cpu/mem hotplug: add try_online_node() for cpu_up()
[deliverable/linux.git] / mm / memory_hotplug.c
1 /*
2 * linux/mm/memory_hotplug.c
3 *
4 * Copyright (C)
5 */
6
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/bootmem.h>
13 #include <linux/compiler.h>
14 #include <linux/export.h>
15 #include <linux/pagevec.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sysctl.h>
19 #include <linux/cpu.h>
20 #include <linux/memory.h>
21 #include <linux/memory_hotplug.h>
22 #include <linux/highmem.h>
23 #include <linux/vmalloc.h>
24 #include <linux/ioport.h>
25 #include <linux/delay.h>
26 #include <linux/migrate.h>
27 #include <linux/page-isolation.h>
28 #include <linux/pfn.h>
29 #include <linux/suspend.h>
30 #include <linux/mm_inline.h>
31 #include <linux/firmware-map.h>
32 #include <linux/stop_machine.h>
33 #include <linux/hugetlb.h>
34
35 #include <asm/tlbflush.h>
36
37 #include "internal.h"
38
39 /*
40 * online_page_callback contains pointer to current page onlining function.
41 * Initially it is generic_online_page(). If it is required it could be
42 * changed by calling set_online_page_callback() for callback registration
43 * and restore_online_page_callback() for generic callback restore.
44 */
45
46 static void generic_online_page(struct page *page);
47
48 static online_page_callback_t online_page_callback = generic_online_page;
49
50 DEFINE_MUTEX(mem_hotplug_mutex);
51
52 void lock_memory_hotplug(void)
53 {
54 mutex_lock(&mem_hotplug_mutex);
55 }
56
57 void unlock_memory_hotplug(void)
58 {
59 mutex_unlock(&mem_hotplug_mutex);
60 }
61
62
63 /* add this memory to iomem resource */
64 static struct resource *register_memory_resource(u64 start, u64 size)
65 {
66 struct resource *res;
67 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
68 BUG_ON(!res);
69
70 res->name = "System RAM";
71 res->start = start;
72 res->end = start + size - 1;
73 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
74 if (request_resource(&iomem_resource, res) < 0) {
75 pr_debug("System RAM resource %pR cannot be added\n", res);
76 kfree(res);
77 res = NULL;
78 }
79 return res;
80 }
81
82 static void release_memory_resource(struct resource *res)
83 {
84 if (!res)
85 return;
86 release_resource(res);
87 kfree(res);
88 return;
89 }
90
91 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
92 void get_page_bootmem(unsigned long info, struct page *page,
93 unsigned long type)
94 {
95 page->lru.next = (struct list_head *) type;
96 SetPagePrivate(page);
97 set_page_private(page, info);
98 atomic_inc(&page->_count);
99 }
100
101 void put_page_bootmem(struct page *page)
102 {
103 unsigned long type;
104
105 type = (unsigned long) page->lru.next;
106 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
107 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
108
109 if (atomic_dec_return(&page->_count) == 1) {
110 ClearPagePrivate(page);
111 set_page_private(page, 0);
112 INIT_LIST_HEAD(&page->lru);
113 free_reserved_page(page);
114 }
115 }
116
117 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
118 #ifndef CONFIG_SPARSEMEM_VMEMMAP
119 static void register_page_bootmem_info_section(unsigned long start_pfn)
120 {
121 unsigned long *usemap, mapsize, section_nr, i;
122 struct mem_section *ms;
123 struct page *page, *memmap;
124
125 section_nr = pfn_to_section_nr(start_pfn);
126 ms = __nr_to_section(section_nr);
127
128 /* Get section's memmap address */
129 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
130
131 /*
132 * Get page for the memmap's phys address
133 * XXX: need more consideration for sparse_vmemmap...
134 */
135 page = virt_to_page(memmap);
136 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
137 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
138
139 /* remember memmap's page */
140 for (i = 0; i < mapsize; i++, page++)
141 get_page_bootmem(section_nr, page, SECTION_INFO);
142
143 usemap = __nr_to_section(section_nr)->pageblock_flags;
144 page = virt_to_page(usemap);
145
146 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
147
148 for (i = 0; i < mapsize; i++, page++)
149 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
150
151 }
152 #else /* CONFIG_SPARSEMEM_VMEMMAP */
153 static void register_page_bootmem_info_section(unsigned long start_pfn)
154 {
155 unsigned long *usemap, mapsize, section_nr, i;
156 struct mem_section *ms;
157 struct page *page, *memmap;
158
159 if (!pfn_valid(start_pfn))
160 return;
161
162 section_nr = pfn_to_section_nr(start_pfn);
163 ms = __nr_to_section(section_nr);
164
165 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
166
167 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
168
169 usemap = __nr_to_section(section_nr)->pageblock_flags;
170 page = virt_to_page(usemap);
171
172 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
173
174 for (i = 0; i < mapsize; i++, page++)
175 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
176 }
177 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
178
179 void register_page_bootmem_info_node(struct pglist_data *pgdat)
180 {
181 unsigned long i, pfn, end_pfn, nr_pages;
182 int node = pgdat->node_id;
183 struct page *page;
184 struct zone *zone;
185
186 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
187 page = virt_to_page(pgdat);
188
189 for (i = 0; i < nr_pages; i++, page++)
190 get_page_bootmem(node, page, NODE_INFO);
191
192 zone = &pgdat->node_zones[0];
193 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
194 if (zone_is_initialized(zone)) {
195 nr_pages = zone->wait_table_hash_nr_entries
196 * sizeof(wait_queue_head_t);
197 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
198 page = virt_to_page(zone->wait_table);
199
200 for (i = 0; i < nr_pages; i++, page++)
201 get_page_bootmem(node, page, NODE_INFO);
202 }
203 }
204
205 pfn = pgdat->node_start_pfn;
206 end_pfn = pgdat_end_pfn(pgdat);
207
208 /* register section info */
209 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
210 /*
211 * Some platforms can assign the same pfn to multiple nodes - on
212 * node0 as well as nodeN. To avoid registering a pfn against
213 * multiple nodes we check that this pfn does not already
214 * reside in some other nodes.
215 */
216 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
217 register_page_bootmem_info_section(pfn);
218 }
219 }
220 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
221
222 static void grow_zone_span(struct zone *zone, unsigned long start_pfn,
223 unsigned long end_pfn)
224 {
225 unsigned long old_zone_end_pfn;
226
227 zone_span_writelock(zone);
228
229 old_zone_end_pfn = zone_end_pfn(zone);
230 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
231 zone->zone_start_pfn = start_pfn;
232
233 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
234 zone->zone_start_pfn;
235
236 zone_span_writeunlock(zone);
237 }
238
239 static void resize_zone(struct zone *zone, unsigned long start_pfn,
240 unsigned long end_pfn)
241 {
242 zone_span_writelock(zone);
243
244 if (end_pfn - start_pfn) {
245 zone->zone_start_pfn = start_pfn;
246 zone->spanned_pages = end_pfn - start_pfn;
247 } else {
248 /*
249 * make it consist as free_area_init_core(),
250 * if spanned_pages = 0, then keep start_pfn = 0
251 */
252 zone->zone_start_pfn = 0;
253 zone->spanned_pages = 0;
254 }
255
256 zone_span_writeunlock(zone);
257 }
258
259 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
260 unsigned long end_pfn)
261 {
262 enum zone_type zid = zone_idx(zone);
263 int nid = zone->zone_pgdat->node_id;
264 unsigned long pfn;
265
266 for (pfn = start_pfn; pfn < end_pfn; pfn++)
267 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
268 }
269
270 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
271 * alloc_bootmem_node_nopanic() */
272 static int __ref ensure_zone_is_initialized(struct zone *zone,
273 unsigned long start_pfn, unsigned long num_pages)
274 {
275 if (!zone_is_initialized(zone))
276 return init_currently_empty_zone(zone, start_pfn, num_pages,
277 MEMMAP_HOTPLUG);
278 return 0;
279 }
280
281 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
282 unsigned long start_pfn, unsigned long end_pfn)
283 {
284 int ret;
285 unsigned long flags;
286 unsigned long z1_start_pfn;
287
288 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
289 if (ret)
290 return ret;
291
292 pgdat_resize_lock(z1->zone_pgdat, &flags);
293
294 /* can't move pfns which are higher than @z2 */
295 if (end_pfn > zone_end_pfn(z2))
296 goto out_fail;
297 /* the move out part must be at the left most of @z2 */
298 if (start_pfn > z2->zone_start_pfn)
299 goto out_fail;
300 /* must included/overlap */
301 if (end_pfn <= z2->zone_start_pfn)
302 goto out_fail;
303
304 /* use start_pfn for z1's start_pfn if z1 is empty */
305 if (!zone_is_empty(z1))
306 z1_start_pfn = z1->zone_start_pfn;
307 else
308 z1_start_pfn = start_pfn;
309
310 resize_zone(z1, z1_start_pfn, end_pfn);
311 resize_zone(z2, end_pfn, zone_end_pfn(z2));
312
313 pgdat_resize_unlock(z1->zone_pgdat, &flags);
314
315 fix_zone_id(z1, start_pfn, end_pfn);
316
317 return 0;
318 out_fail:
319 pgdat_resize_unlock(z1->zone_pgdat, &flags);
320 return -1;
321 }
322
323 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
324 unsigned long start_pfn, unsigned long end_pfn)
325 {
326 int ret;
327 unsigned long flags;
328 unsigned long z2_end_pfn;
329
330 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
331 if (ret)
332 return ret;
333
334 pgdat_resize_lock(z1->zone_pgdat, &flags);
335
336 /* can't move pfns which are lower than @z1 */
337 if (z1->zone_start_pfn > start_pfn)
338 goto out_fail;
339 /* the move out part mast at the right most of @z1 */
340 if (zone_end_pfn(z1) > end_pfn)
341 goto out_fail;
342 /* must included/overlap */
343 if (start_pfn >= zone_end_pfn(z1))
344 goto out_fail;
345
346 /* use end_pfn for z2's end_pfn if z2 is empty */
347 if (!zone_is_empty(z2))
348 z2_end_pfn = zone_end_pfn(z2);
349 else
350 z2_end_pfn = end_pfn;
351
352 resize_zone(z1, z1->zone_start_pfn, start_pfn);
353 resize_zone(z2, start_pfn, z2_end_pfn);
354
355 pgdat_resize_unlock(z1->zone_pgdat, &flags);
356
357 fix_zone_id(z2, start_pfn, end_pfn);
358
359 return 0;
360 out_fail:
361 pgdat_resize_unlock(z1->zone_pgdat, &flags);
362 return -1;
363 }
364
365 static void grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
366 unsigned long end_pfn)
367 {
368 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
369
370 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
371 pgdat->node_start_pfn = start_pfn;
372
373 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
374 pgdat->node_start_pfn;
375 }
376
377 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
378 {
379 struct pglist_data *pgdat = zone->zone_pgdat;
380 int nr_pages = PAGES_PER_SECTION;
381 int nid = pgdat->node_id;
382 int zone_type;
383 unsigned long flags;
384 int ret;
385
386 zone_type = zone - pgdat->node_zones;
387 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
388 if (ret)
389 return ret;
390
391 pgdat_resize_lock(zone->zone_pgdat, &flags);
392 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
393 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
394 phys_start_pfn + nr_pages);
395 pgdat_resize_unlock(zone->zone_pgdat, &flags);
396 memmap_init_zone(nr_pages, nid, zone_type,
397 phys_start_pfn, MEMMAP_HOTPLUG);
398 return 0;
399 }
400
401 static int __meminit __add_section(int nid, struct zone *zone,
402 unsigned long phys_start_pfn)
403 {
404 int nr_pages = PAGES_PER_SECTION;
405 int ret;
406
407 if (pfn_valid(phys_start_pfn))
408 return -EEXIST;
409
410 ret = sparse_add_one_section(zone, phys_start_pfn, nr_pages);
411
412 if (ret < 0)
413 return ret;
414
415 ret = __add_zone(zone, phys_start_pfn);
416
417 if (ret < 0)
418 return ret;
419
420 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
421 }
422
423 /*
424 * Reasonably generic function for adding memory. It is
425 * expected that archs that support memory hotplug will
426 * call this function after deciding the zone to which to
427 * add the new pages.
428 */
429 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
430 unsigned long nr_pages)
431 {
432 unsigned long i;
433 int err = 0;
434 int start_sec, end_sec;
435 /* during initialize mem_map, align hot-added range to section */
436 start_sec = pfn_to_section_nr(phys_start_pfn);
437 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
438
439 for (i = start_sec; i <= end_sec; i++) {
440 err = __add_section(nid, zone, i << PFN_SECTION_SHIFT);
441
442 /*
443 * EEXIST is finally dealt with by ioresource collision
444 * check. see add_memory() => register_memory_resource()
445 * Warning will be printed if there is collision.
446 */
447 if (err && (err != -EEXIST))
448 break;
449 err = 0;
450 }
451
452 return err;
453 }
454 EXPORT_SYMBOL_GPL(__add_pages);
455
456 #ifdef CONFIG_MEMORY_HOTREMOVE
457 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
458 static int find_smallest_section_pfn(int nid, struct zone *zone,
459 unsigned long start_pfn,
460 unsigned long end_pfn)
461 {
462 struct mem_section *ms;
463
464 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
465 ms = __pfn_to_section(start_pfn);
466
467 if (unlikely(!valid_section(ms)))
468 continue;
469
470 if (unlikely(pfn_to_nid(start_pfn) != nid))
471 continue;
472
473 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
474 continue;
475
476 return start_pfn;
477 }
478
479 return 0;
480 }
481
482 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
483 static int find_biggest_section_pfn(int nid, struct zone *zone,
484 unsigned long start_pfn,
485 unsigned long end_pfn)
486 {
487 struct mem_section *ms;
488 unsigned long pfn;
489
490 /* pfn is the end pfn of a memory section. */
491 pfn = end_pfn - 1;
492 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
493 ms = __pfn_to_section(pfn);
494
495 if (unlikely(!valid_section(ms)))
496 continue;
497
498 if (unlikely(pfn_to_nid(pfn) != nid))
499 continue;
500
501 if (zone && zone != page_zone(pfn_to_page(pfn)))
502 continue;
503
504 return pfn;
505 }
506
507 return 0;
508 }
509
510 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
511 unsigned long end_pfn)
512 {
513 unsigned long zone_start_pfn = zone->zone_start_pfn;
514 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
515 unsigned long zone_end_pfn = z;
516 unsigned long pfn;
517 struct mem_section *ms;
518 int nid = zone_to_nid(zone);
519
520 zone_span_writelock(zone);
521 if (zone_start_pfn == start_pfn) {
522 /*
523 * If the section is smallest section in the zone, it need
524 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
525 * In this case, we find second smallest valid mem_section
526 * for shrinking zone.
527 */
528 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
529 zone_end_pfn);
530 if (pfn) {
531 zone->zone_start_pfn = pfn;
532 zone->spanned_pages = zone_end_pfn - pfn;
533 }
534 } else if (zone_end_pfn == end_pfn) {
535 /*
536 * If the section is biggest section in the zone, it need
537 * shrink zone->spanned_pages.
538 * In this case, we find second biggest valid mem_section for
539 * shrinking zone.
540 */
541 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
542 start_pfn);
543 if (pfn)
544 zone->spanned_pages = pfn - zone_start_pfn + 1;
545 }
546
547 /*
548 * The section is not biggest or smallest mem_section in the zone, it
549 * only creates a hole in the zone. So in this case, we need not
550 * change the zone. But perhaps, the zone has only hole data. Thus
551 * it check the zone has only hole or not.
552 */
553 pfn = zone_start_pfn;
554 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
555 ms = __pfn_to_section(pfn);
556
557 if (unlikely(!valid_section(ms)))
558 continue;
559
560 if (page_zone(pfn_to_page(pfn)) != zone)
561 continue;
562
563 /* If the section is current section, it continues the loop */
564 if (start_pfn == pfn)
565 continue;
566
567 /* If we find valid section, we have nothing to do */
568 zone_span_writeunlock(zone);
569 return;
570 }
571
572 /* The zone has no valid section */
573 zone->zone_start_pfn = 0;
574 zone->spanned_pages = 0;
575 zone_span_writeunlock(zone);
576 }
577
578 static void shrink_pgdat_span(struct pglist_data *pgdat,
579 unsigned long start_pfn, unsigned long end_pfn)
580 {
581 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
582 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
583 unsigned long pgdat_end_pfn = p;
584 unsigned long pfn;
585 struct mem_section *ms;
586 int nid = pgdat->node_id;
587
588 if (pgdat_start_pfn == start_pfn) {
589 /*
590 * If the section is smallest section in the pgdat, it need
591 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
592 * In this case, we find second smallest valid mem_section
593 * for shrinking zone.
594 */
595 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
596 pgdat_end_pfn);
597 if (pfn) {
598 pgdat->node_start_pfn = pfn;
599 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
600 }
601 } else if (pgdat_end_pfn == end_pfn) {
602 /*
603 * If the section is biggest section in the pgdat, it need
604 * shrink pgdat->node_spanned_pages.
605 * In this case, we find second biggest valid mem_section for
606 * shrinking zone.
607 */
608 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
609 start_pfn);
610 if (pfn)
611 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
612 }
613
614 /*
615 * If the section is not biggest or smallest mem_section in the pgdat,
616 * it only creates a hole in the pgdat. So in this case, we need not
617 * change the pgdat.
618 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
619 * has only hole or not.
620 */
621 pfn = pgdat_start_pfn;
622 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
623 ms = __pfn_to_section(pfn);
624
625 if (unlikely(!valid_section(ms)))
626 continue;
627
628 if (pfn_to_nid(pfn) != nid)
629 continue;
630
631 /* If the section is current section, it continues the loop */
632 if (start_pfn == pfn)
633 continue;
634
635 /* If we find valid section, we have nothing to do */
636 return;
637 }
638
639 /* The pgdat has no valid section */
640 pgdat->node_start_pfn = 0;
641 pgdat->node_spanned_pages = 0;
642 }
643
644 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
645 {
646 struct pglist_data *pgdat = zone->zone_pgdat;
647 int nr_pages = PAGES_PER_SECTION;
648 int zone_type;
649 unsigned long flags;
650
651 zone_type = zone - pgdat->node_zones;
652
653 pgdat_resize_lock(zone->zone_pgdat, &flags);
654 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
655 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
656 pgdat_resize_unlock(zone->zone_pgdat, &flags);
657 }
658
659 static int __remove_section(struct zone *zone, struct mem_section *ms)
660 {
661 unsigned long start_pfn;
662 int scn_nr;
663 int ret = -EINVAL;
664
665 if (!valid_section(ms))
666 return ret;
667
668 ret = unregister_memory_section(ms);
669 if (ret)
670 return ret;
671
672 scn_nr = __section_nr(ms);
673 start_pfn = section_nr_to_pfn(scn_nr);
674 __remove_zone(zone, start_pfn);
675
676 sparse_remove_one_section(zone, ms);
677 return 0;
678 }
679
680 /**
681 * __remove_pages() - remove sections of pages from a zone
682 * @zone: zone from which pages need to be removed
683 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
684 * @nr_pages: number of pages to remove (must be multiple of section size)
685 *
686 * Generic helper function to remove section mappings and sysfs entries
687 * for the section of the memory we are removing. Caller needs to make
688 * sure that pages are marked reserved and zones are adjust properly by
689 * calling offline_pages().
690 */
691 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
692 unsigned long nr_pages)
693 {
694 unsigned long i;
695 int sections_to_remove;
696 resource_size_t start, size;
697 int ret = 0;
698
699 /*
700 * We can only remove entire sections
701 */
702 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
703 BUG_ON(nr_pages % PAGES_PER_SECTION);
704
705 start = phys_start_pfn << PAGE_SHIFT;
706 size = nr_pages * PAGE_SIZE;
707 ret = release_mem_region_adjustable(&iomem_resource, start, size);
708 if (ret) {
709 resource_size_t endres = start + size - 1;
710
711 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
712 &start, &endres, ret);
713 }
714
715 sections_to_remove = nr_pages / PAGES_PER_SECTION;
716 for (i = 0; i < sections_to_remove; i++) {
717 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
718 ret = __remove_section(zone, __pfn_to_section(pfn));
719 if (ret)
720 break;
721 }
722 return ret;
723 }
724 EXPORT_SYMBOL_GPL(__remove_pages);
725 #endif /* CONFIG_MEMORY_HOTREMOVE */
726
727 int set_online_page_callback(online_page_callback_t callback)
728 {
729 int rc = -EINVAL;
730
731 lock_memory_hotplug();
732
733 if (online_page_callback == generic_online_page) {
734 online_page_callback = callback;
735 rc = 0;
736 }
737
738 unlock_memory_hotplug();
739
740 return rc;
741 }
742 EXPORT_SYMBOL_GPL(set_online_page_callback);
743
744 int restore_online_page_callback(online_page_callback_t callback)
745 {
746 int rc = -EINVAL;
747
748 lock_memory_hotplug();
749
750 if (online_page_callback == callback) {
751 online_page_callback = generic_online_page;
752 rc = 0;
753 }
754
755 unlock_memory_hotplug();
756
757 return rc;
758 }
759 EXPORT_SYMBOL_GPL(restore_online_page_callback);
760
761 void __online_page_set_limits(struct page *page)
762 {
763 }
764 EXPORT_SYMBOL_GPL(__online_page_set_limits);
765
766 void __online_page_increment_counters(struct page *page)
767 {
768 adjust_managed_page_count(page, 1);
769 }
770 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
771
772 void __online_page_free(struct page *page)
773 {
774 __free_reserved_page(page);
775 }
776 EXPORT_SYMBOL_GPL(__online_page_free);
777
778 static void generic_online_page(struct page *page)
779 {
780 __online_page_set_limits(page);
781 __online_page_increment_counters(page);
782 __online_page_free(page);
783 }
784
785 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
786 void *arg)
787 {
788 unsigned long i;
789 unsigned long onlined_pages = *(unsigned long *)arg;
790 struct page *page;
791 if (PageReserved(pfn_to_page(start_pfn)))
792 for (i = 0; i < nr_pages; i++) {
793 page = pfn_to_page(start_pfn + i);
794 (*online_page_callback)(page);
795 onlined_pages++;
796 }
797 *(unsigned long *)arg = onlined_pages;
798 return 0;
799 }
800
801 #ifdef CONFIG_MOVABLE_NODE
802 /*
803 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
804 * normal memory.
805 */
806 static bool can_online_high_movable(struct zone *zone)
807 {
808 return true;
809 }
810 #else /* CONFIG_MOVABLE_NODE */
811 /* ensure every online node has NORMAL memory */
812 static bool can_online_high_movable(struct zone *zone)
813 {
814 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
815 }
816 #endif /* CONFIG_MOVABLE_NODE */
817
818 /* check which state of node_states will be changed when online memory */
819 static void node_states_check_changes_online(unsigned long nr_pages,
820 struct zone *zone, struct memory_notify *arg)
821 {
822 int nid = zone_to_nid(zone);
823 enum zone_type zone_last = ZONE_NORMAL;
824
825 /*
826 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
827 * contains nodes which have zones of 0...ZONE_NORMAL,
828 * set zone_last to ZONE_NORMAL.
829 *
830 * If we don't have HIGHMEM nor movable node,
831 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
832 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
833 */
834 if (N_MEMORY == N_NORMAL_MEMORY)
835 zone_last = ZONE_MOVABLE;
836
837 /*
838 * if the memory to be online is in a zone of 0...zone_last, and
839 * the zones of 0...zone_last don't have memory before online, we will
840 * need to set the node to node_states[N_NORMAL_MEMORY] after
841 * the memory is online.
842 */
843 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
844 arg->status_change_nid_normal = nid;
845 else
846 arg->status_change_nid_normal = -1;
847
848 #ifdef CONFIG_HIGHMEM
849 /*
850 * If we have movable node, node_states[N_HIGH_MEMORY]
851 * contains nodes which have zones of 0...ZONE_HIGHMEM,
852 * set zone_last to ZONE_HIGHMEM.
853 *
854 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
855 * contains nodes which have zones of 0...ZONE_MOVABLE,
856 * set zone_last to ZONE_MOVABLE.
857 */
858 zone_last = ZONE_HIGHMEM;
859 if (N_MEMORY == N_HIGH_MEMORY)
860 zone_last = ZONE_MOVABLE;
861
862 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
863 arg->status_change_nid_high = nid;
864 else
865 arg->status_change_nid_high = -1;
866 #else
867 arg->status_change_nid_high = arg->status_change_nid_normal;
868 #endif
869
870 /*
871 * if the node don't have memory befor online, we will need to
872 * set the node to node_states[N_MEMORY] after the memory
873 * is online.
874 */
875 if (!node_state(nid, N_MEMORY))
876 arg->status_change_nid = nid;
877 else
878 arg->status_change_nid = -1;
879 }
880
881 static void node_states_set_node(int node, struct memory_notify *arg)
882 {
883 if (arg->status_change_nid_normal >= 0)
884 node_set_state(node, N_NORMAL_MEMORY);
885
886 if (arg->status_change_nid_high >= 0)
887 node_set_state(node, N_HIGH_MEMORY);
888
889 node_set_state(node, N_MEMORY);
890 }
891
892
893 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
894 {
895 unsigned long flags;
896 unsigned long onlined_pages = 0;
897 struct zone *zone;
898 int need_zonelists_rebuild = 0;
899 int nid;
900 int ret;
901 struct memory_notify arg;
902
903 lock_memory_hotplug();
904 /*
905 * This doesn't need a lock to do pfn_to_page().
906 * The section can't be removed here because of the
907 * memory_block->state_mutex.
908 */
909 zone = page_zone(pfn_to_page(pfn));
910
911 if ((zone_idx(zone) > ZONE_NORMAL || online_type == ONLINE_MOVABLE) &&
912 !can_online_high_movable(zone)) {
913 unlock_memory_hotplug();
914 return -EINVAL;
915 }
916
917 if (online_type == ONLINE_KERNEL && zone_idx(zone) == ZONE_MOVABLE) {
918 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages)) {
919 unlock_memory_hotplug();
920 return -EINVAL;
921 }
922 }
923 if (online_type == ONLINE_MOVABLE && zone_idx(zone) == ZONE_MOVABLE - 1) {
924 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages)) {
925 unlock_memory_hotplug();
926 return -EINVAL;
927 }
928 }
929
930 /* Previous code may changed the zone of the pfn range */
931 zone = page_zone(pfn_to_page(pfn));
932
933 arg.start_pfn = pfn;
934 arg.nr_pages = nr_pages;
935 node_states_check_changes_online(nr_pages, zone, &arg);
936
937 nid = pfn_to_nid(pfn);
938
939 ret = memory_notify(MEM_GOING_ONLINE, &arg);
940 ret = notifier_to_errno(ret);
941 if (ret) {
942 memory_notify(MEM_CANCEL_ONLINE, &arg);
943 unlock_memory_hotplug();
944 return ret;
945 }
946 /*
947 * If this zone is not populated, then it is not in zonelist.
948 * This means the page allocator ignores this zone.
949 * So, zonelist must be updated after online.
950 */
951 mutex_lock(&zonelists_mutex);
952 if (!populated_zone(zone)) {
953 need_zonelists_rebuild = 1;
954 build_all_zonelists(NULL, zone);
955 }
956
957 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
958 online_pages_range);
959 if (ret) {
960 if (need_zonelists_rebuild)
961 zone_pcp_reset(zone);
962 mutex_unlock(&zonelists_mutex);
963 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
964 (unsigned long long) pfn << PAGE_SHIFT,
965 (((unsigned long long) pfn + nr_pages)
966 << PAGE_SHIFT) - 1);
967 memory_notify(MEM_CANCEL_ONLINE, &arg);
968 unlock_memory_hotplug();
969 return ret;
970 }
971
972 zone->present_pages += onlined_pages;
973
974 pgdat_resize_lock(zone->zone_pgdat, &flags);
975 zone->zone_pgdat->node_present_pages += onlined_pages;
976 pgdat_resize_unlock(zone->zone_pgdat, &flags);
977
978 if (onlined_pages) {
979 node_states_set_node(zone_to_nid(zone), &arg);
980 if (need_zonelists_rebuild)
981 build_all_zonelists(NULL, NULL);
982 else
983 zone_pcp_update(zone);
984 }
985
986 mutex_unlock(&zonelists_mutex);
987
988 init_per_zone_wmark_min();
989
990 if (onlined_pages)
991 kswapd_run(zone_to_nid(zone));
992
993 vm_total_pages = nr_free_pagecache_pages();
994
995 writeback_set_ratelimit();
996
997 if (onlined_pages)
998 memory_notify(MEM_ONLINE, &arg);
999 unlock_memory_hotplug();
1000
1001 return 0;
1002 }
1003 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1004
1005 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1006 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1007 {
1008 struct pglist_data *pgdat;
1009 unsigned long zones_size[MAX_NR_ZONES] = {0};
1010 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1011 unsigned long start_pfn = start >> PAGE_SHIFT;
1012
1013 pgdat = NODE_DATA(nid);
1014 if (!pgdat) {
1015 pgdat = arch_alloc_nodedata(nid);
1016 if (!pgdat)
1017 return NULL;
1018
1019 arch_refresh_nodedata(nid, pgdat);
1020 }
1021
1022 /* we can use NODE_DATA(nid) from here */
1023
1024 /* init node's zones as empty zones, we don't have any present pages.*/
1025 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1026
1027 /*
1028 * The node we allocated has no zone fallback lists. For avoiding
1029 * to access not-initialized zonelist, build here.
1030 */
1031 mutex_lock(&zonelists_mutex);
1032 build_all_zonelists(pgdat, NULL);
1033 mutex_unlock(&zonelists_mutex);
1034
1035 return pgdat;
1036 }
1037
1038 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1039 {
1040 arch_refresh_nodedata(nid, NULL);
1041 arch_free_nodedata(pgdat);
1042 return;
1043 }
1044
1045
1046 /**
1047 * try_online_node - online a node if offlined
1048 *
1049 * called by cpu_up() to online a node without onlined memory.
1050 */
1051 int try_online_node(int nid)
1052 {
1053 pg_data_t *pgdat;
1054 int ret;
1055
1056 if (node_online(nid))
1057 return 0;
1058
1059 lock_memory_hotplug();
1060 pgdat = hotadd_new_pgdat(nid, 0);
1061 if (!pgdat) {
1062 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1063 ret = -ENOMEM;
1064 goto out;
1065 }
1066 node_set_online(nid);
1067 ret = register_one_node(nid);
1068 BUG_ON(ret);
1069
1070 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1071 mutex_lock(&zonelists_mutex);
1072 build_all_zonelists(NULL, NULL);
1073 mutex_unlock(&zonelists_mutex);
1074 }
1075
1076 out:
1077 unlock_memory_hotplug();
1078 return ret;
1079 }
1080
1081 static int check_hotplug_memory_range(u64 start, u64 size)
1082 {
1083 u64 start_pfn = start >> PAGE_SHIFT;
1084 u64 nr_pages = size >> PAGE_SHIFT;
1085
1086 /* Memory range must be aligned with section */
1087 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1088 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1089 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1090 (unsigned long long)start,
1091 (unsigned long long)size);
1092 return -EINVAL;
1093 }
1094
1095 return 0;
1096 }
1097
1098 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1099 int __ref add_memory(int nid, u64 start, u64 size)
1100 {
1101 pg_data_t *pgdat = NULL;
1102 bool new_pgdat;
1103 bool new_node;
1104 struct resource *res;
1105 int ret;
1106
1107 ret = check_hotplug_memory_range(start, size);
1108 if (ret)
1109 return ret;
1110
1111 lock_memory_hotplug();
1112
1113 res = register_memory_resource(start, size);
1114 ret = -EEXIST;
1115 if (!res)
1116 goto out;
1117
1118 { /* Stupid hack to suppress address-never-null warning */
1119 void *p = NODE_DATA(nid);
1120 new_pgdat = !p;
1121 }
1122 new_node = !node_online(nid);
1123 if (new_node) {
1124 pgdat = hotadd_new_pgdat(nid, start);
1125 ret = -ENOMEM;
1126 if (!pgdat)
1127 goto error;
1128 }
1129
1130 /* call arch's memory hotadd */
1131 ret = arch_add_memory(nid, start, size);
1132
1133 if (ret < 0)
1134 goto error;
1135
1136 /* we online node here. we can't roll back from here. */
1137 node_set_online(nid);
1138
1139 if (new_node) {
1140 ret = register_one_node(nid);
1141 /*
1142 * If sysfs file of new node can't create, cpu on the node
1143 * can't be hot-added. There is no rollback way now.
1144 * So, check by BUG_ON() to catch it reluctantly..
1145 */
1146 BUG_ON(ret);
1147 }
1148
1149 /* create new memmap entry */
1150 firmware_map_add_hotplug(start, start + size, "System RAM");
1151
1152 goto out;
1153
1154 error:
1155 /* rollback pgdat allocation and others */
1156 if (new_pgdat)
1157 rollback_node_hotadd(nid, pgdat);
1158 release_memory_resource(res);
1159
1160 out:
1161 unlock_memory_hotplug();
1162 return ret;
1163 }
1164 EXPORT_SYMBOL_GPL(add_memory);
1165
1166 #ifdef CONFIG_MEMORY_HOTREMOVE
1167 /*
1168 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1169 * set and the size of the free page is given by page_order(). Using this,
1170 * the function determines if the pageblock contains only free pages.
1171 * Due to buddy contraints, a free page at least the size of a pageblock will
1172 * be located at the start of the pageblock
1173 */
1174 static inline int pageblock_free(struct page *page)
1175 {
1176 return PageBuddy(page) && page_order(page) >= pageblock_order;
1177 }
1178
1179 /* Return the start of the next active pageblock after a given page */
1180 static struct page *next_active_pageblock(struct page *page)
1181 {
1182 /* Ensure the starting page is pageblock-aligned */
1183 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1184
1185 /* If the entire pageblock is free, move to the end of free page */
1186 if (pageblock_free(page)) {
1187 int order;
1188 /* be careful. we don't have locks, page_order can be changed.*/
1189 order = page_order(page);
1190 if ((order < MAX_ORDER) && (order >= pageblock_order))
1191 return page + (1 << order);
1192 }
1193
1194 return page + pageblock_nr_pages;
1195 }
1196
1197 /* Checks if this range of memory is likely to be hot-removable. */
1198 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1199 {
1200 struct page *page = pfn_to_page(start_pfn);
1201 struct page *end_page = page + nr_pages;
1202
1203 /* Check the starting page of each pageblock within the range */
1204 for (; page < end_page; page = next_active_pageblock(page)) {
1205 if (!is_pageblock_removable_nolock(page))
1206 return 0;
1207 cond_resched();
1208 }
1209
1210 /* All pageblocks in the memory block are likely to be hot-removable */
1211 return 1;
1212 }
1213
1214 /*
1215 * Confirm all pages in a range [start, end) is belongs to the same zone.
1216 */
1217 static int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1218 {
1219 unsigned long pfn;
1220 struct zone *zone = NULL;
1221 struct page *page;
1222 int i;
1223 for (pfn = start_pfn;
1224 pfn < end_pfn;
1225 pfn += MAX_ORDER_NR_PAGES) {
1226 i = 0;
1227 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1228 while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1229 i++;
1230 if (i == MAX_ORDER_NR_PAGES)
1231 continue;
1232 page = pfn_to_page(pfn + i);
1233 if (zone && page_zone(page) != zone)
1234 return 0;
1235 zone = page_zone(page);
1236 }
1237 return 1;
1238 }
1239
1240 /*
1241 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1242 * and hugepages). We scan pfn because it's much easier than scanning over
1243 * linked list. This function returns the pfn of the first found movable
1244 * page if it's found, otherwise 0.
1245 */
1246 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1247 {
1248 unsigned long pfn;
1249 struct page *page;
1250 for (pfn = start; pfn < end; pfn++) {
1251 if (pfn_valid(pfn)) {
1252 page = pfn_to_page(pfn);
1253 if (PageLRU(page))
1254 return pfn;
1255 if (PageHuge(page)) {
1256 if (is_hugepage_active(page))
1257 return pfn;
1258 else
1259 pfn = round_up(pfn + 1,
1260 1 << compound_order(page)) - 1;
1261 }
1262 }
1263 }
1264 return 0;
1265 }
1266
1267 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1268 static int
1269 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1270 {
1271 unsigned long pfn;
1272 struct page *page;
1273 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1274 int not_managed = 0;
1275 int ret = 0;
1276 LIST_HEAD(source);
1277
1278 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1279 if (!pfn_valid(pfn))
1280 continue;
1281 page = pfn_to_page(pfn);
1282
1283 if (PageHuge(page)) {
1284 struct page *head = compound_head(page);
1285 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1286 if (compound_order(head) > PFN_SECTION_SHIFT) {
1287 ret = -EBUSY;
1288 break;
1289 }
1290 if (isolate_huge_page(page, &source))
1291 move_pages -= 1 << compound_order(head);
1292 continue;
1293 }
1294
1295 if (!get_page_unless_zero(page))
1296 continue;
1297 /*
1298 * We can skip free pages. And we can only deal with pages on
1299 * LRU.
1300 */
1301 ret = isolate_lru_page(page);
1302 if (!ret) { /* Success */
1303 put_page(page);
1304 list_add_tail(&page->lru, &source);
1305 move_pages--;
1306 inc_zone_page_state(page, NR_ISOLATED_ANON +
1307 page_is_file_cache(page));
1308
1309 } else {
1310 #ifdef CONFIG_DEBUG_VM
1311 printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1312 pfn);
1313 dump_page(page);
1314 #endif
1315 put_page(page);
1316 /* Because we don't have big zone->lock. we should
1317 check this again here. */
1318 if (page_count(page)) {
1319 not_managed++;
1320 ret = -EBUSY;
1321 break;
1322 }
1323 }
1324 }
1325 if (!list_empty(&source)) {
1326 if (not_managed) {
1327 putback_movable_pages(&source);
1328 goto out;
1329 }
1330
1331 /*
1332 * alloc_migrate_target should be improooooved!!
1333 * migrate_pages returns # of failed pages.
1334 */
1335 ret = migrate_pages(&source, alloc_migrate_target, 0,
1336 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1337 if (ret)
1338 putback_movable_pages(&source);
1339 }
1340 out:
1341 return ret;
1342 }
1343
1344 /*
1345 * remove from free_area[] and mark all as Reserved.
1346 */
1347 static int
1348 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1349 void *data)
1350 {
1351 __offline_isolated_pages(start, start + nr_pages);
1352 return 0;
1353 }
1354
1355 static void
1356 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1357 {
1358 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1359 offline_isolated_pages_cb);
1360 }
1361
1362 /*
1363 * Check all pages in range, recoreded as memory resource, are isolated.
1364 */
1365 static int
1366 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1367 void *data)
1368 {
1369 int ret;
1370 long offlined = *(long *)data;
1371 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1372 offlined = nr_pages;
1373 if (!ret)
1374 *(long *)data += offlined;
1375 return ret;
1376 }
1377
1378 static long
1379 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1380 {
1381 long offlined = 0;
1382 int ret;
1383
1384 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1385 check_pages_isolated_cb);
1386 if (ret < 0)
1387 offlined = (long)ret;
1388 return offlined;
1389 }
1390
1391 #ifdef CONFIG_MOVABLE_NODE
1392 /*
1393 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1394 * normal memory.
1395 */
1396 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1397 {
1398 return true;
1399 }
1400 #else /* CONFIG_MOVABLE_NODE */
1401 /* ensure the node has NORMAL memory if it is still online */
1402 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1403 {
1404 struct pglist_data *pgdat = zone->zone_pgdat;
1405 unsigned long present_pages = 0;
1406 enum zone_type zt;
1407
1408 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1409 present_pages += pgdat->node_zones[zt].present_pages;
1410
1411 if (present_pages > nr_pages)
1412 return true;
1413
1414 present_pages = 0;
1415 for (; zt <= ZONE_MOVABLE; zt++)
1416 present_pages += pgdat->node_zones[zt].present_pages;
1417
1418 /*
1419 * we can't offline the last normal memory until all
1420 * higher memory is offlined.
1421 */
1422 return present_pages == 0;
1423 }
1424 #endif /* CONFIG_MOVABLE_NODE */
1425
1426 /* check which state of node_states will be changed when offline memory */
1427 static void node_states_check_changes_offline(unsigned long nr_pages,
1428 struct zone *zone, struct memory_notify *arg)
1429 {
1430 struct pglist_data *pgdat = zone->zone_pgdat;
1431 unsigned long present_pages = 0;
1432 enum zone_type zt, zone_last = ZONE_NORMAL;
1433
1434 /*
1435 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1436 * contains nodes which have zones of 0...ZONE_NORMAL,
1437 * set zone_last to ZONE_NORMAL.
1438 *
1439 * If we don't have HIGHMEM nor movable node,
1440 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1441 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1442 */
1443 if (N_MEMORY == N_NORMAL_MEMORY)
1444 zone_last = ZONE_MOVABLE;
1445
1446 /*
1447 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1448 * If the memory to be offline is in a zone of 0...zone_last,
1449 * and it is the last present memory, 0...zone_last will
1450 * become empty after offline , thus we can determind we will
1451 * need to clear the node from node_states[N_NORMAL_MEMORY].
1452 */
1453 for (zt = 0; zt <= zone_last; zt++)
1454 present_pages += pgdat->node_zones[zt].present_pages;
1455 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1456 arg->status_change_nid_normal = zone_to_nid(zone);
1457 else
1458 arg->status_change_nid_normal = -1;
1459
1460 #ifdef CONFIG_HIGHMEM
1461 /*
1462 * If we have movable node, node_states[N_HIGH_MEMORY]
1463 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1464 * set zone_last to ZONE_HIGHMEM.
1465 *
1466 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1467 * contains nodes which have zones of 0...ZONE_MOVABLE,
1468 * set zone_last to ZONE_MOVABLE.
1469 */
1470 zone_last = ZONE_HIGHMEM;
1471 if (N_MEMORY == N_HIGH_MEMORY)
1472 zone_last = ZONE_MOVABLE;
1473
1474 for (; zt <= zone_last; zt++)
1475 present_pages += pgdat->node_zones[zt].present_pages;
1476 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1477 arg->status_change_nid_high = zone_to_nid(zone);
1478 else
1479 arg->status_change_nid_high = -1;
1480 #else
1481 arg->status_change_nid_high = arg->status_change_nid_normal;
1482 #endif
1483
1484 /*
1485 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1486 */
1487 zone_last = ZONE_MOVABLE;
1488
1489 /*
1490 * check whether node_states[N_HIGH_MEMORY] will be changed
1491 * If we try to offline the last present @nr_pages from the node,
1492 * we can determind we will need to clear the node from
1493 * node_states[N_HIGH_MEMORY].
1494 */
1495 for (; zt <= zone_last; zt++)
1496 present_pages += pgdat->node_zones[zt].present_pages;
1497 if (nr_pages >= present_pages)
1498 arg->status_change_nid = zone_to_nid(zone);
1499 else
1500 arg->status_change_nid = -1;
1501 }
1502
1503 static void node_states_clear_node(int node, struct memory_notify *arg)
1504 {
1505 if (arg->status_change_nid_normal >= 0)
1506 node_clear_state(node, N_NORMAL_MEMORY);
1507
1508 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1509 (arg->status_change_nid_high >= 0))
1510 node_clear_state(node, N_HIGH_MEMORY);
1511
1512 if ((N_MEMORY != N_HIGH_MEMORY) &&
1513 (arg->status_change_nid >= 0))
1514 node_clear_state(node, N_MEMORY);
1515 }
1516
1517 static int __ref __offline_pages(unsigned long start_pfn,
1518 unsigned long end_pfn, unsigned long timeout)
1519 {
1520 unsigned long pfn, nr_pages, expire;
1521 long offlined_pages;
1522 int ret, drain, retry_max, node;
1523 unsigned long flags;
1524 struct zone *zone;
1525 struct memory_notify arg;
1526
1527 /* at least, alignment against pageblock is necessary */
1528 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1529 return -EINVAL;
1530 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1531 return -EINVAL;
1532 /* This makes hotplug much easier...and readable.
1533 we assume this for now. .*/
1534 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1535 return -EINVAL;
1536
1537 lock_memory_hotplug();
1538
1539 zone = page_zone(pfn_to_page(start_pfn));
1540 node = zone_to_nid(zone);
1541 nr_pages = end_pfn - start_pfn;
1542
1543 ret = -EINVAL;
1544 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1545 goto out;
1546
1547 /* set above range as isolated */
1548 ret = start_isolate_page_range(start_pfn, end_pfn,
1549 MIGRATE_MOVABLE, true);
1550 if (ret)
1551 goto out;
1552
1553 arg.start_pfn = start_pfn;
1554 arg.nr_pages = nr_pages;
1555 node_states_check_changes_offline(nr_pages, zone, &arg);
1556
1557 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1558 ret = notifier_to_errno(ret);
1559 if (ret)
1560 goto failed_removal;
1561
1562 pfn = start_pfn;
1563 expire = jiffies + timeout;
1564 drain = 0;
1565 retry_max = 5;
1566 repeat:
1567 /* start memory hot removal */
1568 ret = -EAGAIN;
1569 if (time_after(jiffies, expire))
1570 goto failed_removal;
1571 ret = -EINTR;
1572 if (signal_pending(current))
1573 goto failed_removal;
1574 ret = 0;
1575 if (drain) {
1576 lru_add_drain_all();
1577 cond_resched();
1578 drain_all_pages();
1579 }
1580
1581 pfn = scan_movable_pages(start_pfn, end_pfn);
1582 if (pfn) { /* We have movable pages */
1583 ret = do_migrate_range(pfn, end_pfn);
1584 if (!ret) {
1585 drain = 1;
1586 goto repeat;
1587 } else {
1588 if (ret < 0)
1589 if (--retry_max == 0)
1590 goto failed_removal;
1591 yield();
1592 drain = 1;
1593 goto repeat;
1594 }
1595 }
1596 /* drain all zone's lru pagevec, this is asynchronous... */
1597 lru_add_drain_all();
1598 yield();
1599 /* drain pcp pages, this is synchronous. */
1600 drain_all_pages();
1601 /*
1602 * dissolve free hugepages in the memory block before doing offlining
1603 * actually in order to make hugetlbfs's object counting consistent.
1604 */
1605 dissolve_free_huge_pages(start_pfn, end_pfn);
1606 /* check again */
1607 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1608 if (offlined_pages < 0) {
1609 ret = -EBUSY;
1610 goto failed_removal;
1611 }
1612 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1613 /* Ok, all of our target is isolated.
1614 We cannot do rollback at this point. */
1615 offline_isolated_pages(start_pfn, end_pfn);
1616 /* reset pagetype flags and makes migrate type to be MOVABLE */
1617 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1618 /* removal success */
1619 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1620 zone->present_pages -= offlined_pages;
1621
1622 pgdat_resize_lock(zone->zone_pgdat, &flags);
1623 zone->zone_pgdat->node_present_pages -= offlined_pages;
1624 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1625
1626 init_per_zone_wmark_min();
1627
1628 if (!populated_zone(zone)) {
1629 zone_pcp_reset(zone);
1630 mutex_lock(&zonelists_mutex);
1631 build_all_zonelists(NULL, NULL);
1632 mutex_unlock(&zonelists_mutex);
1633 } else
1634 zone_pcp_update(zone);
1635
1636 node_states_clear_node(node, &arg);
1637 if (arg.status_change_nid >= 0)
1638 kswapd_stop(node);
1639
1640 vm_total_pages = nr_free_pagecache_pages();
1641 writeback_set_ratelimit();
1642
1643 memory_notify(MEM_OFFLINE, &arg);
1644 unlock_memory_hotplug();
1645 return 0;
1646
1647 failed_removal:
1648 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1649 (unsigned long long) start_pfn << PAGE_SHIFT,
1650 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1651 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1652 /* pushback to free area */
1653 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1654
1655 out:
1656 unlock_memory_hotplug();
1657 return ret;
1658 }
1659
1660 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1661 {
1662 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1663 }
1664 #endif /* CONFIG_MEMORY_HOTREMOVE */
1665
1666 /**
1667 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1668 * @start_pfn: start pfn of the memory range
1669 * @end_pfn: end pfn of the memory range
1670 * @arg: argument passed to func
1671 * @func: callback for each memory section walked
1672 *
1673 * This function walks through all present mem sections in range
1674 * [start_pfn, end_pfn) and call func on each mem section.
1675 *
1676 * Returns the return value of func.
1677 */
1678 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1679 void *arg, int (*func)(struct memory_block *, void *))
1680 {
1681 struct memory_block *mem = NULL;
1682 struct mem_section *section;
1683 unsigned long pfn, section_nr;
1684 int ret;
1685
1686 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1687 section_nr = pfn_to_section_nr(pfn);
1688 if (!present_section_nr(section_nr))
1689 continue;
1690
1691 section = __nr_to_section(section_nr);
1692 /* same memblock? */
1693 if (mem)
1694 if ((section_nr >= mem->start_section_nr) &&
1695 (section_nr <= mem->end_section_nr))
1696 continue;
1697
1698 mem = find_memory_block_hinted(section, mem);
1699 if (!mem)
1700 continue;
1701
1702 ret = func(mem, arg);
1703 if (ret) {
1704 kobject_put(&mem->dev.kobj);
1705 return ret;
1706 }
1707 }
1708
1709 if (mem)
1710 kobject_put(&mem->dev.kobj);
1711
1712 return 0;
1713 }
1714
1715 #ifdef CONFIG_MEMORY_HOTREMOVE
1716 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1717 {
1718 int ret = !is_memblock_offlined(mem);
1719
1720 if (unlikely(ret)) {
1721 phys_addr_t beginpa, endpa;
1722
1723 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1724 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1725 pr_warn("removing memory fails, because memory "
1726 "[%pa-%pa] is onlined\n",
1727 &beginpa, &endpa);
1728 }
1729
1730 return ret;
1731 }
1732
1733 static int check_cpu_on_node(pg_data_t *pgdat)
1734 {
1735 int cpu;
1736
1737 for_each_present_cpu(cpu) {
1738 if (cpu_to_node(cpu) == pgdat->node_id)
1739 /*
1740 * the cpu on this node isn't removed, and we can't
1741 * offline this node.
1742 */
1743 return -EBUSY;
1744 }
1745
1746 return 0;
1747 }
1748
1749 static void unmap_cpu_on_node(pg_data_t *pgdat)
1750 {
1751 #ifdef CONFIG_ACPI_NUMA
1752 int cpu;
1753
1754 for_each_possible_cpu(cpu)
1755 if (cpu_to_node(cpu) == pgdat->node_id)
1756 numa_clear_node(cpu);
1757 #endif
1758 }
1759
1760 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1761 {
1762 int ret;
1763
1764 ret = check_cpu_on_node(pgdat);
1765 if (ret)
1766 return ret;
1767
1768 /*
1769 * the node will be offlined when we come here, so we can clear
1770 * the cpu_to_node() now.
1771 */
1772
1773 unmap_cpu_on_node(pgdat);
1774 return 0;
1775 }
1776
1777 /**
1778 * try_offline_node
1779 *
1780 * Offline a node if all memory sections and cpus of the node are removed.
1781 *
1782 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1783 * and online/offline operations before this call.
1784 */
1785 void try_offline_node(int nid)
1786 {
1787 pg_data_t *pgdat = NODE_DATA(nid);
1788 unsigned long start_pfn = pgdat->node_start_pfn;
1789 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1790 unsigned long pfn;
1791 struct page *pgdat_page = virt_to_page(pgdat);
1792 int i;
1793
1794 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1795 unsigned long section_nr = pfn_to_section_nr(pfn);
1796
1797 if (!present_section_nr(section_nr))
1798 continue;
1799
1800 if (pfn_to_nid(pfn) != nid)
1801 continue;
1802
1803 /*
1804 * some memory sections of this node are not removed, and we
1805 * can't offline node now.
1806 */
1807 return;
1808 }
1809
1810 if (check_and_unmap_cpu_on_node(pgdat))
1811 return;
1812
1813 /*
1814 * all memory/cpu of this node are removed, we can offline this
1815 * node now.
1816 */
1817 node_set_offline(nid);
1818 unregister_one_node(nid);
1819
1820 if (!PageSlab(pgdat_page) && !PageCompound(pgdat_page))
1821 /* node data is allocated from boot memory */
1822 return;
1823
1824 /* free waittable in each zone */
1825 for (i = 0; i < MAX_NR_ZONES; i++) {
1826 struct zone *zone = pgdat->node_zones + i;
1827
1828 /*
1829 * wait_table may be allocated from boot memory,
1830 * here only free if it's allocated by vmalloc.
1831 */
1832 if (is_vmalloc_addr(zone->wait_table))
1833 vfree(zone->wait_table);
1834 }
1835
1836 /*
1837 * Since there is no way to guarentee the address of pgdat/zone is not
1838 * on stack of any kernel threads or used by other kernel objects
1839 * without reference counting or other symchronizing method, do not
1840 * reset node_data and free pgdat here. Just reset it to 0 and reuse
1841 * the memory when the node is online again.
1842 */
1843 memset(pgdat, 0, sizeof(*pgdat));
1844 }
1845 EXPORT_SYMBOL(try_offline_node);
1846
1847 /**
1848 * remove_memory
1849 *
1850 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1851 * and online/offline operations before this call, as required by
1852 * try_offline_node().
1853 */
1854 void __ref remove_memory(int nid, u64 start, u64 size)
1855 {
1856 int ret;
1857
1858 BUG_ON(check_hotplug_memory_range(start, size));
1859
1860 lock_memory_hotplug();
1861
1862 /*
1863 * All memory blocks must be offlined before removing memory. Check
1864 * whether all memory blocks in question are offline and trigger a BUG()
1865 * if this is not the case.
1866 */
1867 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
1868 check_memblock_offlined_cb);
1869 if (ret) {
1870 unlock_memory_hotplug();
1871 BUG();
1872 }
1873
1874 /* remove memmap entry */
1875 firmware_map_remove(start, start + size, "System RAM");
1876
1877 arch_remove_memory(start, size);
1878
1879 try_offline_node(nid);
1880
1881 unlock_memory_hotplug();
1882 }
1883 EXPORT_SYMBOL_GPL(remove_memory);
1884 #endif /* CONFIG_MEMORY_HOTREMOVE */
This page took 0.096336 seconds and 5 git commands to generate.