Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
166 {
167 return pol->flags & MPOL_MODE_FLAGS;
168 }
169
170 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
171 const nodemask_t *rel)
172 {
173 nodemask_t tmp;
174 nodes_fold(tmp, *orig, nodes_weight(*rel));
175 nodes_onto(*ret, tmp, *rel);
176 }
177
178 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
179 {
180 if (nodes_empty(*nodes))
181 return -EINVAL;
182 pol->v.nodes = *nodes;
183 return 0;
184 }
185
186 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (!nodes)
189 pol->flags |= MPOL_F_LOCAL; /* local allocation */
190 else if (nodes_empty(*nodes))
191 return -EINVAL; /* no allowed nodes */
192 else
193 pol->v.preferred_node = first_node(*nodes);
194 return 0;
195 }
196
197 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
198 {
199 if (nodes_empty(*nodes))
200 return -EINVAL;
201 pol->v.nodes = *nodes;
202 return 0;
203 }
204
205 /*
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
210 *
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
213 */
214 static int mpol_set_nodemask(struct mempolicy *pol,
215 const nodemask_t *nodes, struct nodemask_scratch *nsc)
216 {
217 int ret;
218
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
220 if (pol == NULL)
221 return 0;
222 /* Check N_MEMORY */
223 nodes_and(nsc->mask1,
224 cpuset_current_mems_allowed, node_states[N_MEMORY]);
225
226 VM_BUG_ON(!nodes);
227 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
228 nodes = NULL; /* explicit local allocation */
229 else {
230 if (pol->flags & MPOL_F_RELATIVE_NODES)
231 mpol_relative_nodemask(&nsc->mask2, nodes, &nsc->mask1);
232 else
233 nodes_and(nsc->mask2, *nodes, nsc->mask1);
234
235 if (mpol_store_user_nodemask(pol))
236 pol->w.user_nodemask = *nodes;
237 else
238 pol->w.cpuset_mems_allowed =
239 cpuset_current_mems_allowed;
240 }
241
242 if (nodes)
243 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
244 else
245 ret = mpol_ops[pol->mode].create(pol, NULL);
246 return ret;
247 }
248
249 /*
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
252 */
253 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
254 nodemask_t *nodes)
255 {
256 struct mempolicy *policy;
257
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
260
261 if (mode == MPOL_DEFAULT) {
262 if (nodes && !nodes_empty(*nodes))
263 return ERR_PTR(-EINVAL);
264 return NULL;
265 }
266 VM_BUG_ON(!nodes);
267
268 /*
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
272 */
273 if (mode == MPOL_PREFERRED) {
274 if (nodes_empty(*nodes)) {
275 if (((flags & MPOL_F_STATIC_NODES) ||
276 (flags & MPOL_F_RELATIVE_NODES)))
277 return ERR_PTR(-EINVAL);
278 }
279 } else if (mode == MPOL_LOCAL) {
280 if (!nodes_empty(*nodes))
281 return ERR_PTR(-EINVAL);
282 mode = MPOL_PREFERRED;
283 } else if (nodes_empty(*nodes))
284 return ERR_PTR(-EINVAL);
285 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
286 if (!policy)
287 return ERR_PTR(-ENOMEM);
288 atomic_set(&policy->refcnt, 1);
289 policy->mode = mode;
290 policy->flags = flags;
291
292 return policy;
293 }
294
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy *p)
297 {
298 if (!atomic_dec_and_test(&p->refcnt))
299 return;
300 kmem_cache_free(policy_cache, p);
301 }
302
303 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 }
307
308 /*
309 * step:
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
313 */
314 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
315 enum mpol_rebind_step step)
316 {
317 nodemask_t tmp;
318
319 if (pol->flags & MPOL_F_STATIC_NODES)
320 nodes_and(tmp, pol->w.user_nodemask, *nodes);
321 else if (pol->flags & MPOL_F_RELATIVE_NODES)
322 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
323 else {
324 /*
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
326 * result
327 */
328 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
329 nodes_remap(tmp, pol->v.nodes,
330 pol->w.cpuset_mems_allowed, *nodes);
331 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
332 } else if (step == MPOL_REBIND_STEP2) {
333 tmp = pol->w.cpuset_mems_allowed;
334 pol->w.cpuset_mems_allowed = *nodes;
335 } else
336 BUG();
337 }
338
339 if (nodes_empty(tmp))
340 tmp = *nodes;
341
342 if (step == MPOL_REBIND_STEP1)
343 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
344 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
345 pol->v.nodes = tmp;
346 else
347 BUG();
348
349 if (!node_isset(current->il_next, tmp)) {
350 current->il_next = next_node(current->il_next, tmp);
351 if (current->il_next >= MAX_NUMNODES)
352 current->il_next = first_node(tmp);
353 if (current->il_next >= MAX_NUMNODES)
354 current->il_next = numa_node_id();
355 }
356 }
357
358 static void mpol_rebind_preferred(struct mempolicy *pol,
359 const nodemask_t *nodes,
360 enum mpol_rebind_step step)
361 {
362 nodemask_t tmp;
363
364 if (pol->flags & MPOL_F_STATIC_NODES) {
365 int node = first_node(pol->w.user_nodemask);
366
367 if (node_isset(node, *nodes)) {
368 pol->v.preferred_node = node;
369 pol->flags &= ~MPOL_F_LOCAL;
370 } else
371 pol->flags |= MPOL_F_LOCAL;
372 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
373 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
374 pol->v.preferred_node = first_node(tmp);
375 } else if (!(pol->flags & MPOL_F_LOCAL)) {
376 pol->v.preferred_node = node_remap(pol->v.preferred_node,
377 pol->w.cpuset_mems_allowed,
378 *nodes);
379 pol->w.cpuset_mems_allowed = *nodes;
380 }
381 }
382
383 /*
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
385 *
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
390 * page.
391 * If we have a lock to protect task->mempolicy in read-side, we do
392 * rebind directly.
393 *
394 * step:
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
398 */
399 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
400 enum mpol_rebind_step step)
401 {
402 if (!pol)
403 return;
404 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
405 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
406 return;
407
408 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
409 return;
410
411 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
412 BUG();
413
414 if (step == MPOL_REBIND_STEP1)
415 pol->flags |= MPOL_F_REBINDING;
416 else if (step == MPOL_REBIND_STEP2)
417 pol->flags &= ~MPOL_F_REBINDING;
418 else if (step >= MPOL_REBIND_NSTEP)
419 BUG();
420
421 mpol_ops[pol->mode].rebind(pol, newmask, step);
422 }
423
424 /*
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
427 *
428 * Called with task's alloc_lock held.
429 */
430
431 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
432 enum mpol_rebind_step step)
433 {
434 mpol_rebind_policy(tsk->mempolicy, new, step);
435 }
436
437 /*
438 * Rebind each vma in mm to new nodemask.
439 *
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
441 */
442
443 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
444 {
445 struct vm_area_struct *vma;
446
447 down_write(&mm->mmap_sem);
448 for (vma = mm->mmap; vma; vma = vma->vm_next)
449 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
450 up_write(&mm->mmap_sem);
451 }
452
453 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
454 [MPOL_DEFAULT] = {
455 .rebind = mpol_rebind_default,
456 },
457 [MPOL_INTERLEAVE] = {
458 .create = mpol_new_interleave,
459 .rebind = mpol_rebind_nodemask,
460 },
461 [MPOL_PREFERRED] = {
462 .create = mpol_new_preferred,
463 .rebind = mpol_rebind_preferred,
464 },
465 [MPOL_BIND] = {
466 .create = mpol_new_bind,
467 .rebind = mpol_rebind_nodemask,
468 },
469 };
470
471 static void migrate_page_add(struct page *page, struct list_head *pagelist,
472 unsigned long flags);
473
474 /*
475 * Scan through pages checking if pages follow certain conditions,
476 * and move them to the pagelist if they do.
477 */
478 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
479 unsigned long addr, unsigned long end,
480 const nodemask_t *nodes, unsigned long flags,
481 void *private)
482 {
483 pte_t *orig_pte;
484 pte_t *pte;
485 spinlock_t *ptl;
486
487 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
488 do {
489 struct page *page;
490 int nid;
491
492 if (!pte_present(*pte))
493 continue;
494 page = vm_normal_page(vma, addr, *pte);
495 if (!page)
496 continue;
497 /*
498 * vm_normal_page() filters out zero pages, but there might
499 * still be PageReserved pages to skip, perhaps in a VDSO.
500 */
501 if (PageReserved(page))
502 continue;
503 nid = page_to_nid(page);
504 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
505 continue;
506
507 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
508 migrate_page_add(page, private, flags);
509 else
510 break;
511 } while (pte++, addr += PAGE_SIZE, addr != end);
512 pte_unmap_unlock(orig_pte, ptl);
513 return addr != end;
514 }
515
516 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
517 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
518 void *private)
519 {
520 #ifdef CONFIG_HUGETLB_PAGE
521 int nid;
522 struct page *page;
523 spinlock_t *ptl;
524 pte_t entry;
525
526 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
527 entry = huge_ptep_get((pte_t *)pmd);
528 if (!pte_present(entry))
529 goto unlock;
530 page = pte_page(entry);
531 nid = page_to_nid(page);
532 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
533 goto unlock;
534 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
535 if (flags & (MPOL_MF_MOVE_ALL) ||
536 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
537 isolate_huge_page(page, private);
538 unlock:
539 spin_unlock(ptl);
540 #else
541 BUG();
542 #endif
543 }
544
545 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
546 unsigned long addr, unsigned long end,
547 const nodemask_t *nodes, unsigned long flags,
548 void *private)
549 {
550 pmd_t *pmd;
551 unsigned long next;
552
553 pmd = pmd_offset(pud, addr);
554 do {
555 next = pmd_addr_end(addr, end);
556 if (!pmd_present(*pmd))
557 continue;
558 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
559 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
560 flags, private);
561 continue;
562 }
563 split_huge_page_pmd(vma, addr, pmd);
564 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
565 continue;
566 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
567 flags, private))
568 return -EIO;
569 } while (pmd++, addr = next, addr != end);
570 return 0;
571 }
572
573 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
574 unsigned long addr, unsigned long end,
575 const nodemask_t *nodes, unsigned long flags,
576 void *private)
577 {
578 pud_t *pud;
579 unsigned long next;
580
581 pud = pud_offset(pgd, addr);
582 do {
583 next = pud_addr_end(addr, end);
584 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
585 continue;
586 if (pud_none_or_clear_bad(pud))
587 continue;
588 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
589 flags, private))
590 return -EIO;
591 } while (pud++, addr = next, addr != end);
592 return 0;
593 }
594
595 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
596 unsigned long addr, unsigned long end,
597 const nodemask_t *nodes, unsigned long flags,
598 void *private)
599 {
600 pgd_t *pgd;
601 unsigned long next;
602
603 pgd = pgd_offset(vma->vm_mm, addr);
604 do {
605 next = pgd_addr_end(addr, end);
606 if (pgd_none_or_clear_bad(pgd))
607 continue;
608 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
609 flags, private))
610 return -EIO;
611 } while (pgd++, addr = next, addr != end);
612 return 0;
613 }
614
615 #ifdef CONFIG_NUMA_BALANCING
616 /*
617 * This is used to mark a range of virtual addresses to be inaccessible.
618 * These are later cleared by a NUMA hinting fault. Depending on these
619 * faults, pages may be migrated for better NUMA placement.
620 *
621 * This is assuming that NUMA faults are handled using PROT_NONE. If
622 * an architecture makes a different choice, it will need further
623 * changes to the core.
624 */
625 unsigned long change_prot_numa(struct vm_area_struct *vma,
626 unsigned long addr, unsigned long end)
627 {
628 int nr_updated;
629
630 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
631 if (nr_updated)
632 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
633
634 return nr_updated;
635 }
636 #else
637 static unsigned long change_prot_numa(struct vm_area_struct *vma,
638 unsigned long addr, unsigned long end)
639 {
640 return 0;
641 }
642 #endif /* CONFIG_NUMA_BALANCING */
643
644 /*
645 * Walk through page tables and collect pages to be migrated.
646 *
647 * If pages found in a given range are on a set of nodes (determined by
648 * @nodes and @flags,) it's isolated and queued to the pagelist which is
649 * passed via @private.)
650 */
651 static int
652 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
653 const nodemask_t *nodes, unsigned long flags, void *private)
654 {
655 int err = 0;
656 struct vm_area_struct *vma, *prev;
657
658 vma = find_vma(mm, start);
659 if (!vma)
660 return -EFAULT;
661 prev = NULL;
662 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
663 unsigned long endvma = vma->vm_end;
664
665 if (endvma > end)
666 endvma = end;
667 if (vma->vm_start > start)
668 start = vma->vm_start;
669
670 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
671 if (!vma->vm_next && vma->vm_end < end)
672 return -EFAULT;
673 if (prev && prev->vm_end < vma->vm_start)
674 return -EFAULT;
675 }
676
677 if (flags & MPOL_MF_LAZY) {
678 /* Similar to task_numa_work, skip inaccessible VMAs */
679 if (vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))
680 change_prot_numa(vma, start, endvma);
681 goto next;
682 }
683
684 if ((flags & MPOL_MF_STRICT) ||
685 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
686 vma_migratable(vma))) {
687
688 err = queue_pages_pgd_range(vma, start, endvma, nodes,
689 flags, private);
690 if (err)
691 break;
692 }
693 next:
694 prev = vma;
695 }
696 return err;
697 }
698
699 /*
700 * Apply policy to a single VMA
701 * This must be called with the mmap_sem held for writing.
702 */
703 static int vma_replace_policy(struct vm_area_struct *vma,
704 struct mempolicy *pol)
705 {
706 int err;
707 struct mempolicy *old;
708 struct mempolicy *new;
709
710 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
711 vma->vm_start, vma->vm_end, vma->vm_pgoff,
712 vma->vm_ops, vma->vm_file,
713 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
714
715 new = mpol_dup(pol);
716 if (IS_ERR(new))
717 return PTR_ERR(new);
718
719 if (vma->vm_ops && vma->vm_ops->set_policy) {
720 err = vma->vm_ops->set_policy(vma, new);
721 if (err)
722 goto err_out;
723 }
724
725 old = vma->vm_policy;
726 vma->vm_policy = new; /* protected by mmap_sem */
727 mpol_put(old);
728
729 return 0;
730 err_out:
731 mpol_put(new);
732 return err;
733 }
734
735 /* Step 2: apply policy to a range and do splits. */
736 static int mbind_range(struct mm_struct *mm, unsigned long start,
737 unsigned long end, struct mempolicy *new_pol)
738 {
739 struct vm_area_struct *next;
740 struct vm_area_struct *prev;
741 struct vm_area_struct *vma;
742 int err = 0;
743 pgoff_t pgoff;
744 unsigned long vmstart;
745 unsigned long vmend;
746
747 vma = find_vma(mm, start);
748 if (!vma || vma->vm_start > start)
749 return -EFAULT;
750
751 prev = vma->vm_prev;
752 if (start > vma->vm_start)
753 prev = vma;
754
755 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
756 next = vma->vm_next;
757 vmstart = max(start, vma->vm_start);
758 vmend = min(end, vma->vm_end);
759
760 if (mpol_equal(vma_policy(vma), new_pol))
761 continue;
762
763 pgoff = vma->vm_pgoff +
764 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
765 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
766 vma->anon_vma, vma->vm_file, pgoff,
767 new_pol);
768 if (prev) {
769 vma = prev;
770 next = vma->vm_next;
771 if (mpol_equal(vma_policy(vma), new_pol))
772 continue;
773 /* vma_merge() joined vma && vma->next, case 8 */
774 goto replace;
775 }
776 if (vma->vm_start != vmstart) {
777 err = split_vma(vma->vm_mm, vma, vmstart, 1);
778 if (err)
779 goto out;
780 }
781 if (vma->vm_end != vmend) {
782 err = split_vma(vma->vm_mm, vma, vmend, 0);
783 if (err)
784 goto out;
785 }
786 replace:
787 err = vma_replace_policy(vma, new_pol);
788 if (err)
789 goto out;
790 }
791
792 out:
793 return err;
794 }
795
796 /* Set the process memory policy */
797 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
798 nodemask_t *nodes)
799 {
800 struct mempolicy *new, *old;
801 NODEMASK_SCRATCH(scratch);
802 int ret;
803
804 if (!scratch)
805 return -ENOMEM;
806
807 new = mpol_new(mode, flags, nodes);
808 if (IS_ERR(new)) {
809 ret = PTR_ERR(new);
810 goto out;
811 }
812
813 task_lock(current);
814 ret = mpol_set_nodemask(new, nodes, scratch);
815 if (ret) {
816 task_unlock(current);
817 mpol_put(new);
818 goto out;
819 }
820 old = current->mempolicy;
821 current->mempolicy = new;
822 if (new && new->mode == MPOL_INTERLEAVE &&
823 nodes_weight(new->v.nodes))
824 current->il_next = first_node(new->v.nodes);
825 task_unlock(current);
826 mpol_put(old);
827 ret = 0;
828 out:
829 NODEMASK_SCRATCH_FREE(scratch);
830 return ret;
831 }
832
833 /*
834 * Return nodemask for policy for get_mempolicy() query
835 *
836 * Called with task's alloc_lock held
837 */
838 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
839 {
840 nodes_clear(*nodes);
841 if (p == &default_policy)
842 return;
843
844 switch (p->mode) {
845 case MPOL_BIND:
846 /* Fall through */
847 case MPOL_INTERLEAVE:
848 *nodes = p->v.nodes;
849 break;
850 case MPOL_PREFERRED:
851 if (!(p->flags & MPOL_F_LOCAL))
852 node_set(p->v.preferred_node, *nodes);
853 /* else return empty node mask for local allocation */
854 break;
855 default:
856 BUG();
857 }
858 }
859
860 static int lookup_node(struct mm_struct *mm, unsigned long addr)
861 {
862 struct page *p;
863 int err;
864
865 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
866 if (err >= 0) {
867 err = page_to_nid(p);
868 put_page(p);
869 }
870 return err;
871 }
872
873 /* Retrieve NUMA policy */
874 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
875 unsigned long addr, unsigned long flags)
876 {
877 int err;
878 struct mm_struct *mm = current->mm;
879 struct vm_area_struct *vma = NULL;
880 struct mempolicy *pol = current->mempolicy;
881
882 if (flags &
883 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
884 return -EINVAL;
885
886 if (flags & MPOL_F_MEMS_ALLOWED) {
887 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
888 return -EINVAL;
889 *policy = 0; /* just so it's initialized */
890 task_lock(current);
891 *nmask = cpuset_current_mems_allowed;
892 task_unlock(current);
893 return 0;
894 }
895
896 if (flags & MPOL_F_ADDR) {
897 /*
898 * Do NOT fall back to task policy if the
899 * vma/shared policy at addr is NULL. We
900 * want to return MPOL_DEFAULT in this case.
901 */
902 down_read(&mm->mmap_sem);
903 vma = find_vma_intersection(mm, addr, addr+1);
904 if (!vma) {
905 up_read(&mm->mmap_sem);
906 return -EFAULT;
907 }
908 if (vma->vm_ops && vma->vm_ops->get_policy)
909 pol = vma->vm_ops->get_policy(vma, addr);
910 else
911 pol = vma->vm_policy;
912 } else if (addr)
913 return -EINVAL;
914
915 if (!pol)
916 pol = &default_policy; /* indicates default behavior */
917
918 if (flags & MPOL_F_NODE) {
919 if (flags & MPOL_F_ADDR) {
920 err = lookup_node(mm, addr);
921 if (err < 0)
922 goto out;
923 *policy = err;
924 } else if (pol == current->mempolicy &&
925 pol->mode == MPOL_INTERLEAVE) {
926 *policy = current->il_next;
927 } else {
928 err = -EINVAL;
929 goto out;
930 }
931 } else {
932 *policy = pol == &default_policy ? MPOL_DEFAULT :
933 pol->mode;
934 /*
935 * Internal mempolicy flags must be masked off before exposing
936 * the policy to userspace.
937 */
938 *policy |= (pol->flags & MPOL_MODE_FLAGS);
939 }
940
941 if (vma) {
942 up_read(&current->mm->mmap_sem);
943 vma = NULL;
944 }
945
946 err = 0;
947 if (nmask) {
948 if (mpol_store_user_nodemask(pol)) {
949 *nmask = pol->w.user_nodemask;
950 } else {
951 task_lock(current);
952 get_policy_nodemask(pol, nmask);
953 task_unlock(current);
954 }
955 }
956
957 out:
958 mpol_cond_put(pol);
959 if (vma)
960 up_read(&current->mm->mmap_sem);
961 return err;
962 }
963
964 #ifdef CONFIG_MIGRATION
965 /*
966 * page migration
967 */
968 static void migrate_page_add(struct page *page, struct list_head *pagelist,
969 unsigned long flags)
970 {
971 /*
972 * Avoid migrating a page that is shared with others.
973 */
974 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
975 if (!isolate_lru_page(page)) {
976 list_add_tail(&page->lru, pagelist);
977 inc_zone_page_state(page, NR_ISOLATED_ANON +
978 page_is_file_cache(page));
979 }
980 }
981 }
982
983 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
984 {
985 if (PageHuge(page))
986 return alloc_huge_page_node(page_hstate(compound_head(page)),
987 node);
988 else
989 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
990 }
991
992 /*
993 * Migrate pages from one node to a target node.
994 * Returns error or the number of pages not migrated.
995 */
996 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
997 int flags)
998 {
999 nodemask_t nmask;
1000 LIST_HEAD(pagelist);
1001 int err = 0;
1002
1003 nodes_clear(nmask);
1004 node_set(source, nmask);
1005
1006 /*
1007 * This does not "check" the range but isolates all pages that
1008 * need migration. Between passing in the full user address
1009 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1010 */
1011 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1012 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1013 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1014
1015 if (!list_empty(&pagelist)) {
1016 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1017 MIGRATE_SYNC, MR_SYSCALL);
1018 if (err)
1019 putback_movable_pages(&pagelist);
1020 }
1021
1022 return err;
1023 }
1024
1025 /*
1026 * Move pages between the two nodesets so as to preserve the physical
1027 * layout as much as possible.
1028 *
1029 * Returns the number of page that could not be moved.
1030 */
1031 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1032 const nodemask_t *to, int flags)
1033 {
1034 int busy = 0;
1035 int err;
1036 nodemask_t tmp;
1037
1038 err = migrate_prep();
1039 if (err)
1040 return err;
1041
1042 down_read(&mm->mmap_sem);
1043
1044 err = migrate_vmas(mm, from, to, flags);
1045 if (err)
1046 goto out;
1047
1048 /*
1049 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1050 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1051 * bit in 'tmp', and return that <source, dest> pair for migration.
1052 * The pair of nodemasks 'to' and 'from' define the map.
1053 *
1054 * If no pair of bits is found that way, fallback to picking some
1055 * pair of 'source' and 'dest' bits that are not the same. If the
1056 * 'source' and 'dest' bits are the same, this represents a node
1057 * that will be migrating to itself, so no pages need move.
1058 *
1059 * If no bits are left in 'tmp', or if all remaining bits left
1060 * in 'tmp' correspond to the same bit in 'to', return false
1061 * (nothing left to migrate).
1062 *
1063 * This lets us pick a pair of nodes to migrate between, such that
1064 * if possible the dest node is not already occupied by some other
1065 * source node, minimizing the risk of overloading the memory on a
1066 * node that would happen if we migrated incoming memory to a node
1067 * before migrating outgoing memory source that same node.
1068 *
1069 * A single scan of tmp is sufficient. As we go, we remember the
1070 * most recent <s, d> pair that moved (s != d). If we find a pair
1071 * that not only moved, but what's better, moved to an empty slot
1072 * (d is not set in tmp), then we break out then, with that pair.
1073 * Otherwise when we finish scanning from_tmp, we at least have the
1074 * most recent <s, d> pair that moved. If we get all the way through
1075 * the scan of tmp without finding any node that moved, much less
1076 * moved to an empty node, then there is nothing left worth migrating.
1077 */
1078
1079 tmp = *from;
1080 while (!nodes_empty(tmp)) {
1081 int s,d;
1082 int source = NUMA_NO_NODE;
1083 int dest = 0;
1084
1085 for_each_node_mask(s, tmp) {
1086
1087 /*
1088 * do_migrate_pages() tries to maintain the relative
1089 * node relationship of the pages established between
1090 * threads and memory areas.
1091 *
1092 * However if the number of source nodes is not equal to
1093 * the number of destination nodes we can not preserve
1094 * this node relative relationship. In that case, skip
1095 * copying memory from a node that is in the destination
1096 * mask.
1097 *
1098 * Example: [2,3,4] -> [3,4,5] moves everything.
1099 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1100 */
1101
1102 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1103 (node_isset(s, *to)))
1104 continue;
1105
1106 d = node_remap(s, *from, *to);
1107 if (s == d)
1108 continue;
1109
1110 source = s; /* Node moved. Memorize */
1111 dest = d;
1112
1113 /* dest not in remaining from nodes? */
1114 if (!node_isset(dest, tmp))
1115 break;
1116 }
1117 if (source == NUMA_NO_NODE)
1118 break;
1119
1120 node_clear(source, tmp);
1121 err = migrate_to_node(mm, source, dest, flags);
1122 if (err > 0)
1123 busy += err;
1124 if (err < 0)
1125 break;
1126 }
1127 out:
1128 up_read(&mm->mmap_sem);
1129 if (err < 0)
1130 return err;
1131 return busy;
1132
1133 }
1134
1135 /*
1136 * Allocate a new page for page migration based on vma policy.
1137 * Start by assuming the page is mapped by the same vma as contains @start.
1138 * Search forward from there, if not. N.B., this assumes that the
1139 * list of pages handed to migrate_pages()--which is how we get here--
1140 * is in virtual address order.
1141 */
1142 static struct page *new_page(struct page *page, unsigned long start, int **x)
1143 {
1144 struct vm_area_struct *vma;
1145 unsigned long uninitialized_var(address);
1146
1147 vma = find_vma(current->mm, start);
1148 while (vma) {
1149 address = page_address_in_vma(page, vma);
1150 if (address != -EFAULT)
1151 break;
1152 vma = vma->vm_next;
1153 }
1154
1155 if (PageHuge(page)) {
1156 BUG_ON(!vma);
1157 return alloc_huge_page_noerr(vma, address, 1);
1158 }
1159 /*
1160 * if !vma, alloc_page_vma() will use task or system default policy
1161 */
1162 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1163 }
1164 #else
1165
1166 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1167 unsigned long flags)
1168 {
1169 }
1170
1171 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1172 const nodemask_t *to, int flags)
1173 {
1174 return -ENOSYS;
1175 }
1176
1177 static struct page *new_page(struct page *page, unsigned long start, int **x)
1178 {
1179 return NULL;
1180 }
1181 #endif
1182
1183 static long do_mbind(unsigned long start, unsigned long len,
1184 unsigned short mode, unsigned short mode_flags,
1185 nodemask_t *nmask, unsigned long flags)
1186 {
1187 struct mm_struct *mm = current->mm;
1188 struct mempolicy *new;
1189 unsigned long end;
1190 int err;
1191 LIST_HEAD(pagelist);
1192
1193 if (flags & ~(unsigned long)MPOL_MF_VALID)
1194 return -EINVAL;
1195 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1196 return -EPERM;
1197
1198 if (start & ~PAGE_MASK)
1199 return -EINVAL;
1200
1201 if (mode == MPOL_DEFAULT)
1202 flags &= ~MPOL_MF_STRICT;
1203
1204 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1205 end = start + len;
1206
1207 if (end < start)
1208 return -EINVAL;
1209 if (end == start)
1210 return 0;
1211
1212 new = mpol_new(mode, mode_flags, nmask);
1213 if (IS_ERR(new))
1214 return PTR_ERR(new);
1215
1216 if (flags & MPOL_MF_LAZY)
1217 new->flags |= MPOL_F_MOF;
1218
1219 /*
1220 * If we are using the default policy then operation
1221 * on discontinuous address spaces is okay after all
1222 */
1223 if (!new)
1224 flags |= MPOL_MF_DISCONTIG_OK;
1225
1226 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1227 start, start + len, mode, mode_flags,
1228 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1229
1230 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1231
1232 err = migrate_prep();
1233 if (err)
1234 goto mpol_out;
1235 }
1236 {
1237 NODEMASK_SCRATCH(scratch);
1238 if (scratch) {
1239 down_write(&mm->mmap_sem);
1240 task_lock(current);
1241 err = mpol_set_nodemask(new, nmask, scratch);
1242 task_unlock(current);
1243 if (err)
1244 up_write(&mm->mmap_sem);
1245 } else
1246 err = -ENOMEM;
1247 NODEMASK_SCRATCH_FREE(scratch);
1248 }
1249 if (err)
1250 goto mpol_out;
1251
1252 err = queue_pages_range(mm, start, end, nmask,
1253 flags | MPOL_MF_INVERT, &pagelist);
1254 if (!err)
1255 err = mbind_range(mm, start, end, new);
1256
1257 if (!err) {
1258 int nr_failed = 0;
1259
1260 if (!list_empty(&pagelist)) {
1261 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1262 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1263 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1264 if (nr_failed)
1265 putback_movable_pages(&pagelist);
1266 }
1267
1268 if (nr_failed && (flags & MPOL_MF_STRICT))
1269 err = -EIO;
1270 } else
1271 putback_movable_pages(&pagelist);
1272
1273 up_write(&mm->mmap_sem);
1274 mpol_out:
1275 mpol_put(new);
1276 return err;
1277 }
1278
1279 /*
1280 * User space interface with variable sized bitmaps for nodelists.
1281 */
1282
1283 /* Copy a node mask from user space. */
1284 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1285 unsigned long maxnode)
1286 {
1287 unsigned long k;
1288 unsigned long nlongs;
1289 unsigned long endmask;
1290
1291 --maxnode;
1292 nodes_clear(*nodes);
1293 if (maxnode == 0 || !nmask)
1294 return 0;
1295 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1296 return -EINVAL;
1297
1298 nlongs = BITS_TO_LONGS(maxnode);
1299 if ((maxnode % BITS_PER_LONG) == 0)
1300 endmask = ~0UL;
1301 else
1302 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1303
1304 /* When the user specified more nodes than supported just check
1305 if the non supported part is all zero. */
1306 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1307 if (nlongs > PAGE_SIZE/sizeof(long))
1308 return -EINVAL;
1309 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1310 unsigned long t;
1311 if (get_user(t, nmask + k))
1312 return -EFAULT;
1313 if (k == nlongs - 1) {
1314 if (t & endmask)
1315 return -EINVAL;
1316 } else if (t)
1317 return -EINVAL;
1318 }
1319 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1320 endmask = ~0UL;
1321 }
1322
1323 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1324 return -EFAULT;
1325 nodes_addr(*nodes)[nlongs-1] &= endmask;
1326 return 0;
1327 }
1328
1329 /* Copy a kernel node mask to user space */
1330 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1331 nodemask_t *nodes)
1332 {
1333 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1334 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1335
1336 if (copy > nbytes) {
1337 if (copy > PAGE_SIZE)
1338 return -EINVAL;
1339 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1340 return -EFAULT;
1341 copy = nbytes;
1342 }
1343 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1344 }
1345
1346 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1347 unsigned long, mode, const unsigned long __user *, nmask,
1348 unsigned long, maxnode, unsigned, flags)
1349 {
1350 nodemask_t nodes;
1351 int err;
1352 unsigned short mode_flags;
1353
1354 mode_flags = mode & MPOL_MODE_FLAGS;
1355 mode &= ~MPOL_MODE_FLAGS;
1356 if (mode >= MPOL_MAX)
1357 return -EINVAL;
1358 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1359 (mode_flags & MPOL_F_RELATIVE_NODES))
1360 return -EINVAL;
1361 err = get_nodes(&nodes, nmask, maxnode);
1362 if (err)
1363 return err;
1364 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1365 }
1366
1367 /* Set the process memory policy */
1368 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1369 unsigned long, maxnode)
1370 {
1371 int err;
1372 nodemask_t nodes;
1373 unsigned short flags;
1374
1375 flags = mode & MPOL_MODE_FLAGS;
1376 mode &= ~MPOL_MODE_FLAGS;
1377 if ((unsigned int)mode >= MPOL_MAX)
1378 return -EINVAL;
1379 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1380 return -EINVAL;
1381 err = get_nodes(&nodes, nmask, maxnode);
1382 if (err)
1383 return err;
1384 return do_set_mempolicy(mode, flags, &nodes);
1385 }
1386
1387 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1388 const unsigned long __user *, old_nodes,
1389 const unsigned long __user *, new_nodes)
1390 {
1391 const struct cred *cred = current_cred(), *tcred;
1392 struct mm_struct *mm = NULL;
1393 struct task_struct *task;
1394 nodemask_t task_nodes;
1395 int err;
1396 nodemask_t *old;
1397 nodemask_t *new;
1398 NODEMASK_SCRATCH(scratch);
1399
1400 if (!scratch)
1401 return -ENOMEM;
1402
1403 old = &scratch->mask1;
1404 new = &scratch->mask2;
1405
1406 err = get_nodes(old, old_nodes, maxnode);
1407 if (err)
1408 goto out;
1409
1410 err = get_nodes(new, new_nodes, maxnode);
1411 if (err)
1412 goto out;
1413
1414 /* Find the mm_struct */
1415 rcu_read_lock();
1416 task = pid ? find_task_by_vpid(pid) : current;
1417 if (!task) {
1418 rcu_read_unlock();
1419 err = -ESRCH;
1420 goto out;
1421 }
1422 get_task_struct(task);
1423
1424 err = -EINVAL;
1425
1426 /*
1427 * Check if this process has the right to modify the specified
1428 * process. The right exists if the process has administrative
1429 * capabilities, superuser privileges or the same
1430 * userid as the target process.
1431 */
1432 tcred = __task_cred(task);
1433 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1434 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1435 !capable(CAP_SYS_NICE)) {
1436 rcu_read_unlock();
1437 err = -EPERM;
1438 goto out_put;
1439 }
1440 rcu_read_unlock();
1441
1442 task_nodes = cpuset_mems_allowed(task);
1443 /* Is the user allowed to access the target nodes? */
1444 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1445 err = -EPERM;
1446 goto out_put;
1447 }
1448
1449 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1450 err = -EINVAL;
1451 goto out_put;
1452 }
1453
1454 err = security_task_movememory(task);
1455 if (err)
1456 goto out_put;
1457
1458 mm = get_task_mm(task);
1459 put_task_struct(task);
1460
1461 if (!mm) {
1462 err = -EINVAL;
1463 goto out;
1464 }
1465
1466 err = do_migrate_pages(mm, old, new,
1467 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1468
1469 mmput(mm);
1470 out:
1471 NODEMASK_SCRATCH_FREE(scratch);
1472
1473 return err;
1474
1475 out_put:
1476 put_task_struct(task);
1477 goto out;
1478
1479 }
1480
1481
1482 /* Retrieve NUMA policy */
1483 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1484 unsigned long __user *, nmask, unsigned long, maxnode,
1485 unsigned long, addr, unsigned long, flags)
1486 {
1487 int err;
1488 int uninitialized_var(pval);
1489 nodemask_t nodes;
1490
1491 if (nmask != NULL && maxnode < MAX_NUMNODES)
1492 return -EINVAL;
1493
1494 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1495
1496 if (err)
1497 return err;
1498
1499 if (policy && put_user(pval, policy))
1500 return -EFAULT;
1501
1502 if (nmask)
1503 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1504
1505 return err;
1506 }
1507
1508 #ifdef CONFIG_COMPAT
1509
1510 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1511 compat_ulong_t __user *, nmask,
1512 compat_ulong_t, maxnode,
1513 compat_ulong_t, addr, compat_ulong_t, flags)
1514 {
1515 long err;
1516 unsigned long __user *nm = NULL;
1517 unsigned long nr_bits, alloc_size;
1518 DECLARE_BITMAP(bm, MAX_NUMNODES);
1519
1520 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1521 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1522
1523 if (nmask)
1524 nm = compat_alloc_user_space(alloc_size);
1525
1526 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1527
1528 if (!err && nmask) {
1529 unsigned long copy_size;
1530 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1531 err = copy_from_user(bm, nm, copy_size);
1532 /* ensure entire bitmap is zeroed */
1533 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1534 err |= compat_put_bitmap(nmask, bm, nr_bits);
1535 }
1536
1537 return err;
1538 }
1539
1540 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1541 compat_ulong_t, maxnode)
1542 {
1543 long err = 0;
1544 unsigned long __user *nm = NULL;
1545 unsigned long nr_bits, alloc_size;
1546 DECLARE_BITMAP(bm, MAX_NUMNODES);
1547
1548 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1549 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1550
1551 if (nmask) {
1552 err = compat_get_bitmap(bm, nmask, nr_bits);
1553 nm = compat_alloc_user_space(alloc_size);
1554 err |= copy_to_user(nm, bm, alloc_size);
1555 }
1556
1557 if (err)
1558 return -EFAULT;
1559
1560 return sys_set_mempolicy(mode, nm, nr_bits+1);
1561 }
1562
1563 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1564 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1565 compat_ulong_t, maxnode, compat_ulong_t, flags)
1566 {
1567 long err = 0;
1568 unsigned long __user *nm = NULL;
1569 unsigned long nr_bits, alloc_size;
1570 nodemask_t bm;
1571
1572 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1573 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1574
1575 if (nmask) {
1576 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1577 nm = compat_alloc_user_space(alloc_size);
1578 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1579 }
1580
1581 if (err)
1582 return -EFAULT;
1583
1584 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1585 }
1586
1587 #endif
1588
1589 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1590 unsigned long addr)
1591 {
1592 struct mempolicy *pol = NULL;
1593
1594 if (vma) {
1595 if (vma->vm_ops && vma->vm_ops->get_policy) {
1596 pol = vma->vm_ops->get_policy(vma, addr);
1597 } else if (vma->vm_policy) {
1598 pol = vma->vm_policy;
1599
1600 /*
1601 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1602 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1603 * count on these policies which will be dropped by
1604 * mpol_cond_put() later
1605 */
1606 if (mpol_needs_cond_ref(pol))
1607 mpol_get(pol);
1608 }
1609 }
1610
1611 return pol;
1612 }
1613
1614 /*
1615 * get_vma_policy(@vma, @addr)
1616 * @vma: virtual memory area whose policy is sought
1617 * @addr: address in @vma for shared policy lookup
1618 *
1619 * Returns effective policy for a VMA at specified address.
1620 * Falls back to current->mempolicy or system default policy, as necessary.
1621 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1622 * count--added by the get_policy() vm_op, as appropriate--to protect against
1623 * freeing by another task. It is the caller's responsibility to free the
1624 * extra reference for shared policies.
1625 */
1626 static struct mempolicy *get_vma_policy(struct vm_area_struct *vma,
1627 unsigned long addr)
1628 {
1629 struct mempolicy *pol = __get_vma_policy(vma, addr);
1630
1631 if (!pol)
1632 pol = get_task_policy(current);
1633
1634 return pol;
1635 }
1636
1637 bool vma_policy_mof(struct vm_area_struct *vma)
1638 {
1639 struct mempolicy *pol;
1640
1641 if (vma->vm_ops && vma->vm_ops->get_policy) {
1642 bool ret = false;
1643
1644 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1645 if (pol && (pol->flags & MPOL_F_MOF))
1646 ret = true;
1647 mpol_cond_put(pol);
1648
1649 return ret;
1650 }
1651
1652 pol = vma->vm_policy;
1653 if (!pol)
1654 pol = get_task_policy(current);
1655
1656 return pol->flags & MPOL_F_MOF;
1657 }
1658
1659 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1660 {
1661 enum zone_type dynamic_policy_zone = policy_zone;
1662
1663 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1664
1665 /*
1666 * if policy->v.nodes has movable memory only,
1667 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1668 *
1669 * policy->v.nodes is intersect with node_states[N_MEMORY].
1670 * so if the following test faile, it implies
1671 * policy->v.nodes has movable memory only.
1672 */
1673 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1674 dynamic_policy_zone = ZONE_MOVABLE;
1675
1676 return zone >= dynamic_policy_zone;
1677 }
1678
1679 /*
1680 * Return a nodemask representing a mempolicy for filtering nodes for
1681 * page allocation
1682 */
1683 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1684 {
1685 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1686 if (unlikely(policy->mode == MPOL_BIND) &&
1687 apply_policy_zone(policy, gfp_zone(gfp)) &&
1688 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1689 return &policy->v.nodes;
1690
1691 return NULL;
1692 }
1693
1694 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1695 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1696 int nd)
1697 {
1698 switch (policy->mode) {
1699 case MPOL_PREFERRED:
1700 if (!(policy->flags & MPOL_F_LOCAL))
1701 nd = policy->v.preferred_node;
1702 break;
1703 case MPOL_BIND:
1704 /*
1705 * Normally, MPOL_BIND allocations are node-local within the
1706 * allowed nodemask. However, if __GFP_THISNODE is set and the
1707 * current node isn't part of the mask, we use the zonelist for
1708 * the first node in the mask instead.
1709 */
1710 if (unlikely(gfp & __GFP_THISNODE) &&
1711 unlikely(!node_isset(nd, policy->v.nodes)))
1712 nd = first_node(policy->v.nodes);
1713 break;
1714 default:
1715 BUG();
1716 }
1717 return node_zonelist(nd, gfp);
1718 }
1719
1720 /* Do dynamic interleaving for a process */
1721 static unsigned interleave_nodes(struct mempolicy *policy)
1722 {
1723 unsigned nid, next;
1724 struct task_struct *me = current;
1725
1726 nid = me->il_next;
1727 next = next_node(nid, policy->v.nodes);
1728 if (next >= MAX_NUMNODES)
1729 next = first_node(policy->v.nodes);
1730 if (next < MAX_NUMNODES)
1731 me->il_next = next;
1732 return nid;
1733 }
1734
1735 /*
1736 * Depending on the memory policy provide a node from which to allocate the
1737 * next slab entry.
1738 */
1739 unsigned int mempolicy_slab_node(void)
1740 {
1741 struct mempolicy *policy;
1742 int node = numa_mem_id();
1743
1744 if (in_interrupt())
1745 return node;
1746
1747 policy = current->mempolicy;
1748 if (!policy || policy->flags & MPOL_F_LOCAL)
1749 return node;
1750
1751 switch (policy->mode) {
1752 case MPOL_PREFERRED:
1753 /*
1754 * handled MPOL_F_LOCAL above
1755 */
1756 return policy->v.preferred_node;
1757
1758 case MPOL_INTERLEAVE:
1759 return interleave_nodes(policy);
1760
1761 case MPOL_BIND: {
1762 /*
1763 * Follow bind policy behavior and start allocation at the
1764 * first node.
1765 */
1766 struct zonelist *zonelist;
1767 struct zone *zone;
1768 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1769 zonelist = &NODE_DATA(node)->node_zonelists[0];
1770 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1771 &policy->v.nodes,
1772 &zone);
1773 return zone ? zone->node : node;
1774 }
1775
1776 default:
1777 BUG();
1778 }
1779 }
1780
1781 /* Do static interleaving for a VMA with known offset. */
1782 static unsigned offset_il_node(struct mempolicy *pol,
1783 struct vm_area_struct *vma, unsigned long off)
1784 {
1785 unsigned nnodes = nodes_weight(pol->v.nodes);
1786 unsigned target;
1787 int c;
1788 int nid = NUMA_NO_NODE;
1789
1790 if (!nnodes)
1791 return numa_node_id();
1792 target = (unsigned int)off % nnodes;
1793 c = 0;
1794 do {
1795 nid = next_node(nid, pol->v.nodes);
1796 c++;
1797 } while (c <= target);
1798 return nid;
1799 }
1800
1801 /* Determine a node number for interleave */
1802 static inline unsigned interleave_nid(struct mempolicy *pol,
1803 struct vm_area_struct *vma, unsigned long addr, int shift)
1804 {
1805 if (vma) {
1806 unsigned long off;
1807
1808 /*
1809 * for small pages, there is no difference between
1810 * shift and PAGE_SHIFT, so the bit-shift is safe.
1811 * for huge pages, since vm_pgoff is in units of small
1812 * pages, we need to shift off the always 0 bits to get
1813 * a useful offset.
1814 */
1815 BUG_ON(shift < PAGE_SHIFT);
1816 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1817 off += (addr - vma->vm_start) >> shift;
1818 return offset_il_node(pol, vma, off);
1819 } else
1820 return interleave_nodes(pol);
1821 }
1822
1823 /*
1824 * Return the bit number of a random bit set in the nodemask.
1825 * (returns NUMA_NO_NODE if nodemask is empty)
1826 */
1827 int node_random(const nodemask_t *maskp)
1828 {
1829 int w, bit = NUMA_NO_NODE;
1830
1831 w = nodes_weight(*maskp);
1832 if (w)
1833 bit = bitmap_ord_to_pos(maskp->bits,
1834 get_random_int() % w, MAX_NUMNODES);
1835 return bit;
1836 }
1837
1838 #ifdef CONFIG_HUGETLBFS
1839 /*
1840 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1841 * @vma: virtual memory area whose policy is sought
1842 * @addr: address in @vma for shared policy lookup and interleave policy
1843 * @gfp_flags: for requested zone
1844 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1845 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1846 *
1847 * Returns a zonelist suitable for a huge page allocation and a pointer
1848 * to the struct mempolicy for conditional unref after allocation.
1849 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1850 * @nodemask for filtering the zonelist.
1851 *
1852 * Must be protected by read_mems_allowed_begin()
1853 */
1854 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1855 gfp_t gfp_flags, struct mempolicy **mpol,
1856 nodemask_t **nodemask)
1857 {
1858 struct zonelist *zl;
1859
1860 *mpol = get_vma_policy(vma, addr);
1861 *nodemask = NULL; /* assume !MPOL_BIND */
1862
1863 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1864 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1865 huge_page_shift(hstate_vma(vma))), gfp_flags);
1866 } else {
1867 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1868 if ((*mpol)->mode == MPOL_BIND)
1869 *nodemask = &(*mpol)->v.nodes;
1870 }
1871 return zl;
1872 }
1873
1874 /*
1875 * init_nodemask_of_mempolicy
1876 *
1877 * If the current task's mempolicy is "default" [NULL], return 'false'
1878 * to indicate default policy. Otherwise, extract the policy nodemask
1879 * for 'bind' or 'interleave' policy into the argument nodemask, or
1880 * initialize the argument nodemask to contain the single node for
1881 * 'preferred' or 'local' policy and return 'true' to indicate presence
1882 * of non-default mempolicy.
1883 *
1884 * We don't bother with reference counting the mempolicy [mpol_get/put]
1885 * because the current task is examining it's own mempolicy and a task's
1886 * mempolicy is only ever changed by the task itself.
1887 *
1888 * N.B., it is the caller's responsibility to free a returned nodemask.
1889 */
1890 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1891 {
1892 struct mempolicy *mempolicy;
1893 int nid;
1894
1895 if (!(mask && current->mempolicy))
1896 return false;
1897
1898 task_lock(current);
1899 mempolicy = current->mempolicy;
1900 switch (mempolicy->mode) {
1901 case MPOL_PREFERRED:
1902 if (mempolicy->flags & MPOL_F_LOCAL)
1903 nid = numa_node_id();
1904 else
1905 nid = mempolicy->v.preferred_node;
1906 init_nodemask_of_node(mask, nid);
1907 break;
1908
1909 case MPOL_BIND:
1910 /* Fall through */
1911 case MPOL_INTERLEAVE:
1912 *mask = mempolicy->v.nodes;
1913 break;
1914
1915 default:
1916 BUG();
1917 }
1918 task_unlock(current);
1919
1920 return true;
1921 }
1922 #endif
1923
1924 /*
1925 * mempolicy_nodemask_intersects
1926 *
1927 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1928 * policy. Otherwise, check for intersection between mask and the policy
1929 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1930 * policy, always return true since it may allocate elsewhere on fallback.
1931 *
1932 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1933 */
1934 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1935 const nodemask_t *mask)
1936 {
1937 struct mempolicy *mempolicy;
1938 bool ret = true;
1939
1940 if (!mask)
1941 return ret;
1942 task_lock(tsk);
1943 mempolicy = tsk->mempolicy;
1944 if (!mempolicy)
1945 goto out;
1946
1947 switch (mempolicy->mode) {
1948 case MPOL_PREFERRED:
1949 /*
1950 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1951 * allocate from, they may fallback to other nodes when oom.
1952 * Thus, it's possible for tsk to have allocated memory from
1953 * nodes in mask.
1954 */
1955 break;
1956 case MPOL_BIND:
1957 case MPOL_INTERLEAVE:
1958 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1959 break;
1960 default:
1961 BUG();
1962 }
1963 out:
1964 task_unlock(tsk);
1965 return ret;
1966 }
1967
1968 /* Allocate a page in interleaved policy.
1969 Own path because it needs to do special accounting. */
1970 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1971 unsigned nid)
1972 {
1973 struct zonelist *zl;
1974 struct page *page;
1975
1976 zl = node_zonelist(nid, gfp);
1977 page = __alloc_pages(gfp, order, zl);
1978 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1979 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1980 return page;
1981 }
1982
1983 /**
1984 * alloc_pages_vma - Allocate a page for a VMA.
1985 *
1986 * @gfp:
1987 * %GFP_USER user allocation.
1988 * %GFP_KERNEL kernel allocations,
1989 * %GFP_HIGHMEM highmem/user allocations,
1990 * %GFP_FS allocation should not call back into a file system.
1991 * %GFP_ATOMIC don't sleep.
1992 *
1993 * @order:Order of the GFP allocation.
1994 * @vma: Pointer to VMA or NULL if not available.
1995 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1996 *
1997 * This function allocates a page from the kernel page pool and applies
1998 * a NUMA policy associated with the VMA or the current process.
1999 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2000 * mm_struct of the VMA to prevent it from going away. Should be used for
2001 * all allocations for pages that will be mapped into
2002 * user space. Returns NULL when no page can be allocated.
2003 *
2004 * Should be called with the mm_sem of the vma hold.
2005 */
2006 struct page *
2007 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2008 unsigned long addr, int node)
2009 {
2010 struct mempolicy *pol;
2011 struct page *page;
2012 unsigned int cpuset_mems_cookie;
2013
2014 retry_cpuset:
2015 pol = get_vma_policy(vma, addr);
2016 cpuset_mems_cookie = read_mems_allowed_begin();
2017
2018 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2019 unsigned nid;
2020
2021 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2022 mpol_cond_put(pol);
2023 page = alloc_page_interleave(gfp, order, nid);
2024 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2025 goto retry_cpuset;
2026
2027 return page;
2028 }
2029 page = __alloc_pages_nodemask(gfp, order,
2030 policy_zonelist(gfp, pol, node),
2031 policy_nodemask(gfp, pol));
2032 mpol_cond_put(pol);
2033 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2034 goto retry_cpuset;
2035 return page;
2036 }
2037
2038 /**
2039 * alloc_pages_current - Allocate pages.
2040 *
2041 * @gfp:
2042 * %GFP_USER user allocation,
2043 * %GFP_KERNEL kernel allocation,
2044 * %GFP_HIGHMEM highmem allocation,
2045 * %GFP_FS don't call back into a file system.
2046 * %GFP_ATOMIC don't sleep.
2047 * @order: Power of two of allocation size in pages. 0 is a single page.
2048 *
2049 * Allocate a page from the kernel page pool. When not in
2050 * interrupt context and apply the current process NUMA policy.
2051 * Returns NULL when no page can be allocated.
2052 *
2053 * Don't call cpuset_update_task_memory_state() unless
2054 * 1) it's ok to take cpuset_sem (can WAIT), and
2055 * 2) allocating for current task (not interrupt).
2056 */
2057 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2058 {
2059 struct mempolicy *pol = &default_policy;
2060 struct page *page;
2061 unsigned int cpuset_mems_cookie;
2062
2063 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2064 pol = get_task_policy(current);
2065
2066 retry_cpuset:
2067 cpuset_mems_cookie = read_mems_allowed_begin();
2068
2069 /*
2070 * No reference counting needed for current->mempolicy
2071 * nor system default_policy
2072 */
2073 if (pol->mode == MPOL_INTERLEAVE)
2074 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2075 else
2076 page = __alloc_pages_nodemask(gfp, order,
2077 policy_zonelist(gfp, pol, numa_node_id()),
2078 policy_nodemask(gfp, pol));
2079
2080 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2081 goto retry_cpuset;
2082
2083 return page;
2084 }
2085 EXPORT_SYMBOL(alloc_pages_current);
2086
2087 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2088 {
2089 struct mempolicy *pol = mpol_dup(vma_policy(src));
2090
2091 if (IS_ERR(pol))
2092 return PTR_ERR(pol);
2093 dst->vm_policy = pol;
2094 return 0;
2095 }
2096
2097 /*
2098 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2099 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2100 * with the mems_allowed returned by cpuset_mems_allowed(). This
2101 * keeps mempolicies cpuset relative after its cpuset moves. See
2102 * further kernel/cpuset.c update_nodemask().
2103 *
2104 * current's mempolicy may be rebinded by the other task(the task that changes
2105 * cpuset's mems), so we needn't do rebind work for current task.
2106 */
2107
2108 /* Slow path of a mempolicy duplicate */
2109 struct mempolicy *__mpol_dup(struct mempolicy *old)
2110 {
2111 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2112
2113 if (!new)
2114 return ERR_PTR(-ENOMEM);
2115
2116 /* task's mempolicy is protected by alloc_lock */
2117 if (old == current->mempolicy) {
2118 task_lock(current);
2119 *new = *old;
2120 task_unlock(current);
2121 } else
2122 *new = *old;
2123
2124 if (current_cpuset_is_being_rebound()) {
2125 nodemask_t mems = cpuset_mems_allowed(current);
2126 if (new->flags & MPOL_F_REBINDING)
2127 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2128 else
2129 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2130 }
2131 atomic_set(&new->refcnt, 1);
2132 return new;
2133 }
2134
2135 /* Slow path of a mempolicy comparison */
2136 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2137 {
2138 if (!a || !b)
2139 return false;
2140 if (a->mode != b->mode)
2141 return false;
2142 if (a->flags != b->flags)
2143 return false;
2144 if (mpol_store_user_nodemask(a))
2145 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2146 return false;
2147
2148 switch (a->mode) {
2149 case MPOL_BIND:
2150 /* Fall through */
2151 case MPOL_INTERLEAVE:
2152 return !!nodes_equal(a->v.nodes, b->v.nodes);
2153 case MPOL_PREFERRED:
2154 return a->v.preferred_node == b->v.preferred_node;
2155 default:
2156 BUG();
2157 return false;
2158 }
2159 }
2160
2161 /*
2162 * Shared memory backing store policy support.
2163 *
2164 * Remember policies even when nobody has shared memory mapped.
2165 * The policies are kept in Red-Black tree linked from the inode.
2166 * They are protected by the sp->lock spinlock, which should be held
2167 * for any accesses to the tree.
2168 */
2169
2170 /* lookup first element intersecting start-end */
2171 /* Caller holds sp->lock */
2172 static struct sp_node *
2173 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2174 {
2175 struct rb_node *n = sp->root.rb_node;
2176
2177 while (n) {
2178 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2179
2180 if (start >= p->end)
2181 n = n->rb_right;
2182 else if (end <= p->start)
2183 n = n->rb_left;
2184 else
2185 break;
2186 }
2187 if (!n)
2188 return NULL;
2189 for (;;) {
2190 struct sp_node *w = NULL;
2191 struct rb_node *prev = rb_prev(n);
2192 if (!prev)
2193 break;
2194 w = rb_entry(prev, struct sp_node, nd);
2195 if (w->end <= start)
2196 break;
2197 n = prev;
2198 }
2199 return rb_entry(n, struct sp_node, nd);
2200 }
2201
2202 /* Insert a new shared policy into the list. */
2203 /* Caller holds sp->lock */
2204 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2205 {
2206 struct rb_node **p = &sp->root.rb_node;
2207 struct rb_node *parent = NULL;
2208 struct sp_node *nd;
2209
2210 while (*p) {
2211 parent = *p;
2212 nd = rb_entry(parent, struct sp_node, nd);
2213 if (new->start < nd->start)
2214 p = &(*p)->rb_left;
2215 else if (new->end > nd->end)
2216 p = &(*p)->rb_right;
2217 else
2218 BUG();
2219 }
2220 rb_link_node(&new->nd, parent, p);
2221 rb_insert_color(&new->nd, &sp->root);
2222 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2223 new->policy ? new->policy->mode : 0);
2224 }
2225
2226 /* Find shared policy intersecting idx */
2227 struct mempolicy *
2228 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2229 {
2230 struct mempolicy *pol = NULL;
2231 struct sp_node *sn;
2232
2233 if (!sp->root.rb_node)
2234 return NULL;
2235 spin_lock(&sp->lock);
2236 sn = sp_lookup(sp, idx, idx+1);
2237 if (sn) {
2238 mpol_get(sn->policy);
2239 pol = sn->policy;
2240 }
2241 spin_unlock(&sp->lock);
2242 return pol;
2243 }
2244
2245 static void sp_free(struct sp_node *n)
2246 {
2247 mpol_put(n->policy);
2248 kmem_cache_free(sn_cache, n);
2249 }
2250
2251 /**
2252 * mpol_misplaced - check whether current page node is valid in policy
2253 *
2254 * @page: page to be checked
2255 * @vma: vm area where page mapped
2256 * @addr: virtual address where page mapped
2257 *
2258 * Lookup current policy node id for vma,addr and "compare to" page's
2259 * node id.
2260 *
2261 * Returns:
2262 * -1 - not misplaced, page is in the right node
2263 * node - node id where the page should be
2264 *
2265 * Policy determination "mimics" alloc_page_vma().
2266 * Called from fault path where we know the vma and faulting address.
2267 */
2268 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2269 {
2270 struct mempolicy *pol;
2271 struct zone *zone;
2272 int curnid = page_to_nid(page);
2273 unsigned long pgoff;
2274 int thiscpu = raw_smp_processor_id();
2275 int thisnid = cpu_to_node(thiscpu);
2276 int polnid = -1;
2277 int ret = -1;
2278
2279 BUG_ON(!vma);
2280
2281 pol = get_vma_policy(vma, addr);
2282 if (!(pol->flags & MPOL_F_MOF))
2283 goto out;
2284
2285 switch (pol->mode) {
2286 case MPOL_INTERLEAVE:
2287 BUG_ON(addr >= vma->vm_end);
2288 BUG_ON(addr < vma->vm_start);
2289
2290 pgoff = vma->vm_pgoff;
2291 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2292 polnid = offset_il_node(pol, vma, pgoff);
2293 break;
2294
2295 case MPOL_PREFERRED:
2296 if (pol->flags & MPOL_F_LOCAL)
2297 polnid = numa_node_id();
2298 else
2299 polnid = pol->v.preferred_node;
2300 break;
2301
2302 case MPOL_BIND:
2303 /*
2304 * allows binding to multiple nodes.
2305 * use current page if in policy nodemask,
2306 * else select nearest allowed node, if any.
2307 * If no allowed nodes, use current [!misplaced].
2308 */
2309 if (node_isset(curnid, pol->v.nodes))
2310 goto out;
2311 (void)first_zones_zonelist(
2312 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2313 gfp_zone(GFP_HIGHUSER),
2314 &pol->v.nodes, &zone);
2315 polnid = zone->node;
2316 break;
2317
2318 default:
2319 BUG();
2320 }
2321
2322 /* Migrate the page towards the node whose CPU is referencing it */
2323 if (pol->flags & MPOL_F_MORON) {
2324 polnid = thisnid;
2325
2326 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2327 goto out;
2328 }
2329
2330 if (curnid != polnid)
2331 ret = polnid;
2332 out:
2333 mpol_cond_put(pol);
2334
2335 return ret;
2336 }
2337
2338 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2339 {
2340 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2341 rb_erase(&n->nd, &sp->root);
2342 sp_free(n);
2343 }
2344
2345 static void sp_node_init(struct sp_node *node, unsigned long start,
2346 unsigned long end, struct mempolicy *pol)
2347 {
2348 node->start = start;
2349 node->end = end;
2350 node->policy = pol;
2351 }
2352
2353 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2354 struct mempolicy *pol)
2355 {
2356 struct sp_node *n;
2357 struct mempolicy *newpol;
2358
2359 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2360 if (!n)
2361 return NULL;
2362
2363 newpol = mpol_dup(pol);
2364 if (IS_ERR(newpol)) {
2365 kmem_cache_free(sn_cache, n);
2366 return NULL;
2367 }
2368 newpol->flags |= MPOL_F_SHARED;
2369 sp_node_init(n, start, end, newpol);
2370
2371 return n;
2372 }
2373
2374 /* Replace a policy range. */
2375 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2376 unsigned long end, struct sp_node *new)
2377 {
2378 struct sp_node *n;
2379 struct sp_node *n_new = NULL;
2380 struct mempolicy *mpol_new = NULL;
2381 int ret = 0;
2382
2383 restart:
2384 spin_lock(&sp->lock);
2385 n = sp_lookup(sp, start, end);
2386 /* Take care of old policies in the same range. */
2387 while (n && n->start < end) {
2388 struct rb_node *next = rb_next(&n->nd);
2389 if (n->start >= start) {
2390 if (n->end <= end)
2391 sp_delete(sp, n);
2392 else
2393 n->start = end;
2394 } else {
2395 /* Old policy spanning whole new range. */
2396 if (n->end > end) {
2397 if (!n_new)
2398 goto alloc_new;
2399
2400 *mpol_new = *n->policy;
2401 atomic_set(&mpol_new->refcnt, 1);
2402 sp_node_init(n_new, end, n->end, mpol_new);
2403 n->end = start;
2404 sp_insert(sp, n_new);
2405 n_new = NULL;
2406 mpol_new = NULL;
2407 break;
2408 } else
2409 n->end = start;
2410 }
2411 if (!next)
2412 break;
2413 n = rb_entry(next, struct sp_node, nd);
2414 }
2415 if (new)
2416 sp_insert(sp, new);
2417 spin_unlock(&sp->lock);
2418 ret = 0;
2419
2420 err_out:
2421 if (mpol_new)
2422 mpol_put(mpol_new);
2423 if (n_new)
2424 kmem_cache_free(sn_cache, n_new);
2425
2426 return ret;
2427
2428 alloc_new:
2429 spin_unlock(&sp->lock);
2430 ret = -ENOMEM;
2431 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2432 if (!n_new)
2433 goto err_out;
2434 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2435 if (!mpol_new)
2436 goto err_out;
2437 goto restart;
2438 }
2439
2440 /**
2441 * mpol_shared_policy_init - initialize shared policy for inode
2442 * @sp: pointer to inode shared policy
2443 * @mpol: struct mempolicy to install
2444 *
2445 * Install non-NULL @mpol in inode's shared policy rb-tree.
2446 * On entry, the current task has a reference on a non-NULL @mpol.
2447 * This must be released on exit.
2448 * This is called at get_inode() calls and we can use GFP_KERNEL.
2449 */
2450 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2451 {
2452 int ret;
2453
2454 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2455 spin_lock_init(&sp->lock);
2456
2457 if (mpol) {
2458 struct vm_area_struct pvma;
2459 struct mempolicy *new;
2460 NODEMASK_SCRATCH(scratch);
2461
2462 if (!scratch)
2463 goto put_mpol;
2464 /* contextualize the tmpfs mount point mempolicy */
2465 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2466 if (IS_ERR(new))
2467 goto free_scratch; /* no valid nodemask intersection */
2468
2469 task_lock(current);
2470 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2471 task_unlock(current);
2472 if (ret)
2473 goto put_new;
2474
2475 /* Create pseudo-vma that contains just the policy */
2476 memset(&pvma, 0, sizeof(struct vm_area_struct));
2477 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2478 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2479
2480 put_new:
2481 mpol_put(new); /* drop initial ref */
2482 free_scratch:
2483 NODEMASK_SCRATCH_FREE(scratch);
2484 put_mpol:
2485 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2486 }
2487 }
2488
2489 int mpol_set_shared_policy(struct shared_policy *info,
2490 struct vm_area_struct *vma, struct mempolicy *npol)
2491 {
2492 int err;
2493 struct sp_node *new = NULL;
2494 unsigned long sz = vma_pages(vma);
2495
2496 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2497 vma->vm_pgoff,
2498 sz, npol ? npol->mode : -1,
2499 npol ? npol->flags : -1,
2500 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2501
2502 if (npol) {
2503 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2504 if (!new)
2505 return -ENOMEM;
2506 }
2507 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2508 if (err && new)
2509 sp_free(new);
2510 return err;
2511 }
2512
2513 /* Free a backing policy store on inode delete. */
2514 void mpol_free_shared_policy(struct shared_policy *p)
2515 {
2516 struct sp_node *n;
2517 struct rb_node *next;
2518
2519 if (!p->root.rb_node)
2520 return;
2521 spin_lock(&p->lock);
2522 next = rb_first(&p->root);
2523 while (next) {
2524 n = rb_entry(next, struct sp_node, nd);
2525 next = rb_next(&n->nd);
2526 sp_delete(p, n);
2527 }
2528 spin_unlock(&p->lock);
2529 }
2530
2531 #ifdef CONFIG_NUMA_BALANCING
2532 static int __initdata numabalancing_override;
2533
2534 static void __init check_numabalancing_enable(void)
2535 {
2536 bool numabalancing_default = false;
2537
2538 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2539 numabalancing_default = true;
2540
2541 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2542 if (numabalancing_override)
2543 set_numabalancing_state(numabalancing_override == 1);
2544
2545 if (nr_node_ids > 1 && !numabalancing_override) {
2546 pr_info("%s automatic NUMA balancing. "
2547 "Configure with numa_balancing= or the "
2548 "kernel.numa_balancing sysctl",
2549 numabalancing_default ? "Enabling" : "Disabling");
2550 set_numabalancing_state(numabalancing_default);
2551 }
2552 }
2553
2554 static int __init setup_numabalancing(char *str)
2555 {
2556 int ret = 0;
2557 if (!str)
2558 goto out;
2559
2560 if (!strcmp(str, "enable")) {
2561 numabalancing_override = 1;
2562 ret = 1;
2563 } else if (!strcmp(str, "disable")) {
2564 numabalancing_override = -1;
2565 ret = 1;
2566 }
2567 out:
2568 if (!ret)
2569 pr_warn("Unable to parse numa_balancing=\n");
2570
2571 return ret;
2572 }
2573 __setup("numa_balancing=", setup_numabalancing);
2574 #else
2575 static inline void __init check_numabalancing_enable(void)
2576 {
2577 }
2578 #endif /* CONFIG_NUMA_BALANCING */
2579
2580 /* assumes fs == KERNEL_DS */
2581 void __init numa_policy_init(void)
2582 {
2583 nodemask_t interleave_nodes;
2584 unsigned long largest = 0;
2585 int nid, prefer = 0;
2586
2587 policy_cache = kmem_cache_create("numa_policy",
2588 sizeof(struct mempolicy),
2589 0, SLAB_PANIC, NULL);
2590
2591 sn_cache = kmem_cache_create("shared_policy_node",
2592 sizeof(struct sp_node),
2593 0, SLAB_PANIC, NULL);
2594
2595 for_each_node(nid) {
2596 preferred_node_policy[nid] = (struct mempolicy) {
2597 .refcnt = ATOMIC_INIT(1),
2598 .mode = MPOL_PREFERRED,
2599 .flags = MPOL_F_MOF | MPOL_F_MORON,
2600 .v = { .preferred_node = nid, },
2601 };
2602 }
2603
2604 /*
2605 * Set interleaving policy for system init. Interleaving is only
2606 * enabled across suitably sized nodes (default is >= 16MB), or
2607 * fall back to the largest node if they're all smaller.
2608 */
2609 nodes_clear(interleave_nodes);
2610 for_each_node_state(nid, N_MEMORY) {
2611 unsigned long total_pages = node_present_pages(nid);
2612
2613 /* Preserve the largest node */
2614 if (largest < total_pages) {
2615 largest = total_pages;
2616 prefer = nid;
2617 }
2618
2619 /* Interleave this node? */
2620 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2621 node_set(nid, interleave_nodes);
2622 }
2623
2624 /* All too small, use the largest */
2625 if (unlikely(nodes_empty(interleave_nodes)))
2626 node_set(prefer, interleave_nodes);
2627
2628 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2629 pr_err("%s: interleaving failed\n", __func__);
2630
2631 check_numabalancing_enable();
2632 }
2633
2634 /* Reset policy of current process to default */
2635 void numa_default_policy(void)
2636 {
2637 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2638 }
2639
2640 /*
2641 * Parse and format mempolicy from/to strings
2642 */
2643
2644 /*
2645 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2646 */
2647 static const char * const policy_modes[] =
2648 {
2649 [MPOL_DEFAULT] = "default",
2650 [MPOL_PREFERRED] = "prefer",
2651 [MPOL_BIND] = "bind",
2652 [MPOL_INTERLEAVE] = "interleave",
2653 [MPOL_LOCAL] = "local",
2654 };
2655
2656
2657 #ifdef CONFIG_TMPFS
2658 /**
2659 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2660 * @str: string containing mempolicy to parse
2661 * @mpol: pointer to struct mempolicy pointer, returned on success.
2662 *
2663 * Format of input:
2664 * <mode>[=<flags>][:<nodelist>]
2665 *
2666 * On success, returns 0, else 1
2667 */
2668 int mpol_parse_str(char *str, struct mempolicy **mpol)
2669 {
2670 struct mempolicy *new = NULL;
2671 unsigned short mode;
2672 unsigned short mode_flags;
2673 nodemask_t nodes;
2674 char *nodelist = strchr(str, ':');
2675 char *flags = strchr(str, '=');
2676 int err = 1;
2677
2678 if (nodelist) {
2679 /* NUL-terminate mode or flags string */
2680 *nodelist++ = '\0';
2681 if (nodelist_parse(nodelist, nodes))
2682 goto out;
2683 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2684 goto out;
2685 } else
2686 nodes_clear(nodes);
2687
2688 if (flags)
2689 *flags++ = '\0'; /* terminate mode string */
2690
2691 for (mode = 0; mode < MPOL_MAX; mode++) {
2692 if (!strcmp(str, policy_modes[mode])) {
2693 break;
2694 }
2695 }
2696 if (mode >= MPOL_MAX)
2697 goto out;
2698
2699 switch (mode) {
2700 case MPOL_PREFERRED:
2701 /*
2702 * Insist on a nodelist of one node only
2703 */
2704 if (nodelist) {
2705 char *rest = nodelist;
2706 while (isdigit(*rest))
2707 rest++;
2708 if (*rest)
2709 goto out;
2710 }
2711 break;
2712 case MPOL_INTERLEAVE:
2713 /*
2714 * Default to online nodes with memory if no nodelist
2715 */
2716 if (!nodelist)
2717 nodes = node_states[N_MEMORY];
2718 break;
2719 case MPOL_LOCAL:
2720 /*
2721 * Don't allow a nodelist; mpol_new() checks flags
2722 */
2723 if (nodelist)
2724 goto out;
2725 mode = MPOL_PREFERRED;
2726 break;
2727 case MPOL_DEFAULT:
2728 /*
2729 * Insist on a empty nodelist
2730 */
2731 if (!nodelist)
2732 err = 0;
2733 goto out;
2734 case MPOL_BIND:
2735 /*
2736 * Insist on a nodelist
2737 */
2738 if (!nodelist)
2739 goto out;
2740 }
2741
2742 mode_flags = 0;
2743 if (flags) {
2744 /*
2745 * Currently, we only support two mutually exclusive
2746 * mode flags.
2747 */
2748 if (!strcmp(flags, "static"))
2749 mode_flags |= MPOL_F_STATIC_NODES;
2750 else if (!strcmp(flags, "relative"))
2751 mode_flags |= MPOL_F_RELATIVE_NODES;
2752 else
2753 goto out;
2754 }
2755
2756 new = mpol_new(mode, mode_flags, &nodes);
2757 if (IS_ERR(new))
2758 goto out;
2759
2760 /*
2761 * Save nodes for mpol_to_str() to show the tmpfs mount options
2762 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2763 */
2764 if (mode != MPOL_PREFERRED)
2765 new->v.nodes = nodes;
2766 else if (nodelist)
2767 new->v.preferred_node = first_node(nodes);
2768 else
2769 new->flags |= MPOL_F_LOCAL;
2770
2771 /*
2772 * Save nodes for contextualization: this will be used to "clone"
2773 * the mempolicy in a specific context [cpuset] at a later time.
2774 */
2775 new->w.user_nodemask = nodes;
2776
2777 err = 0;
2778
2779 out:
2780 /* Restore string for error message */
2781 if (nodelist)
2782 *--nodelist = ':';
2783 if (flags)
2784 *--flags = '=';
2785 if (!err)
2786 *mpol = new;
2787 return err;
2788 }
2789 #endif /* CONFIG_TMPFS */
2790
2791 /**
2792 * mpol_to_str - format a mempolicy structure for printing
2793 * @buffer: to contain formatted mempolicy string
2794 * @maxlen: length of @buffer
2795 * @pol: pointer to mempolicy to be formatted
2796 *
2797 * Convert @pol into a string. If @buffer is too short, truncate the string.
2798 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2799 * longest flag, "relative", and to display at least a few node ids.
2800 */
2801 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2802 {
2803 char *p = buffer;
2804 nodemask_t nodes = NODE_MASK_NONE;
2805 unsigned short mode = MPOL_DEFAULT;
2806 unsigned short flags = 0;
2807
2808 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2809 mode = pol->mode;
2810 flags = pol->flags;
2811 }
2812
2813 switch (mode) {
2814 case MPOL_DEFAULT:
2815 break;
2816 case MPOL_PREFERRED:
2817 if (flags & MPOL_F_LOCAL)
2818 mode = MPOL_LOCAL;
2819 else
2820 node_set(pol->v.preferred_node, nodes);
2821 break;
2822 case MPOL_BIND:
2823 case MPOL_INTERLEAVE:
2824 nodes = pol->v.nodes;
2825 break;
2826 default:
2827 WARN_ON_ONCE(1);
2828 snprintf(p, maxlen, "unknown");
2829 return;
2830 }
2831
2832 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2833
2834 if (flags & MPOL_MODE_FLAGS) {
2835 p += snprintf(p, buffer + maxlen - p, "=");
2836
2837 /*
2838 * Currently, the only defined flags are mutually exclusive
2839 */
2840 if (flags & MPOL_F_STATIC_NODES)
2841 p += snprintf(p, buffer + maxlen - p, "static");
2842 else if (flags & MPOL_F_RELATIVE_NODES)
2843 p += snprintf(p, buffer + maxlen - p, "relative");
2844 }
2845
2846 if (!nodes_empty(nodes)) {
2847 p += snprintf(p, buffer + maxlen - p, ":");
2848 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2849 }
2850 }
This page took 0.133767 seconds and 5 git commands to generate.