma->vm_end);
1237 BUG();
1238 }
1239 #endif
1240 split_huge_page_pmd(vma, addr, pmd);
1241 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1242 goto next;
1243 /* fall through */
1244 }
1245 /*
1246 * Here there can be other concurrent MADV_DONTNEED or
1247 * trans huge page faults running, and if the pmd is
1248 * none or trans huge it can change under us. This is
1249 * because MADV_DONTNEED holds the mmap_sem in read
1250 * mode.
1251 */
1252 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1253 goto next;
1254 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1255 next:
1256 cond_resched();
1257 } while (pmd++, addr = next, addr != end);
1258
1259 return addr;
1260 }
1261
1262 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1263 struct vm_area_struct *vma, pgd_t *pgd,
1264 unsigned long addr, unsigned long end,
1265 struct zap_details *details)
1266 {
1267 pud_t *pud;
1268 unsigned long next;
1269
1270 pud = pud_offset(pgd, addr);
1271 do {
1272 next = pud_addr_end(addr, end);
1273 if (pud_none_or_clear_bad(pud))
1274 continue;
1275 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1276 } while (pud++, addr = next, addr != end);
1277
1278 return addr;
1279 }
1280
1281 static void unmap_page_range(struct mmu_gather *tlb,
1282 struct vm_area_struct *vma,
1283 unsigned long addr, unsigned long end,
1284 struct zap_details *details)
1285 {
1286 pgd_t *pgd;
1287 unsigned long next;
1288
1289 if (details && !details->check_mapping && !details->nonlinear_vma)
1290 details = NULL;
1291
1292 BUG_ON(addr >= end);
1293 mem_cgroup_uncharge_start();
1294 tlb_start_vma(tlb, vma);
1295 pgd = pgd_offset(vma->vm_mm, addr);
1296 do {
1297 next = pgd_addr_end(addr, end);
1298 if (pgd_none_or_clear_bad(pgd))
1299 continue;
1300 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1301 } while (pgd++, addr = next, addr != end);
1302 tlb_end_vma(tlb, vma);
1303 mem_cgroup_uncharge_end();
1304 }
1305
1306
1307 static void unmap_single_vma(struct mmu_gather *tlb,
1308 struct vm_area_struct *vma, unsigned long start_addr,
1309 unsigned long end_addr,
1310 struct zap_details *details)
1311 {
1312 unsigned long start = max(vma->vm_start, start_addr);
1313 unsigned long end;
1314
1315 if (start >= vma->vm_end)
1316 return;
1317 end = min(vma->vm_end, end_addr);
1318 if (end <= vma->vm_start)
1319 return;
1320
1321 if (vma->vm_file)
1322 uprobe_munmap(vma, start, end);
1323
1324 if (unlikely(vma->vm_flags & VM_PFNMAP))
1325 untrack_pfn(vma, 0, 0);
1326
1327 if (start != end) {
1328 if (unlikely(is_vm_hugetlb_page(vma))) {
1329 /*
1330 * It is undesirable to test vma->vm_file as it
1331 * should be non-null for valid hugetlb area.
1332 * However, vm_file will be NULL in the error
1333 * cleanup path of do_mmap_pgoff. When
1334 * hugetlbfs ->mmap method fails,
1335 * do_mmap_pgoff() nullifies vma->vm_file
1336 * before calling this function to clean up.
1337 * Since no pte has actually been setup, it is
1338 * safe to do nothing in this case.
1339 */
1340 if (vma->vm_file) {
1341 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1342 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1343 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 }
1345 } else
1346 unmap_page_range(tlb, vma, start, end, details);
1347 }
1348 }
1349
1350 /**
1351 * unmap_vmas - unmap a range of memory covered by a list of vma's
1352 * @tlb: address of the caller's struct mmu_gather
1353 * @vma: the starting vma
1354 * @start_addr: virtual address at which to start unmapping
1355 * @end_addr: virtual address at which to end unmapping
1356 *
1357 * Unmap all pages in the vma list.
1358 *
1359 * Only addresses between `start' and `end' will be unmapped.
1360 *
1361 * The VMA list must be sorted in ascending virtual address order.
1362 *
1363 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1364 * range after unmap_vmas() returns. So the only responsibility here is to
1365 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1366 * drops the lock and schedules.
1367 */
1368 void unmap_vmas(struct mmu_gather *tlb,
1369 struct vm_area_struct *vma, unsigned long start_addr,
1370 unsigned long end_addr)
1371 {
1372 struct mm_struct *mm = vma->vm_mm;
1373
1374 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1375 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1376 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1377 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1378 }
1379
1380 /**
1381 * zap_page_range - remove user pages in a given range
1382 * @vma: vm_area_struct holding the applicable pages
1383 * @start: starting address of pages to zap
1384 * @size: number of bytes to zap
1385 * @details: details of nonlinear truncation or shared cache invalidation
1386 *
1387 * Caller must protect the VMA list
1388 */
1389 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1390 unsigned long size, struct zap_details *details)
1391 {
1392 struct mm_struct *mm = vma->vm_mm;
1393 struct mmu_gather tlb;
1394 unsigned long end = start + size;
1395
1396 lru_add_drain();
1397 tlb_gather_mmu(&tlb, mm, 0);
1398 update_hiwater_rss(mm);
1399 mmu_notifier_invalidate_range_start(mm, start, end);
1400 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1401 unmap_single_vma(&tlb, vma, start, end, details);
1402 mmu_notifier_invalidate_range_end(mm, start, end);
1403 tlb_finish_mmu(&tlb, start, end);
1404 }
1405
1406 /**
1407 * zap_page_range_single - remove user pages in a given range
1408 * @vma: vm_area_struct holding the applicable pages
1409 * @address: starting address of pages to zap
1410 * @size: number of bytes to zap
1411 * @details: details of nonlinear truncation or shared cache invalidation
1412 *
1413 * The range must fit into one VMA.
1414 */
1415 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1416 unsigned long size, struct zap_details *details)
1417 {
1418 struct mm_struct *mm = vma->vm_mm;
1419 struct mmu_gather tlb;
1420 unsigned long end = address + size;
1421
1422 lru_add_drain();
1423 tlb_gather_mmu(&tlb, mm, 0);
1424 update_hiwater_rss(mm);
1425 mmu_notifier_invalidate_range_start(mm, address, end);
1426 unmap_single_vma(&tlb, vma, address, end, details);
1427 mmu_notifier_invalidate_range_end(mm, address, end);
1428 tlb_finish_mmu(&tlb, address, end);
1429 }
1430
1431 /**
1432 * zap_vma_ptes - remove ptes mapping the vma
1433 * @vma: vm_area_struct holding ptes to be zapped
1434 * @address: starting address of pages to zap
1435 * @size: number of bytes to zap
1436 *
1437 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1438 *
1439 * The entire address range must be fully contained within the vma.
1440 *
1441 * Returns 0 if successful.
1442 */
1443 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1444 unsigned long size)
1445 {
1446 if (address < vma->vm_start || address + size > vma->vm_end ||
1447 !(vma->vm_flags & VM_PFNMAP))
1448 return -1;
1449 zap_page_range_single(vma, address, size, NULL);
1450 return 0;
1451 }
1452 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1453
1454 /**
1455 * follow_page - look up a page descriptor from a user-virtual address
1456 * @vma: vm_area_struct mapping @address
1457 * @address: virtual address to look up
1458 * @flags: flags modifying lookup behaviour
1459 *
1460 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1461 *
1462 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1463 * an error pointer if there is a mapping to something not represented
1464 * by a page descriptor (see also vm_normal_page()).
1465 */
1466 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1467 unsigned int flags)
1468 {
1469 pgd_t *pgd;
1470 pud_t *pud;
1471 pmd_t *pmd;
1472 pte_t *ptep, pte;
1473 spinlock_t *ptl;
1474 struct page *page;
1475 struct mm_struct *mm = vma->vm_mm;
1476
1477 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1478 if (!IS_ERR(page)) {
1479 BUG_ON(flags & FOLL_GET);
1480 goto out;
1481 }
1482
1483 page = NULL;
1484 pgd = pgd_offset(mm, address);
1485 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1486 goto no_page_table;
1487
1488 pud = pud_offset(pgd, address);
1489 if (pud_none(*pud))
1490 goto no_page_table;
1491 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1492 BUG_ON(flags & FOLL_GET);
1493 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1494 goto out;
1495 }
1496 if (unlikely(pud_bad(*pud)))
1497 goto no_page_table;
1498
1499 pmd = pmd_offset(pud, address);
1500 if (pmd_none(*pmd))
1501 goto no_page_table;
1502 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1503 BUG_ON(flags & FOLL_GET);
1504 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1505 goto out;
1506 }
1507 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1508 goto no_page_table;
1509 if (pmd_trans_huge(*pmd)) {
1510 if (flags & FOLL_SPLIT) {
1511 split_huge_page_pmd(vma, address, pmd);
1512 goto split_fallthrough;
1513 }
1514 spin_lock(&mm->page_table_lock);
1515 if (likely(pmd_trans_huge(*pmd))) {
1516 if (unlikely(pmd_trans_splitting(*pmd))) {
1517 spin_unlock(&mm->page_table_lock);
1518 wait_split_huge_page(vma->anon_vma, pmd);
1519 } else {
1520 page = follow_trans_huge_pmd(vma, address,
1521 pmd, flags);
1522 spin_unlock(&mm->page_table_lock);
1523 goto out;
1524 }
1525 } else
1526 spin_unlock(&mm->page_table_lock);
1527 /* fall through */
1528 }
1529 split_fallthrough:
1530 if (unlikely(pmd_bad(*pmd)))
1531 goto no_page_table;
1532
1533 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1534
1535 pte = *ptep;
1536 if (!pte_present(pte))
1537 goto no_page;
1538 if ((flags & FOLL_NUMA) && pte_numa(pte))
1539 goto no_page;
1540 if ((flags & FOLL_WRITE) && !pte_write(pte))
1541 goto unlock;
1542
1543 page = vm_normal_page(vma, address, pte);
1544 if (unlikely(!page)) {
1545 if ((flags & FOLL_DUMP) ||
1546 !is_zero_pfn(pte_pfn(pte)))
1547 goto bad_page;
1548 page = pte_page(pte);
1549 }
1550
1551 if (flags & FOLL_GET)
1552 get_page_foll(page);
1553 if (flags & FOLL_TOUCH) {
1554 if ((flags & FOLL_WRITE) &&
1555 !pte_dirty(pte) && !PageDirty(page))
1556 set_page_dirty(page);
1557 /*
1558 * pte_mkyoung() would be more correct here, but atomic care
1559 * is needed to avoid losing the dirty bit: it is easier to use
1560 * mark_page_accessed().
1561 */
1562 mark_page_accessed(page);
1563 }
1564 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1565 /*
1566 * The preliminary mapping check is mainly to avoid the
1567 * pointless overhead of lock_page on the ZERO_PAGE
1568 * which might bounce very badly if there is contention.
1569 *
1570 * If the page is already locked, we don't need to
1571 * handle it now - vmscan will handle it later if and
1572 * when it attempts to reclaim the page.
1573 */
1574 if (page->mapping && trylock_page(page)) {
1575 lru_add_drain(); /* push cached pages to LRU */
1576 /*
1577 * Because we lock page here, and migration is
1578 * blocked by the pte's page reference, and we
1579 * know the page is still mapped, we don't even
1580 * need to check for file-cache page truncation.
1581 */
1582 mlock_vma_page(page);
1583 unlock_page(page);
1584 }
1585 }
1586 unlock:
1587 pte_unmap_unlock(ptep, ptl);
1588 out:
1589 return page;
1590
1591 bad_page:
1592 pte_unmap_unlock(ptep, ptl);
1593 return ERR_PTR(-EFAULT);
1594
1595 no_page:
1596 pte_unmap_unlock(ptep, ptl);
1597 if (!pte_none(pte))
1598 return page;
1599
1600 no_page_table:
1601 /*
1602 * When core dumping an enormous anonymous area that nobody
1603 * has touched so far, we don't want to allocate unnecessary pages or
1604 * page tables. Return error instead of NULL to skip handle_mm_fault,
1605 * then get_dump_page() will return NULL to leave a hole in the dump.
1606 * But we can only make this optimization where a hole would surely
1607 * be zero-filled if handle_mm_fault() actually did handle it.
1608 */
1609 if ((flags & FOLL_DUMP) &&
1610 (!vma->vm_ops || !vma->vm_ops->fault))
1611 return ERR_PTR(-EFAULT);
1612 return page;
1613 }
1614
1615 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1616 {
1617 return stack_guard_page_start(vma, addr) ||
1618 stack_guard_page_end(vma, addr+PAGE_SIZE);
1619 }
1620
1621 /**
1622 * __get_user_pages() - pin user pages in memory
1623 * @tsk: task_struct of target task
1624 * @mm: mm_struct of target mm
1625 * @start: starting user address
1626 * @nr_pages: number of pages from start to pin
1627 * @gup_flags: flags modifying pin behaviour
1628 * @pages: array that receives pointers to the pages pinned.
1629 * Should be at least nr_pages long. Or NULL, if caller
1630 * only intends to ensure the pages are faulted in.
1631 * @vmas: array of pointers to vmas corresponding to each page.
1632 * Or NULL if the caller does not require them.
1633 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1634 *
1635 * Returns number of pages pinned. This may be fewer than the number
1636 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1637 * were pinned, returns -errno. Each page returned must be released
1638 * with a put_page() call when it is finished with. vmas will only
1639 * remain valid while mmap_sem is held.
1640 *
1641 * Must be called with mmap_sem held for read or write.
1642 *
1643 * __get_user_pages walks a process's page tables and takes a reference to
1644 * each struct page that each user address corresponds to at a given
1645 * instant. That is, it takes the page that would be accessed if a user
1646 * thread accesses the given user virtual address at that instant.
1647 *
1648 * This does not guarantee that the page exists in the user mappings when
1649 * __get_user_pages returns, and there may even be a completely different
1650 * page there in some cases (eg. if mmapped pagecache has been invalidated
1651 * and subsequently re faulted). However it does guarantee that the page
1652 * won't be freed completely. And mostly callers simply care that the page
1653 * contains data that was valid *at some point in time*. Typically, an IO
1654 * or similar operation cannot guarantee anything stronger anyway because
1655 * locks can't be held over the syscall boundary.
1656 *
1657 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1658 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1659 * appropriate) must be called after the page is finished with, and
1660 * before put_page is called.
1661 *
1662 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1663 * or mmap_sem contention, and if waiting is needed to pin all pages,
1664 * *@nonblocking will be set to 0.
1665 *
1666 * In most cases, get_user_pages or get_user_pages_fast should be used
1667 * instead of __get_user_pages. __get_user_pages should be used only if
1668 * you need some special @gup_flags.
1669 */
1670 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1671 unsigned long start, int nr_pages, unsigned int gup_flags,
1672 struct page **pages, struct vm_area_struct **vmas,
1673 int *nonblocking)
1674 {
1675 int i;
1676 unsigned long vm_flags;
1677
1678 if (nr_pages <= 0)
1679 return 0;
1680
1681 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1682
1683 /*
1684 * Require read or write permissions.
1685 * If FOLL_FORCE is set, we only require the "MAY" flags.
1686 */
1687 vm_flags = (gup_flags & FOLL_WRITE) ?
1688 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1689 vm_flags &= (gup_flags & FOLL_FORCE) ?
1690 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1691
1692 /*
1693 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1694 * would be called on PROT_NONE ranges. We must never invoke
1695 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1696 * page faults would unprotect the PROT_NONE ranges if
1697 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1698 * bitflag. So to avoid that, don't set FOLL_NUMA if
1699 * FOLL_FORCE is set.
1700 */
1701 if (!(gup_flags & FOLL_FORCE))
1702 gup_flags |= FOLL_NUMA;
1703
1704 i = 0;
1705
1706 do {
1707 struct vm_area_struct *vma;
1708
1709 vma = find_extend_vma(mm, start);
1710 if (!vma && in_gate_area(mm, start)) {
1711 unsigned long pg = start & PAGE_MASK;
1712 pgd_t *pgd;
1713 pud_t *pud;
1714 pmd_t *pmd;
1715 pte_t *pte;
1716
1717 /* user gate pages are read-only */
1718 if (gup_flags & FOLL_WRITE)
1719 return i ? : -EFAULT;
1720 if (pg > TASK_SIZE)
1721 pgd = pgd_offset_k(pg);
1722 else
1723 pgd = pgd_offset_gate(mm, pg);
1724 BUG_ON(pgd_none(*pgd));
1725 pud = pud_offset(pgd, pg);
1726 BUG_ON(pud_none(*pud));
1727 pmd = pmd_offset(pud, pg);
1728 if (pmd_none(*pmd))
1729 return i ? : -EFAULT;
1730 VM_BUG_ON(pmd_trans_huge(*pmd));
1731 pte = pte_offset_map(pmd, pg);
1732 if (pte_none(*pte)) {
1733 pte_unmap(pte);
1734 return i ? : -EFAULT;
1735 }
1736 vma = get_gate_vma(mm);
1737 if (pages) {
1738 struct page *page;
1739
1740 page = vm_normal_page(vma, start, *pte);
1741 if (!page) {
1742 if (!(gup_flags & FOLL_DUMP) &&
1743 is_zero_pfn(pte_pfn(*pte)))
1744 page = pte_page(*pte);
1745 else {
1746 pte_unmap(pte);
1747 return i ? : -EFAULT;
1748 }
1749 }
1750 pages[i] = page;
1751 get_page(page);
1752 }
1753 pte_unmap(pte);
1754 goto next_page;
1755 }
1756
1757 if (!vma ||
1758 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1759 !(vm_flags & vma->vm_flags))
1760 return i ? : -EFAULT;
1761
1762 if (is_vm_hugetlb_page(vma)) {
1763 i = follow_hugetlb_page(mm, vma, pages, vmas,
1764 &start, &nr_pages, i, gup_flags);
1765 continue;
1766 }
1767
1768 do {
1769 struct page *page;
1770 unsigned int foll_flags = gup_flags;
1771
1772 /*
1773 * If we have a pending SIGKILL, don't keep faulting
1774 * pages and potentially allocating memory.
1775 */
1776 if (unlikely(fatal_signal_pending(current)))
1777 return i ? i : -ERESTARTSYS;
1778
1779 cond_resched();
1780 while (!(page = follow_page(vma, start, foll_flags))) {
1781 int ret;
1782 unsigned int fault_flags = 0;
1783
1784 /* For mlock, just skip the stack guard page. */
1785 if (foll_flags & FOLL_MLOCK) {
1786 if (stack_guard_page(vma, start))
1787 goto next_page;
1788 }
1789 if (foll_flags & FOLL_WRITE)
1790 fault_flags |= FAULT_FLAG_WRITE;
1791 if (nonblocking)
1792 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1793 if (foll_flags & FOLL_NOWAIT)
1794 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1795
1796 ret = handle_mm_fault(mm, vma, start,
1797 fault_flags);
1798
1799 if (ret & VM_FAULT_ERROR) {
1800 if (ret & VM_FAULT_OOM)
1801 return i ? i : -ENOMEM;
1802 if (ret & (VM_FAULT_HWPOISON |
1803 VM_FAULT_HWPOISON_LARGE)) {
1804 if (i)
1805 return i;
1806 else if (gup_flags & FOLL_HWPOISON)
1807 return -EHWPOISON;
1808 else
1809 return -EFAULT;
1810 }
1811 if (ret & VM_FAULT_SIGBUS)
1812 return i ? i : -EFAULT;
1813 BUG();
1814 }
1815
1816 if (tsk) {
1817 if (ret & VM_FAULT_MAJOR)
1818 tsk->maj_flt++;
1819 else
1820 tsk->min_flt++;
1821 }
1822
1823 if (ret & VM_FAULT_RETRY) {
1824 if (nonblocking)
1825 *nonblocking = 0;
1826 return i;
1827 }
1828
1829 /*
1830 * The VM_FAULT_WRITE bit tells us that
1831 * do_wp_page has broken COW when necessary,
1832 * even if maybe_mkwrite decided not to set
1833 * pte_write. We can thus safely do subsequent
1834 * page lookups as if they were reads. But only
1835 * do so when looping for pte_write is futile:
1836 * in some cases userspace may also be wanting
1837 * to write to the gotten user page, which a
1838 * read fault here might prevent (a readonly
1839 * page might get reCOWed by userspace write).
1840 */
1841 if ((ret & VM_FAULT_WRITE) &&
1842 !(vma->vm_flags & VM_WRITE))
1843 foll_flags &= ~FOLL_WRITE;
1844
1845 cond_resched();
1846 }
1847 if (IS_ERR(page))
1848 return i ? i : PTR_ERR(page);
1849 if (pages) {
1850 pages[i] = page;
1851
1852 flush_anon_page(vma, page, start);
1853 flush_dcache_page(page);
1854 }
1855 next_page:
1856 if (vmas)
1857 vmas[i] = vma;
1858 i++;
1859 start += PAGE_SIZE;
1860 nr_pages--;
1861 } while (nr_pages && start < vma->vm_end);
1862 } while (nr_pages);
1863 return i;
1864 }
1865 EXPORT_SYMBOL(__get_user_pages);
1866
1867 /*
1868 * fixup_user_fault() - manually resolve a user page fault
1869 * @tsk: the task_struct to use for page fault accounting, or
1870 * NULL if faults are not to be recorded.
1871 * @mm: mm_struct of target mm
1872 * @address: user address
1873 * @fault_flags:flags to pass down to handle_mm_fault()
1874 *
1875 * This is meant to be called in the specific scenario where for locking reasons
1876 * we try to access user memory in atomic context (within a pagefault_disable()
1877 * section), this returns -EFAULT, and we want to resolve the user fault before
1878 * trying again.
1879 *
1880 * Typically this is meant to be used by the futex code.
1881 *
1882 * The main difference with get_user_pages() is that this function will
1883 * unconditionally call handle_mm_fault() which will in turn perform all the
1884 * necessary SW fixup of the dirty and young bits in the PTE, while
1885 * handle_mm_fault() only guarantees to update these in the struct page.
1886 *
1887 * This is important for some architectures where those bits also gate the
1888 * access permission to the page because they are maintained in software. On
1889 * such architectures, gup() will not be enough to make a subsequent access
1890 * succeed.
1891 *
1892 * This should be called with the mm_sem held for read.
1893 */
1894 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1895 unsigned long address, unsigned int fault_flags)
1896 {
1897 struct vm_area_struct *vma;
1898 int ret;
1899
1900 vma = find_extend_vma(mm, address);
1901 if (!vma || address < vma->vm_start)
1902 return -EFAULT;
1903
1904 ret = handle_mm_fault(mm, vma, address, fault_flags);
1905 if (ret & VM_FAULT_ERROR) {
1906 if (ret & VM_FAULT_OOM)
1907 return -ENOMEM;
1908 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1909 return -EHWPOISON;
1910 if (ret & VM_FAULT_SIGBUS)
1911 return -EFAULT;
1912 BUG();
1913 }
1914 if (tsk) {
1915 if (ret & VM_FAULT_MAJOR)
1916 tsk->maj_flt++;
1917 else
1918 tsk->min_flt++;
1919 }
1920 return 0;
1921 }
1922
1923 /*
1924 * get_user_pages() - pin user pages in memory
1925 * @tsk: the task_struct to use for page fault accounting, or
1926 * NULL if faults are not to be recorded.
1927 * @mm: mm_struct of target mm
1928 * @start: starting user address
1929 * @nr_pages: number of pages from start to pin
1930 * @write: whether pages will be written to by the caller
1931 * @force: whether to force write access even if user mapping is
1932 * readonly. This will result in the page being COWed even
1933 * in MAP_SHARED mappings. You do not want this.
1934 * @pages: array that receives pointers to the pages pinned.
1935 * Should be at least nr_pages long. Or NULL, if caller
1936 * only intends to ensure the pages are faulted in.
1937 * @vmas: array of pointers to vmas corresponding to each page.
1938 * Or NULL if the caller does not require them.
1939 *
1940 * Returns number of pages pinned. This may be fewer than the number
1941 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1942 * were pinned, returns -errno. Each page returned must be released
1943 * with a put_page() call when it is finished with. vmas will only
1944 * remain valid while mmap_sem is held.
1945 *
1946 * Must be called with mmap_sem held for read or write.
1947 *
1948 * get_user_pages walks a process's page tables and takes a reference to
1949 * each struct page that each user address corresponds to at a given
1950 * instant. That is, it takes the page that would be accessed if a user
1951 * thread accesses the given user virtual address at that instant.
1952 *
1953 * This does not guarantee that the page exists in the user mappings when
1954 * get_user_pages returns, and there may even be a completely different
1955 * page there in some cases (eg. if mmapped pagecache has been invalidated
1956 * and subsequently re faulted). However it does guarantee that the page
1957 * won't be freed completely. And mostly callers simply care that the page
1958 * contains data that was valid *at some point in time*. Typically, an IO
1959 * or similar operation cannot guarantee anything stronger anyway because
1960 * locks can't be held over the syscall boundary.
1961 *
1962 * If write=0, the page must not be written to. If the page is written to,
1963 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1964 * after the page is finished with, and before put_page is called.
1965 *
1966 * get_user_pages is typically used for fewer-copy IO operations, to get a
1967 * handle on the memory by some means other than accesses via the user virtual
1968 * addresses. The pages may be submitted for DMA to devices or accessed via
1969 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1970 * use the correct cache flushing APIs.
1971 *
1972 * See also get_user_pages_fast, for performance critical applications.
1973 */
1974 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1975 unsigned long start, int nr_pages, int write, int force,
1976 struct page **pages, struct vm_area_struct **vmas)
1977 {
1978 int flags = FOLL_TOUCH;
1979
1980 if (pages)
1981 flags |= FOLL_GET;
1982 if (write)
1983 flags |= FOLL_WRITE;
1984 if (force)
1985 flags |= FOLL_FORCE;
1986
1987 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1988 NULL);
1989 }
1990 EXPORT_SYMBOL(get_user_pages);
1991
1992 /**
1993 * get_dump_page() - pin user page in memory while writing it to core dump
1994 * @addr: user address
1995 *
1996 * Returns struct page pointer of user page pinned for dump,
1997 * to be freed afterwards by page_cache_release() or put_page().
1998 *
1999 * Returns NULL on any kind of failure - a hole must then be inserted into
2000 * the corefile, to preserve alignment with its headers; and also returns
2001 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2002 * allowing a hole to be left in the corefile to save diskspace.
2003 *
2004 * Called without mmap_sem, but after all other threads have been killed.
2005 */
2006 #ifdef CONFIG_ELF_CORE
2007 struct page *get_dump_page(unsigned long addr)
2008 {
2009 struct vm_area_struct *vma;
2010 struct page *page;
2011
2012 if (__get_user_pages(current, current->mm, addr, 1,
2013 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2014 NULL) < 1)
2015 return NULL;
2016 flush_cache_page(vma, addr, page_to_pfn(page));
2017 return page;
2018 }
2019 #endif /* CONFIG_ELF_CORE */
2020
2021 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2022 spinlock_t **ptl)
2023 {
2024 pgd_t * pgd = pgd_offset(mm, addr);
2025 pud_t * pud = pud_alloc(mm, pgd, addr);
2026 if (pud) {
2027 pmd_t * pmd = pmd_alloc(mm, pud, addr);
2028 if (pmd) {
2029 VM_BUG_ON(pmd_trans_huge(*pmd));
2030 return pte_alloc_map_lock(mm, pmd, addr, ptl);
2031 }
2032 }
2033 return NULL;
2034 }
2035
2036 /*
2037 * This is the old fallback for page remapping.
2038 *
2039 * For historical reasons, it only allows reserved pages. Only
2040 * old drivers should use this, and they needed to mark their
2041 * pages reserved for the old functions anyway.
2042 */
2043 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2044 struct page *page, pgprot_t prot)
2045 {
2046 struct mm_struct *mm = vma->vm_mm;
2047 int retval;
2048 pte_t *pte;
2049 spinlock_t *ptl;
2050
2051 retval = -EINVAL;
2052 if (PageAnon(page))
2053 goto out;
2054 retval = -ENOMEM;
2055 flush_dcache_page(page);
2056 pte = get_locked_pte(mm, addr, &ptl);
2057 if (!pte)
2058 goto out;
2059 retval = -EBUSY;
2060 if (!pte_none(*pte))
2061 goto out_unlock;
2062
2063 /* Ok, finally just insert the thing.. */
2064 get_page(page);
2065 inc_mm_counter_fast(mm, MM_FILEPAGES);
2066 page_add_file_rmap(page);
2067 set_pte_at(mm, addr, pte, mk_pte(page, prot));
2068
2069 retval = 0;
2070 pte_unmap_unlock(pte, ptl);
2071 return retval;
2072 out_unlock:
2073 pte_unmap_unlock(pte, ptl);
2074 out:
2075 return retval;
2076 }
2077
2078 /**
2079 * vm_insert_page - insert single page into user vma
2080 * @vma: user vma to map to
2081 * @addr: target user address of this page
2082 * @page: source kernel page
2083 *
2084 * This allows drivers to insert individual pages they've allocated
2085 * into a user vma.
2086 *
2087 * The page has to be a nice clean _individual_ kernel allocation.
2088 * If you allocate a compound page, you need to have marked it as
2089 * such (__GFP_COMP), or manually just split the page up yourself
2090 * (see split_page()).
2091 *
2092 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2093 * took an arbitrary page protection parameter. This doesn't allow
2094 * that. Your vma protection will have to be set up correctly, which
2095 * means that if you want a shared writable mapping, you'd better
2096 * ask for a shared writable mapping!
2097 *
2098 * The page does not need to be reserved.
2099 *
2100 * Usually this function is called from f_op->mmap() handler
2101 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2102 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2103 * function from other places, for example from page-fault handler.
2104 */
2105 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2106 struct page *page)
2107 {
2108 if (addr < vma->vm_start || addr >= vma->vm_end)
2109 return -EFAULT;
2110 if (!page_count(page))
2111 return -EINVAL;
2112 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2113 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2114 BUG_ON(vma->vm_flags & VM_PFNMAP);
2115 vma->vm_flags |= VM_MIXEDMAP;
2116 }
2117 return insert_page(vma, addr, page, vma->vm_page_prot);
2118 }
2119 EXPORT_SYMBOL(vm_insert_page);
2120
2121 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2122 unsigned long pfn, pgprot_t prot)
2123 {
2124 struct mm_struct *mm = vma->vm_mm;
2125 int retval;
2126 pte_t *pte, entry;
2127 spinlock_t *ptl;
2128
2129 retval = -ENOMEM;
2130 pte = get_locked_pte(mm, addr, &ptl);
2131 if (!pte)
2132 goto out;
2133 retval = -EBUSY;
2134 if (!pte_none(*pte))
2135 goto out_unlock;
2136
2137 /* Ok, finally just insert the thing.. */
2138 entry = pte_mkspecial(pfn_pte(pfn, prot));
2139 set_pte_at(mm, addr, pte, entry);
2140 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2141
2142 retval = 0;
2143 out_unlock:
2144 pte_unmap_unlock(pte, ptl);
2145 out:
2146 return retval;
2147 }
2148
2149 /**
2150 * vm_insert_pfn - insert single pfn into user vma
2151 * @vma: user vma to map to
2152 * @addr: target user address of this page
2153 * @pfn: source kernel pfn
2154 *
2155 * Similar to vm_insert_page, this allows drivers to insert individual pages
2156 * they've allocated into a user vma. Same comments apply.
2157 *
2158 * This function should only be called from a vm_ops->fault handler, and
2159 * in that case the handler should return NULL.
2160 *
2161 * vma cannot be a COW mapping.
2162 *
2163 * As this is called only for pages that do not currently exist, we
2164 * do not need to flush old virtual caches or the TLB.
2165 */
2166 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2167 unsigned long pfn)
2168 {
2169 int ret;
2170 pgprot_t pgprot = vma->vm_page_prot;
2171 /*
2172 * Technically, architectures with pte_special can avoid all these
2173 * restrictions (same for remap_pfn_range). However we would like
2174 * consistency in testing and feature parity among all, so we should
2175 * try to keep these invariants in place for everybody.
2176 */
2177 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2178 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2179 (VM_PFNMAP|VM_MIXEDMAP));
2180 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2181 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2182
2183 if (addr < vma->vm_start || addr >= vma->vm_end)
2184 return -EFAULT;
2185 if (track_pfn_insert(vma, &pgprot, pfn))
2186 return -EINVAL;
2187
2188 ret = insert_pfn(vma, addr, pfn, pgprot);
2189
2190 return ret;
2191 }
2192 EXPORT_SYMBOL(vm_insert_pfn);
2193
2194 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2195 unsigned long pfn)
2196 {
2197 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2198
2199 if (addr < vma->vm_start || addr >= vma->vm_end)
2200 return -EFAULT;
2201
2202 /*
2203 * If we don't have pte special, then we have to use the pfn_valid()
2204 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2205 * refcount the page if pfn_valid is true (hence insert_page rather
2206 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2207 * without pte special, it would there be refcounted as a normal page.
2208 */
2209 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2210 struct page *page;
2211
2212 page = pfn_to_page(pfn);
2213 return insert_page(vma, addr, page, vma->vm_page_prot);
2214 }
2215 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2216 }
2217 EXPORT_SYMBOL(vm_insert_mixed);
2218
2219 /*
2220 * maps a range of physical memory into the requested pages. the old
2221 * mappings are removed. any references to nonexistent pages results
2222 * in null mappings (currently treated as "copy-on-access")
2223 */
2224 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2225 unsigned long addr, unsigned long end,
2226 unsigned long pfn, pgprot_t prot)
2227 {
2228 pte_t *pte;
2229 spinlock_t *ptl;
2230
2231 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2232 if (!pte)
2233 return -ENOMEM;
2234 arch_enter_lazy_mmu_mode();
2235 do {
2236 BUG_ON(!pte_none(*pte));
2237 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2238 pfn++;
2239 } while (pte++, addr += PAGE_SIZE, addr != end);
2240 arch_leave_lazy_mmu_mode();
2241 pte_unmap_unlock(pte - 1, ptl);
2242 return 0;
2243 }
2244
2245 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2246 unsigned long addr, unsigned long end,
2247 unsigned long pfn, pgprot_t prot)
2248 {
2249 pmd_t *pmd;
2250 unsigned long next;
2251
2252 pfn -= addr >> PAGE_SHIFT;
2253 pmd = pmd_alloc(mm, pud, addr);
2254 if (!pmd)
2255 return -ENOMEM;
2256 VM_BUG_ON(pmd_trans_huge(*pmd));
2257 do {
2258 next = pmd_addr_end(addr, end);
2259 if (remap_pte_range(mm, pmd, addr, next,
2260 pfn + (addr >> PAGE_SHIFT), prot))
2261 return -ENOMEM;
2262 } while (pmd++, addr = next, addr != end);
2263 return 0;
2264 }
2265
2266 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2267 unsigned long addr, unsigned long end,
2268 unsigned long pfn, pgprot_t prot)
2269 {
2270 pud_t *pud;
2271 unsigned long next;
2272
2273 pfn -= addr >> PAGE_SHIFT;
2274 pud = pud_alloc(mm, pgd, addr);
2275 if (!pud)
2276 return -ENOMEM;
2277 do {
2278 next = pud_addr_end(addr, end);
2279 if (remap_pmd_range(mm, pud, addr, next,
2280 pfn + (addr >> PAGE_SHIFT), prot))
2281 return -ENOMEM;
2282 } while (pud++, addr = next, addr != end);
2283 return 0;
2284 }
2285
2286 /**
2287 * remap_pfn_range - remap kernel memory to userspace
2288 * @vma: user vma to map to
2289 * @addr: target user address to start at
2290 * @pfn: physical address of kernel memory
2291 * @size: size of map area
2292 * @prot: page protection flags for this mapping
2293 *
2294 * Note: this is only safe if the mm semaphore is held when called.
2295 */
2296 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2297 unsigned long pfn, unsigned long size, pgprot_t prot)
2298 {
2299 pgd_t *pgd;
2300 unsigned long next;
2301 unsigned long end = addr + PAGE_ALIGN(size);
2302 struct mm_struct *mm = vma->vm_mm;
2303 int err;
2304
2305 /*
2306 * Physically remapped pages are special. Tell the
2307 * rest of the world about it:
2308 * VM_IO tells people not to look at these pages
2309 * (accesses can have side effects).
2310 * VM_PFNMAP tells the core MM that the base pages are just
2311 * raw PFN mappings, and do not have a "struct page" associated
2312 * with them.
2313 * VM_DONTEXPAND
2314 * Disable vma merging and expanding with mremap().
2315 * VM_DONTDUMP
2316 * Omit vma from core dump, even when VM_IO turned off.
2317 *
2318 * There's a horrible special case to handle copy-on-write
2319 * behaviour that some programs depend on. We mark the "original"
2320 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2321 * See vm_normal_page() for details.
2322 */
2323 if (is_cow_mapping(vma->vm_flags)) {
2324 if (addr != vma->vm_start || end != vma->vm_end)
2325 return -EINVAL;
2326 vma->vm_pgoff = pfn;
2327 }
2328
2329 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2330 if (err)
2331 return -EINVAL;
2332
2333 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2334
2335 BUG_ON(addr >= end);
2336 pfn -= addr >> PAGE_SHIFT;
2337 pgd = pgd_offset(mm, addr);
2338 flush_cache_range(vma, addr, end);
2339 do {
2340 next = pgd_addr_end(addr, end);
2341 err = remap_pud_range(mm, pgd, addr, next,
2342 pfn + (addr >> PAGE_SHIFT), prot);
2343 if (err)
2344 break;
2345 } while (pgd++, addr = next, addr != end);
2346
2347 if (err)
2348 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2349
2350 return err;
2351 }
2352 EXPORT_SYMBOL(remap_pfn_range);
2353
2354 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2355 unsigned long addr, unsigned long end,
2356 pte_fn_t fn, void *data)
2357 {
2358 pte_t *pte;
2359 int err;
2360 pgtable_t token;
2361 spinlock_t *uninitialized_var(ptl);
2362
2363 pte = (mm == &init_mm) ?
2364 pte_alloc_kernel(pmd, addr) :
2365 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2366 if (!pte)
2367 return -ENOMEM;
2368
2369 BUG_ON(pmd_huge(*pmd));
2370
2371 arch_enter_lazy_mmu_mode();
2372
2373 token = pmd_pgtable(*pmd);
2374
2375 do {
2376 err = fn(pte++, token, addr, data);
2377 if (err)
2378 break;
2379 } while (addr += PAGE_SIZE, addr != end);
2380
2381 arch_leave_lazy_mmu_mode();
2382
2383 if (mm != &init_mm)
2384 pte_unmap_unlock(pte-1, ptl);
2385 return err;
2386 }
2387
2388 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2389 unsigned long addr, unsigned long end,
2390 pte_fn_t fn, void *data)
2391 {
2392 pmd_t *pmd;
2393 unsigned long next;
2394 int err;
2395
2396 BUG_ON(pud_huge(*pud));
2397
2398 pmd = pmd_alloc(mm, pud, addr);
2399 if (!pmd)
2400 return -ENOMEM;
2401 do {
2402 next = pmd_addr_end(addr, end);
2403 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2404 if (err)
2405 break;
2406 } while (pmd++, addr = next, addr != end);
2407 return err;
2408 }
2409
2410 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2411 unsigned long addr, unsigned long end,
2412 pte_fn_t fn, void *data)
2413 {
2414 pud_t *pud;
2415 unsigned long next;
2416 int err;
2417
2418 pud = pud_alloc(mm, pgd, addr);
2419 if (!pud)
2420 return -ENOMEM;
2421 do {
2422 next = pud_addr_end(addr, end);
2423 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2424 if (err)
2425 break;
2426 } while (pud++, addr = next, addr != end);
2427 return err;
2428 }
2429
2430 /*
2431 * Scan a region of virtual memory, filling in page tables as necessary
2432 * and calling a provided function on each leaf page table.
2433 */
2434 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2435 unsigned long size, pte_fn_t fn, void *data)
2436 {
2437 pgd_t *pgd;
2438 unsigned long next;
2439 unsigned long end = addr + size;
2440 int err;
2441
2442 BUG_ON(addr >= end);
2443 pgd = pgd_offset(mm, addr);
2444 do {
2445 next = pgd_addr_end(addr, end);
2446 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2447 if (err)
2448 break;
2449 } while (pgd++, addr = next, addr != end);
2450
2451 return err;
2452 }
2453 EXPORT_SYMBOL_GPL(apply_to_page_range);
2454
2455 /*
2456 * handle_pte_fault chooses page fault handler according to an entry
2457 * which was read non-atomically. Before making any commitment, on
2458 * those architectures or configurations (e.g. i386 with PAE) which
2459 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2460 * must check under lock before unmapping the pte and proceeding
2461 * (but do_wp_page is only called after already making such a check;
2462 * and do_anonymous_page can safely check later on).
2463 */
2464 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2465 pte_t *page_table, pte_t orig_pte)
2466 {
2467 int same = 1;
2468 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2469 if (sizeof(pte_t) > sizeof(unsigned long)) {
2470 spinlock_t *ptl = pte_lockptr(mm, pmd);
2471 spin_lock(ptl);
2472 same = pte_same(*page_table, orig_pte);
2473 spin_unlock(ptl);
2474 }
2475 #endif
2476 pte_unmap(page_table);
2477 return same;
2478 }
2479
2480 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2481 {
2482 /*
2483 * If the source page was a PFN mapping, we don't have
2484 * a "struct page" for it. We do a best-effort copy by
2485 * just copying from the original user address. If that
2486 * fails, we just zero-fill it. Live with it.
2487 */
2488 if (unlikely(!src)) {
2489 void *kaddr = kmap_atomic(dst);
2490 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2491
2492 /*
2493 * This really shouldn't fail, because the page is there
2494 * in the page tables. But it might just be unreadable,
2495 * in which case we just give up and fill the result with
2496 * zeroes.
2497 */
2498 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2499 clear_page(kaddr);
2500 kunmap_atomic(kaddr);
2501 flush_dcache_page(dst);
2502 } else
2503 copy_user_highpage(dst, src, va, vma);
2504 }
2505
2506 /*
2507 * This routine handles present pages, when users try to write
2508 * to a shared page. It is done by copying the page to a new address
2509 * and decrementing the shared-page counter for the old page.
2510 *
2511 * Note that this routine assumes that the protection checks have been
2512 * done by the caller (the low-level page fault routine in most cases).
2513 * Thus we can safely just mark it writable once we've done any necessary
2514 * COW.
2515 *
2516 * We also mark the page dirty at this point even though the page will
2517 * change only once the write actually happens. This avoids a few races,
2518 * and potentially makes it more efficient.
2519 *
2520 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2521 * but allow concurrent faults), with pte both mapped and locked.
2522 * We return with mmap_sem still held, but pte unmapped and unlocked.
2523 */
2524 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2525 unsigned long address, pte_t *page_table, pmd_t *pmd,
2526 spinlock_t *ptl, pte_t orig_pte)
2527 __releases(ptl)
2528 {
2529 struct page *old_page, *new_page = NULL;
2530 pte_t entry;
2531 int ret = 0;
2532 int page_mkwrite = 0;
2533 struct page *dirty_page = NULL;
2534 unsigned long mmun_start = 0; /* For mmu_notifiers */
2535 unsigned long mmun_end = 0; /* For mmu_notifiers */
2536
2537 old_page = vm_normal_page(vma, address, orig_pte);
2538 if (!old_page) {
2539 /*
2540 * VM_MIXEDMAP !pfn_valid() case
2541 *
2542 * We should not cow pages in a shared writeable mapping.
2543 * Just mark the pages writable as we can't do any dirty
2544 * accounting on raw pfn maps.
2545 */
2546 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2547 (VM_WRITE|VM_SHARED))
2548 goto reuse;
2549 goto gotten;
2550 }
2551
2552 /*
2553 * Take out anonymous pages first, anonymous shared vmas are
2554 * not dirty accountable.
2555 */
2556 if (PageAnon(old_page) && !PageKsm(old_page)) {
2557 if (!trylock_page(old_page)) {
2558 page_cache_get(old_page);
2559 pte_unmap_unlock(page_table, ptl);
2560 lock_page(old_page);
2561 page_table = pte_offset_map_lock(mm, pmd, address,
2562 &ptl);
2563 if (!pte_same(*page_table, orig_pte)) {
2564 unlock_page(old_page);
2565 goto unlock;
2566 }
2567 page_cache_release(old_page);
2568 }
2569 if (reuse_swap_page(old_page)) {
2570 /*
2571 * The page is all ours. Move it to our anon_vma so
2572 * the rmap code will not search our parent or siblings.
2573 * Protected against the rmap code by the page lock.
2574 */
2575 page_move_anon_rmap(old_page, vma, address);
2576 unlock_page(old_page);
2577 goto reuse;
2578 }
2579 unlock_page(old_page);
2580 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2581 (VM_WRITE|VM_SHARED))) {
2582 /*
2583 * Only catch write-faults on shared writable pages,
2584 * read-only shared pages can get COWed by
2585 * get_user_pages(.write=1, .force=1).
2586 */
2587 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2588 struct vm_fault vmf;
2589 int tmp;
2590
2591 vmf.virtual_address = (void __user *)(address &
2592 PAGE_MASK);
2593 vmf.pgoff = old_page->index;
2594 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2595 vmf.page = old_page;
2596
2597 /*
2598 * Notify the address space that the page is about to
2599 * become writable so that it can prohibit this or wait
2600 * for the page to get into an appropriate state.
2601 *
2602 * We do this without the lock held, so that it can
2603 * sleep if it needs to.
2604 */
2605 page_cache_get(old_page);
2606 pte_unmap_unlock(page_table, ptl);
2607
2608 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2609 if (unlikely(tmp &
2610 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2611 ret = tmp;
2612 goto unwritable_page;
2613 }
2614 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2615 lock_page(old_page);
2616 if (!old_page->mapping) {
2617 ret = 0; /* retry the fault */
2618 unlock_page(old_page);
2619 goto unwritable_page;
2620 }
2621 } else
2622 VM_BUG_ON(!PageLocked(old_page));
2623
2624 /*
2625 * Since we dropped the lock we need to revalidate
2626 * the PTE as someone else may have changed it. If
2627 * they did, we just return, as we can count on the
2628 * MMU to tell us if they didn't also make it writable.
2629 */
2630 page_table = pte_offset_map_lock(mm, pmd, address,
2631 &ptl);
2632 if (!pte_same(*page_table, orig_pte)) {
2633 unlock_page(old_page);
2634 goto unlock;
2635 }
2636
2637 page_mkwrite = 1;
2638 }
2639 dirty_page = old_page;
2640 get_page(dirty_page);
2641
2642 reuse:
2643 flush_cache_page(vma, address, pte_pfn(orig_pte));
2644 entry = pte_mkyoung(orig_pte);
2645 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2646 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2647 update_mmu_cache(vma, address, page_table);
2648 pte_unmap_unlock(page_table, ptl);
2649 ret |= VM_FAULT_WRITE;
2650
2651 if (!dirty_page)
2652 return ret;
2653
2654 /*
2655 * Yes, Virginia, this is actually required to prevent a race
2656 * with clear_page_dirty_for_io() from clearing the page dirty
2657 * bit after it clear all dirty ptes, but before a racing
2658 * do_wp_page installs a dirty pte.
2659 *
2660 * __do_fault is protected similarly.
2661 */
2662 if (!page_mkwrite) {
2663 wait_on_page_locked(dirty_page);
2664 set_page_dirty_balance(dirty_page, page_mkwrite);
2665 /* file_update_time outside page_lock */
2666 if (vma->vm_file)
2667 file_update_time(vma->vm_file);
2668 }
2669 put_page(dirty_page);
2670 if (page_mkwrite) {
2671 struct address_space *mapping = dirty_page->mapping;
2672
2673 set_page_dirty(dirty_page);
2674 unlock_page(dirty_page);
2675 page_cache_release(dirty_page);
2676 if (mapping) {
2677 /*
2678 * Some device drivers do not set page.mapping
2679 * but still dirty their pages
2680 */
2681 balance_dirty_pages_ratelimited(mapping);
2682 }
2683 }
2684
2685 return ret;
2686 }
2687
2688 /*
2689 * Ok, we need to copy. Oh, well..
2690 */
2691 page_cache_get(old_page);
2692 gotten:
2693 pte_unmap_unlock(page_table, ptl);
2694
2695 if (unlikely(anon_vma_prepare(vma)))
2696 goto oom;
2697
2698 if (is_zero_pfn(pte_pfn(orig_pte))) {
2699 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2700 if (!new_page)
2701 goto oom;
2702 } else {
2703 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2704 if (!new_page)
2705 goto oom;
2706 cow_user_page(new_page, old_page, address, vma);
2707 }
2708 __SetPageUptodate(new_page);
2709
2710 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2711 goto oom_free_new;
2712
2713 mmun_start = address & PAGE_MASK;
2714 mmun_end = mmun_start + PAGE_SIZE;
2715 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2716
2717 /*
2718 * Re-check the pte - we dropped the lock
2719 */
2720 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2721 if (likely(pte_same(*page_table, orig_pte))) {
2722 if (old_page) {
2723 if (!PageAnon(old_page)) {
2724 dec_mm_counter_fast(mm, MM_FILEPAGES);
2725 inc_mm_counter_fast(mm, MM_ANONPAGES);
2726 }
2727 } else
2728 inc_mm_counter_fast(mm, MM_ANONPAGES);
2729 flush_cache_page(vma, address, pte_pfn(orig_pte));
2730 entry = mk_pte(new_page, vma->vm_page_prot);
2731 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2732 /*
2733 * Clear the pte entry and flush it first, before updating the
2734 * pte with the new entry. This will avoid a race condition
2735 * seen in the presence of one thread doing SMC and another
2736 * thread doing COW.
2737 */
2738 ptep_clear_flush(vma, address, page_table);
2739 page_add_new_anon_rmap(new_page, vma, address);
2740 /*
2741 * We call the notify macro here because, when using secondary
2742 * mmu page tables (such as kvm shadow page tables), we want the
2743 * new page to be mapped directly into the secondary page table.
2744 */
2745 set_pte_at_notify(mm, address, page_table, entry);
2746 update_mmu_cache(vma, address, page_table);
2747 if (old_page) {
2748 /*
2749 * Only after switching the pte to the new page may
2750 * we remove the mapcount here. Otherwise another
2751 * process may come and find the rmap count decremented
2752 * before the pte is switched to the new page, and
2753 * "reuse" the old page writing into it while our pte
2754 * here still points into it and can be read by other
2755 * threads.
2756 *
2757 * The critical issue is to order this
2758 * page_remove_rmap with the ptp_clear_flush above.
2759 * Those stores are ordered by (if nothing else,)
2760 * the barrier present in the atomic_add_negative
2761 * in page_remove_rmap.
2762 *
2763 * Then the TLB flush in ptep_clear_flush ensures that
2764 * no process can access the old page before the
2765 * decremented mapcount is visible. And the old page
2766 * cannot be reused until after the decremented
2767 * mapcount is visible. So transitively, TLBs to
2768 * old page will be flushed before it can be reused.
2769 */
2770 page_remove_rmap(old_page);
2771 }
2772
2773 /* Free the old page.. */
2774 new_page = old_page;
2775 ret |= VM_FAULT_WRITE;
2776 } else
2777 mem_cgroup_uncharge_page(new_page);
2778
2779 if (new_page)
2780 page_cache_release(new_page);
2781 unlock:
2782 pte_unmap_unlock(page_table, ptl);
2783 if (mmun_end > mmun_start)
2784 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2785 if (old_page) {
2786 /*
2787 * Don't let another task, with possibly unlocked vma,
2788 * keep the mlocked page.
2789 */
2790 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2791 lock_page(old_page); /* LRU manipulation */
2792 munlock_vma_page(old_page);
2793 unlock_page(old_page);
2794 }
2795 page_cache_release(old_page);
2796 }
2797 return ret;
2798 oom_free_new:
2799 page_cache_release(new_page);
2800 oom:
2801 if (old_page)
2802 page_cache_release(old_page);
2803 return VM_FAULT_OOM;
2804
2805 unwritable_page:
2806 page_cache_release(old_page);
2807 return ret;
2808 }
2809
2810 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2811 unsigned long start_addr, unsigned long end_addr,
2812 struct zap_details *details)
2813 {
2814 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2815 }
2816
2817 static inline void unmap_mapping_range_tree(struct rb_root *root,
2818 struct zap_details *details)
2819 {
2820 struct vm_area_struct *vma;
2821 pgoff_t vba, vea, zba, zea;
2822
2823 vma_interval_tree_foreach(vma, root,
2824 details->first_index, details->last_index) {
2825
2826 vba = vma->vm_pgoff;
2827 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2828 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2829 zba = details->first_index;
2830 if (zba < vba)
2831 zba = vba;
2832 zea = details->last_index;
2833 if (zea > vea)
2834 zea = vea;
2835
2836 unmap_mapping_range_vma(vma,
2837 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2838 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2839 details);
2840 }
2841 }
2842
2843 static inline void unmap_mapping_range_list(struct list_head *head,
2844 struct zap_details *details)
2845 {
2846 struct vm_area_struct *vma;
2847
2848 /*
2849 * In nonlinear VMAs there is no correspondence between virtual address
2850 * offset and file offset. So we must perform an exhaustive search
2851 * across *all* the pages in each nonlinear VMA, not just the pages
2852 * whose virtual address lies outside the file truncation point.
2853 */
2854 list_for_each_entry(vma, head, shared.nonlinear) {
2855 details->nonlinear_vma = vma;
2856 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2857 }
2858 }
2859
2860 /**
2861 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2862 * @mapping: the address space containing mmaps to be unmapped.
2863 * @holebegin: byte in first page to unmap, relative to the start of
2864 * the underlying file. This will be rounded down to a PAGE_SIZE
2865 * boundary. Note that this is different from truncate_pagecache(), which
2866 * must keep the partial page. In contrast, we must get rid of
2867 * partial pages.
2868 * @holelen: size of prospective hole in bytes. This will be rounded
2869 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2870 * end of the file.
2871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872 * but 0 when invalidating pagecache, don't throw away private data.
2873 */
2874 void unmap_mapping_range(struct address_space *mapping,
2875 loff_t const holebegin, loff_t const holelen, int even_cows)
2876 {
2877 struct zap_details details;
2878 pgoff_t hba = holebegin >> PAGE_SHIFT;
2879 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2880
2881 /* Check for overflow. */
2882 if (sizeof(holelen) > sizeof(hlen)) {
2883 long long holeend =
2884 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2885 if (holeend & ~(long long)ULONG_MAX)
2886 hlen = ULONG_MAX - hba + 1;
2887 }
2888
2889 details.check_mapping = even_cows? NULL: mapping;
2890 details.nonlinear_vma = NULL;
2891 details.first_index = hba;
2892 details.last_index = hba + hlen - 1;
2893 if (details.last_index < details.first_index)
2894 details.last_index = ULONG_MAX;
2895
2896
2897 mutex_lock(&mapping->i_mmap_mutex);
2898 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2899 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2900 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2901 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2902 mutex_unlock(&mapping->i_mmap_mutex);
2903 }
2904 EXPORT_SYMBOL(unmap_mapping_range);
2905
2906 /*
2907 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2908 * but allow concurrent faults), and pte mapped but not yet locked.
2909 * We return with mmap_sem still held, but pte unmapped and unlocked.
2910 */
2911 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2912 unsigned long address, pte_t *page_table, pmd_t *pmd,
2913 unsigned int flags, pte_t orig_pte)
2914 {
2915 spinlock_t *ptl;
2916 struct page *page, *swapcache = NULL;
2917 swp_entry_t entry;
2918 pte_t pte;
2919 int locked;
2920 struct mem_cgroup *ptr;
2921 int exclusive = 0;
2922 int ret = 0;
2923
2924 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2925 goto out;
2926
2927 entry = pte_to_swp_entry(orig_pte);
2928 if (unlikely(non_swap_entry(entry))) {
2929 if (is_migration_entry(entry)) {
2930 migration_entry_wait(mm, pmd, address);
2931 } else if (is_hwpoison_entry(entry)) {
2932 ret = VM_FAULT_HWPOISON;
2933 } else {
2934 print_bad_pte(vma, address, orig_pte, NULL);
2935 ret = VM_FAULT_SIGBUS;
2936 }
2937 goto out;
2938 }
2939 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2940 page = lookup_swap_cache(entry);
2941 if (!page) {
2942 page = swapin_readahead(entry,
2943 GFP_HIGHUSER_MOVABLE, vma, address);
2944 if (!page) {
2945 /*
2946 * Back out if somebody else faulted in this pte
2947 * while we released the pte lock.
2948 */
2949 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2950 if (likely(pte_same(*page_table, orig_pte)))
2951 ret = VM_FAULT_OOM;
2952 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2953 goto unlock;
2954 }
2955
2956 /* Had to read the page from swap area: Major fault */
2957 ret = VM_FAULT_MAJOR;
2958 count_vm_event(PGMAJFAULT);
2959 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2960 } else if (PageHWPoison(page)) {
2961 /*
2962 * hwpoisoned dirty swapcache pages are kept for killing
2963 * owner processes (which may be unknown at hwpoison time)
2964 */
2965 ret = VM_FAULT_HWPOISON;
2966 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2967 goto out_release;
2968 }
2969
2970 locked = lock_page_or_retry(page, mm, flags);
2971
2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973 if (!locked) {
2974 ret |= VM_FAULT_RETRY;
2975 goto out_release;
2976 }
2977
2978 /*
2979 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2980 * release the swapcache from under us. The page pin, and pte_same
2981 * test below, are not enough to exclude that. Even if it is still
2982 * swapcache, we need to check that the page's swap has not changed.
2983 */
2984 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2985 goto out_page;
2986
2987 if (ksm_might_need_to_copy(page, vma, address)) {
2988 swapcache = page;
2989 page = ksm_does_need_to_copy(page, vma, address);
2990
2991 if (unlikely(!page)) {
2992 ret = VM_FAULT_OOM;
2993 page = swapcache;
2994 swapcache = NULL;
2995 goto out_page;
2996 }
2997 }
2998
2999 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3000 ret = VM_FAULT_OOM;
3001 goto out_page;
3002 }
3003
3004 /*
3005 * Back out if somebody else already faulted in this pte.
3006 */
3007 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3008 if (unlikely(!pte_same(*page_table, orig_pte)))
3009 goto out_nomap;
3010
3011 if (unlikely(!PageUptodate(page))) {
3012 ret = VM_FAULT_SIGBUS;
3013 goto out_nomap;
3014 }
3015
3016 /*
3017 * The page isn't present yet, go ahead with the fault.
3018 *
3019 * Be careful about the sequence of operations here.
3020 * To get its accounting right, reuse_swap_page() must be called
3021 * while the page is counted on swap but not yet in mapcount i.e.
3022 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3023 * must be called after the swap_free(), or it will never succeed.
3024 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3025 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3026 * in page->private. In this case, a record in swap_cgroup is silently
3027 * discarded at swap_free().
3028 */
3029
3030 inc_mm_counter_fast(mm, MM_ANONPAGES);
3031 dec_mm_counter_fast(mm, MM_SWAPENTS);
3032 pte = mk_pte(page, vma->vm_page_prot);
3033 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3034 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3035 flags &= ~FAULT_FLAG_WRITE;
3036 ret |= VM_FAULT_WRITE;
3037 exclusive = 1;
3038 }
3039 flush_icache_page(vma, page);
3040 set_pte_at(mm, address, page_table, pte);
3041 do_page_add_anon_rmap(page, vma, address, exclusive);
3042 /* It's better to call commit-charge after rmap is established */
3043 mem_cgroup_commit_charge_swapin(page, ptr);
3044
3045 swap_free(entry);
3046 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3047 try_to_free_swap(page);
3048 unlock_page(page);
3049 if (swapcache) {
3050 /*
3051 * Hold the lock to avoid the swap entry to be reused
3052 * until we take the PT lock for the pte_same() check
3053 * (to avoid false positives from pte_same). For
3054 * further safety release the lock after the swap_free
3055 * so that the swap count won't change under a
3056 * parallel locked swapcache.
3057 */
3058 unlock_page(swapcache);
3059 page_cache_release(swapcache);
3060 }
3061
3062 if (flags & FAULT_FLAG_WRITE) {
3063 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3064 if (ret & VM_FAULT_ERROR)
3065 ret &= VM_FAULT_ERROR;
3066 goto out;
3067 }
3068
3069 /* No need to invalidate - it was non-present before */
3070 update_mmu_cache(vma, address, page_table);
3071 unlock:
3072 pte_unmap_unlock(page_table, ptl);
3073 out:
3074 return ret;
3075 out_nomap:
3076 mem_cgroup_cancel_charge_swapin(ptr);
3077 pte_unmap_unlock(page_table, ptl);
3078 out_page:
3079 unlock_page(page);
3080 out_release:
3081 page_cache_release(page);
3082 if (swapcache) {
3083 unlock_page(swapcache);
3084 page_cache_release(swapcache);
3085 }
3086 return ret;
3087 }
3088
3089 /*
3090 * This is like a special single-page "expand_{down|up}wards()",
3091 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3092 * doesn't hit another vma.
3093 */
3094 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3095 {
3096 address &= PAGE_MASK;
3097 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3098 struct vm_area_struct *prev = vma->vm_prev;
3099
3100 /*
3101 * Is there a mapping abutting this one below?
3102 *
3103 * That's only ok if it's the same stack mapping
3104 * that has gotten split..
3105 */
3106 if (prev && prev->vm_end == address)
3107 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3108
3109 expand_downwards(vma, address - PAGE_SIZE);
3110 }
3111 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3112 struct vm_area_struct *next = vma->vm_next;
3113
3114 /* As VM_GROWSDOWN but s/below/above/ */
3115 if (next && next->vm_start == address + PAGE_SIZE)
3116 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3117
3118 expand_upwards(vma, address + PAGE_SIZE);
3119 }
3120 return 0;
3121 }
3122
3123 /*
3124 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3125 * but allow concurrent faults), and pte mapped but not yet locked.
3126 * We return with mmap_sem still held, but pte unmapped and unlocked.
3127 */
3128 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3129 unsigned long address, pte_t *page_table, pmd_t *pmd,
3130 unsigned int flags)
3131 {
3132 struct page *page;
3133 spinlock_t *ptl;
3134 pte_t entry;
3135
3136 pte_unmap(page_table);
3137
3138 /* Check if we need to add a guard page to the stack */
3139 if (check_stack_guard_page(vma, address) < 0)
3140 return VM_FAULT_SIGBUS;
3141
3142 /* Use the zero-page for reads */
3143 if (!(flags & FAULT_FLAG_WRITE)) {
3144 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3145 vma->vm_page_prot));
3146 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3147 if (!pte_none(*page_table))
3148 goto unlock;
3149 goto setpte;
3150 }
3151
3152 /* Allocate our own private page. */
3153 if (unlikely(anon_vma_prepare(vma)))
3154 goto oom;
3155 page = alloc_zeroed_user_highpage_movable(vma, address);
3156 if (!page)
3157 goto oom;
3158 __SetPageUptodate(page);
3159
3160 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3161 goto oom_free_page;
3162
3163 entry = mk_pte(page, vma->vm_page_prot);
3164 if (vma->vm_flags & VM_WRITE)
3165 entry = pte_mkwrite(pte_mkdirty(entry));
3166
3167 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3168 if (!pte_none(*page_table))
3169 goto release;
3170
3171 inc_mm_counter_fast(mm, MM_ANONPAGES);
3172 page_add_new_anon_rmap(page, vma, address);
3173 setpte:
3174 set_pte_at(mm, address, page_table, entry);
3175
3176 /* No need to invalidate - it was non-present before */
3177 update_mmu_cache(vma, address, page_table);
3178 unlock:
3179 pte_unmap_unlock(page_table, ptl);
3180 return 0;
3181 release:
3182 mem_cgroup_uncharge_page(page);
3183 page_cache_release(page);
3184 goto unlock;
3185 oom_free_page:
3186 page_cache_release(page);
3187 oom:
3188 return VM_FAULT_OOM;
3189 }
3190
3191 /*
3192 * __do_fault() tries to create a new page mapping. It aggressively
3193 * tries to share with existing pages, but makes a separate copy if
3194 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3195 * the next page fault.
3196 *
3197 * As this is called only for pages that do not currently exist, we
3198 * do not need to flush old virtual caches or the TLB.
3199 *
3200 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3201 * but allow concurrent faults), and pte neither mapped nor locked.
3202 * We return with mmap_sem still held, but pte unmapped and unlocked.
3203 */
3204 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3205 unsigned long address, pmd_t *pmd,
3206 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3207 {
3208 pte_t *page_table;
3209 spinlock_t *ptl;
3210 struct page *page;
3211 struct page *cow_page;
3212 pte_t entry;
3213 int anon = 0;
3214 struct page *dirty_page = NULL;
3215 struct vm_fault vmf;
3216 int ret;
3217 int page_mkwrite = 0;
3218
3219 /*
3220 * If we do COW later, allocate page befor taking lock_page()
3221 * on the file cache page. This will reduce lock holding time.
3222 */
3223 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3224
3225 if (unlikely(anon_vma_prepare(vma)))
3226 return VM_FAULT_OOM;
3227
3228 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3229 if (!cow_page)
3230 return VM_FAULT_OOM;
3231
3232 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3233 page_cache_release(cow_page);
3234 return VM_FAULT_OOM;
3235 }
3236 } else
3237 cow_page = NULL;
3238
3239 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3240 vmf.pgoff = pgoff;
3241 vmf.flags = flags;
3242 vmf.page = NULL;
3243
3244 ret = vma->vm_ops->fault(vma, &vmf);
3245 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3246 VM_FAULT_RETRY)))
3247 goto uncharge_out;
3248
3249 if (unlikely(PageHWPoison(vmf.page))) {
3250 if (ret & VM_FAULT_LOCKED)
3251 unlock_page(vmf.page);
3252 ret = VM_FAULT_HWPOISON;
3253 goto uncharge_out;
3254 }
3255
3256 /*
3257 * For consistency in subsequent calls, make the faulted page always
3258 * locked.
3259 */
3260 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3261 lock_page(vmf.page);
3262 else
3263 VM_BUG_ON(!PageLocked(vmf.page));
3264
3265 /*
3266 * Should we do an early C-O-W break?
3267 */
3268 page = vmf.page;
3269 if (flags & FAULT_FLAG_WRITE) {
3270 if (!(vma->vm_flags & VM_SHARED)) {
3271 page = cow_page;
3272 anon = 1;
3273 copy_user_highpage(page, vmf.page, address, vma);
3274 __SetPageUptodate(page);
3275 } else {
3276 /*
3277 * If the page will be shareable, see if the backing
3278 * address space wants to know that the page is about
3279 * to become writable
3280 */
3281 if (vma->vm_ops->page_mkwrite) {
3282 int tmp;
3283
3284 unlock_page(page);
3285 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3286 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3287 if (unlikely(tmp &
3288 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3289 ret = tmp;
3290 goto unwritable_page;
3291 }
3292 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3293 lock_page(page);
3294 if (!page->mapping) {
3295 ret = 0; /* retry the fault */
3296 unlock_page(page);
3297 goto unwritable_page;
3298 }
3299 } else
3300 VM_BUG_ON(!PageLocked(page));
3301 page_mkwrite = 1;
3302 }
3303 }
3304
3305 }
3306
3307 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3308
3309 /*
3310 * This silly early PAGE_DIRTY setting removes a race
3311 * due to the bad i386 page protection. But it's valid
3312 * for other architectures too.
3313 *
3314 * Note that if FAULT_FLAG_WRITE is set, we either now have
3315 * an exclusive copy of the page, or this is a shared mapping,
3316 * so we can make it writable and dirty to avoid having to
3317 * handle that later.
3318 */
3319 /* Only go through if we didn't race with anybody else... */
3320 if (likely(pte_same(*page_table, orig_pte))) {
3321 flush_icache_page(vma, page);
3322 entry = mk_pte(page, vma->vm_page_prot);
3323 if (flags & FAULT_FLAG_WRITE)
3324 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3325 if (anon) {
3326 inc_mm_counter_fast(mm, MM_ANONPAGES);
3327 page_add_new_anon_rmap(page, vma, address);
3328 } else {
3329 inc_mm_counter_fast(mm, MM_FILEPAGES);
3330 page_add_file_rmap(page);
3331 if (flags & FAULT_FLAG_WRITE) {
3332 dirty_page = page;
3333 get_page(dirty_page);
3334 }
3335 }
3336 set_pte_at(mm, address, page_table, entry);
3337
3338 /* no need to invalidate: a not-present page won't be cached */
3339 update_mmu_cache(vma, address, page_table);
3340 } else {
3341 if (cow_page)
3342 mem_cgroup_uncharge_page(cow_page);
3343 if (anon)
3344 page_cache_release(page);
3345 else
3346 anon = 1; /* no anon but release faulted_page */
3347 }
3348
3349 pte_unmap_unlock(page_table, ptl);
3350
3351 if (dirty_page) {
3352 struct address_space *mapping = page->mapping;
3353 int dirtied = 0;
3354
3355 if (set_page_dirty(dirty_page))
3356 dirtied = 1;
3357 unlock_page(dirty_page);
3358 put_page(dirty_page);
3359 if ((dirtied || page_mkwrite) && mapping) {
3360 /*
3361 * Some device drivers do not set page.mapping but still
3362 * dirty their pages
3363 */
3364 balance_dirty_pages_ratelimited(mapping);
3365 }
3366
3367 /* file_update_time outside page_lock */
3368 if (vma->vm_file && !page_mkwrite)
3369 file_update_time(vma->vm_file);
3370 } else {
3371 unlock_page(vmf.page);
3372 if (anon)
3373 page_cache_release(vmf.page);
3374 }
3375
3376 return ret;
3377
3378 unwritable_page:
3379 page_cache_release(page);
3380 return ret;
3381 uncharge_out:
3382 /* fs's fault handler get error */
3383 if (cow_page) {
3384 mem_cgroup_uncharge_page(cow_page);
3385 page_cache_release(cow_page);
3386 }
3387 return ret;
3388 }
3389
3390 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3391 unsigned long address, pte_t *page_table, pmd_t *pmd,
3392 unsigned int flags, pte_t orig_pte)
3393 {
3394 pgoff_t pgoff = (((address & PAGE_MASK)
3395 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3396
3397 pte_unmap(page_table);
3398 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3399 }
3400
3401 /*
3402 * Fault of a previously existing named mapping. Repopulate the pte
3403 * from the encoded file_pte if possible. This enables swappable
3404 * nonlinear vmas.
3405 *
3406 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3407 * but allow concurrent faults), and pte mapped but not yet locked.
3408 * We return with mmap_sem still held, but pte unmapped and unlocked.
3409 */
3410 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3411 unsigned long address, pte_t *page_table, pmd_t *pmd,
3412 unsigned int flags, pte_t orig_pte)
3413 {
3414 pgoff_t pgoff;
3415
3416 flags |= FAULT_FLAG_NONLINEAR;
3417
3418 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3419 return 0;
3420
3421 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3422 /*
3423 * Page table corrupted: show pte and kill process.
3424 */
3425 print_bad_pte(vma, address, orig_pte, NULL);
3426 return VM_FAULT_SIGBUS;
3427 }
3428
3429 pgoff = pte_to_pgoff(orig_pte);
3430 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3431 }
3432
3433 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3434 unsigned long addr, int current_nid)
3435 {
3436 get_page(page);
3437
3438 count_vm_numa_event(NUMA_HINT_FAULTS);
3439 if (current_nid == numa_node_id())
3440 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3441
3442 return mpol_misplaced(page, vma, addr);
3443 }
3444
3445 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3446 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3447 {
3448 struct page *page = NULL;
3449 spinlock_t *ptl;
3450 int current_nid = -1;
3451 int target_nid;
3452 bool migrated = false;
3453
3454 /*
3455 * The "pte" at this point cannot be used safely without
3456 * validation through pte_unmap_same(). It's of NUMA type but
3457 * the pfn may be screwed if the read is non atomic.
3458 *
3459 * ptep_modify_prot_start is not called as this is clearing
3460 * the _PAGE_NUMA bit and it is not really expected that there
3461 * would be concurrent hardware modifications to the PTE.
3462 */
3463 ptl = pte_lockptr(mm, pmd);
3464 spin_lock(ptl);
3465 if (unlikely(!pte_same(*ptep, pte))) {
3466 pte_unmap_unlock(ptep, ptl);
3467 goto out;
3468 }
3469
3470 pte = pte_mknonnuma(pte);
3471 set_pte_at(mm, addr, ptep, pte);
3472 update_mmu_cache(vma, addr, ptep);
3473
3474 page = vm_normal_page(vma, addr, pte);
3475 if (!page) {
3476 pte_unmap_unlock(ptep, ptl);
3477 return 0;
3478 }
3479
3480 current_nid = page_to_nid(page);
3481 target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3482 pte_unmap_unlock(ptep, ptl);
3483 if (target_nid == -1) {
3484 /*
3485 * Account for the fault against the current node if it not
3486 * being replaced regardless of where the page is located.
3487 */
3488 current_nid = numa_node_id();
3489 put_page(page);
3490 goto out;
3491 }
3492
3493 /* Migrate to the requested node */
3494 migrated = migrate_misplaced_page(page, target_nid);
3495 if (migrated)
3496 current_nid = target_nid;
3497
3498 out:
3499 if (current_nid != -1)
3500 task_numa_fault(current_nid, 1, migrated);
3501 return 0;
3502 }
3503
3504 /* NUMA hinting page fault entry point for regular pmds */
3505 #ifdef CONFIG_NUMA_BALANCING
3506 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3507 unsigned long addr, pmd_t *pmdp)
3508 {
3509 pmd_t pmd;
3510 pte_t *pte, *orig_pte;
3511 unsigned long _addr = addr & PMD_MASK;
3512 unsigned long offset;
3513 spinlock_t *ptl;
3514 bool numa = false;
3515 int local_nid = numa_node_id();
3516
3517 spin_lock(&mm->page_table_lock);
3518 pmd = *pmdp;
3519 if (pmd_numa(pmd)) {
3520 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3521 numa = true;
3522 }
3523 spin_unlock(&mm->page_table_lock);
3524
3525 if (!numa)
3526 return 0;
3527
3528 /* we're in a page fault so some vma must be in the range */
3529 BUG_ON(!vma);
3530 BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3531 offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3532 VM_BUG_ON(offset >= PMD_SIZE);
3533 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3534 pte += offset >> PAGE_SHIFT;
3535 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3536 pte_t pteval = *pte;
3537 struct page *page;
3538 int curr_nid = local_nid;
3539 int target_nid;
3540 bool migrated;
3541 if (!pte_present(pteval))
3542 continue;
3543 if (!pte_numa(pteval))
3544 continue;
3545 if (addr >= vma->vm_end) {
3546 vma = find_vma(mm, addr);
3547 /* there's a pte present so there must be a vma */
3548 BUG_ON(!vma);
3549 BUG_ON(addr < vma->vm_start);
3550 }
3551 if (pte_numa(pteval)) {
3552 pteval = pte_mknonnuma(pteval);
3553 set_pte_at(mm, addr, pte, pteval);
3554 }
3555 page = vm_normal_page(vma, addr, pteval);
3556 if (unlikely(!page))
3557 continue;
3558 /* only check non-shared pages */
3559 if (unlikely(page_mapcount(page) != 1))
3560 continue;
3561
3562 /*
3563 * Note that the NUMA fault is later accounted to either
3564 * the node that is currently running or where the page is
3565 * migrated to.
3566 */
3567 curr_nid = local_nid;
3568 target_nid = numa_migrate_prep(page, vma, addr,
3569 page_to_nid(page));
3570 if (target_nid == -1) {
3571 put_page(page);
3572 continue;
3573 }
3574
3575 /* Migrate to the requested node */
3576 pte_unmap_unlock(pte, ptl);
3577 migrated = migrate_misplaced_page(page, target_nid);
3578 if (migrated)
3579 curr_nid = target_nid;
3580 task_numa_fault(curr_nid, 1, migrated);
3581
3582 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3583 }
3584 pte_unmap_unlock(orig_pte, ptl);
3585
3586 return 0;
3587 }
3588 #else
3589 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3590 unsigned long addr, pmd_t *pmdp)
3591 {
3592 BUG();
3593 }
3594 #endif /* CONFIG_NUMA_BALANCING */
3595
3596 /*
3597 * These routines also need to handle stuff like marking pages dirty
3598 * and/or accessed for architectures that don't do it in hardware (most
3599 * RISC architectures). The early dirtying is also good on the i386.
3600 *
3601 * There is also a hook called "update_mmu_cache()" that architectures
3602 * with external mmu caches can use to update those (ie the Sparc or
3603 * PowerPC hashed page tables that act as extended TLBs).
3604 *
3605 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3606 * but allow concurrent faults), and pte mapped but not yet locked.
3607 * We return with mmap_sem still held, but pte unmapped and unlocked.
3608 */
3609 int handle_pte_fault(struct mm_struct *mm,
3610 struct vm_area_struct *vma, unsigned long address,
3611 pte_t *pte, pmd_t *pmd, unsigned int flags)
3612 {
3613 pte_t entry;
3614 spinlock_t *ptl;
3615
3616 entry = *pte;
3617 if (!pte_present(entry)) {
3618 if (pte_none(entry)) {
3619 if (vma->vm_ops) {
3620 if (likely(vma->vm_ops->fault))
3621 return do_linear_fault(mm, vma, address,
3622 pte, pmd, flags, entry);
3623 }
3624 return do_anonymous_page(mm, vma, address,
3625 pte, pmd, flags);
3626 }
3627 if (pte_file(entry))
3628 return do_nonlinear_fault(mm, vma, address,
3629 pte, pmd, flags, entry);
3630 return do_swap_page(mm, vma, address,
3631 pte, pmd, flags, entry);
3632 }
3633
3634 if (pte_numa(entry))
3635 return do_numa_page(mm, vma, address, entry, pte, pmd);
3636
3637 ptl = pte_lockptr(mm, pmd);
3638 spin_lock(ptl);
3639 if (unlikely(!pte_same(*pte, entry)))
3640 goto unlock;
3641 if (flags & FAULT_FLAG_WRITE) {
3642 if (!pte_write(entry))
3643 return do_wp_page(mm, vma, address,
3644 pte, pmd, ptl, entry);
3645 entry = pte_mkdirty(entry);
3646 }
3647 entry = pte_mkyoung(entry);
3648 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3649 update_mmu_cache(vma, address, pte);
3650 } else {
3651 /*
3652 * This is needed only for protection faults but the arch code
3653 * is not yet telling us if this is a protection fault or not.
3654 * This still avoids useless tlb flushes for .text page faults
3655 * with threads.
3656 */
3657 if (flags & FAULT_FLAG_WRITE)
3658 flush_tlb_fix_spurious_fault(vma, address);
3659 }
3660 unlock:
3661 pte_unmap_unlock(pte, ptl);
3662 return 0;
3663 }
3664
3665 /*
3666 * By the time we get here, we already hold the mm semaphore
3667 */
3668 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3669 unsigned long address, unsigned int flags)
3670 {
3671 pgd_t *pgd;
3672 pud_t *pud;
3673 pmd_t *pmd;
3674 pte_t *pte;
3675
3676 __set_current_state(TASK_RUNNING);
3677
3678 count_vm_event(PGFAULT);
3679 mem_cgroup_count_vm_event(mm, PGFAULT);
3680
3681 /* do counter updates before entering really critical section. */
3682 check_sync_rss_stat(current);
3683
3684 if (unlikely(is_vm_hugetlb_page(vma)))
3685 return hugetlb_fault(mm, vma, address, flags);
3686
3687 retry:
3688 pgd = pgd_offset(mm, address);
3689 pud = pud_alloc(mm, pgd, address);
3690 if (!pud)
3691 return VM_FAULT_OOM;
3692 pmd = pmd_alloc(mm, pud, address);
3693 if (!pmd)
3694 return VM_FAULT_OOM;
3695 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3696 if (!vma->vm_ops)
3697 return do_huge_pmd_anonymous_page(mm, vma, address,
3698 pmd, flags);
3699 } else {
3700 pmd_t orig_pmd = *pmd;
3701 int ret;
3702
3703 barrier();
3704 if (pmd_trans_huge(orig_pmd)) {
3705 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3706
3707 if (pmd_numa(orig_pmd))
3708 return do_huge_pmd_numa_page(mm, vma, address,
3709 orig_pmd, pmd);
3710
3711 if (dirty && !pmd_write(orig_pmd)) {
3712 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3713 orig_pmd);
3714 /*
3715 * If COW results in an oom, the huge pmd will
3716 * have been split, so retry the fault on the
3717 * pte for a smaller charge.
3718 */
3719 if (unlikely(ret & VM_FAULT_OOM))
3720 goto retry;
3721 return ret;
3722 } else {
3723 huge_pmd_set_accessed(mm, vma, address, pmd,
3724 orig_pmd, dirty);
3725 }
3726
3727 return 0;
3728 }
3729 }
3730
3731 if (pmd_numa(*pmd))
3732 return do_pmd_numa_page(mm, vma, address, pmd);
3733
3734 /*
3735 * Use __pte_alloc instead of pte_alloc_map, because we can't
3736 * run pte_offset_map on the pmd, if an huge pmd could
3737 * materialize from under us from a different thread.
3738 */
3739 if (unlikely(pmd_none(*pmd)) &&
3740 unlikely(__pte_alloc(mm, vma, pmd, address)))
3741 return VM_FAULT_OOM;
3742 /* if an huge pmd materialized from under us just retry later */
3743 if (unlikely(pmd_trans_huge(*pmd)))
3744 return 0;
3745 /*
3746 * A regular pmd is established and it can't morph into a huge pmd
3747 * from under us anymore at this point because we hold the mmap_sem
3748 * read mode and khugepaged takes it in write mode. So now it's
3749 * safe to run pte_offset_map().
3750 */
3751 pte = pte_offset_map(pmd, address);
3752
3753 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3754 }
3755
3756 #ifndef __PAGETABLE_PUD_FOLDED
3757 /*
3758 * Allocate page upper directory.
3759 * We've already handled the fast-path in-line.
3760 */
3761 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3762 {
3763 pud_t *new = pud_alloc_one(mm, address);
3764 if (!new)
3765 return -ENOMEM;
3766
3767 smp_wmb(); /* See comment in __pte_alloc */
3768
3769 spin_lock(&mm->page_table_lock);
3770 if (pgd_present(*pgd)) /* Another has populated it */
3771 pud_free(mm, new);
3772 else
3773 pgd_populate(mm, pgd, new);
3774 spin_unlock(&mm->page_table_lock);
3775 return 0;
3776 }
3777 #endif /* __PAGETABLE_PUD_FOLDED */
3778
3779 #ifndef __PAGETABLE_PMD_FOLDED
3780 /*
3781 * Allocate page middle directory.
3782 * We've already handled the fast-path in-line.
3783 */
3784 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3785 {
3786 pmd_t *new = pmd_alloc_one(mm, address);
3787 if (!new)
3788 return -ENOMEM;
3789
3790 smp_wmb(); /* See comment in __pte_alloc */
3791
3792 spin_lock(&mm->page_table_lock);
3793 #ifndef __ARCH_HAS_4LEVEL_HACK
3794 if (pud_present(*pud)) /* Another has populated it */
3795 pmd_free(mm, new);
3796 else
3797 pud_populate(mm, pud, new);
3798 #else
3799 if (pgd_present(*pud)) /* Another has populated it */
3800 pmd_free(mm, new);
3801 else
3802 pgd_populate(mm, pud, new);
3803 #endif /* __ARCH_HAS_4LEVEL_HACK */
3804 spin_unlock(&mm->page_table_lock);
3805 return 0;
3806 }
3807 #endif /* __PAGETABLE_PMD_FOLDED */
3808
3809 int make_pages_present(unsigned long addr, unsigned long end)
3810 {
3811 int ret, len, write;
3812 struct vm_area_struct * vma;
3813
3814 vma = find_vma(current->mm, addr);
3815 if (!vma)
3816 return -ENOMEM;
3817 /*
3818 * We want to touch writable mappings with a write fault in order
3819 * to break COW, except for shared mappings because these don't COW
3820 * and we would not want to dirty them for nothing.
3821 */
3822 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3823 BUG_ON(addr >= end);
3824 BUG_ON(end > vma->vm_end);
3825 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3826 ret = get_user_pages(current, current->mm, addr,
3827 len, write, 0, NULL, NULL);
3828 if (ret < 0)
3829 return ret;
3830 return ret == len ? 0 : -EFAULT;
3831 }
3832
3833 #if !defined(__HAVE_ARCH_GATE_AREA)
3834
3835 #if defined(AT_SYSINFO_EHDR)
3836 static struct vm_area_struct gate_vma;
3837
3838 static int __init gate_vma_init(void)
3839 {
3840 gate_vma.vm_mm = NULL;
3841 gate_vma.vm_start = FIXADDR_USER_START;
3842 gate_vma.vm_end = FIXADDR_USER_END;
3843 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3844 gate_vma.vm_page_prot = __P101;
3845
3846 return 0;
3847 }
3848 __initcall(gate_vma_init);
3849 #endif
3850
3851 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3852 {
3853 #ifdef AT_SYSINFO_EHDR
3854 return &gate_vma;
3855 #else
3856 return NULL;
3857 #endif
3858 }
3859
3860 int in_gate_area_no_mm(unsigned long addr)
3861 {
3862 #ifdef AT_SYSINFO_EHDR
3863 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3864 return 1;
3865 #endif
3866 return 0;
3867 }
3868
3869 #endif /* __HAVE_ARCH_GATE_AREA */
3870
3871 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3872 pte_t **ptepp, spinlock_t **ptlp)
3873 {
3874 pgd_t *pgd;
3875 pud_t *pud;
3876 pmd_t *pmd;
3877 pte_t *ptep;
3878
3879 pgd = pgd_offset(mm, address);
3880 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3881 goto out;
3882
3883 pud = pud_offset(pgd, address);
3884 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3885 goto out;
3886
3887 pmd = pmd_offset(pud, address);
3888 VM_BUG_ON(pmd_trans_huge(*pmd));
3889 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3890 goto out;
3891
3892 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3893 if (pmd_huge(*pmd))
3894 goto out;
3895
3896 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3897 if (!ptep)
3898 goto out;
3899 if (!pte_present(*ptep))
3900 goto unlock;
3901 *ptepp = ptep;
3902 return 0;
3903 unlock:
3904 pte_unmap_unlock(ptep, *ptlp);
3905 out:
3906 return -EINVAL;
3907 }
3908
3909 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3910 pte_t **ptepp, spinlock_t **ptlp)
3911 {
3912 int res;
3913
3914 /* (void) is needed to make gcc happy */
3915 (void) __cond_lock(*ptlp,
3916 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3917 return res;
3918 }
3919
3920 /**
3921 * follow_pfn - look up PFN at a user virtual address
3922 * @vma: memory mapping
3923 * @address: user virtual address
3924 * @pfn: location to store found PFN
3925 *
3926 * Only IO mappings and raw PFN mappings are allowed.
3927 *
3928 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3929 */
3930 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3931 unsigned long *pfn)
3932 {
3933 int ret = -EINVAL;
3934 spinlock_t *ptl;
3935 pte_t *ptep;
3936
3937 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3938 return ret;
3939
3940 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3941 if (ret)
3942 return ret;
3943 *pfn = pte_pfn(*ptep);
3944 pte_unmap_unlock(ptep, ptl);
3945 return 0;
3946 }
3947 EXPORT_SYMBOL(follow_pfn);
3948
3949 #ifdef CONFIG_HAVE_IOREMAP_PROT
3950 int follow_phys(struct vm_area_struct *vma,
3951 unsigned long address, unsigned int flags,
3952 unsigned long *prot, resource_size_t *phys)
3953 {
3954 int ret = -EINVAL;
3955 pte_t *ptep, pte;
3956 spinlock_t *ptl;
3957
3958 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3959 goto out;
3960
3961 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3962 goto out;
3963 pte = *ptep;
3964
3965 if ((flags & FOLL_WRITE) && !pte_write(pte))
3966 goto unlock;
3967
3968 *prot = pgprot_val(pte_pgprot(pte));
3969 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3970
3971 ret = 0;
3972 unlock:
3973 pte_unmap_unlock(ptep, ptl);
3974 out:
3975 return ret;
3976 }
3977
3978 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3979 void *buf, int len, int write)
3980 {
3981 resource_size_t phys_addr;
3982 unsigned long prot = 0;
3983 void __iomem *maddr;
3984 int offset = addr & (PAGE_SIZE-1);
3985
3986 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3987 return -EINVAL;
3988
3989 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3990 if (write)
3991 memcpy_toio(maddr + offset, buf, len);
3992 else
3993 memcpy_fromio(buf, maddr + offset, len);
3994 iounmap(maddr);
3995
3996 return len;
3997 }
3998 #endif
3999
4000 /*
4001 * Access another process' address space as given in mm. If non-NULL, use the
4002 * given task for page fault accounting.
4003 */
4004 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4005 unsigned long addr, void *buf, int len, int write)
4006 {
4007 struct vm_area_struct *vma;
4008 void *old_buf = buf;
4009
4010 down_read(&mm->mmap_sem);
4011 /* ignore errors, just check how much was successfully transferred */
4012 while (len) {
4013 int bytes, ret, offset;
4014 void *maddr;
4015 struct page *page = NULL;
4016
4017 ret = get_user_pages(tsk, mm, addr, 1,
4018 write, 1, &page, &vma);
4019 if (ret <= 0) {
4020 /*
4021 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4022 * we can access using slightly different code.
4023 */
4024 #ifdef CONFIG_HAVE_IOREMAP_PROT
4025 vma = find_vma(mm, addr);
4026 if (!vma || vma->vm_start > addr)
4027 break;
4028 if (vma->vm_ops && vma->vm_ops->access)
4029 ret = vma->vm_ops->access(vma, addr, buf,
4030 len, write);
4031 if (ret <= 0)
4032 #endif
4033 break;
4034 bytes = ret;
4035 } else {
4036 bytes = len;
4037 offset = addr & (PAGE_SIZE-1);
4038 if (bytes > PAGE_SIZE-offset)
4039 bytes = PAGE_SIZE-offset;
4040
4041 maddr = kmap(page);
4042 if (write) {
4043 copy_to_user_page(vma, page, addr,
4044 maddr + offset, buf, bytes);
4045 set_page_dirty_lock(page);
4046 } else {
4047 copy_from_user_page(vma, page, addr,
4048 buf, maddr + offset, bytes);
4049 }
4050 kunmap(page);
4051 page_cache_release(page);
4052 }
4053 len -= bytes;
4054 buf += bytes;
4055 addr += bytes;
4056 }
4057 up_read(&mm->mmap_sem);
4058
4059 return buf - old_buf;
4060 }
4061
4062 /**
4063 * access_remote_vm - access another process' address space
4064 * @mm: the mm_struct of the target address space
4065 * @addr: start address to access
4066 * @buf: source or destination buffer
4067 * @len: number of bytes to transfer
4068 * @write: whether the access is a write
4069 *
4070 * The caller must hold a reference on @mm.
4071 */
4072 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4073 void *buf, int len, int write)
4074 {
4075 return __access_remote_vm(NULL, mm, addr, buf, len, write);
4076 }
4077
4078 /*
4079 * Access another process' address space.
4080 * Source/target buffer must be kernel space,
4081 * Do not walk the page table directly, use get_user_pages
4082 */
4083 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4084 void *buf, int len, int write)
4085 {
4086 struct mm_struct *mm;
4087 int ret;
4088
4089 mm = get_task_mm(tsk);
4090 if (!mm)
4091 return 0;
4092
4093 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4094 mmput(mm);
4095
4096 return ret;
4097 }
4098
4099 /*
4100 * Print the name of a VMA.
4101 */
4102 void print_vma_addr(char *prefix, unsigned long ip)
4103 {
4104 struct mm_struct *mm = current->mm;
4105 struct vm_area_struct *vma;
4106
4107 /*
4108 * Do not print if we are in atomic
4109 * contexts (in exception stacks, etc.):
4110 */
4111 if (preempt_count())
4112 return;
4113
4114 down_read(&mm->mmap_sem);
4115 vma = find_vma(mm, ip);
4116 if (vma && vma->vm_file) {
4117 struct file *f = vma->vm_file;
4118 char *buf = (char *)__get_free_page(GFP_KERNEL);
4119 if (buf) {
4120 char *p, *s;
4121
4122 p = d_path(&f->f_path, buf, PAGE_SIZE);
4123 if (IS_ERR(p))
4124 p = "?";
4125 s = strrchr(p, '/');
4126 if (s)
4127 p = s+1;
4128 printk("%s%s[%lx+%lx]", prefix, p,
4129 vma->vm_start,
4130 vma->vm_end - vma->vm_start);
4131 free_page((unsigned long)buf);
4132 }
4133 }
4134 up_read(&mm->mmap_sem);
4135 }
4136
4137 #ifdef CONFIG_PROVE_LOCKING
4138 void might_fault(void)
4139 {
4140 /*
4141 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4142 * holding the mmap_sem, this is safe because kernel memory doesn't
4143 * get paged out, therefore we'll never actually fault, and the
4144 * below annotations will generate false positives.
4145 */
4146 if (segment_eq(get_fs(), KERNEL_DS))
4147 return;
4148
4149 might_sleep();
4150 /*
4151 * it would be nicer only to annotate paths which are not under
4152 * pagefault_disable, however that requires a larger audit and
4153 * providing helpers like get_user_atomic.
4154 */
4155 if (!in_atomic() && current->mm)
4156 might_lock_read(&current->mm->mmap_sem);
4157 }
4158 EXPORT_SYMBOL(might_fault);
4159 #endif
4160
4161 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4162 static void clear_gigantic_page(struct page *page,
4163 unsigned long addr,
4164 unsigned int pages_per_huge_page)
4165 {
4166 int i;
4167 struct page *p = page;
4168
4169 might_sleep();
4170 for (i = 0; i < pages_per_huge_page;
4171 i++, p = mem_map_next(p, page, i)) {
4172 cond_resched();
4173 clear_user_highpage(p, addr + i * PAGE_SIZE);
4174 }
4175 }
4176 void clear_huge_page(struct page *page,
4177 unsigned long addr, unsigned int pages_per_huge_page)
4178 {
4179 int i;
4180
4181 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4182 clear_gigantic_page(page, addr, pages_per_huge_page);
4183 return;
4184 }
4185
4186 might_sleep();
4187 for (i = 0; i < pages_per_huge_page; i++) {
4188 cond_resched();
4189 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4190 }
4191 }
4192
4193 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4194 unsigned long addr,
4195 struct vm_area_struct *vma,
4196 unsigned int pages_per_huge_page)
4197 {
4198 int i;
4199 struct page *dst_base = dst;
4200 struct page *src_base = src;
4201
4202 for (i = 0; i < pages_per_huge_page; ) {
4203 cond_resched();
4204 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4205
4206 i++;
4207 dst = mem_map_next(dst, dst_base, i);
4208 src = mem_map_next(src, src_base, i);
4209 }
4210 }
4211
4212 void copy_user_huge_page(struct page *dst, struct page *src,
4213 unsigned long addr, struct vm_area_struct *vma,
4214 unsigned int pages_per_huge_page)
4215 {
4216 int i;
4217
4218 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4219 copy_user_gigantic_page(dst, src, addr, vma,
4220 pages_per_huge_page);
4221 return;
4222 }
4223
4224 might_sleep();
4225 for (i = 0; i < pages_per_huge_page; i++) {
4226 cond_resched();
4227 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4228 }
4229 }
4230 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.111043 seconds and 6 git commands to generate.