d97355b744abc10031d32556bdaf2fb15ac7decf
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/module.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96
97 #include "internal.h"
98
99 /* Internal flags */
100 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
101 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
102 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
123 } mpol_ops[MPOL_MAX];
124
125 /* Check that the nodemask contains at least one populated zone */
126 static int is_valid_nodemask(const nodemask_t *nodemask)
127 {
128 int nd, k;
129
130 for_each_node_mask(nd, *nodemask) {
131 struct zone *z;
132
133 for (k = 0; k <= policy_zone; k++) {
134 z = &NODE_DATA(nd)->node_zones[k];
135 if (z->present_pages > 0)
136 return 1;
137 }
138 }
139
140 return 0;
141 }
142
143 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
144 {
145 return pol->flags & MPOL_MODE_FLAGS;
146 }
147
148 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
149 const nodemask_t *rel)
150 {
151 nodemask_t tmp;
152 nodes_fold(tmp, *orig, nodes_weight(*rel));
153 nodes_onto(*ret, tmp, *rel);
154 }
155
156 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
157 {
158 if (nodes_empty(*nodes))
159 return -EINVAL;
160 pol->v.nodes = *nodes;
161 return 0;
162 }
163
164 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
165 {
166 if (!nodes)
167 pol->flags |= MPOL_F_LOCAL; /* local allocation */
168 else if (nodes_empty(*nodes))
169 return -EINVAL; /* no allowed nodes */
170 else
171 pol->v.preferred_node = first_node(*nodes);
172 return 0;
173 }
174
175 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
176 {
177 if (!is_valid_nodemask(nodes))
178 return -EINVAL;
179 pol->v.nodes = *nodes;
180 return 0;
181 }
182
183 /*
184 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
185 * any, for the new policy. mpol_new() has already validated the nodes
186 * parameter with respect to the policy mode and flags. But, we need to
187 * handle an empty nodemask with MPOL_PREFERRED here.
188 *
189 * Must be called holding task's alloc_lock to protect task's mems_allowed
190 * and mempolicy. May also be called holding the mmap_semaphore for write.
191 */
192 static int mpol_set_nodemask(struct mempolicy *pol,
193 const nodemask_t *nodes, struct nodemask_scratch *nsc)
194 {
195 int ret;
196
197 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
198 if (pol == NULL)
199 return 0;
200 /* Check N_HIGH_MEMORY */
201 nodes_and(nsc->mask1,
202 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
203
204 VM_BUG_ON(!nodes);
205 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
206 nodes = NULL; /* explicit local allocation */
207 else {
208 if (pol->flags & MPOL_F_RELATIVE_NODES)
209 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
210 else
211 nodes_and(nsc->mask2, *nodes, nsc->mask1);
212
213 if (mpol_store_user_nodemask(pol))
214 pol->w.user_nodemask = *nodes;
215 else
216 pol->w.cpuset_mems_allowed =
217 cpuset_current_mems_allowed;
218 }
219
220 if (nodes)
221 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
222 else
223 ret = mpol_ops[pol->mode].create(pol, NULL);
224 return ret;
225 }
226
227 /*
228 * This function just creates a new policy, does some check and simple
229 * initialization. You must invoke mpol_set_nodemask() to set nodes.
230 */
231 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
232 nodemask_t *nodes)
233 {
234 struct mempolicy *policy;
235
236 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
237 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
238
239 if (mode == MPOL_DEFAULT) {
240 if (nodes && !nodes_empty(*nodes))
241 return ERR_PTR(-EINVAL);
242 return NULL; /* simply delete any existing policy */
243 }
244 VM_BUG_ON(!nodes);
245
246 /*
247 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
248 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
249 * All other modes require a valid pointer to a non-empty nodemask.
250 */
251 if (mode == MPOL_PREFERRED) {
252 if (nodes_empty(*nodes)) {
253 if (((flags & MPOL_F_STATIC_NODES) ||
254 (flags & MPOL_F_RELATIVE_NODES)))
255 return ERR_PTR(-EINVAL);
256 }
257 } else if (nodes_empty(*nodes))
258 return ERR_PTR(-EINVAL);
259 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
260 if (!policy)
261 return ERR_PTR(-ENOMEM);
262 atomic_set(&policy->refcnt, 1);
263 policy->mode = mode;
264 policy->flags = flags;
265
266 return policy;
267 }
268
269 /* Slow path of a mpol destructor. */
270 void __mpol_put(struct mempolicy *p)
271 {
272 if (!atomic_dec_and_test(&p->refcnt))
273 return;
274 kmem_cache_free(policy_cache, p);
275 }
276
277 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
278 {
279 }
280
281 static void mpol_rebind_nodemask(struct mempolicy *pol,
282 const nodemask_t *nodes)
283 {
284 nodemask_t tmp;
285
286 if (pol->flags & MPOL_F_STATIC_NODES)
287 nodes_and(tmp, pol->w.user_nodemask, *nodes);
288 else if (pol->flags & MPOL_F_RELATIVE_NODES)
289 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
290 else {
291 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
292 *nodes);
293 pol->w.cpuset_mems_allowed = *nodes;
294 }
295
296 pol->v.nodes = tmp;
297 if (!node_isset(current->il_next, tmp)) {
298 current->il_next = next_node(current->il_next, tmp);
299 if (current->il_next >= MAX_NUMNODES)
300 current->il_next = first_node(tmp);
301 if (current->il_next >= MAX_NUMNODES)
302 current->il_next = numa_node_id();
303 }
304 }
305
306 static void mpol_rebind_preferred(struct mempolicy *pol,
307 const nodemask_t *nodes)
308 {
309 nodemask_t tmp;
310
311 if (pol->flags & MPOL_F_STATIC_NODES) {
312 int node = first_node(pol->w.user_nodemask);
313
314 if (node_isset(node, *nodes)) {
315 pol->v.preferred_node = node;
316 pol->flags &= ~MPOL_F_LOCAL;
317 } else
318 pol->flags |= MPOL_F_LOCAL;
319 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
320 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
321 pol->v.preferred_node = first_node(tmp);
322 } else if (!(pol->flags & MPOL_F_LOCAL)) {
323 pol->v.preferred_node = node_remap(pol->v.preferred_node,
324 pol->w.cpuset_mems_allowed,
325 *nodes);
326 pol->w.cpuset_mems_allowed = *nodes;
327 }
328 }
329
330 /* Migrate a policy to a different set of nodes */
331 static void mpol_rebind_policy(struct mempolicy *pol,
332 const nodemask_t *newmask)
333 {
334 if (!pol)
335 return;
336 if (!mpol_store_user_nodemask(pol) &&
337 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
338 return;
339 mpol_ops[pol->mode].rebind(pol, newmask);
340 }
341
342 /*
343 * Wrapper for mpol_rebind_policy() that just requires task
344 * pointer, and updates task mempolicy.
345 *
346 * Called with task's alloc_lock held.
347 */
348
349 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
350 {
351 mpol_rebind_policy(tsk->mempolicy, new);
352 }
353
354 /*
355 * Rebind each vma in mm to new nodemask.
356 *
357 * Call holding a reference to mm. Takes mm->mmap_sem during call.
358 */
359
360 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
361 {
362 struct vm_area_struct *vma;
363
364 down_write(&mm->mmap_sem);
365 for (vma = mm->mmap; vma; vma = vma->vm_next)
366 mpol_rebind_policy(vma->vm_policy, new);
367 up_write(&mm->mmap_sem);
368 }
369
370 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
371 [MPOL_DEFAULT] = {
372 .rebind = mpol_rebind_default,
373 },
374 [MPOL_INTERLEAVE] = {
375 .create = mpol_new_interleave,
376 .rebind = mpol_rebind_nodemask,
377 },
378 [MPOL_PREFERRED] = {
379 .create = mpol_new_preferred,
380 .rebind = mpol_rebind_preferred,
381 },
382 [MPOL_BIND] = {
383 .create = mpol_new_bind,
384 .rebind = mpol_rebind_nodemask,
385 },
386 };
387
388 static void gather_stats(struct page *, void *, int pte_dirty);
389 static void migrate_page_add(struct page *page, struct list_head *pagelist,
390 unsigned long flags);
391
392 /* Scan through pages checking if pages follow certain conditions. */
393 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
394 unsigned long addr, unsigned long end,
395 const nodemask_t *nodes, unsigned long flags,
396 void *private)
397 {
398 pte_t *orig_pte;
399 pte_t *pte;
400 spinlock_t *ptl;
401
402 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
403 do {
404 struct page *page;
405 int nid;
406
407 if (!pte_present(*pte))
408 continue;
409 page = vm_normal_page(vma, addr, *pte);
410 if (!page)
411 continue;
412 /*
413 * vm_normal_page() filters out zero pages, but there might
414 * still be PageReserved pages to skip, perhaps in a VDSO.
415 * And we cannot move PageKsm pages sensibly or safely yet.
416 */
417 if (PageReserved(page) || PageKsm(page))
418 continue;
419 nid = page_to_nid(page);
420 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
421 continue;
422
423 if (flags & MPOL_MF_STATS)
424 gather_stats(page, private, pte_dirty(*pte));
425 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
426 migrate_page_add(page, private, flags);
427 else
428 break;
429 } while (pte++, addr += PAGE_SIZE, addr != end);
430 pte_unmap_unlock(orig_pte, ptl);
431 return addr != end;
432 }
433
434 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
435 unsigned long addr, unsigned long end,
436 const nodemask_t *nodes, unsigned long flags,
437 void *private)
438 {
439 pmd_t *pmd;
440 unsigned long next;
441
442 pmd = pmd_offset(pud, addr);
443 do {
444 next = pmd_addr_end(addr, end);
445 if (pmd_none_or_clear_bad(pmd))
446 continue;
447 if (check_pte_range(vma, pmd, addr, next, nodes,
448 flags, private))
449 return -EIO;
450 } while (pmd++, addr = next, addr != end);
451 return 0;
452 }
453
454 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
455 unsigned long addr, unsigned long end,
456 const nodemask_t *nodes, unsigned long flags,
457 void *private)
458 {
459 pud_t *pud;
460 unsigned long next;
461
462 pud = pud_offset(pgd, addr);
463 do {
464 next = pud_addr_end(addr, end);
465 if (pud_none_or_clear_bad(pud))
466 continue;
467 if (check_pmd_range(vma, pud, addr, next, nodes,
468 flags, private))
469 return -EIO;
470 } while (pud++, addr = next, addr != end);
471 return 0;
472 }
473
474 static inline int check_pgd_range(struct vm_area_struct *vma,
475 unsigned long addr, unsigned long end,
476 const nodemask_t *nodes, unsigned long flags,
477 void *private)
478 {
479 pgd_t *pgd;
480 unsigned long next;
481
482 pgd = pgd_offset(vma->vm_mm, addr);
483 do {
484 next = pgd_addr_end(addr, end);
485 if (pgd_none_or_clear_bad(pgd))
486 continue;
487 if (check_pud_range(vma, pgd, addr, next, nodes,
488 flags, private))
489 return -EIO;
490 } while (pgd++, addr = next, addr != end);
491 return 0;
492 }
493
494 /*
495 * Check if all pages in a range are on a set of nodes.
496 * If pagelist != NULL then isolate pages from the LRU and
497 * put them on the pagelist.
498 */
499 static struct vm_area_struct *
500 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
501 const nodemask_t *nodes, unsigned long flags, void *private)
502 {
503 int err;
504 struct vm_area_struct *first, *vma, *prev;
505
506
507 first = find_vma(mm, start);
508 if (!first)
509 return ERR_PTR(-EFAULT);
510 prev = NULL;
511 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
512 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
513 if (!vma->vm_next && vma->vm_end < end)
514 return ERR_PTR(-EFAULT);
515 if (prev && prev->vm_end < vma->vm_start)
516 return ERR_PTR(-EFAULT);
517 }
518 if (!is_vm_hugetlb_page(vma) &&
519 ((flags & MPOL_MF_STRICT) ||
520 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
521 vma_migratable(vma)))) {
522 unsigned long endvma = vma->vm_end;
523
524 if (endvma > end)
525 endvma = end;
526 if (vma->vm_start > start)
527 start = vma->vm_start;
528 err = check_pgd_range(vma, start, endvma, nodes,
529 flags, private);
530 if (err) {
531 first = ERR_PTR(err);
532 break;
533 }
534 }
535 prev = vma;
536 }
537 return first;
538 }
539
540 /* Apply policy to a single VMA */
541 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
542 {
543 int err = 0;
544 struct mempolicy *old = vma->vm_policy;
545
546 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
547 vma->vm_start, vma->vm_end, vma->vm_pgoff,
548 vma->vm_ops, vma->vm_file,
549 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
550
551 if (vma->vm_ops && vma->vm_ops->set_policy)
552 err = vma->vm_ops->set_policy(vma, new);
553 if (!err) {
554 mpol_get(new);
555 vma->vm_policy = new;
556 mpol_put(old);
557 }
558 return err;
559 }
560
561 /* Step 2: apply policy to a range and do splits. */
562 static int mbind_range(struct mm_struct *mm, unsigned long start,
563 unsigned long end, struct mempolicy *new_pol)
564 {
565 struct vm_area_struct *next;
566 struct vm_area_struct *prev;
567 struct vm_area_struct *vma;
568 int err = 0;
569 pgoff_t pgoff;
570 unsigned long vmstart;
571 unsigned long vmend;
572
573 vma = find_vma_prev(mm, start, &prev);
574 if (!vma || vma->vm_start > start)
575 return -EFAULT;
576
577 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
578 next = vma->vm_next;
579 vmstart = max(start, vma->vm_start);
580 vmend = min(end, vma->vm_end);
581
582 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
583 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
584 vma->anon_vma, vma->vm_file, pgoff, new_pol);
585 if (prev) {
586 vma = prev;
587 next = vma->vm_next;
588 continue;
589 }
590 if (vma->vm_start != vmstart) {
591 err = split_vma(vma->vm_mm, vma, vmstart, 1);
592 if (err)
593 goto out;
594 }
595 if (vma->vm_end != vmend) {
596 err = split_vma(vma->vm_mm, vma, vmend, 0);
597 if (err)
598 goto out;
599 }
600 err = policy_vma(vma, new_pol);
601 if (err)
602 goto out;
603 }
604
605 out:
606 return err;
607 }
608
609 /*
610 * Update task->flags PF_MEMPOLICY bit: set iff non-default
611 * mempolicy. Allows more rapid checking of this (combined perhaps
612 * with other PF_* flag bits) on memory allocation hot code paths.
613 *
614 * If called from outside this file, the task 'p' should -only- be
615 * a newly forked child not yet visible on the task list, because
616 * manipulating the task flags of a visible task is not safe.
617 *
618 * The above limitation is why this routine has the funny name
619 * mpol_fix_fork_child_flag().
620 *
621 * It is also safe to call this with a task pointer of current,
622 * which the static wrapper mpol_set_task_struct_flag() does,
623 * for use within this file.
624 */
625
626 void mpol_fix_fork_child_flag(struct task_struct *p)
627 {
628 if (p->mempolicy)
629 p->flags |= PF_MEMPOLICY;
630 else
631 p->flags &= ~PF_MEMPOLICY;
632 }
633
634 static void mpol_set_task_struct_flag(void)
635 {
636 mpol_fix_fork_child_flag(current);
637 }
638
639 /* Set the process memory policy */
640 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
641 nodemask_t *nodes)
642 {
643 struct mempolicy *new, *old;
644 struct mm_struct *mm = current->mm;
645 NODEMASK_SCRATCH(scratch);
646 int ret;
647
648 if (!scratch)
649 return -ENOMEM;
650
651 new = mpol_new(mode, flags, nodes);
652 if (IS_ERR(new)) {
653 ret = PTR_ERR(new);
654 goto out;
655 }
656 /*
657 * prevent changing our mempolicy while show_numa_maps()
658 * is using it.
659 * Note: do_set_mempolicy() can be called at init time
660 * with no 'mm'.
661 */
662 if (mm)
663 down_write(&mm->mmap_sem);
664 task_lock(current);
665 ret = mpol_set_nodemask(new, nodes, scratch);
666 if (ret) {
667 task_unlock(current);
668 if (mm)
669 up_write(&mm->mmap_sem);
670 mpol_put(new);
671 goto out;
672 }
673 old = current->mempolicy;
674 current->mempolicy = new;
675 mpol_set_task_struct_flag();
676 if (new && new->mode == MPOL_INTERLEAVE &&
677 nodes_weight(new->v.nodes))
678 current->il_next = first_node(new->v.nodes);
679 task_unlock(current);
680 if (mm)
681 up_write(&mm->mmap_sem);
682
683 mpol_put(old);
684 ret = 0;
685 out:
686 NODEMASK_SCRATCH_FREE(scratch);
687 return ret;
688 }
689
690 /*
691 * Return nodemask for policy for get_mempolicy() query
692 *
693 * Called with task's alloc_lock held
694 */
695 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
696 {
697 nodes_clear(*nodes);
698 if (p == &default_policy)
699 return;
700
701 switch (p->mode) {
702 case MPOL_BIND:
703 /* Fall through */
704 case MPOL_INTERLEAVE:
705 *nodes = p->v.nodes;
706 break;
707 case MPOL_PREFERRED:
708 if (!(p->flags & MPOL_F_LOCAL))
709 node_set(p->v.preferred_node, *nodes);
710 /* else return empty node mask for local allocation */
711 break;
712 default:
713 BUG();
714 }
715 }
716
717 static int lookup_node(struct mm_struct *mm, unsigned long addr)
718 {
719 struct page *p;
720 int err;
721
722 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
723 if (err >= 0) {
724 err = page_to_nid(p);
725 put_page(p);
726 }
727 return err;
728 }
729
730 /* Retrieve NUMA policy */
731 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
732 unsigned long addr, unsigned long flags)
733 {
734 int err;
735 struct mm_struct *mm = current->mm;
736 struct vm_area_struct *vma = NULL;
737 struct mempolicy *pol = current->mempolicy;
738
739 if (flags &
740 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
741 return -EINVAL;
742
743 if (flags & MPOL_F_MEMS_ALLOWED) {
744 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
745 return -EINVAL;
746 *policy = 0; /* just so it's initialized */
747 task_lock(current);
748 *nmask = cpuset_current_mems_allowed;
749 task_unlock(current);
750 return 0;
751 }
752
753 if (flags & MPOL_F_ADDR) {
754 /*
755 * Do NOT fall back to task policy if the
756 * vma/shared policy at addr is NULL. We
757 * want to return MPOL_DEFAULT in this case.
758 */
759 down_read(&mm->mmap_sem);
760 vma = find_vma_intersection(mm, addr, addr+1);
761 if (!vma) {
762 up_read(&mm->mmap_sem);
763 return -EFAULT;
764 }
765 if (vma->vm_ops && vma->vm_ops->get_policy)
766 pol = vma->vm_ops->get_policy(vma, addr);
767 else
768 pol = vma->vm_policy;
769 } else if (addr)
770 return -EINVAL;
771
772 if (!pol)
773 pol = &default_policy; /* indicates default behavior */
774
775 if (flags & MPOL_F_NODE) {
776 if (flags & MPOL_F_ADDR) {
777 err = lookup_node(mm, addr);
778 if (err < 0)
779 goto out;
780 *policy = err;
781 } else if (pol == current->mempolicy &&
782 pol->mode == MPOL_INTERLEAVE) {
783 *policy = current->il_next;
784 } else {
785 err = -EINVAL;
786 goto out;
787 }
788 } else {
789 *policy = pol == &default_policy ? MPOL_DEFAULT :
790 pol->mode;
791 /*
792 * Internal mempolicy flags must be masked off before exposing
793 * the policy to userspace.
794 */
795 *policy |= (pol->flags & MPOL_MODE_FLAGS);
796 }
797
798 if (vma) {
799 up_read(&current->mm->mmap_sem);
800 vma = NULL;
801 }
802
803 err = 0;
804 if (nmask) {
805 if (mpol_store_user_nodemask(pol)) {
806 *nmask = pol->w.user_nodemask;
807 } else {
808 task_lock(current);
809 get_policy_nodemask(pol, nmask);
810 task_unlock(current);
811 }
812 }
813
814 out:
815 mpol_cond_put(pol);
816 if (vma)
817 up_read(&current->mm->mmap_sem);
818 return err;
819 }
820
821 #ifdef CONFIG_MIGRATION
822 /*
823 * page migration
824 */
825 static void migrate_page_add(struct page *page, struct list_head *pagelist,
826 unsigned long flags)
827 {
828 /*
829 * Avoid migrating a page that is shared with others.
830 */
831 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
832 if (!isolate_lru_page(page)) {
833 list_add_tail(&page->lru, pagelist);
834 inc_zone_page_state(page, NR_ISOLATED_ANON +
835 page_is_file_cache(page));
836 }
837 }
838 }
839
840 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
841 {
842 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
843 }
844
845 /*
846 * Migrate pages from one node to a target node.
847 * Returns error or the number of pages not migrated.
848 */
849 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
850 int flags)
851 {
852 nodemask_t nmask;
853 LIST_HEAD(pagelist);
854 int err = 0;
855
856 nodes_clear(nmask);
857 node_set(source, nmask);
858
859 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
860 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
861
862 if (!list_empty(&pagelist))
863 err = migrate_pages(&pagelist, new_node_page, dest, 0);
864
865 return err;
866 }
867
868 /*
869 * Move pages between the two nodesets so as to preserve the physical
870 * layout as much as possible.
871 *
872 * Returns the number of page that could not be moved.
873 */
874 int do_migrate_pages(struct mm_struct *mm,
875 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
876 {
877 int busy = 0;
878 int err;
879 nodemask_t tmp;
880
881 err = migrate_prep();
882 if (err)
883 return err;
884
885 down_read(&mm->mmap_sem);
886
887 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
888 if (err)
889 goto out;
890
891 /*
892 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
893 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
894 * bit in 'tmp', and return that <source, dest> pair for migration.
895 * The pair of nodemasks 'to' and 'from' define the map.
896 *
897 * If no pair of bits is found that way, fallback to picking some
898 * pair of 'source' and 'dest' bits that are not the same. If the
899 * 'source' and 'dest' bits are the same, this represents a node
900 * that will be migrating to itself, so no pages need move.
901 *
902 * If no bits are left in 'tmp', or if all remaining bits left
903 * in 'tmp' correspond to the same bit in 'to', return false
904 * (nothing left to migrate).
905 *
906 * This lets us pick a pair of nodes to migrate between, such that
907 * if possible the dest node is not already occupied by some other
908 * source node, minimizing the risk of overloading the memory on a
909 * node that would happen if we migrated incoming memory to a node
910 * before migrating outgoing memory source that same node.
911 *
912 * A single scan of tmp is sufficient. As we go, we remember the
913 * most recent <s, d> pair that moved (s != d). If we find a pair
914 * that not only moved, but what's better, moved to an empty slot
915 * (d is not set in tmp), then we break out then, with that pair.
916 * Otherwise when we finish scannng from_tmp, we at least have the
917 * most recent <s, d> pair that moved. If we get all the way through
918 * the scan of tmp without finding any node that moved, much less
919 * moved to an empty node, then there is nothing left worth migrating.
920 */
921
922 tmp = *from_nodes;
923 while (!nodes_empty(tmp)) {
924 int s,d;
925 int source = -1;
926 int dest = 0;
927
928 for_each_node_mask(s, tmp) {
929 d = node_remap(s, *from_nodes, *to_nodes);
930 if (s == d)
931 continue;
932
933 source = s; /* Node moved. Memorize */
934 dest = d;
935
936 /* dest not in remaining from nodes? */
937 if (!node_isset(dest, tmp))
938 break;
939 }
940 if (source == -1)
941 break;
942
943 node_clear(source, tmp);
944 err = migrate_to_node(mm, source, dest, flags);
945 if (err > 0)
946 busy += err;
947 if (err < 0)
948 break;
949 }
950 out:
951 up_read(&mm->mmap_sem);
952 if (err < 0)
953 return err;
954 return busy;
955
956 }
957
958 /*
959 * Allocate a new page for page migration based on vma policy.
960 * Start assuming that page is mapped by vma pointed to by @private.
961 * Search forward from there, if not. N.B., this assumes that the
962 * list of pages handed to migrate_pages()--which is how we get here--
963 * is in virtual address order.
964 */
965 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
966 {
967 struct vm_area_struct *vma = (struct vm_area_struct *)private;
968 unsigned long uninitialized_var(address);
969
970 while (vma) {
971 address = page_address_in_vma(page, vma);
972 if (address != -EFAULT)
973 break;
974 vma = vma->vm_next;
975 }
976
977 /*
978 * if !vma, alloc_page_vma() will use task or system default policy
979 */
980 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
981 }
982 #else
983
984 static void migrate_page_add(struct page *page, struct list_head *pagelist,
985 unsigned long flags)
986 {
987 }
988
989 int do_migrate_pages(struct mm_struct *mm,
990 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
991 {
992 return -ENOSYS;
993 }
994
995 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
996 {
997 return NULL;
998 }
999 #endif
1000
1001 static long do_mbind(unsigned long start, unsigned long len,
1002 unsigned short mode, unsigned short mode_flags,
1003 nodemask_t *nmask, unsigned long flags)
1004 {
1005 struct vm_area_struct *vma;
1006 struct mm_struct *mm = current->mm;
1007 struct mempolicy *new;
1008 unsigned long end;
1009 int err;
1010 LIST_HEAD(pagelist);
1011
1012 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1013 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1014 return -EINVAL;
1015 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1016 return -EPERM;
1017
1018 if (start & ~PAGE_MASK)
1019 return -EINVAL;
1020
1021 if (mode == MPOL_DEFAULT)
1022 flags &= ~MPOL_MF_STRICT;
1023
1024 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1025 end = start + len;
1026
1027 if (end < start)
1028 return -EINVAL;
1029 if (end == start)
1030 return 0;
1031
1032 new = mpol_new(mode, mode_flags, nmask);
1033 if (IS_ERR(new))
1034 return PTR_ERR(new);
1035
1036 /*
1037 * If we are using the default policy then operation
1038 * on discontinuous address spaces is okay after all
1039 */
1040 if (!new)
1041 flags |= MPOL_MF_DISCONTIG_OK;
1042
1043 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1044 start, start + len, mode, mode_flags,
1045 nmask ? nodes_addr(*nmask)[0] : -1);
1046
1047 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1048
1049 err = migrate_prep();
1050 if (err)
1051 goto mpol_out;
1052 }
1053 {
1054 NODEMASK_SCRATCH(scratch);
1055 if (scratch) {
1056 down_write(&mm->mmap_sem);
1057 task_lock(current);
1058 err = mpol_set_nodemask(new, nmask, scratch);
1059 task_unlock(current);
1060 if (err)
1061 up_write(&mm->mmap_sem);
1062 } else
1063 err = -ENOMEM;
1064 NODEMASK_SCRATCH_FREE(scratch);
1065 }
1066 if (err)
1067 goto mpol_out;
1068
1069 vma = check_range(mm, start, end, nmask,
1070 flags | MPOL_MF_INVERT, &pagelist);
1071
1072 err = PTR_ERR(vma);
1073 if (!IS_ERR(vma)) {
1074 int nr_failed = 0;
1075
1076 err = mbind_range(mm, start, end, new);
1077
1078 if (!list_empty(&pagelist))
1079 nr_failed = migrate_pages(&pagelist, new_vma_page,
1080 (unsigned long)vma, 0);
1081
1082 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1083 err = -EIO;
1084 } else
1085 putback_lru_pages(&pagelist);
1086
1087 up_write(&mm->mmap_sem);
1088 mpol_out:
1089 mpol_put(new);
1090 return err;
1091 }
1092
1093 /*
1094 * User space interface with variable sized bitmaps for nodelists.
1095 */
1096
1097 /* Copy a node mask from user space. */
1098 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1099 unsigned long maxnode)
1100 {
1101 unsigned long k;
1102 unsigned long nlongs;
1103 unsigned long endmask;
1104
1105 --maxnode;
1106 nodes_clear(*nodes);
1107 if (maxnode == 0 || !nmask)
1108 return 0;
1109 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1110 return -EINVAL;
1111
1112 nlongs = BITS_TO_LONGS(maxnode);
1113 if ((maxnode % BITS_PER_LONG) == 0)
1114 endmask = ~0UL;
1115 else
1116 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1117
1118 /* When the user specified more nodes than supported just check
1119 if the non supported part is all zero. */
1120 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1121 if (nlongs > PAGE_SIZE/sizeof(long))
1122 return -EINVAL;
1123 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1124 unsigned long t;
1125 if (get_user(t, nmask + k))
1126 return -EFAULT;
1127 if (k == nlongs - 1) {
1128 if (t & endmask)
1129 return -EINVAL;
1130 } else if (t)
1131 return -EINVAL;
1132 }
1133 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1134 endmask = ~0UL;
1135 }
1136
1137 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1138 return -EFAULT;
1139 nodes_addr(*nodes)[nlongs-1] &= endmask;
1140 return 0;
1141 }
1142
1143 /* Copy a kernel node mask to user space */
1144 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1145 nodemask_t *nodes)
1146 {
1147 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1148 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1149
1150 if (copy > nbytes) {
1151 if (copy > PAGE_SIZE)
1152 return -EINVAL;
1153 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1154 return -EFAULT;
1155 copy = nbytes;
1156 }
1157 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1158 }
1159
1160 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1161 unsigned long, mode, unsigned long __user *, nmask,
1162 unsigned long, maxnode, unsigned, flags)
1163 {
1164 nodemask_t nodes;
1165 int err;
1166 unsigned short mode_flags;
1167
1168 mode_flags = mode & MPOL_MODE_FLAGS;
1169 mode &= ~MPOL_MODE_FLAGS;
1170 if (mode >= MPOL_MAX)
1171 return -EINVAL;
1172 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1173 (mode_flags & MPOL_F_RELATIVE_NODES))
1174 return -EINVAL;
1175 err = get_nodes(&nodes, nmask, maxnode);
1176 if (err)
1177 return err;
1178 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1179 }
1180
1181 /* Set the process memory policy */
1182 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1183 unsigned long, maxnode)
1184 {
1185 int err;
1186 nodemask_t nodes;
1187 unsigned short flags;
1188
1189 flags = mode & MPOL_MODE_FLAGS;
1190 mode &= ~MPOL_MODE_FLAGS;
1191 if ((unsigned int)mode >= MPOL_MAX)
1192 return -EINVAL;
1193 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1194 return -EINVAL;
1195 err = get_nodes(&nodes, nmask, maxnode);
1196 if (err)
1197 return err;
1198 return do_set_mempolicy(mode, flags, &nodes);
1199 }
1200
1201 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1202 const unsigned long __user *, old_nodes,
1203 const unsigned long __user *, new_nodes)
1204 {
1205 const struct cred *cred = current_cred(), *tcred;
1206 struct mm_struct *mm;
1207 struct task_struct *task;
1208 nodemask_t old;
1209 nodemask_t new;
1210 nodemask_t task_nodes;
1211 int err;
1212
1213 err = get_nodes(&old, old_nodes, maxnode);
1214 if (err)
1215 return err;
1216
1217 err = get_nodes(&new, new_nodes, maxnode);
1218 if (err)
1219 return err;
1220
1221 /* Find the mm_struct */
1222 read_lock(&tasklist_lock);
1223 task = pid ? find_task_by_vpid(pid) : current;
1224 if (!task) {
1225 read_unlock(&tasklist_lock);
1226 return -ESRCH;
1227 }
1228 mm = get_task_mm(task);
1229 read_unlock(&tasklist_lock);
1230
1231 if (!mm)
1232 return -EINVAL;
1233
1234 /*
1235 * Check if this process has the right to modify the specified
1236 * process. The right exists if the process has administrative
1237 * capabilities, superuser privileges or the same
1238 * userid as the target process.
1239 */
1240 rcu_read_lock();
1241 tcred = __task_cred(task);
1242 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1243 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1244 !capable(CAP_SYS_NICE)) {
1245 rcu_read_unlock();
1246 err = -EPERM;
1247 goto out;
1248 }
1249 rcu_read_unlock();
1250
1251 task_nodes = cpuset_mems_allowed(task);
1252 /* Is the user allowed to access the target nodes? */
1253 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1254 err = -EPERM;
1255 goto out;
1256 }
1257
1258 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1259 err = -EINVAL;
1260 goto out;
1261 }
1262
1263 err = security_task_movememory(task);
1264 if (err)
1265 goto out;
1266
1267 err = do_migrate_pages(mm, &old, &new,
1268 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1269 out:
1270 mmput(mm);
1271 return err;
1272 }
1273
1274
1275 /* Retrieve NUMA policy */
1276 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1277 unsigned long __user *, nmask, unsigned long, maxnode,
1278 unsigned long, addr, unsigned long, flags)
1279 {
1280 int err;
1281 int uninitialized_var(pval);
1282 nodemask_t nodes;
1283
1284 if (nmask != NULL && maxnode < MAX_NUMNODES)
1285 return -EINVAL;
1286
1287 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1288
1289 if (err)
1290 return err;
1291
1292 if (policy && put_user(pval, policy))
1293 return -EFAULT;
1294
1295 if (nmask)
1296 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1297
1298 return err;
1299 }
1300
1301 #ifdef CONFIG_COMPAT
1302
1303 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1304 compat_ulong_t __user *nmask,
1305 compat_ulong_t maxnode,
1306 compat_ulong_t addr, compat_ulong_t flags)
1307 {
1308 long err;
1309 unsigned long __user *nm = NULL;
1310 unsigned long nr_bits, alloc_size;
1311 DECLARE_BITMAP(bm, MAX_NUMNODES);
1312
1313 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1314 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1315
1316 if (nmask)
1317 nm = compat_alloc_user_space(alloc_size);
1318
1319 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1320
1321 if (!err && nmask) {
1322 err = copy_from_user(bm, nm, alloc_size);
1323 /* ensure entire bitmap is zeroed */
1324 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1325 err |= compat_put_bitmap(nmask, bm, nr_bits);
1326 }
1327
1328 return err;
1329 }
1330
1331 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1332 compat_ulong_t maxnode)
1333 {
1334 long err = 0;
1335 unsigned long __user *nm = NULL;
1336 unsigned long nr_bits, alloc_size;
1337 DECLARE_BITMAP(bm, MAX_NUMNODES);
1338
1339 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1340 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1341
1342 if (nmask) {
1343 err = compat_get_bitmap(bm, nmask, nr_bits);
1344 nm = compat_alloc_user_space(alloc_size);
1345 err |= copy_to_user(nm, bm, alloc_size);
1346 }
1347
1348 if (err)
1349 return -EFAULT;
1350
1351 return sys_set_mempolicy(mode, nm, nr_bits+1);
1352 }
1353
1354 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1355 compat_ulong_t mode, compat_ulong_t __user *nmask,
1356 compat_ulong_t maxnode, compat_ulong_t flags)
1357 {
1358 long err = 0;
1359 unsigned long __user *nm = NULL;
1360 unsigned long nr_bits, alloc_size;
1361 nodemask_t bm;
1362
1363 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1364 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1365
1366 if (nmask) {
1367 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1368 nm = compat_alloc_user_space(alloc_size);
1369 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1370 }
1371
1372 if (err)
1373 return -EFAULT;
1374
1375 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1376 }
1377
1378 #endif
1379
1380 /*
1381 * get_vma_policy(@task, @vma, @addr)
1382 * @task - task for fallback if vma policy == default
1383 * @vma - virtual memory area whose policy is sought
1384 * @addr - address in @vma for shared policy lookup
1385 *
1386 * Returns effective policy for a VMA at specified address.
1387 * Falls back to @task or system default policy, as necessary.
1388 * Current or other task's task mempolicy and non-shared vma policies
1389 * are protected by the task's mmap_sem, which must be held for read by
1390 * the caller.
1391 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1392 * count--added by the get_policy() vm_op, as appropriate--to protect against
1393 * freeing by another task. It is the caller's responsibility to free the
1394 * extra reference for shared policies.
1395 */
1396 static struct mempolicy *get_vma_policy(struct task_struct *task,
1397 struct vm_area_struct *vma, unsigned long addr)
1398 {
1399 struct mempolicy *pol = task->mempolicy;
1400
1401 if (vma) {
1402 if (vma->vm_ops && vma->vm_ops->get_policy) {
1403 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1404 addr);
1405 if (vpol)
1406 pol = vpol;
1407 } else if (vma->vm_policy)
1408 pol = vma->vm_policy;
1409 }
1410 if (!pol)
1411 pol = &default_policy;
1412 return pol;
1413 }
1414
1415 /*
1416 * Return a nodemask representing a mempolicy for filtering nodes for
1417 * page allocation
1418 */
1419 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1420 {
1421 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1422 if (unlikely(policy->mode == MPOL_BIND) &&
1423 gfp_zone(gfp) >= policy_zone &&
1424 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1425 return &policy->v.nodes;
1426
1427 return NULL;
1428 }
1429
1430 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1431 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1432 {
1433 int nd = numa_node_id();
1434
1435 switch (policy->mode) {
1436 case MPOL_PREFERRED:
1437 if (!(policy->flags & MPOL_F_LOCAL))
1438 nd = policy->v.preferred_node;
1439 break;
1440 case MPOL_BIND:
1441 /*
1442 * Normally, MPOL_BIND allocations are node-local within the
1443 * allowed nodemask. However, if __GFP_THISNODE is set and the
1444 * current node isn't part of the mask, we use the zonelist for
1445 * the first node in the mask instead.
1446 */
1447 if (unlikely(gfp & __GFP_THISNODE) &&
1448 unlikely(!node_isset(nd, policy->v.nodes)))
1449 nd = first_node(policy->v.nodes);
1450 break;
1451 default:
1452 BUG();
1453 }
1454 return node_zonelist(nd, gfp);
1455 }
1456
1457 /* Do dynamic interleaving for a process */
1458 static unsigned interleave_nodes(struct mempolicy *policy)
1459 {
1460 unsigned nid, next;
1461 struct task_struct *me = current;
1462
1463 nid = me->il_next;
1464 next = next_node(nid, policy->v.nodes);
1465 if (next >= MAX_NUMNODES)
1466 next = first_node(policy->v.nodes);
1467 if (next < MAX_NUMNODES)
1468 me->il_next = next;
1469 return nid;
1470 }
1471
1472 /*
1473 * Depending on the memory policy provide a node from which to allocate the
1474 * next slab entry.
1475 * @policy must be protected by freeing by the caller. If @policy is
1476 * the current task's mempolicy, this protection is implicit, as only the
1477 * task can change it's policy. The system default policy requires no
1478 * such protection.
1479 */
1480 unsigned slab_node(struct mempolicy *policy)
1481 {
1482 if (!policy || policy->flags & MPOL_F_LOCAL)
1483 return numa_node_id();
1484
1485 switch (policy->mode) {
1486 case MPOL_PREFERRED:
1487 /*
1488 * handled MPOL_F_LOCAL above
1489 */
1490 return policy->v.preferred_node;
1491
1492 case MPOL_INTERLEAVE:
1493 return interleave_nodes(policy);
1494
1495 case MPOL_BIND: {
1496 /*
1497 * Follow bind policy behavior and start allocation at the
1498 * first node.
1499 */
1500 struct zonelist *zonelist;
1501 struct zone *zone;
1502 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1503 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1504 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1505 &policy->v.nodes,
1506 &zone);
1507 return zone->node;
1508 }
1509
1510 default:
1511 BUG();
1512 }
1513 }
1514
1515 /* Do static interleaving for a VMA with known offset. */
1516 static unsigned offset_il_node(struct mempolicy *pol,
1517 struct vm_area_struct *vma, unsigned long off)
1518 {
1519 unsigned nnodes = nodes_weight(pol->v.nodes);
1520 unsigned target;
1521 int c;
1522 int nid = -1;
1523
1524 if (!nnodes)
1525 return numa_node_id();
1526 target = (unsigned int)off % nnodes;
1527 c = 0;
1528 do {
1529 nid = next_node(nid, pol->v.nodes);
1530 c++;
1531 } while (c <= target);
1532 return nid;
1533 }
1534
1535 /* Determine a node number for interleave */
1536 static inline unsigned interleave_nid(struct mempolicy *pol,
1537 struct vm_area_struct *vma, unsigned long addr, int shift)
1538 {
1539 if (vma) {
1540 unsigned long off;
1541
1542 /*
1543 * for small pages, there is no difference between
1544 * shift and PAGE_SHIFT, so the bit-shift is safe.
1545 * for huge pages, since vm_pgoff is in units of small
1546 * pages, we need to shift off the always 0 bits to get
1547 * a useful offset.
1548 */
1549 BUG_ON(shift < PAGE_SHIFT);
1550 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1551 off += (addr - vma->vm_start) >> shift;
1552 return offset_il_node(pol, vma, off);
1553 } else
1554 return interleave_nodes(pol);
1555 }
1556
1557 #ifdef CONFIG_HUGETLBFS
1558 /*
1559 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1560 * @vma = virtual memory area whose policy is sought
1561 * @addr = address in @vma for shared policy lookup and interleave policy
1562 * @gfp_flags = for requested zone
1563 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1564 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1565 *
1566 * Returns a zonelist suitable for a huge page allocation and a pointer
1567 * to the struct mempolicy for conditional unref after allocation.
1568 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1569 * @nodemask for filtering the zonelist.
1570 */
1571 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1572 gfp_t gfp_flags, struct mempolicy **mpol,
1573 nodemask_t **nodemask)
1574 {
1575 struct zonelist *zl;
1576
1577 *mpol = get_vma_policy(current, vma, addr);
1578 *nodemask = NULL; /* assume !MPOL_BIND */
1579
1580 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1581 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1582 huge_page_shift(hstate_vma(vma))), gfp_flags);
1583 } else {
1584 zl = policy_zonelist(gfp_flags, *mpol);
1585 if ((*mpol)->mode == MPOL_BIND)
1586 *nodemask = &(*mpol)->v.nodes;
1587 }
1588 return zl;
1589 }
1590
1591 /*
1592 * init_nodemask_of_mempolicy
1593 *
1594 * If the current task's mempolicy is "default" [NULL], return 'false'
1595 * to indicate default policy. Otherwise, extract the policy nodemask
1596 * for 'bind' or 'interleave' policy into the argument nodemask, or
1597 * initialize the argument nodemask to contain the single node for
1598 * 'preferred' or 'local' policy and return 'true' to indicate presence
1599 * of non-default mempolicy.
1600 *
1601 * We don't bother with reference counting the mempolicy [mpol_get/put]
1602 * because the current task is examining it's own mempolicy and a task's
1603 * mempolicy is only ever changed by the task itself.
1604 *
1605 * N.B., it is the caller's responsibility to free a returned nodemask.
1606 */
1607 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1608 {
1609 struct mempolicy *mempolicy;
1610 int nid;
1611
1612 if (!(mask && current->mempolicy))
1613 return false;
1614
1615 mempolicy = current->mempolicy;
1616 switch (mempolicy->mode) {
1617 case MPOL_PREFERRED:
1618 if (mempolicy->flags & MPOL_F_LOCAL)
1619 nid = numa_node_id();
1620 else
1621 nid = mempolicy->v.preferred_node;
1622 init_nodemask_of_node(mask, nid);
1623 break;
1624
1625 case MPOL_BIND:
1626 /* Fall through */
1627 case MPOL_INTERLEAVE:
1628 *mask = mempolicy->v.nodes;
1629 break;
1630
1631 default:
1632 BUG();
1633 }
1634
1635 return true;
1636 }
1637 #endif
1638
1639 /* Allocate a page in interleaved policy.
1640 Own path because it needs to do special accounting. */
1641 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1642 unsigned nid)
1643 {
1644 struct zonelist *zl;
1645 struct page *page;
1646
1647 zl = node_zonelist(nid, gfp);
1648 page = __alloc_pages(gfp, order, zl);
1649 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1650 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1651 return page;
1652 }
1653
1654 /**
1655 * alloc_page_vma - Allocate a page for a VMA.
1656 *
1657 * @gfp:
1658 * %GFP_USER user allocation.
1659 * %GFP_KERNEL kernel allocations,
1660 * %GFP_HIGHMEM highmem/user allocations,
1661 * %GFP_FS allocation should not call back into a file system.
1662 * %GFP_ATOMIC don't sleep.
1663 *
1664 * @vma: Pointer to VMA or NULL if not available.
1665 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1666 *
1667 * This function allocates a page from the kernel page pool and applies
1668 * a NUMA policy associated with the VMA or the current process.
1669 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1670 * mm_struct of the VMA to prevent it from going away. Should be used for
1671 * all allocations for pages that will be mapped into
1672 * user space. Returns NULL when no page can be allocated.
1673 *
1674 * Should be called with the mm_sem of the vma hold.
1675 */
1676 struct page *
1677 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1678 {
1679 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1680 struct zonelist *zl;
1681
1682 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1683 unsigned nid;
1684
1685 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1686 mpol_cond_put(pol);
1687 return alloc_page_interleave(gfp, 0, nid);
1688 }
1689 zl = policy_zonelist(gfp, pol);
1690 if (unlikely(mpol_needs_cond_ref(pol))) {
1691 /*
1692 * slow path: ref counted shared policy
1693 */
1694 struct page *page = __alloc_pages_nodemask(gfp, 0,
1695 zl, policy_nodemask(gfp, pol));
1696 __mpol_put(pol);
1697 return page;
1698 }
1699 /*
1700 * fast path: default or task policy
1701 */
1702 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1703 }
1704
1705 /**
1706 * alloc_pages_current - Allocate pages.
1707 *
1708 * @gfp:
1709 * %GFP_USER user allocation,
1710 * %GFP_KERNEL kernel allocation,
1711 * %GFP_HIGHMEM highmem allocation,
1712 * %GFP_FS don't call back into a file system.
1713 * %GFP_ATOMIC don't sleep.
1714 * @order: Power of two of allocation size in pages. 0 is a single page.
1715 *
1716 * Allocate a page from the kernel page pool. When not in
1717 * interrupt context and apply the current process NUMA policy.
1718 * Returns NULL when no page can be allocated.
1719 *
1720 * Don't call cpuset_update_task_memory_state() unless
1721 * 1) it's ok to take cpuset_sem (can WAIT), and
1722 * 2) allocating for current task (not interrupt).
1723 */
1724 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1725 {
1726 struct mempolicy *pol = current->mempolicy;
1727
1728 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1729 pol = &default_policy;
1730
1731 /*
1732 * No reference counting needed for current->mempolicy
1733 * nor system default_policy
1734 */
1735 if (pol->mode == MPOL_INTERLEAVE)
1736 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1737 return __alloc_pages_nodemask(gfp, order,
1738 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1739 }
1740 EXPORT_SYMBOL(alloc_pages_current);
1741
1742 /*
1743 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1744 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1745 * with the mems_allowed returned by cpuset_mems_allowed(). This
1746 * keeps mempolicies cpuset relative after its cpuset moves. See
1747 * further kernel/cpuset.c update_nodemask().
1748 */
1749
1750 /* Slow path of a mempolicy duplicate */
1751 struct mempolicy *__mpol_dup(struct mempolicy *old)
1752 {
1753 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1754
1755 if (!new)
1756 return ERR_PTR(-ENOMEM);
1757 rcu_read_lock();
1758 if (current_cpuset_is_being_rebound()) {
1759 nodemask_t mems = cpuset_mems_allowed(current);
1760 mpol_rebind_policy(old, &mems);
1761 }
1762 rcu_read_unlock();
1763 *new = *old;
1764 atomic_set(&new->refcnt, 1);
1765 return new;
1766 }
1767
1768 /*
1769 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1770 * eliminate the * MPOL_F_* flags that require conditional ref and
1771 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1772 * after return. Use the returned value.
1773 *
1774 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1775 * policy lookup, even if the policy needs/has extra ref on lookup.
1776 * shmem_readahead needs this.
1777 */
1778 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1779 struct mempolicy *frompol)
1780 {
1781 if (!mpol_needs_cond_ref(frompol))
1782 return frompol;
1783
1784 *tompol = *frompol;
1785 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1786 __mpol_put(frompol);
1787 return tompol;
1788 }
1789
1790 static int mpol_match_intent(const struct mempolicy *a,
1791 const struct mempolicy *b)
1792 {
1793 if (a->flags != b->flags)
1794 return 0;
1795 if (!mpol_store_user_nodemask(a))
1796 return 1;
1797 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1798 }
1799
1800 /* Slow path of a mempolicy comparison */
1801 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1802 {
1803 if (!a || !b)
1804 return 0;
1805 if (a->mode != b->mode)
1806 return 0;
1807 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1808 return 0;
1809 switch (a->mode) {
1810 case MPOL_BIND:
1811 /* Fall through */
1812 case MPOL_INTERLEAVE:
1813 return nodes_equal(a->v.nodes, b->v.nodes);
1814 case MPOL_PREFERRED:
1815 return a->v.preferred_node == b->v.preferred_node &&
1816 a->flags == b->flags;
1817 default:
1818 BUG();
1819 return 0;
1820 }
1821 }
1822
1823 /*
1824 * Shared memory backing store policy support.
1825 *
1826 * Remember policies even when nobody has shared memory mapped.
1827 * The policies are kept in Red-Black tree linked from the inode.
1828 * They are protected by the sp->lock spinlock, which should be held
1829 * for any accesses to the tree.
1830 */
1831
1832 /* lookup first element intersecting start-end */
1833 /* Caller holds sp->lock */
1834 static struct sp_node *
1835 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1836 {
1837 struct rb_node *n = sp->root.rb_node;
1838
1839 while (n) {
1840 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1841
1842 if (start >= p->end)
1843 n = n->rb_right;
1844 else if (end <= p->start)
1845 n = n->rb_left;
1846 else
1847 break;
1848 }
1849 if (!n)
1850 return NULL;
1851 for (;;) {
1852 struct sp_node *w = NULL;
1853 struct rb_node *prev = rb_prev(n);
1854 if (!prev)
1855 break;
1856 w = rb_entry(prev, struct sp_node, nd);
1857 if (w->end <= start)
1858 break;
1859 n = prev;
1860 }
1861 return rb_entry(n, struct sp_node, nd);
1862 }
1863
1864 /* Insert a new shared policy into the list. */
1865 /* Caller holds sp->lock */
1866 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1867 {
1868 struct rb_node **p = &sp->root.rb_node;
1869 struct rb_node *parent = NULL;
1870 struct sp_node *nd;
1871
1872 while (*p) {
1873 parent = *p;
1874 nd = rb_entry(parent, struct sp_node, nd);
1875 if (new->start < nd->start)
1876 p = &(*p)->rb_left;
1877 else if (new->end > nd->end)
1878 p = &(*p)->rb_right;
1879 else
1880 BUG();
1881 }
1882 rb_link_node(&new->nd, parent, p);
1883 rb_insert_color(&new->nd, &sp->root);
1884 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1885 new->policy ? new->policy->mode : 0);
1886 }
1887
1888 /* Find shared policy intersecting idx */
1889 struct mempolicy *
1890 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1891 {
1892 struct mempolicy *pol = NULL;
1893 struct sp_node *sn;
1894
1895 if (!sp->root.rb_node)
1896 return NULL;
1897 spin_lock(&sp->lock);
1898 sn = sp_lookup(sp, idx, idx+1);
1899 if (sn) {
1900 mpol_get(sn->policy);
1901 pol = sn->policy;
1902 }
1903 spin_unlock(&sp->lock);
1904 return pol;
1905 }
1906
1907 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1908 {
1909 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1910 rb_erase(&n->nd, &sp->root);
1911 mpol_put(n->policy);
1912 kmem_cache_free(sn_cache, n);
1913 }
1914
1915 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1916 struct mempolicy *pol)
1917 {
1918 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1919
1920 if (!n)
1921 return NULL;
1922 n->start = start;
1923 n->end = end;
1924 mpol_get(pol);
1925 pol->flags |= MPOL_F_SHARED; /* for unref */
1926 n->policy = pol;
1927 return n;
1928 }
1929
1930 /* Replace a policy range. */
1931 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1932 unsigned long end, struct sp_node *new)
1933 {
1934 struct sp_node *n, *new2 = NULL;
1935
1936 restart:
1937 spin_lock(&sp->lock);
1938 n = sp_lookup(sp, start, end);
1939 /* Take care of old policies in the same range. */
1940 while (n && n->start < end) {
1941 struct rb_node *next = rb_next(&n->nd);
1942 if (n->start >= start) {
1943 if (n->end <= end)
1944 sp_delete(sp, n);
1945 else
1946 n->start = end;
1947 } else {
1948 /* Old policy spanning whole new range. */
1949 if (n->end > end) {
1950 if (!new2) {
1951 spin_unlock(&sp->lock);
1952 new2 = sp_alloc(end, n->end, n->policy);
1953 if (!new2)
1954 return -ENOMEM;
1955 goto restart;
1956 }
1957 n->end = start;
1958 sp_insert(sp, new2);
1959 new2 = NULL;
1960 break;
1961 } else
1962 n->end = start;
1963 }
1964 if (!next)
1965 break;
1966 n = rb_entry(next, struct sp_node, nd);
1967 }
1968 if (new)
1969 sp_insert(sp, new);
1970 spin_unlock(&sp->lock);
1971 if (new2) {
1972 mpol_put(new2->policy);
1973 kmem_cache_free(sn_cache, new2);
1974 }
1975 return 0;
1976 }
1977
1978 /**
1979 * mpol_shared_policy_init - initialize shared policy for inode
1980 * @sp: pointer to inode shared policy
1981 * @mpol: struct mempolicy to install
1982 *
1983 * Install non-NULL @mpol in inode's shared policy rb-tree.
1984 * On entry, the current task has a reference on a non-NULL @mpol.
1985 * This must be released on exit.
1986 * This is called at get_inode() calls and we can use GFP_KERNEL.
1987 */
1988 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
1989 {
1990 int ret;
1991
1992 sp->root = RB_ROOT; /* empty tree == default mempolicy */
1993 spin_lock_init(&sp->lock);
1994
1995 if (mpol) {
1996 struct vm_area_struct pvma;
1997 struct mempolicy *new;
1998 NODEMASK_SCRATCH(scratch);
1999
2000 if (!scratch)
2001 return;
2002 /* contextualize the tmpfs mount point mempolicy */
2003 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2004 if (IS_ERR(new)) {
2005 mpol_put(mpol); /* drop our ref on sb mpol */
2006 NODEMASK_SCRATCH_FREE(scratch);
2007 return; /* no valid nodemask intersection */
2008 }
2009
2010 task_lock(current);
2011 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2012 task_unlock(current);
2013 mpol_put(mpol); /* drop our ref on sb mpol */
2014 if (ret) {
2015 NODEMASK_SCRATCH_FREE(scratch);
2016 mpol_put(new);
2017 return;
2018 }
2019
2020 /* Create pseudo-vma that contains just the policy */
2021 memset(&pvma, 0, sizeof(struct vm_area_struct));
2022 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2023 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2024 mpol_put(new); /* drop initial ref */
2025 NODEMASK_SCRATCH_FREE(scratch);
2026 }
2027 }
2028
2029 int mpol_set_shared_policy(struct shared_policy *info,
2030 struct vm_area_struct *vma, struct mempolicy *npol)
2031 {
2032 int err;
2033 struct sp_node *new = NULL;
2034 unsigned long sz = vma_pages(vma);
2035
2036 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2037 vma->vm_pgoff,
2038 sz, npol ? npol->mode : -1,
2039 npol ? npol->flags : -1,
2040 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2041
2042 if (npol) {
2043 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2044 if (!new)
2045 return -ENOMEM;
2046 }
2047 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2048 if (err && new)
2049 kmem_cache_free(sn_cache, new);
2050 return err;
2051 }
2052
2053 /* Free a backing policy store on inode delete. */
2054 void mpol_free_shared_policy(struct shared_policy *p)
2055 {
2056 struct sp_node *n;
2057 struct rb_node *next;
2058
2059 if (!p->root.rb_node)
2060 return;
2061 spin_lock(&p->lock);
2062 next = rb_first(&p->root);
2063 while (next) {
2064 n = rb_entry(next, struct sp_node, nd);
2065 next = rb_next(&n->nd);
2066 rb_erase(&n->nd, &p->root);
2067 mpol_put(n->policy);
2068 kmem_cache_free(sn_cache, n);
2069 }
2070 spin_unlock(&p->lock);
2071 }
2072
2073 /* assumes fs == KERNEL_DS */
2074 void __init numa_policy_init(void)
2075 {
2076 nodemask_t interleave_nodes;
2077 unsigned long largest = 0;
2078 int nid, prefer = 0;
2079
2080 policy_cache = kmem_cache_create("numa_policy",
2081 sizeof(struct mempolicy),
2082 0, SLAB_PANIC, NULL);
2083
2084 sn_cache = kmem_cache_create("shared_policy_node",
2085 sizeof(struct sp_node),
2086 0, SLAB_PANIC, NULL);
2087
2088 /*
2089 * Set interleaving policy for system init. Interleaving is only
2090 * enabled across suitably sized nodes (default is >= 16MB), or
2091 * fall back to the largest node if they're all smaller.
2092 */
2093 nodes_clear(interleave_nodes);
2094 for_each_node_state(nid, N_HIGH_MEMORY) {
2095 unsigned long total_pages = node_present_pages(nid);
2096
2097 /* Preserve the largest node */
2098 if (largest < total_pages) {
2099 largest = total_pages;
2100 prefer = nid;
2101 }
2102
2103 /* Interleave this node? */
2104 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2105 node_set(nid, interleave_nodes);
2106 }
2107
2108 /* All too small, use the largest */
2109 if (unlikely(nodes_empty(interleave_nodes)))
2110 node_set(prefer, interleave_nodes);
2111
2112 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2113 printk("numa_policy_init: interleaving failed\n");
2114 }
2115
2116 /* Reset policy of current process to default */
2117 void numa_default_policy(void)
2118 {
2119 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2120 }
2121
2122 /*
2123 * Parse and format mempolicy from/to strings
2124 */
2125
2126 /*
2127 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2128 * Used only for mpol_parse_str() and mpol_to_str()
2129 */
2130 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
2131 static const char * const policy_types[] =
2132 { "default", "prefer", "bind", "interleave", "local" };
2133
2134
2135 #ifdef CONFIG_TMPFS
2136 /**
2137 * mpol_parse_str - parse string to mempolicy
2138 * @str: string containing mempolicy to parse
2139 * @mpol: pointer to struct mempolicy pointer, returned on success.
2140 * @no_context: flag whether to "contextualize" the mempolicy
2141 *
2142 * Format of input:
2143 * <mode>[=<flags>][:<nodelist>]
2144 *
2145 * if @no_context is true, save the input nodemask in w.user_nodemask in
2146 * the returned mempolicy. This will be used to "clone" the mempolicy in
2147 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2148 * mount option. Note that if 'static' or 'relative' mode flags were
2149 * specified, the input nodemask will already have been saved. Saving
2150 * it again is redundant, but safe.
2151 *
2152 * On success, returns 0, else 1
2153 */
2154 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2155 {
2156 struct mempolicy *new = NULL;
2157 unsigned short uninitialized_var(mode);
2158 unsigned short uninitialized_var(mode_flags);
2159 nodemask_t nodes;
2160 char *nodelist = strchr(str, ':');
2161 char *flags = strchr(str, '=');
2162 int i;
2163 int err = 1;
2164
2165 if (nodelist) {
2166 /* NUL-terminate mode or flags string */
2167 *nodelist++ = '\0';
2168 if (nodelist_parse(nodelist, nodes))
2169 goto out;
2170 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2171 goto out;
2172 } else
2173 nodes_clear(nodes);
2174
2175 if (flags)
2176 *flags++ = '\0'; /* terminate mode string */
2177
2178 for (i = 0; i <= MPOL_LOCAL; i++) {
2179 if (!strcmp(str, policy_types[i])) {
2180 mode = i;
2181 break;
2182 }
2183 }
2184 if (i > MPOL_LOCAL)
2185 goto out;
2186
2187 switch (mode) {
2188 case MPOL_PREFERRED:
2189 /*
2190 * Insist on a nodelist of one node only
2191 */
2192 if (nodelist) {
2193 char *rest = nodelist;
2194 while (isdigit(*rest))
2195 rest++;
2196 if (*rest)
2197 goto out;
2198 }
2199 break;
2200 case MPOL_INTERLEAVE:
2201 /*
2202 * Default to online nodes with memory if no nodelist
2203 */
2204 if (!nodelist)
2205 nodes = node_states[N_HIGH_MEMORY];
2206 break;
2207 case MPOL_LOCAL:
2208 /*
2209 * Don't allow a nodelist; mpol_new() checks flags
2210 */
2211 if (nodelist)
2212 goto out;
2213 mode = MPOL_PREFERRED;
2214 break;
2215 case MPOL_DEFAULT:
2216 /*
2217 * Insist on a empty nodelist
2218 */
2219 if (!nodelist)
2220 err = 0;
2221 goto out;
2222 case MPOL_BIND:
2223 /*
2224 * Insist on a nodelist
2225 */
2226 if (!nodelist)
2227 goto out;
2228 }
2229
2230 mode_flags = 0;
2231 if (flags) {
2232 /*
2233 * Currently, we only support two mutually exclusive
2234 * mode flags.
2235 */
2236 if (!strcmp(flags, "static"))
2237 mode_flags |= MPOL_F_STATIC_NODES;
2238 else if (!strcmp(flags, "relative"))
2239 mode_flags |= MPOL_F_RELATIVE_NODES;
2240 else
2241 goto out;
2242 }
2243
2244 new = mpol_new(mode, mode_flags, &nodes);
2245 if (IS_ERR(new))
2246 goto out;
2247
2248 {
2249 int ret;
2250 NODEMASK_SCRATCH(scratch);
2251 if (scratch) {
2252 task_lock(current);
2253 ret = mpol_set_nodemask(new, &nodes, scratch);
2254 task_unlock(current);
2255 } else
2256 ret = -ENOMEM;
2257 NODEMASK_SCRATCH_FREE(scratch);
2258 if (ret) {
2259 mpol_put(new);
2260 goto out;
2261 }
2262 }
2263 err = 0;
2264 if (no_context) {
2265 /* save for contextualization */
2266 new->w.user_nodemask = nodes;
2267 }
2268
2269 out:
2270 /* Restore string for error message */
2271 if (nodelist)
2272 *--nodelist = ':';
2273 if (flags)
2274 *--flags = '=';
2275 if (!err)
2276 *mpol = new;
2277 return err;
2278 }
2279 #endif /* CONFIG_TMPFS */
2280
2281 /**
2282 * mpol_to_str - format a mempolicy structure for printing
2283 * @buffer: to contain formatted mempolicy string
2284 * @maxlen: length of @buffer
2285 * @pol: pointer to mempolicy to be formatted
2286 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2287 *
2288 * Convert a mempolicy into a string.
2289 * Returns the number of characters in buffer (if positive)
2290 * or an error (negative)
2291 */
2292 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2293 {
2294 char *p = buffer;
2295 int l;
2296 nodemask_t nodes;
2297 unsigned short mode;
2298 unsigned short flags = pol ? pol->flags : 0;
2299
2300 /*
2301 * Sanity check: room for longest mode, flag and some nodes
2302 */
2303 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2304
2305 if (!pol || pol == &default_policy)
2306 mode = MPOL_DEFAULT;
2307 else
2308 mode = pol->mode;
2309
2310 switch (mode) {
2311 case MPOL_DEFAULT:
2312 nodes_clear(nodes);
2313 break;
2314
2315 case MPOL_PREFERRED:
2316 nodes_clear(nodes);
2317 if (flags & MPOL_F_LOCAL)
2318 mode = MPOL_LOCAL; /* pseudo-policy */
2319 else
2320 node_set(pol->v.preferred_node, nodes);
2321 break;
2322
2323 case MPOL_BIND:
2324 /* Fall through */
2325 case MPOL_INTERLEAVE:
2326 if (no_context)
2327 nodes = pol->w.user_nodemask;
2328 else
2329 nodes = pol->v.nodes;
2330 break;
2331
2332 default:
2333 BUG();
2334 }
2335
2336 l = strlen(policy_types[mode]);
2337 if (buffer + maxlen < p + l + 1)
2338 return -ENOSPC;
2339
2340 strcpy(p, policy_types[mode]);
2341 p += l;
2342
2343 if (flags & MPOL_MODE_FLAGS) {
2344 if (buffer + maxlen < p + 2)
2345 return -ENOSPC;
2346 *p++ = '=';
2347
2348 /*
2349 * Currently, the only defined flags are mutually exclusive
2350 */
2351 if (flags & MPOL_F_STATIC_NODES)
2352 p += snprintf(p, buffer + maxlen - p, "static");
2353 else if (flags & MPOL_F_RELATIVE_NODES)
2354 p += snprintf(p, buffer + maxlen - p, "relative");
2355 }
2356
2357 if (!nodes_empty(nodes)) {
2358 if (buffer + maxlen < p + 2)
2359 return -ENOSPC;
2360 *p++ = ':';
2361 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2362 }
2363 return p - buffer;
2364 }
2365
2366 struct numa_maps {
2367 unsigned long pages;
2368 unsigned long anon;
2369 unsigned long active;
2370 unsigned long writeback;
2371 unsigned long mapcount_max;
2372 unsigned long dirty;
2373 unsigned long swapcache;
2374 unsigned long node[MAX_NUMNODES];
2375 };
2376
2377 static void gather_stats(struct page *page, void *private, int pte_dirty)
2378 {
2379 struct numa_maps *md = private;
2380 int count = page_mapcount(page);
2381
2382 md->pages++;
2383 if (pte_dirty || PageDirty(page))
2384 md->dirty++;
2385
2386 if (PageSwapCache(page))
2387 md->swapcache++;
2388
2389 if (PageActive(page) || PageUnevictable(page))
2390 md->active++;
2391
2392 if (PageWriteback(page))
2393 md->writeback++;
2394
2395 if (PageAnon(page))
2396 md->anon++;
2397
2398 if (count > md->mapcount_max)
2399 md->mapcount_max = count;
2400
2401 md->node[page_to_nid(page)]++;
2402 }
2403
2404 #ifdef CONFIG_HUGETLB_PAGE
2405 static void check_huge_range(struct vm_area_struct *vma,
2406 unsigned long start, unsigned long end,
2407 struct numa_maps *md)
2408 {
2409 unsigned long addr;
2410 struct page *page;
2411 struct hstate *h = hstate_vma(vma);
2412 unsigned long sz = huge_page_size(h);
2413
2414 for (addr = start; addr < end; addr += sz) {
2415 pte_t *ptep = huge_pte_offset(vma->vm_mm,
2416 addr & huge_page_mask(h));
2417 pte_t pte;
2418
2419 if (!ptep)
2420 continue;
2421
2422 pte = *ptep;
2423 if (pte_none(pte))
2424 continue;
2425
2426 page = pte_page(pte);
2427 if (!page)
2428 continue;
2429
2430 gather_stats(page, md, pte_dirty(*ptep));
2431 }
2432 }
2433 #else
2434 static inline void check_huge_range(struct vm_area_struct *vma,
2435 unsigned long start, unsigned long end,
2436 struct numa_maps *md)
2437 {
2438 }
2439 #endif
2440
2441 /*
2442 * Display pages allocated per node and memory policy via /proc.
2443 */
2444 int show_numa_map(struct seq_file *m, void *v)
2445 {
2446 struct proc_maps_private *priv = m->private;
2447 struct vm_area_struct *vma = v;
2448 struct numa_maps *md;
2449 struct file *file = vma->vm_file;
2450 struct mm_struct *mm = vma->vm_mm;
2451 struct mempolicy *pol;
2452 int n;
2453 char buffer[50];
2454
2455 if (!mm)
2456 return 0;
2457
2458 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2459 if (!md)
2460 return 0;
2461
2462 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2463 mpol_to_str(buffer, sizeof(buffer), pol, 0);
2464 mpol_cond_put(pol);
2465
2466 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2467
2468 if (file) {
2469 seq_printf(m, " file=");
2470 seq_path(m, &file->f_path, "\n\t= ");
2471 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2472 seq_printf(m, " heap");
2473 } else if (vma->vm_start <= mm->start_stack &&
2474 vma->vm_end >= mm->start_stack) {
2475 seq_printf(m, " stack");
2476 }
2477
2478 if (is_vm_hugetlb_page(vma)) {
2479 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2480 seq_printf(m, " huge");
2481 } else {
2482 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2483 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2484 }
2485
2486 if (!md->pages)
2487 goto out;
2488
2489 if (md->anon)
2490 seq_printf(m," anon=%lu",md->anon);
2491
2492 if (md->dirty)
2493 seq_printf(m," dirty=%lu",md->dirty);
2494
2495 if (md->pages != md->anon && md->pages != md->dirty)
2496 seq_printf(m, " mapped=%lu", md->pages);
2497
2498 if (md->mapcount_max > 1)
2499 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2500
2501 if (md->swapcache)
2502 seq_printf(m," swapcache=%lu", md->swapcache);
2503
2504 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2505 seq_printf(m," active=%lu", md->active);
2506
2507 if (md->writeback)
2508 seq_printf(m," writeback=%lu", md->writeback);
2509
2510 for_each_node_state(n, N_HIGH_MEMORY)
2511 if (md->node[n])
2512 seq_printf(m, " N%d=%lu", n, md->node[n]);
2513 out:
2514 seq_putc(m, '\n');
2515 kfree(md);
2516
2517 if (m->count < m->size)
2518 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2519 return 0;
2520 }
This page took 0.085046 seconds and 4 git commands to generate.