mempolicy: rework mempolicy Reference Counting [yet again]
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91
92 #include <asm/tlbflush.h>
93 #include <asm/uaccess.h>
94
95 /* Internal flags */
96 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
97 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
98 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
99
100 static struct kmem_cache *policy_cache;
101 static struct kmem_cache *sn_cache;
102
103 /* Highest zone. An specific allocation for a zone below that is not
104 policied. */
105 enum zone_type policy_zone = 0;
106
107 struct mempolicy default_policy = {
108 .refcnt = ATOMIC_INIT(1), /* never free it */
109 .mode = MPOL_DEFAULT,
110 };
111
112 static const struct mempolicy_operations {
113 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
114 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
115 } mpol_ops[MPOL_MAX];
116
117 /* Check that the nodemask contains at least one populated zone */
118 static int is_valid_nodemask(const nodemask_t *nodemask)
119 {
120 int nd, k;
121
122 /* Check that there is something useful in this mask */
123 k = policy_zone;
124
125 for_each_node_mask(nd, *nodemask) {
126 struct zone *z;
127
128 for (k = 0; k <= policy_zone; k++) {
129 z = &NODE_DATA(nd)->node_zones[k];
130 if (z->present_pages > 0)
131 return 1;
132 }
133 }
134
135 return 0;
136 }
137
138 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
139 {
140 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
141 }
142
143 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
144 const nodemask_t *rel)
145 {
146 nodemask_t tmp;
147 nodes_fold(tmp, *orig, nodes_weight(*rel));
148 nodes_onto(*ret, tmp, *rel);
149 }
150
151 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
152 {
153 if (nodes_empty(*nodes))
154 return -EINVAL;
155 pol->v.nodes = *nodes;
156 return 0;
157 }
158
159 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
160 {
161 if (!nodes)
162 pol->v.preferred_node = -1; /* local allocation */
163 else if (nodes_empty(*nodes))
164 return -EINVAL; /* no allowed nodes */
165 else
166 pol->v.preferred_node = first_node(*nodes);
167 return 0;
168 }
169
170 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
171 {
172 if (!is_valid_nodemask(nodes))
173 return -EINVAL;
174 pol->v.nodes = *nodes;
175 return 0;
176 }
177
178 /* Create a new policy */
179 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
180 nodemask_t *nodes)
181 {
182 struct mempolicy *policy;
183 nodemask_t cpuset_context_nmask;
184 int ret;
185
186 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
187 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
188
189 if (mode == MPOL_DEFAULT) {
190 if (nodes && !nodes_empty(*nodes))
191 return ERR_PTR(-EINVAL);
192 return NULL;
193 }
194 VM_BUG_ON(!nodes);
195
196 /*
197 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
198 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
199 * All other modes require a valid pointer to a non-empty nodemask.
200 */
201 if (mode == MPOL_PREFERRED) {
202 if (nodes_empty(*nodes)) {
203 if (((flags & MPOL_F_STATIC_NODES) ||
204 (flags & MPOL_F_RELATIVE_NODES)))
205 return ERR_PTR(-EINVAL);
206 nodes = NULL; /* flag local alloc */
207 }
208 } else if (nodes_empty(*nodes))
209 return ERR_PTR(-EINVAL);
210 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
211 if (!policy)
212 return ERR_PTR(-ENOMEM);
213 atomic_set(&policy->refcnt, 1);
214 policy->mode = mode;
215 policy->flags = flags;
216
217 if (nodes) {
218 /*
219 * cpuset related setup doesn't apply to local allocation
220 */
221 cpuset_update_task_memory_state();
222 if (flags & MPOL_F_RELATIVE_NODES)
223 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
224 &cpuset_current_mems_allowed);
225 else
226 nodes_and(cpuset_context_nmask, *nodes,
227 cpuset_current_mems_allowed);
228 if (mpol_store_user_nodemask(policy))
229 policy->w.user_nodemask = *nodes;
230 else
231 policy->w.cpuset_mems_allowed =
232 cpuset_mems_allowed(current);
233 }
234
235 ret = mpol_ops[mode].create(policy,
236 nodes ? &cpuset_context_nmask : NULL);
237 if (ret < 0) {
238 kmem_cache_free(policy_cache, policy);
239 return ERR_PTR(ret);
240 }
241 return policy;
242 }
243
244 /* Slow path of a mpol destructor. */
245 void __mpol_put(struct mempolicy *p)
246 {
247 if (!atomic_dec_and_test(&p->refcnt))
248 return;
249 p->mode = MPOL_DEFAULT;
250 kmem_cache_free(policy_cache, p);
251 }
252
253 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
254 {
255 }
256
257 static void mpol_rebind_nodemask(struct mempolicy *pol,
258 const nodemask_t *nodes)
259 {
260 nodemask_t tmp;
261
262 if (pol->flags & MPOL_F_STATIC_NODES)
263 nodes_and(tmp, pol->w.user_nodemask, *nodes);
264 else if (pol->flags & MPOL_F_RELATIVE_NODES)
265 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
266 else {
267 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
268 *nodes);
269 pol->w.cpuset_mems_allowed = *nodes;
270 }
271
272 pol->v.nodes = tmp;
273 if (!node_isset(current->il_next, tmp)) {
274 current->il_next = next_node(current->il_next, tmp);
275 if (current->il_next >= MAX_NUMNODES)
276 current->il_next = first_node(tmp);
277 if (current->il_next >= MAX_NUMNODES)
278 current->il_next = numa_node_id();
279 }
280 }
281
282 static void mpol_rebind_preferred(struct mempolicy *pol,
283 const nodemask_t *nodes)
284 {
285 nodemask_t tmp;
286
287 if (pol->flags & MPOL_F_STATIC_NODES) {
288 int node = first_node(pol->w.user_nodemask);
289
290 if (node_isset(node, *nodes))
291 pol->v.preferred_node = node;
292 else
293 pol->v.preferred_node = -1;
294 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
295 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
296 pol->v.preferred_node = first_node(tmp);
297 } else if (pol->v.preferred_node != -1) {
298 pol->v.preferred_node = node_remap(pol->v.preferred_node,
299 pol->w.cpuset_mems_allowed,
300 *nodes);
301 pol->w.cpuset_mems_allowed = *nodes;
302 }
303 }
304
305 /* Migrate a policy to a different set of nodes */
306 static void mpol_rebind_policy(struct mempolicy *pol,
307 const nodemask_t *newmask)
308 {
309 if (!pol)
310 return;
311 if (!mpol_store_user_nodemask(pol) &&
312 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
313 return;
314 mpol_ops[pol->mode].rebind(pol, newmask);
315 }
316
317 /*
318 * Wrapper for mpol_rebind_policy() that just requires task
319 * pointer, and updates task mempolicy.
320 */
321
322 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
323 {
324 mpol_rebind_policy(tsk->mempolicy, new);
325 }
326
327 /*
328 * Rebind each vma in mm to new nodemask.
329 *
330 * Call holding a reference to mm. Takes mm->mmap_sem during call.
331 */
332
333 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
334 {
335 struct vm_area_struct *vma;
336
337 down_write(&mm->mmap_sem);
338 for (vma = mm->mmap; vma; vma = vma->vm_next)
339 mpol_rebind_policy(vma->vm_policy, new);
340 up_write(&mm->mmap_sem);
341 }
342
343 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
344 [MPOL_DEFAULT] = {
345 .rebind = mpol_rebind_default,
346 },
347 [MPOL_INTERLEAVE] = {
348 .create = mpol_new_interleave,
349 .rebind = mpol_rebind_nodemask,
350 },
351 [MPOL_PREFERRED] = {
352 .create = mpol_new_preferred,
353 .rebind = mpol_rebind_preferred,
354 },
355 [MPOL_BIND] = {
356 .create = mpol_new_bind,
357 .rebind = mpol_rebind_nodemask,
358 },
359 };
360
361 static void gather_stats(struct page *, void *, int pte_dirty);
362 static void migrate_page_add(struct page *page, struct list_head *pagelist,
363 unsigned long flags);
364
365 /* Scan through pages checking if pages follow certain conditions. */
366 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
367 unsigned long addr, unsigned long end,
368 const nodemask_t *nodes, unsigned long flags,
369 void *private)
370 {
371 pte_t *orig_pte;
372 pte_t *pte;
373 spinlock_t *ptl;
374
375 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
376 do {
377 struct page *page;
378 int nid;
379
380 if (!pte_present(*pte))
381 continue;
382 page = vm_normal_page(vma, addr, *pte);
383 if (!page)
384 continue;
385 /*
386 * The check for PageReserved here is important to avoid
387 * handling zero pages and other pages that may have been
388 * marked special by the system.
389 *
390 * If the PageReserved would not be checked here then f.e.
391 * the location of the zero page could have an influence
392 * on MPOL_MF_STRICT, zero pages would be counted for
393 * the per node stats, and there would be useless attempts
394 * to put zero pages on the migration list.
395 */
396 if (PageReserved(page))
397 continue;
398 nid = page_to_nid(page);
399 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
400 continue;
401
402 if (flags & MPOL_MF_STATS)
403 gather_stats(page, private, pte_dirty(*pte));
404 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
405 migrate_page_add(page, private, flags);
406 else
407 break;
408 } while (pte++, addr += PAGE_SIZE, addr != end);
409 pte_unmap_unlock(orig_pte, ptl);
410 return addr != end;
411 }
412
413 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
414 unsigned long addr, unsigned long end,
415 const nodemask_t *nodes, unsigned long flags,
416 void *private)
417 {
418 pmd_t *pmd;
419 unsigned long next;
420
421 pmd = pmd_offset(pud, addr);
422 do {
423 next = pmd_addr_end(addr, end);
424 if (pmd_none_or_clear_bad(pmd))
425 continue;
426 if (check_pte_range(vma, pmd, addr, next, nodes,
427 flags, private))
428 return -EIO;
429 } while (pmd++, addr = next, addr != end);
430 return 0;
431 }
432
433 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
434 unsigned long addr, unsigned long end,
435 const nodemask_t *nodes, unsigned long flags,
436 void *private)
437 {
438 pud_t *pud;
439 unsigned long next;
440
441 pud = pud_offset(pgd, addr);
442 do {
443 next = pud_addr_end(addr, end);
444 if (pud_none_or_clear_bad(pud))
445 continue;
446 if (check_pmd_range(vma, pud, addr, next, nodes,
447 flags, private))
448 return -EIO;
449 } while (pud++, addr = next, addr != end);
450 return 0;
451 }
452
453 static inline int check_pgd_range(struct vm_area_struct *vma,
454 unsigned long addr, unsigned long end,
455 const nodemask_t *nodes, unsigned long flags,
456 void *private)
457 {
458 pgd_t *pgd;
459 unsigned long next;
460
461 pgd = pgd_offset(vma->vm_mm, addr);
462 do {
463 next = pgd_addr_end(addr, end);
464 if (pgd_none_or_clear_bad(pgd))
465 continue;
466 if (check_pud_range(vma, pgd, addr, next, nodes,
467 flags, private))
468 return -EIO;
469 } while (pgd++, addr = next, addr != end);
470 return 0;
471 }
472
473 /*
474 * Check if all pages in a range are on a set of nodes.
475 * If pagelist != NULL then isolate pages from the LRU and
476 * put them on the pagelist.
477 */
478 static struct vm_area_struct *
479 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
480 const nodemask_t *nodes, unsigned long flags, void *private)
481 {
482 int err;
483 struct vm_area_struct *first, *vma, *prev;
484
485 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
486
487 err = migrate_prep();
488 if (err)
489 return ERR_PTR(err);
490 }
491
492 first = find_vma(mm, start);
493 if (!first)
494 return ERR_PTR(-EFAULT);
495 prev = NULL;
496 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
497 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
498 if (!vma->vm_next && vma->vm_end < end)
499 return ERR_PTR(-EFAULT);
500 if (prev && prev->vm_end < vma->vm_start)
501 return ERR_PTR(-EFAULT);
502 }
503 if (!is_vm_hugetlb_page(vma) &&
504 ((flags & MPOL_MF_STRICT) ||
505 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
506 vma_migratable(vma)))) {
507 unsigned long endvma = vma->vm_end;
508
509 if (endvma > end)
510 endvma = end;
511 if (vma->vm_start > start)
512 start = vma->vm_start;
513 err = check_pgd_range(vma, start, endvma, nodes,
514 flags, private);
515 if (err) {
516 first = ERR_PTR(err);
517 break;
518 }
519 }
520 prev = vma;
521 }
522 return first;
523 }
524
525 /* Apply policy to a single VMA */
526 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
527 {
528 int err = 0;
529 struct mempolicy *old = vma->vm_policy;
530
531 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
532 vma->vm_start, vma->vm_end, vma->vm_pgoff,
533 vma->vm_ops, vma->vm_file,
534 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
535
536 if (vma->vm_ops && vma->vm_ops->set_policy)
537 err = vma->vm_ops->set_policy(vma, new);
538 if (!err) {
539 mpol_get(new);
540 vma->vm_policy = new;
541 mpol_put(old);
542 }
543 return err;
544 }
545
546 /* Step 2: apply policy to a range and do splits. */
547 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
548 unsigned long end, struct mempolicy *new)
549 {
550 struct vm_area_struct *next;
551 int err;
552
553 err = 0;
554 for (; vma && vma->vm_start < end; vma = next) {
555 next = vma->vm_next;
556 if (vma->vm_start < start)
557 err = split_vma(vma->vm_mm, vma, start, 1);
558 if (!err && vma->vm_end > end)
559 err = split_vma(vma->vm_mm, vma, end, 0);
560 if (!err)
561 err = policy_vma(vma, new);
562 if (err)
563 break;
564 }
565 return err;
566 }
567
568 /*
569 * Update task->flags PF_MEMPOLICY bit: set iff non-default
570 * mempolicy. Allows more rapid checking of this (combined perhaps
571 * with other PF_* flag bits) on memory allocation hot code paths.
572 *
573 * If called from outside this file, the task 'p' should -only- be
574 * a newly forked child not yet visible on the task list, because
575 * manipulating the task flags of a visible task is not safe.
576 *
577 * The above limitation is why this routine has the funny name
578 * mpol_fix_fork_child_flag().
579 *
580 * It is also safe to call this with a task pointer of current,
581 * which the static wrapper mpol_set_task_struct_flag() does,
582 * for use within this file.
583 */
584
585 void mpol_fix_fork_child_flag(struct task_struct *p)
586 {
587 if (p->mempolicy)
588 p->flags |= PF_MEMPOLICY;
589 else
590 p->flags &= ~PF_MEMPOLICY;
591 }
592
593 static void mpol_set_task_struct_flag(void)
594 {
595 mpol_fix_fork_child_flag(current);
596 }
597
598 /* Set the process memory policy */
599 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
600 nodemask_t *nodes)
601 {
602 struct mempolicy *new;
603 struct mm_struct *mm = current->mm;
604
605 new = mpol_new(mode, flags, nodes);
606 if (IS_ERR(new))
607 return PTR_ERR(new);
608
609 /*
610 * prevent changing our mempolicy while show_numa_maps()
611 * is using it.
612 * Note: do_set_mempolicy() can be called at init time
613 * with no 'mm'.
614 */
615 if (mm)
616 down_write(&mm->mmap_sem);
617 mpol_put(current->mempolicy);
618 current->mempolicy = new;
619 mpol_set_task_struct_flag();
620 if (new && new->mode == MPOL_INTERLEAVE &&
621 nodes_weight(new->v.nodes))
622 current->il_next = first_node(new->v.nodes);
623 if (mm)
624 up_write(&mm->mmap_sem);
625
626 return 0;
627 }
628
629 /* Fill a zone bitmap for a policy */
630 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
631 {
632 nodes_clear(*nodes);
633 switch (p->mode) {
634 case MPOL_DEFAULT:
635 break;
636 case MPOL_BIND:
637 /* Fall through */
638 case MPOL_INTERLEAVE:
639 *nodes = p->v.nodes;
640 break;
641 case MPOL_PREFERRED:
642 /* or use current node instead of memory_map? */
643 if (p->v.preferred_node < 0)
644 *nodes = node_states[N_HIGH_MEMORY];
645 else
646 node_set(p->v.preferred_node, *nodes);
647 break;
648 default:
649 BUG();
650 }
651 }
652
653 static int lookup_node(struct mm_struct *mm, unsigned long addr)
654 {
655 struct page *p;
656 int err;
657
658 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
659 if (err >= 0) {
660 err = page_to_nid(p);
661 put_page(p);
662 }
663 return err;
664 }
665
666 /* Retrieve NUMA policy */
667 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
668 unsigned long addr, unsigned long flags)
669 {
670 int err;
671 struct mm_struct *mm = current->mm;
672 struct vm_area_struct *vma = NULL;
673 struct mempolicy *pol = current->mempolicy;
674
675 cpuset_update_task_memory_state();
676 if (flags &
677 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
678 return -EINVAL;
679
680 if (flags & MPOL_F_MEMS_ALLOWED) {
681 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
682 return -EINVAL;
683 *policy = 0; /* just so it's initialized */
684 *nmask = cpuset_current_mems_allowed;
685 return 0;
686 }
687
688 if (flags & MPOL_F_ADDR) {
689 down_read(&mm->mmap_sem);
690 vma = find_vma_intersection(mm, addr, addr+1);
691 if (!vma) {
692 up_read(&mm->mmap_sem);
693 return -EFAULT;
694 }
695 if (vma->vm_ops && vma->vm_ops->get_policy)
696 pol = vma->vm_ops->get_policy(vma, addr);
697 else
698 pol = vma->vm_policy;
699 } else if (addr)
700 return -EINVAL;
701
702 if (!pol)
703 pol = &default_policy;
704
705 if (flags & MPOL_F_NODE) {
706 if (flags & MPOL_F_ADDR) {
707 err = lookup_node(mm, addr);
708 if (err < 0)
709 goto out;
710 *policy = err;
711 } else if (pol == current->mempolicy &&
712 pol->mode == MPOL_INTERLEAVE) {
713 *policy = current->il_next;
714 } else {
715 err = -EINVAL;
716 goto out;
717 }
718 } else
719 *policy = pol->mode | pol->flags;
720
721 if (vma) {
722 up_read(&current->mm->mmap_sem);
723 vma = NULL;
724 }
725
726 err = 0;
727 if (nmask)
728 get_zonemask(pol, nmask);
729
730 out:
731 mpol_cond_put(pol);
732 if (vma)
733 up_read(&current->mm->mmap_sem);
734 return err;
735 }
736
737 #ifdef CONFIG_MIGRATION
738 /*
739 * page migration
740 */
741 static void migrate_page_add(struct page *page, struct list_head *pagelist,
742 unsigned long flags)
743 {
744 /*
745 * Avoid migrating a page that is shared with others.
746 */
747 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
748 isolate_lru_page(page, pagelist);
749 }
750
751 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
752 {
753 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
754 }
755
756 /*
757 * Migrate pages from one node to a target node.
758 * Returns error or the number of pages not migrated.
759 */
760 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
761 int flags)
762 {
763 nodemask_t nmask;
764 LIST_HEAD(pagelist);
765 int err = 0;
766
767 nodes_clear(nmask);
768 node_set(source, nmask);
769
770 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
771 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
772
773 if (!list_empty(&pagelist))
774 err = migrate_pages(&pagelist, new_node_page, dest);
775
776 return err;
777 }
778
779 /*
780 * Move pages between the two nodesets so as to preserve the physical
781 * layout as much as possible.
782 *
783 * Returns the number of page that could not be moved.
784 */
785 int do_migrate_pages(struct mm_struct *mm,
786 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
787 {
788 LIST_HEAD(pagelist);
789 int busy = 0;
790 int err = 0;
791 nodemask_t tmp;
792
793 down_read(&mm->mmap_sem);
794
795 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
796 if (err)
797 goto out;
798
799 /*
800 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
801 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
802 * bit in 'tmp', and return that <source, dest> pair for migration.
803 * The pair of nodemasks 'to' and 'from' define the map.
804 *
805 * If no pair of bits is found that way, fallback to picking some
806 * pair of 'source' and 'dest' bits that are not the same. If the
807 * 'source' and 'dest' bits are the same, this represents a node
808 * that will be migrating to itself, so no pages need move.
809 *
810 * If no bits are left in 'tmp', or if all remaining bits left
811 * in 'tmp' correspond to the same bit in 'to', return false
812 * (nothing left to migrate).
813 *
814 * This lets us pick a pair of nodes to migrate between, such that
815 * if possible the dest node is not already occupied by some other
816 * source node, minimizing the risk of overloading the memory on a
817 * node that would happen if we migrated incoming memory to a node
818 * before migrating outgoing memory source that same node.
819 *
820 * A single scan of tmp is sufficient. As we go, we remember the
821 * most recent <s, d> pair that moved (s != d). If we find a pair
822 * that not only moved, but what's better, moved to an empty slot
823 * (d is not set in tmp), then we break out then, with that pair.
824 * Otherwise when we finish scannng from_tmp, we at least have the
825 * most recent <s, d> pair that moved. If we get all the way through
826 * the scan of tmp without finding any node that moved, much less
827 * moved to an empty node, then there is nothing left worth migrating.
828 */
829
830 tmp = *from_nodes;
831 while (!nodes_empty(tmp)) {
832 int s,d;
833 int source = -1;
834 int dest = 0;
835
836 for_each_node_mask(s, tmp) {
837 d = node_remap(s, *from_nodes, *to_nodes);
838 if (s == d)
839 continue;
840
841 source = s; /* Node moved. Memorize */
842 dest = d;
843
844 /* dest not in remaining from nodes? */
845 if (!node_isset(dest, tmp))
846 break;
847 }
848 if (source == -1)
849 break;
850
851 node_clear(source, tmp);
852 err = migrate_to_node(mm, source, dest, flags);
853 if (err > 0)
854 busy += err;
855 if (err < 0)
856 break;
857 }
858 out:
859 up_read(&mm->mmap_sem);
860 if (err < 0)
861 return err;
862 return busy;
863
864 }
865
866 /*
867 * Allocate a new page for page migration based on vma policy.
868 * Start assuming that page is mapped by vma pointed to by @private.
869 * Search forward from there, if not. N.B., this assumes that the
870 * list of pages handed to migrate_pages()--which is how we get here--
871 * is in virtual address order.
872 */
873 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
874 {
875 struct vm_area_struct *vma = (struct vm_area_struct *)private;
876 unsigned long uninitialized_var(address);
877
878 while (vma) {
879 address = page_address_in_vma(page, vma);
880 if (address != -EFAULT)
881 break;
882 vma = vma->vm_next;
883 }
884
885 /*
886 * if !vma, alloc_page_vma() will use task or system default policy
887 */
888 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
889 }
890 #else
891
892 static void migrate_page_add(struct page *page, struct list_head *pagelist,
893 unsigned long flags)
894 {
895 }
896
897 int do_migrate_pages(struct mm_struct *mm,
898 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
899 {
900 return -ENOSYS;
901 }
902
903 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
904 {
905 return NULL;
906 }
907 #endif
908
909 static long do_mbind(unsigned long start, unsigned long len,
910 unsigned short mode, unsigned short mode_flags,
911 nodemask_t *nmask, unsigned long flags)
912 {
913 struct vm_area_struct *vma;
914 struct mm_struct *mm = current->mm;
915 struct mempolicy *new;
916 unsigned long end;
917 int err;
918 LIST_HEAD(pagelist);
919
920 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
921 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
922 return -EINVAL;
923 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
924 return -EPERM;
925
926 if (start & ~PAGE_MASK)
927 return -EINVAL;
928
929 if (mode == MPOL_DEFAULT)
930 flags &= ~MPOL_MF_STRICT;
931
932 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
933 end = start + len;
934
935 if (end < start)
936 return -EINVAL;
937 if (end == start)
938 return 0;
939
940 new = mpol_new(mode, mode_flags, nmask);
941 if (IS_ERR(new))
942 return PTR_ERR(new);
943
944 /*
945 * If we are using the default policy then operation
946 * on discontinuous address spaces is okay after all
947 */
948 if (!new)
949 flags |= MPOL_MF_DISCONTIG_OK;
950
951 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
952 start, start + len, mode, mode_flags,
953 nmask ? nodes_addr(*nmask)[0] : -1);
954
955 down_write(&mm->mmap_sem);
956 vma = check_range(mm, start, end, nmask,
957 flags | MPOL_MF_INVERT, &pagelist);
958
959 err = PTR_ERR(vma);
960 if (!IS_ERR(vma)) {
961 int nr_failed = 0;
962
963 err = mbind_range(vma, start, end, new);
964
965 if (!list_empty(&pagelist))
966 nr_failed = migrate_pages(&pagelist, new_vma_page,
967 (unsigned long)vma);
968
969 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
970 err = -EIO;
971 }
972
973 up_write(&mm->mmap_sem);
974 mpol_put(new);
975 return err;
976 }
977
978 /*
979 * User space interface with variable sized bitmaps for nodelists.
980 */
981
982 /* Copy a node mask from user space. */
983 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
984 unsigned long maxnode)
985 {
986 unsigned long k;
987 unsigned long nlongs;
988 unsigned long endmask;
989
990 --maxnode;
991 nodes_clear(*nodes);
992 if (maxnode == 0 || !nmask)
993 return 0;
994 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
995 return -EINVAL;
996
997 nlongs = BITS_TO_LONGS(maxnode);
998 if ((maxnode % BITS_PER_LONG) == 0)
999 endmask = ~0UL;
1000 else
1001 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1002
1003 /* When the user specified more nodes than supported just check
1004 if the non supported part is all zero. */
1005 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1006 if (nlongs > PAGE_SIZE/sizeof(long))
1007 return -EINVAL;
1008 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1009 unsigned long t;
1010 if (get_user(t, nmask + k))
1011 return -EFAULT;
1012 if (k == nlongs - 1) {
1013 if (t & endmask)
1014 return -EINVAL;
1015 } else if (t)
1016 return -EINVAL;
1017 }
1018 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1019 endmask = ~0UL;
1020 }
1021
1022 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1023 return -EFAULT;
1024 nodes_addr(*nodes)[nlongs-1] &= endmask;
1025 return 0;
1026 }
1027
1028 /* Copy a kernel node mask to user space */
1029 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1030 nodemask_t *nodes)
1031 {
1032 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1033 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1034
1035 if (copy > nbytes) {
1036 if (copy > PAGE_SIZE)
1037 return -EINVAL;
1038 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1039 return -EFAULT;
1040 copy = nbytes;
1041 }
1042 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1043 }
1044
1045 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1046 unsigned long mode,
1047 unsigned long __user *nmask, unsigned long maxnode,
1048 unsigned flags)
1049 {
1050 nodemask_t nodes;
1051 int err;
1052 unsigned short mode_flags;
1053
1054 mode_flags = mode & MPOL_MODE_FLAGS;
1055 mode &= ~MPOL_MODE_FLAGS;
1056 if (mode >= MPOL_MAX)
1057 return -EINVAL;
1058 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1059 (mode_flags & MPOL_F_RELATIVE_NODES))
1060 return -EINVAL;
1061 err = get_nodes(&nodes, nmask, maxnode);
1062 if (err)
1063 return err;
1064 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1065 }
1066
1067 /* Set the process memory policy */
1068 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1069 unsigned long maxnode)
1070 {
1071 int err;
1072 nodemask_t nodes;
1073 unsigned short flags;
1074
1075 flags = mode & MPOL_MODE_FLAGS;
1076 mode &= ~MPOL_MODE_FLAGS;
1077 if ((unsigned int)mode >= MPOL_MAX)
1078 return -EINVAL;
1079 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1080 return -EINVAL;
1081 err = get_nodes(&nodes, nmask, maxnode);
1082 if (err)
1083 return err;
1084 return do_set_mempolicy(mode, flags, &nodes);
1085 }
1086
1087 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1088 const unsigned long __user *old_nodes,
1089 const unsigned long __user *new_nodes)
1090 {
1091 struct mm_struct *mm;
1092 struct task_struct *task;
1093 nodemask_t old;
1094 nodemask_t new;
1095 nodemask_t task_nodes;
1096 int err;
1097
1098 err = get_nodes(&old, old_nodes, maxnode);
1099 if (err)
1100 return err;
1101
1102 err = get_nodes(&new, new_nodes, maxnode);
1103 if (err)
1104 return err;
1105
1106 /* Find the mm_struct */
1107 read_lock(&tasklist_lock);
1108 task = pid ? find_task_by_vpid(pid) : current;
1109 if (!task) {
1110 read_unlock(&tasklist_lock);
1111 return -ESRCH;
1112 }
1113 mm = get_task_mm(task);
1114 read_unlock(&tasklist_lock);
1115
1116 if (!mm)
1117 return -EINVAL;
1118
1119 /*
1120 * Check if this process has the right to modify the specified
1121 * process. The right exists if the process has administrative
1122 * capabilities, superuser privileges or the same
1123 * userid as the target process.
1124 */
1125 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1126 (current->uid != task->suid) && (current->uid != task->uid) &&
1127 !capable(CAP_SYS_NICE)) {
1128 err = -EPERM;
1129 goto out;
1130 }
1131
1132 task_nodes = cpuset_mems_allowed(task);
1133 /* Is the user allowed to access the target nodes? */
1134 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1135 err = -EPERM;
1136 goto out;
1137 }
1138
1139 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1140 err = -EINVAL;
1141 goto out;
1142 }
1143
1144 err = security_task_movememory(task);
1145 if (err)
1146 goto out;
1147
1148 err = do_migrate_pages(mm, &old, &new,
1149 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1150 out:
1151 mmput(mm);
1152 return err;
1153 }
1154
1155
1156 /* Retrieve NUMA policy */
1157 asmlinkage long sys_get_mempolicy(int __user *policy,
1158 unsigned long __user *nmask,
1159 unsigned long maxnode,
1160 unsigned long addr, unsigned long flags)
1161 {
1162 int err;
1163 int uninitialized_var(pval);
1164 nodemask_t nodes;
1165
1166 if (nmask != NULL && maxnode < MAX_NUMNODES)
1167 return -EINVAL;
1168
1169 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1170
1171 if (err)
1172 return err;
1173
1174 if (policy && put_user(pval, policy))
1175 return -EFAULT;
1176
1177 if (nmask)
1178 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1179
1180 return err;
1181 }
1182
1183 #ifdef CONFIG_COMPAT
1184
1185 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1186 compat_ulong_t __user *nmask,
1187 compat_ulong_t maxnode,
1188 compat_ulong_t addr, compat_ulong_t flags)
1189 {
1190 long err;
1191 unsigned long __user *nm = NULL;
1192 unsigned long nr_bits, alloc_size;
1193 DECLARE_BITMAP(bm, MAX_NUMNODES);
1194
1195 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1196 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1197
1198 if (nmask)
1199 nm = compat_alloc_user_space(alloc_size);
1200
1201 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1202
1203 if (!err && nmask) {
1204 err = copy_from_user(bm, nm, alloc_size);
1205 /* ensure entire bitmap is zeroed */
1206 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1207 err |= compat_put_bitmap(nmask, bm, nr_bits);
1208 }
1209
1210 return err;
1211 }
1212
1213 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1214 compat_ulong_t maxnode)
1215 {
1216 long err = 0;
1217 unsigned long __user *nm = NULL;
1218 unsigned long nr_bits, alloc_size;
1219 DECLARE_BITMAP(bm, MAX_NUMNODES);
1220
1221 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1222 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1223
1224 if (nmask) {
1225 err = compat_get_bitmap(bm, nmask, nr_bits);
1226 nm = compat_alloc_user_space(alloc_size);
1227 err |= copy_to_user(nm, bm, alloc_size);
1228 }
1229
1230 if (err)
1231 return -EFAULT;
1232
1233 return sys_set_mempolicy(mode, nm, nr_bits+1);
1234 }
1235
1236 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1237 compat_ulong_t mode, compat_ulong_t __user *nmask,
1238 compat_ulong_t maxnode, compat_ulong_t flags)
1239 {
1240 long err = 0;
1241 unsigned long __user *nm = NULL;
1242 unsigned long nr_bits, alloc_size;
1243 nodemask_t bm;
1244
1245 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1246 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1247
1248 if (nmask) {
1249 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1250 nm = compat_alloc_user_space(alloc_size);
1251 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1252 }
1253
1254 if (err)
1255 return -EFAULT;
1256
1257 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1258 }
1259
1260 #endif
1261
1262 /*
1263 * get_vma_policy(@task, @vma, @addr)
1264 * @task - task for fallback if vma policy == default
1265 * @vma - virtual memory area whose policy is sought
1266 * @addr - address in @vma for shared policy lookup
1267 *
1268 * Returns effective policy for a VMA at specified address.
1269 * Falls back to @task or system default policy, as necessary.
1270 * Current or other task's task mempolicy and non-shared vma policies
1271 * are protected by the task's mmap_sem, which must be held for read by
1272 * the caller.
1273 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1274 * count--added by the get_policy() vm_op, as appropriate--to protect against
1275 * freeing by another task. It is the caller's responsibility to free the
1276 * extra reference for shared policies.
1277 */
1278 static struct mempolicy *get_vma_policy(struct task_struct *task,
1279 struct vm_area_struct *vma, unsigned long addr)
1280 {
1281 struct mempolicy *pol = task->mempolicy;
1282
1283 if (vma) {
1284 if (vma->vm_ops && vma->vm_ops->get_policy) {
1285 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1286 addr);
1287 if (vpol)
1288 pol = vpol;
1289 } else if (vma->vm_policy &&
1290 vma->vm_policy->mode != MPOL_DEFAULT)
1291 pol = vma->vm_policy;
1292 }
1293 if (!pol)
1294 pol = &default_policy;
1295 return pol;
1296 }
1297
1298 /*
1299 * Return a nodemask representing a mempolicy for filtering nodes for
1300 * page allocation
1301 */
1302 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1303 {
1304 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1305 if (unlikely(policy->mode == MPOL_BIND) &&
1306 gfp_zone(gfp) >= policy_zone &&
1307 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1308 return &policy->v.nodes;
1309
1310 return NULL;
1311 }
1312
1313 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1314 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1315 {
1316 int nd;
1317
1318 switch (policy->mode) {
1319 case MPOL_PREFERRED:
1320 nd = policy->v.preferred_node;
1321 if (nd < 0)
1322 nd = numa_node_id();
1323 break;
1324 case MPOL_BIND:
1325 /*
1326 * Normally, MPOL_BIND allocations are node-local within the
1327 * allowed nodemask. However, if __GFP_THISNODE is set and the
1328 * current node is part of the mask, we use the zonelist for
1329 * the first node in the mask instead.
1330 */
1331 nd = numa_node_id();
1332 if (unlikely(gfp & __GFP_THISNODE) &&
1333 unlikely(!node_isset(nd, policy->v.nodes)))
1334 nd = first_node(policy->v.nodes);
1335 break;
1336 case MPOL_INTERLEAVE: /* should not happen */
1337 case MPOL_DEFAULT:
1338 nd = numa_node_id();
1339 break;
1340 default:
1341 nd = 0;
1342 BUG();
1343 }
1344 return node_zonelist(nd, gfp);
1345 }
1346
1347 /* Do dynamic interleaving for a process */
1348 static unsigned interleave_nodes(struct mempolicy *policy)
1349 {
1350 unsigned nid, next;
1351 struct task_struct *me = current;
1352
1353 nid = me->il_next;
1354 next = next_node(nid, policy->v.nodes);
1355 if (next >= MAX_NUMNODES)
1356 next = first_node(policy->v.nodes);
1357 if (next < MAX_NUMNODES)
1358 me->il_next = next;
1359 return nid;
1360 }
1361
1362 /*
1363 * Depending on the memory policy provide a node from which to allocate the
1364 * next slab entry.
1365 * @policy must be protected by freeing by the caller. If @policy is
1366 * the current task's mempolicy, this protection is implicit, as only the
1367 * task can change it's policy. The system default policy requires no
1368 * such protection.
1369 */
1370 unsigned slab_node(struct mempolicy *policy)
1371 {
1372 unsigned short pol = policy ? policy->mode : MPOL_DEFAULT;
1373
1374 switch (pol) {
1375 case MPOL_INTERLEAVE:
1376 return interleave_nodes(policy);
1377
1378 case MPOL_BIND: {
1379 /*
1380 * Follow bind policy behavior and start allocation at the
1381 * first node.
1382 */
1383 struct zonelist *zonelist;
1384 struct zone *zone;
1385 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1386 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1387 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1388 &policy->v.nodes,
1389 &zone);
1390 return zone->node;
1391 }
1392
1393 case MPOL_PREFERRED:
1394 if (policy->v.preferred_node >= 0)
1395 return policy->v.preferred_node;
1396 /* Fall through */
1397
1398 default:
1399 return numa_node_id();
1400 }
1401 }
1402
1403 /* Do static interleaving for a VMA with known offset. */
1404 static unsigned offset_il_node(struct mempolicy *pol,
1405 struct vm_area_struct *vma, unsigned long off)
1406 {
1407 unsigned nnodes = nodes_weight(pol->v.nodes);
1408 unsigned target;
1409 int c;
1410 int nid = -1;
1411
1412 if (!nnodes)
1413 return numa_node_id();
1414 target = (unsigned int)off % nnodes;
1415 c = 0;
1416 do {
1417 nid = next_node(nid, pol->v.nodes);
1418 c++;
1419 } while (c <= target);
1420 return nid;
1421 }
1422
1423 /* Determine a node number for interleave */
1424 static inline unsigned interleave_nid(struct mempolicy *pol,
1425 struct vm_area_struct *vma, unsigned long addr, int shift)
1426 {
1427 if (vma) {
1428 unsigned long off;
1429
1430 /*
1431 * for small pages, there is no difference between
1432 * shift and PAGE_SHIFT, so the bit-shift is safe.
1433 * for huge pages, since vm_pgoff is in units of small
1434 * pages, we need to shift off the always 0 bits to get
1435 * a useful offset.
1436 */
1437 BUG_ON(shift < PAGE_SHIFT);
1438 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1439 off += (addr - vma->vm_start) >> shift;
1440 return offset_il_node(pol, vma, off);
1441 } else
1442 return interleave_nodes(pol);
1443 }
1444
1445 #ifdef CONFIG_HUGETLBFS
1446 /*
1447 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1448 * @vma = virtual memory area whose policy is sought
1449 * @addr = address in @vma for shared policy lookup and interleave policy
1450 * @gfp_flags = for requested zone
1451 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1452 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1453 *
1454 * Returns a zonelist suitable for a huge page allocation and a pointer
1455 * to the struct mempolicy for conditional unref after allocation.
1456 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1457 * @nodemask for filtering the zonelist.
1458 */
1459 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1460 gfp_t gfp_flags, struct mempolicy **mpol,
1461 nodemask_t **nodemask)
1462 {
1463 struct zonelist *zl;
1464
1465 *mpol = get_vma_policy(current, vma, addr);
1466 *nodemask = NULL; /* assume !MPOL_BIND */
1467
1468 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1469 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1470 HPAGE_SHIFT), gfp_flags);
1471 } else {
1472 zl = policy_zonelist(gfp_flags, *mpol);
1473 if ((*mpol)->mode == MPOL_BIND)
1474 *nodemask = &(*mpol)->v.nodes;
1475 }
1476 return zl;
1477 }
1478 #endif
1479
1480 /* Allocate a page in interleaved policy.
1481 Own path because it needs to do special accounting. */
1482 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1483 unsigned nid)
1484 {
1485 struct zonelist *zl;
1486 struct page *page;
1487
1488 zl = node_zonelist(nid, gfp);
1489 page = __alloc_pages(gfp, order, zl);
1490 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1491 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1492 return page;
1493 }
1494
1495 /**
1496 * alloc_page_vma - Allocate a page for a VMA.
1497 *
1498 * @gfp:
1499 * %GFP_USER user allocation.
1500 * %GFP_KERNEL kernel allocations,
1501 * %GFP_HIGHMEM highmem/user allocations,
1502 * %GFP_FS allocation should not call back into a file system.
1503 * %GFP_ATOMIC don't sleep.
1504 *
1505 * @vma: Pointer to VMA or NULL if not available.
1506 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1507 *
1508 * This function allocates a page from the kernel page pool and applies
1509 * a NUMA policy associated with the VMA or the current process.
1510 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1511 * mm_struct of the VMA to prevent it from going away. Should be used for
1512 * all allocations for pages that will be mapped into
1513 * user space. Returns NULL when no page can be allocated.
1514 *
1515 * Should be called with the mm_sem of the vma hold.
1516 */
1517 struct page *
1518 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1519 {
1520 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1521 struct zonelist *zl;
1522
1523 cpuset_update_task_memory_state();
1524
1525 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1526 unsigned nid;
1527
1528 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1529 mpol_cond_put(pol);
1530 return alloc_page_interleave(gfp, 0, nid);
1531 }
1532 zl = policy_zonelist(gfp, pol);
1533 if (unlikely(mpol_needs_cond_ref(pol))) {
1534 /*
1535 * slow path: ref counted shared policy
1536 */
1537 struct page *page = __alloc_pages_nodemask(gfp, 0,
1538 zl, policy_nodemask(gfp, pol));
1539 __mpol_put(pol);
1540 return page;
1541 }
1542 /*
1543 * fast path: default or task policy
1544 */
1545 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1546 }
1547
1548 /**
1549 * alloc_pages_current - Allocate pages.
1550 *
1551 * @gfp:
1552 * %GFP_USER user allocation,
1553 * %GFP_KERNEL kernel allocation,
1554 * %GFP_HIGHMEM highmem allocation,
1555 * %GFP_FS don't call back into a file system.
1556 * %GFP_ATOMIC don't sleep.
1557 * @order: Power of two of allocation size in pages. 0 is a single page.
1558 *
1559 * Allocate a page from the kernel page pool. When not in
1560 * interrupt context and apply the current process NUMA policy.
1561 * Returns NULL when no page can be allocated.
1562 *
1563 * Don't call cpuset_update_task_memory_state() unless
1564 * 1) it's ok to take cpuset_sem (can WAIT), and
1565 * 2) allocating for current task (not interrupt).
1566 */
1567 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1568 {
1569 struct mempolicy *pol = current->mempolicy;
1570
1571 if ((gfp & __GFP_WAIT) && !in_interrupt())
1572 cpuset_update_task_memory_state();
1573 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1574 pol = &default_policy;
1575
1576 /*
1577 * No reference counting needed for current->mempolicy
1578 * nor system default_policy
1579 */
1580 if (pol->mode == MPOL_INTERLEAVE)
1581 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1582 return __alloc_pages_nodemask(gfp, order,
1583 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1584 }
1585 EXPORT_SYMBOL(alloc_pages_current);
1586
1587 /*
1588 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1589 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1590 * with the mems_allowed returned by cpuset_mems_allowed(). This
1591 * keeps mempolicies cpuset relative after its cpuset moves. See
1592 * further kernel/cpuset.c update_nodemask().
1593 */
1594
1595 /* Slow path of a mempolicy duplicate */
1596 struct mempolicy *__mpol_dup(struct mempolicy *old)
1597 {
1598 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1599
1600 if (!new)
1601 return ERR_PTR(-ENOMEM);
1602 if (current_cpuset_is_being_rebound()) {
1603 nodemask_t mems = cpuset_mems_allowed(current);
1604 mpol_rebind_policy(old, &mems);
1605 }
1606 *new = *old;
1607 atomic_set(&new->refcnt, 1);
1608 return new;
1609 }
1610
1611 /*
1612 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1613 * eliminate the * MPOL_F_* flags that require conditional ref and
1614 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1615 * after return. Use the returned value.
1616 *
1617 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1618 * policy lookup, even if the policy needs/has extra ref on lookup.
1619 * shmem_readahead needs this.
1620 */
1621 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1622 struct mempolicy *frompol)
1623 {
1624 if (!mpol_needs_cond_ref(frompol))
1625 return frompol;
1626
1627 *tompol = *frompol;
1628 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1629 __mpol_put(frompol);
1630 return tompol;
1631 }
1632
1633 static int mpol_match_intent(const struct mempolicy *a,
1634 const struct mempolicy *b)
1635 {
1636 if (a->flags != b->flags)
1637 return 0;
1638 if (!mpol_store_user_nodemask(a))
1639 return 1;
1640 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1641 }
1642
1643 /* Slow path of a mempolicy comparison */
1644 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1645 {
1646 if (!a || !b)
1647 return 0;
1648 if (a->mode != b->mode)
1649 return 0;
1650 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1651 return 0;
1652 switch (a->mode) {
1653 case MPOL_DEFAULT:
1654 return 1;
1655 case MPOL_BIND:
1656 /* Fall through */
1657 case MPOL_INTERLEAVE:
1658 return nodes_equal(a->v.nodes, b->v.nodes);
1659 case MPOL_PREFERRED:
1660 return a->v.preferred_node == b->v.preferred_node;
1661 default:
1662 BUG();
1663 return 0;
1664 }
1665 }
1666
1667 /*
1668 * Shared memory backing store policy support.
1669 *
1670 * Remember policies even when nobody has shared memory mapped.
1671 * The policies are kept in Red-Black tree linked from the inode.
1672 * They are protected by the sp->lock spinlock, which should be held
1673 * for any accesses to the tree.
1674 */
1675
1676 /* lookup first element intersecting start-end */
1677 /* Caller holds sp->lock */
1678 static struct sp_node *
1679 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1680 {
1681 struct rb_node *n = sp->root.rb_node;
1682
1683 while (n) {
1684 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1685
1686 if (start >= p->end)
1687 n = n->rb_right;
1688 else if (end <= p->start)
1689 n = n->rb_left;
1690 else
1691 break;
1692 }
1693 if (!n)
1694 return NULL;
1695 for (;;) {
1696 struct sp_node *w = NULL;
1697 struct rb_node *prev = rb_prev(n);
1698 if (!prev)
1699 break;
1700 w = rb_entry(prev, struct sp_node, nd);
1701 if (w->end <= start)
1702 break;
1703 n = prev;
1704 }
1705 return rb_entry(n, struct sp_node, nd);
1706 }
1707
1708 /* Insert a new shared policy into the list. */
1709 /* Caller holds sp->lock */
1710 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1711 {
1712 struct rb_node **p = &sp->root.rb_node;
1713 struct rb_node *parent = NULL;
1714 struct sp_node *nd;
1715
1716 while (*p) {
1717 parent = *p;
1718 nd = rb_entry(parent, struct sp_node, nd);
1719 if (new->start < nd->start)
1720 p = &(*p)->rb_left;
1721 else if (new->end > nd->end)
1722 p = &(*p)->rb_right;
1723 else
1724 BUG();
1725 }
1726 rb_link_node(&new->nd, parent, p);
1727 rb_insert_color(&new->nd, &sp->root);
1728 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1729 new->policy ? new->policy->mode : 0);
1730 }
1731
1732 /* Find shared policy intersecting idx */
1733 struct mempolicy *
1734 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1735 {
1736 struct mempolicy *pol = NULL;
1737 struct sp_node *sn;
1738
1739 if (!sp->root.rb_node)
1740 return NULL;
1741 spin_lock(&sp->lock);
1742 sn = sp_lookup(sp, idx, idx+1);
1743 if (sn) {
1744 mpol_get(sn->policy);
1745 pol = sn->policy;
1746 }
1747 spin_unlock(&sp->lock);
1748 return pol;
1749 }
1750
1751 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1752 {
1753 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1754 rb_erase(&n->nd, &sp->root);
1755 mpol_put(n->policy);
1756 kmem_cache_free(sn_cache, n);
1757 }
1758
1759 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1760 struct mempolicy *pol)
1761 {
1762 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1763
1764 if (!n)
1765 return NULL;
1766 n->start = start;
1767 n->end = end;
1768 mpol_get(pol);
1769 pol->flags |= MPOL_F_SHARED; /* for unref */
1770 n->policy = pol;
1771 return n;
1772 }
1773
1774 /* Replace a policy range. */
1775 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1776 unsigned long end, struct sp_node *new)
1777 {
1778 struct sp_node *n, *new2 = NULL;
1779
1780 restart:
1781 spin_lock(&sp->lock);
1782 n = sp_lookup(sp, start, end);
1783 /* Take care of old policies in the same range. */
1784 while (n && n->start < end) {
1785 struct rb_node *next = rb_next(&n->nd);
1786 if (n->start >= start) {
1787 if (n->end <= end)
1788 sp_delete(sp, n);
1789 else
1790 n->start = end;
1791 } else {
1792 /* Old policy spanning whole new range. */
1793 if (n->end > end) {
1794 if (!new2) {
1795 spin_unlock(&sp->lock);
1796 new2 = sp_alloc(end, n->end, n->policy);
1797 if (!new2)
1798 return -ENOMEM;
1799 goto restart;
1800 }
1801 n->end = start;
1802 sp_insert(sp, new2);
1803 new2 = NULL;
1804 break;
1805 } else
1806 n->end = start;
1807 }
1808 if (!next)
1809 break;
1810 n = rb_entry(next, struct sp_node, nd);
1811 }
1812 if (new)
1813 sp_insert(sp, new);
1814 spin_unlock(&sp->lock);
1815 if (new2) {
1816 mpol_put(new2->policy);
1817 kmem_cache_free(sn_cache, new2);
1818 }
1819 return 0;
1820 }
1821
1822 void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1823 unsigned short flags, nodemask_t *policy_nodes)
1824 {
1825 info->root = RB_ROOT;
1826 spin_lock_init(&info->lock);
1827
1828 if (policy != MPOL_DEFAULT) {
1829 struct mempolicy *newpol;
1830
1831 /* Falls back to MPOL_DEFAULT on any error */
1832 newpol = mpol_new(policy, flags, policy_nodes);
1833 if (!IS_ERR(newpol)) {
1834 /* Create pseudo-vma that contains just the policy */
1835 struct vm_area_struct pvma;
1836
1837 memset(&pvma, 0, sizeof(struct vm_area_struct));
1838 /* Policy covers entire file */
1839 pvma.vm_end = TASK_SIZE;
1840 mpol_set_shared_policy(info, &pvma, newpol);
1841 mpol_put(newpol);
1842 }
1843 }
1844 }
1845
1846 int mpol_set_shared_policy(struct shared_policy *info,
1847 struct vm_area_struct *vma, struct mempolicy *npol)
1848 {
1849 int err;
1850 struct sp_node *new = NULL;
1851 unsigned long sz = vma_pages(vma);
1852
1853 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1854 vma->vm_pgoff,
1855 sz, npol ? npol->mode : -1,
1856 npol ? npol->flags : -1,
1857 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1858
1859 if (npol) {
1860 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1861 if (!new)
1862 return -ENOMEM;
1863 }
1864 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1865 if (err && new)
1866 kmem_cache_free(sn_cache, new);
1867 return err;
1868 }
1869
1870 /* Free a backing policy store on inode delete. */
1871 void mpol_free_shared_policy(struct shared_policy *p)
1872 {
1873 struct sp_node *n;
1874 struct rb_node *next;
1875
1876 if (!p->root.rb_node)
1877 return;
1878 spin_lock(&p->lock);
1879 next = rb_first(&p->root);
1880 while (next) {
1881 n = rb_entry(next, struct sp_node, nd);
1882 next = rb_next(&n->nd);
1883 rb_erase(&n->nd, &p->root);
1884 mpol_put(n->policy);
1885 kmem_cache_free(sn_cache, n);
1886 }
1887 spin_unlock(&p->lock);
1888 }
1889
1890 /* assumes fs == KERNEL_DS */
1891 void __init numa_policy_init(void)
1892 {
1893 nodemask_t interleave_nodes;
1894 unsigned long largest = 0;
1895 int nid, prefer = 0;
1896
1897 policy_cache = kmem_cache_create("numa_policy",
1898 sizeof(struct mempolicy),
1899 0, SLAB_PANIC, NULL);
1900
1901 sn_cache = kmem_cache_create("shared_policy_node",
1902 sizeof(struct sp_node),
1903 0, SLAB_PANIC, NULL);
1904
1905 /*
1906 * Set interleaving policy for system init. Interleaving is only
1907 * enabled across suitably sized nodes (default is >= 16MB), or
1908 * fall back to the largest node if they're all smaller.
1909 */
1910 nodes_clear(interleave_nodes);
1911 for_each_node_state(nid, N_HIGH_MEMORY) {
1912 unsigned long total_pages = node_present_pages(nid);
1913
1914 /* Preserve the largest node */
1915 if (largest < total_pages) {
1916 largest = total_pages;
1917 prefer = nid;
1918 }
1919
1920 /* Interleave this node? */
1921 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1922 node_set(nid, interleave_nodes);
1923 }
1924
1925 /* All too small, use the largest */
1926 if (unlikely(nodes_empty(interleave_nodes)))
1927 node_set(prefer, interleave_nodes);
1928
1929 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1930 printk("numa_policy_init: interleaving failed\n");
1931 }
1932
1933 /* Reset policy of current process to default */
1934 void numa_default_policy(void)
1935 {
1936 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1937 }
1938
1939 /*
1940 * Display pages allocated per node and memory policy via /proc.
1941 */
1942 static const char * const policy_types[] =
1943 { "default", "prefer", "bind", "interleave" };
1944
1945 /*
1946 * Convert a mempolicy into a string.
1947 * Returns the number of characters in buffer (if positive)
1948 * or an error (negative)
1949 */
1950 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1951 {
1952 char *p = buffer;
1953 int l;
1954 nodemask_t nodes;
1955 unsigned short mode = pol ? pol->mode : MPOL_DEFAULT;
1956 unsigned short flags = pol ? pol->flags : 0;
1957
1958 switch (mode) {
1959 case MPOL_DEFAULT:
1960 nodes_clear(nodes);
1961 break;
1962
1963 case MPOL_PREFERRED:
1964 nodes_clear(nodes);
1965 node_set(pol->v.preferred_node, nodes);
1966 break;
1967
1968 case MPOL_BIND:
1969 /* Fall through */
1970 case MPOL_INTERLEAVE:
1971 nodes = pol->v.nodes;
1972 break;
1973
1974 default:
1975 BUG();
1976 return -EFAULT;
1977 }
1978
1979 l = strlen(policy_types[mode]);
1980 if (buffer + maxlen < p + l + 1)
1981 return -ENOSPC;
1982
1983 strcpy(p, policy_types[mode]);
1984 p += l;
1985
1986 if (flags) {
1987 int need_bar = 0;
1988
1989 if (buffer + maxlen < p + 2)
1990 return -ENOSPC;
1991 *p++ = '=';
1992
1993 if (flags & MPOL_F_STATIC_NODES)
1994 p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
1995 if (flags & MPOL_F_RELATIVE_NODES)
1996 p += sprintf(p, "%srelative", need_bar++ ? "|" : "");
1997 }
1998
1999 if (!nodes_empty(nodes)) {
2000 if (buffer + maxlen < p + 2)
2001 return -ENOSPC;
2002 *p++ = '=';
2003 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2004 }
2005 return p - buffer;
2006 }
2007
2008 struct numa_maps {
2009 unsigned long pages;
2010 unsigned long anon;
2011 unsigned long active;
2012 unsigned long writeback;
2013 unsigned long mapcount_max;
2014 unsigned long dirty;
2015 unsigned long swapcache;
2016 unsigned long node[MAX_NUMNODES];
2017 };
2018
2019 static void gather_stats(struct page *page, void *private, int pte_dirty)
2020 {
2021 struct numa_maps *md = private;
2022 int count = page_mapcount(page);
2023
2024 md->pages++;
2025 if (pte_dirty || PageDirty(page))
2026 md->dirty++;
2027
2028 if (PageSwapCache(page))
2029 md->swapcache++;
2030
2031 if (PageActive(page))
2032 md->active++;
2033
2034 if (PageWriteback(page))
2035 md->writeback++;
2036
2037 if (PageAnon(page))
2038 md->anon++;
2039
2040 if (count > md->mapcount_max)
2041 md->mapcount_max = count;
2042
2043 md->node[page_to_nid(page)]++;
2044 }
2045
2046 #ifdef CONFIG_HUGETLB_PAGE
2047 static void check_huge_range(struct vm_area_struct *vma,
2048 unsigned long start, unsigned long end,
2049 struct numa_maps *md)
2050 {
2051 unsigned long addr;
2052 struct page *page;
2053
2054 for (addr = start; addr < end; addr += HPAGE_SIZE) {
2055 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2056 pte_t pte;
2057
2058 if (!ptep)
2059 continue;
2060
2061 pte = *ptep;
2062 if (pte_none(pte))
2063 continue;
2064
2065 page = pte_page(pte);
2066 if (!page)
2067 continue;
2068
2069 gather_stats(page, md, pte_dirty(*ptep));
2070 }
2071 }
2072 #else
2073 static inline void check_huge_range(struct vm_area_struct *vma,
2074 unsigned long start, unsigned long end,
2075 struct numa_maps *md)
2076 {
2077 }
2078 #endif
2079
2080 int show_numa_map(struct seq_file *m, void *v)
2081 {
2082 struct proc_maps_private *priv = m->private;
2083 struct vm_area_struct *vma = v;
2084 struct numa_maps *md;
2085 struct file *file = vma->vm_file;
2086 struct mm_struct *mm = vma->vm_mm;
2087 struct mempolicy *pol;
2088 int n;
2089 char buffer[50];
2090
2091 if (!mm)
2092 return 0;
2093
2094 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2095 if (!md)
2096 return 0;
2097
2098 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2099 mpol_to_str(buffer, sizeof(buffer), pol);
2100 mpol_cond_put(pol);
2101
2102 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2103
2104 if (file) {
2105 seq_printf(m, " file=");
2106 seq_path(m, &file->f_path, "\n\t= ");
2107 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2108 seq_printf(m, " heap");
2109 } else if (vma->vm_start <= mm->start_stack &&
2110 vma->vm_end >= mm->start_stack) {
2111 seq_printf(m, " stack");
2112 }
2113
2114 if (is_vm_hugetlb_page(vma)) {
2115 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2116 seq_printf(m, " huge");
2117 } else {
2118 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2119 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2120 }
2121
2122 if (!md->pages)
2123 goto out;
2124
2125 if (md->anon)
2126 seq_printf(m," anon=%lu",md->anon);
2127
2128 if (md->dirty)
2129 seq_printf(m," dirty=%lu",md->dirty);
2130
2131 if (md->pages != md->anon && md->pages != md->dirty)
2132 seq_printf(m, " mapped=%lu", md->pages);
2133
2134 if (md->mapcount_max > 1)
2135 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2136
2137 if (md->swapcache)
2138 seq_printf(m," swapcache=%lu", md->swapcache);
2139
2140 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2141 seq_printf(m," active=%lu", md->active);
2142
2143 if (md->writeback)
2144 seq_printf(m," writeback=%lu", md->writeback);
2145
2146 for_each_node_state(n, N_HIGH_MEMORY)
2147 if (md->node[n])
2148 seq_printf(m, " N%d=%lu", n, md->node[n]);
2149 out:
2150 seq_putc(m, '\n');
2151 kfree(md);
2152
2153 if (m->count < m->size)
2154 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2155 return 0;
2156 }
This page took 0.107927 seconds and 6 git commands to generate.