mempolicy: mPOL_PREFERRED cleanups for "local allocation"
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91
92 #include <asm/tlbflush.h>
93 #include <asm/uaccess.h>
94
95 /* Internal flags */
96 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
97 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
98 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
99
100 static struct kmem_cache *policy_cache;
101 static struct kmem_cache *sn_cache;
102
103 /* Highest zone. An specific allocation for a zone below that is not
104 policied. */
105 enum zone_type policy_zone = 0;
106
107 /*
108 * run-time system-wide default policy => local allocation
109 */
110 struct mempolicy default_policy = {
111 .refcnt = ATOMIC_INIT(1), /* never free it */
112 .mode = MPOL_PREFERRED,
113 .v = { .preferred_node = -1 },
114 };
115
116 static const struct mempolicy_operations {
117 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
118 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
119 } mpol_ops[MPOL_MAX];
120
121 /* Check that the nodemask contains at least one populated zone */
122 static int is_valid_nodemask(const nodemask_t *nodemask)
123 {
124 int nd, k;
125
126 /* Check that there is something useful in this mask */
127 k = policy_zone;
128
129 for_each_node_mask(nd, *nodemask) {
130 struct zone *z;
131
132 for (k = 0; k <= policy_zone; k++) {
133 z = &NODE_DATA(nd)->node_zones[k];
134 if (z->present_pages > 0)
135 return 1;
136 }
137 }
138
139 return 0;
140 }
141
142 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
143 {
144 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
145 }
146
147 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
148 const nodemask_t *rel)
149 {
150 nodemask_t tmp;
151 nodes_fold(tmp, *orig, nodes_weight(*rel));
152 nodes_onto(*ret, tmp, *rel);
153 }
154
155 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
156 {
157 if (nodes_empty(*nodes))
158 return -EINVAL;
159 pol->v.nodes = *nodes;
160 return 0;
161 }
162
163 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
164 {
165 if (!nodes)
166 pol->v.preferred_node = -1; /* local allocation */
167 else if (nodes_empty(*nodes))
168 return -EINVAL; /* no allowed nodes */
169 else
170 pol->v.preferred_node = first_node(*nodes);
171 return 0;
172 }
173
174 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
175 {
176 if (!is_valid_nodemask(nodes))
177 return -EINVAL;
178 pol->v.nodes = *nodes;
179 return 0;
180 }
181
182 /* Create a new policy */
183 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
184 nodemask_t *nodes)
185 {
186 struct mempolicy *policy;
187 nodemask_t cpuset_context_nmask;
188 int ret;
189
190 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
191 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
192
193 if (mode == MPOL_DEFAULT) {
194 if (nodes && !nodes_empty(*nodes))
195 return ERR_PTR(-EINVAL);
196 return NULL; /* simply delete any existing policy */
197 }
198 VM_BUG_ON(!nodes);
199
200 /*
201 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
202 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
203 * All other modes require a valid pointer to a non-empty nodemask.
204 */
205 if (mode == MPOL_PREFERRED) {
206 if (nodes_empty(*nodes)) {
207 if (((flags & MPOL_F_STATIC_NODES) ||
208 (flags & MPOL_F_RELATIVE_NODES)))
209 return ERR_PTR(-EINVAL);
210 nodes = NULL; /* flag local alloc */
211 }
212 } else if (nodes_empty(*nodes))
213 return ERR_PTR(-EINVAL);
214 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
215 if (!policy)
216 return ERR_PTR(-ENOMEM);
217 atomic_set(&policy->refcnt, 1);
218 policy->mode = mode;
219 policy->flags = flags;
220
221 if (nodes) {
222 /*
223 * cpuset related setup doesn't apply to local allocation
224 */
225 cpuset_update_task_memory_state();
226 if (flags & MPOL_F_RELATIVE_NODES)
227 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
228 &cpuset_current_mems_allowed);
229 else
230 nodes_and(cpuset_context_nmask, *nodes,
231 cpuset_current_mems_allowed);
232 if (mpol_store_user_nodemask(policy))
233 policy->w.user_nodemask = *nodes;
234 else
235 policy->w.cpuset_mems_allowed =
236 cpuset_mems_allowed(current);
237 }
238
239 ret = mpol_ops[mode].create(policy,
240 nodes ? &cpuset_context_nmask : NULL);
241 if (ret < 0) {
242 kmem_cache_free(policy_cache, policy);
243 return ERR_PTR(ret);
244 }
245 return policy;
246 }
247
248 /* Slow path of a mpol destructor. */
249 void __mpol_put(struct mempolicy *p)
250 {
251 if (!atomic_dec_and_test(&p->refcnt))
252 return;
253 kmem_cache_free(policy_cache, p);
254 }
255
256 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
257 {
258 }
259
260 static void mpol_rebind_nodemask(struct mempolicy *pol,
261 const nodemask_t *nodes)
262 {
263 nodemask_t tmp;
264
265 if (pol->flags & MPOL_F_STATIC_NODES)
266 nodes_and(tmp, pol->w.user_nodemask, *nodes);
267 else if (pol->flags & MPOL_F_RELATIVE_NODES)
268 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
269 else {
270 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
271 *nodes);
272 pol->w.cpuset_mems_allowed = *nodes;
273 }
274
275 pol->v.nodes = tmp;
276 if (!node_isset(current->il_next, tmp)) {
277 current->il_next = next_node(current->il_next, tmp);
278 if (current->il_next >= MAX_NUMNODES)
279 current->il_next = first_node(tmp);
280 if (current->il_next >= MAX_NUMNODES)
281 current->il_next = numa_node_id();
282 }
283 }
284
285 static void mpol_rebind_preferred(struct mempolicy *pol,
286 const nodemask_t *nodes)
287 {
288 nodemask_t tmp;
289
290 if (pol->flags & MPOL_F_STATIC_NODES) {
291 int node = first_node(pol->w.user_nodemask);
292
293 if (node_isset(node, *nodes))
294 pol->v.preferred_node = node;
295 else
296 pol->v.preferred_node = -1;
297 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
298 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
299 pol->v.preferred_node = first_node(tmp);
300 } else if (pol->v.preferred_node != -1) {
301 pol->v.preferred_node = node_remap(pol->v.preferred_node,
302 pol->w.cpuset_mems_allowed,
303 *nodes);
304 pol->w.cpuset_mems_allowed = *nodes;
305 }
306 }
307
308 /* Migrate a policy to a different set of nodes */
309 static void mpol_rebind_policy(struct mempolicy *pol,
310 const nodemask_t *newmask)
311 {
312 if (!pol)
313 return;
314 if (!mpol_store_user_nodemask(pol) &&
315 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
316 return;
317 mpol_ops[pol->mode].rebind(pol, newmask);
318 }
319
320 /*
321 * Wrapper for mpol_rebind_policy() that just requires task
322 * pointer, and updates task mempolicy.
323 */
324
325 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
326 {
327 mpol_rebind_policy(tsk->mempolicy, new);
328 }
329
330 /*
331 * Rebind each vma in mm to new nodemask.
332 *
333 * Call holding a reference to mm. Takes mm->mmap_sem during call.
334 */
335
336 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
337 {
338 struct vm_area_struct *vma;
339
340 down_write(&mm->mmap_sem);
341 for (vma = mm->mmap; vma; vma = vma->vm_next)
342 mpol_rebind_policy(vma->vm_policy, new);
343 up_write(&mm->mmap_sem);
344 }
345
346 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
347 [MPOL_DEFAULT] = {
348 .rebind = mpol_rebind_default,
349 },
350 [MPOL_INTERLEAVE] = {
351 .create = mpol_new_interleave,
352 .rebind = mpol_rebind_nodemask,
353 },
354 [MPOL_PREFERRED] = {
355 .create = mpol_new_preferred,
356 .rebind = mpol_rebind_preferred,
357 },
358 [MPOL_BIND] = {
359 .create = mpol_new_bind,
360 .rebind = mpol_rebind_nodemask,
361 },
362 };
363
364 static void gather_stats(struct page *, void *, int pte_dirty);
365 static void migrate_page_add(struct page *page, struct list_head *pagelist,
366 unsigned long flags);
367
368 /* Scan through pages checking if pages follow certain conditions. */
369 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
370 unsigned long addr, unsigned long end,
371 const nodemask_t *nodes, unsigned long flags,
372 void *private)
373 {
374 pte_t *orig_pte;
375 pte_t *pte;
376 spinlock_t *ptl;
377
378 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
379 do {
380 struct page *page;
381 int nid;
382
383 if (!pte_present(*pte))
384 continue;
385 page = vm_normal_page(vma, addr, *pte);
386 if (!page)
387 continue;
388 /*
389 * The check for PageReserved here is important to avoid
390 * handling zero pages and other pages that may have been
391 * marked special by the system.
392 *
393 * If the PageReserved would not be checked here then f.e.
394 * the location of the zero page could have an influence
395 * on MPOL_MF_STRICT, zero pages would be counted for
396 * the per node stats, and there would be useless attempts
397 * to put zero pages on the migration list.
398 */
399 if (PageReserved(page))
400 continue;
401 nid = page_to_nid(page);
402 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
403 continue;
404
405 if (flags & MPOL_MF_STATS)
406 gather_stats(page, private, pte_dirty(*pte));
407 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
408 migrate_page_add(page, private, flags);
409 else
410 break;
411 } while (pte++, addr += PAGE_SIZE, addr != end);
412 pte_unmap_unlock(orig_pte, ptl);
413 return addr != end;
414 }
415
416 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
417 unsigned long addr, unsigned long end,
418 const nodemask_t *nodes, unsigned long flags,
419 void *private)
420 {
421 pmd_t *pmd;
422 unsigned long next;
423
424 pmd = pmd_offset(pud, addr);
425 do {
426 next = pmd_addr_end(addr, end);
427 if (pmd_none_or_clear_bad(pmd))
428 continue;
429 if (check_pte_range(vma, pmd, addr, next, nodes,
430 flags, private))
431 return -EIO;
432 } while (pmd++, addr = next, addr != end);
433 return 0;
434 }
435
436 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
437 unsigned long addr, unsigned long end,
438 const nodemask_t *nodes, unsigned long flags,
439 void *private)
440 {
441 pud_t *pud;
442 unsigned long next;
443
444 pud = pud_offset(pgd, addr);
445 do {
446 next = pud_addr_end(addr, end);
447 if (pud_none_or_clear_bad(pud))
448 continue;
449 if (check_pmd_range(vma, pud, addr, next, nodes,
450 flags, private))
451 return -EIO;
452 } while (pud++, addr = next, addr != end);
453 return 0;
454 }
455
456 static inline int check_pgd_range(struct vm_area_struct *vma,
457 unsigned long addr, unsigned long end,
458 const nodemask_t *nodes, unsigned long flags,
459 void *private)
460 {
461 pgd_t *pgd;
462 unsigned long next;
463
464 pgd = pgd_offset(vma->vm_mm, addr);
465 do {
466 next = pgd_addr_end(addr, end);
467 if (pgd_none_or_clear_bad(pgd))
468 continue;
469 if (check_pud_range(vma, pgd, addr, next, nodes,
470 flags, private))
471 return -EIO;
472 } while (pgd++, addr = next, addr != end);
473 return 0;
474 }
475
476 /*
477 * Check if all pages in a range are on a set of nodes.
478 * If pagelist != NULL then isolate pages from the LRU and
479 * put them on the pagelist.
480 */
481 static struct vm_area_struct *
482 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
483 const nodemask_t *nodes, unsigned long flags, void *private)
484 {
485 int err;
486 struct vm_area_struct *first, *vma, *prev;
487
488 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
489
490 err = migrate_prep();
491 if (err)
492 return ERR_PTR(err);
493 }
494
495 first = find_vma(mm, start);
496 if (!first)
497 return ERR_PTR(-EFAULT);
498 prev = NULL;
499 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
500 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
501 if (!vma->vm_next && vma->vm_end < end)
502 return ERR_PTR(-EFAULT);
503 if (prev && prev->vm_end < vma->vm_start)
504 return ERR_PTR(-EFAULT);
505 }
506 if (!is_vm_hugetlb_page(vma) &&
507 ((flags & MPOL_MF_STRICT) ||
508 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
509 vma_migratable(vma)))) {
510 unsigned long endvma = vma->vm_end;
511
512 if (endvma > end)
513 endvma = end;
514 if (vma->vm_start > start)
515 start = vma->vm_start;
516 err = check_pgd_range(vma, start, endvma, nodes,
517 flags, private);
518 if (err) {
519 first = ERR_PTR(err);
520 break;
521 }
522 }
523 prev = vma;
524 }
525 return first;
526 }
527
528 /* Apply policy to a single VMA */
529 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
530 {
531 int err = 0;
532 struct mempolicy *old = vma->vm_policy;
533
534 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
535 vma->vm_start, vma->vm_end, vma->vm_pgoff,
536 vma->vm_ops, vma->vm_file,
537 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
538
539 if (vma->vm_ops && vma->vm_ops->set_policy)
540 err = vma->vm_ops->set_policy(vma, new);
541 if (!err) {
542 mpol_get(new);
543 vma->vm_policy = new;
544 mpol_put(old);
545 }
546 return err;
547 }
548
549 /* Step 2: apply policy to a range and do splits. */
550 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
551 unsigned long end, struct mempolicy *new)
552 {
553 struct vm_area_struct *next;
554 int err;
555
556 err = 0;
557 for (; vma && vma->vm_start < end; vma = next) {
558 next = vma->vm_next;
559 if (vma->vm_start < start)
560 err = split_vma(vma->vm_mm, vma, start, 1);
561 if (!err && vma->vm_end > end)
562 err = split_vma(vma->vm_mm, vma, end, 0);
563 if (!err)
564 err = policy_vma(vma, new);
565 if (err)
566 break;
567 }
568 return err;
569 }
570
571 /*
572 * Update task->flags PF_MEMPOLICY bit: set iff non-default
573 * mempolicy. Allows more rapid checking of this (combined perhaps
574 * with other PF_* flag bits) on memory allocation hot code paths.
575 *
576 * If called from outside this file, the task 'p' should -only- be
577 * a newly forked child not yet visible on the task list, because
578 * manipulating the task flags of a visible task is not safe.
579 *
580 * The above limitation is why this routine has the funny name
581 * mpol_fix_fork_child_flag().
582 *
583 * It is also safe to call this with a task pointer of current,
584 * which the static wrapper mpol_set_task_struct_flag() does,
585 * for use within this file.
586 */
587
588 void mpol_fix_fork_child_flag(struct task_struct *p)
589 {
590 if (p->mempolicy)
591 p->flags |= PF_MEMPOLICY;
592 else
593 p->flags &= ~PF_MEMPOLICY;
594 }
595
596 static void mpol_set_task_struct_flag(void)
597 {
598 mpol_fix_fork_child_flag(current);
599 }
600
601 /* Set the process memory policy */
602 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
603 nodemask_t *nodes)
604 {
605 struct mempolicy *new;
606 struct mm_struct *mm = current->mm;
607
608 new = mpol_new(mode, flags, nodes);
609 if (IS_ERR(new))
610 return PTR_ERR(new);
611
612 /*
613 * prevent changing our mempolicy while show_numa_maps()
614 * is using it.
615 * Note: do_set_mempolicy() can be called at init time
616 * with no 'mm'.
617 */
618 if (mm)
619 down_write(&mm->mmap_sem);
620 mpol_put(current->mempolicy);
621 current->mempolicy = new;
622 mpol_set_task_struct_flag();
623 if (new && new->mode == MPOL_INTERLEAVE &&
624 nodes_weight(new->v.nodes))
625 current->il_next = first_node(new->v.nodes);
626 if (mm)
627 up_write(&mm->mmap_sem);
628
629 return 0;
630 }
631
632 /*
633 * Return nodemask for policy for get_mempolicy() query
634 */
635 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
636 {
637 nodes_clear(*nodes);
638 if (p == &default_policy)
639 return;
640
641 switch (p->mode) {
642 case MPOL_BIND:
643 /* Fall through */
644 case MPOL_INTERLEAVE:
645 *nodes = p->v.nodes;
646 break;
647 case MPOL_PREFERRED:
648 if (p->v.preferred_node >= 0)
649 node_set(p->v.preferred_node, *nodes);
650 /* else return empty node mask for local allocation */
651 break;
652 default:
653 BUG();
654 }
655 }
656
657 static int lookup_node(struct mm_struct *mm, unsigned long addr)
658 {
659 struct page *p;
660 int err;
661
662 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
663 if (err >= 0) {
664 err = page_to_nid(p);
665 put_page(p);
666 }
667 return err;
668 }
669
670 /* Retrieve NUMA policy */
671 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
672 unsigned long addr, unsigned long flags)
673 {
674 int err;
675 struct mm_struct *mm = current->mm;
676 struct vm_area_struct *vma = NULL;
677 struct mempolicy *pol = current->mempolicy;
678
679 cpuset_update_task_memory_state();
680 if (flags &
681 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
682 return -EINVAL;
683
684 if (flags & MPOL_F_MEMS_ALLOWED) {
685 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
686 return -EINVAL;
687 *policy = 0; /* just so it's initialized */
688 *nmask = cpuset_current_mems_allowed;
689 return 0;
690 }
691
692 if (flags & MPOL_F_ADDR) {
693 /*
694 * Do NOT fall back to task policy if the
695 * vma/shared policy at addr is NULL. We
696 * want to return MPOL_DEFAULT in this case.
697 */
698 down_read(&mm->mmap_sem);
699 vma = find_vma_intersection(mm, addr, addr+1);
700 if (!vma) {
701 up_read(&mm->mmap_sem);
702 return -EFAULT;
703 }
704 if (vma->vm_ops && vma->vm_ops->get_policy)
705 pol = vma->vm_ops->get_policy(vma, addr);
706 else
707 pol = vma->vm_policy;
708 } else if (addr)
709 return -EINVAL;
710
711 if (!pol)
712 pol = &default_policy; /* indicates default behavior */
713
714 if (flags & MPOL_F_NODE) {
715 if (flags & MPOL_F_ADDR) {
716 err = lookup_node(mm, addr);
717 if (err < 0)
718 goto out;
719 *policy = err;
720 } else if (pol == current->mempolicy &&
721 pol->mode == MPOL_INTERLEAVE) {
722 *policy = current->il_next;
723 } else {
724 err = -EINVAL;
725 goto out;
726 }
727 } else {
728 *policy = pol == &default_policy ? MPOL_DEFAULT :
729 pol->mode;
730 *policy |= pol->flags;
731 }
732
733 if (vma) {
734 up_read(&current->mm->mmap_sem);
735 vma = NULL;
736 }
737
738 err = 0;
739 if (nmask)
740 get_policy_nodemask(pol, nmask);
741
742 out:
743 mpol_cond_put(pol);
744 if (vma)
745 up_read(&current->mm->mmap_sem);
746 return err;
747 }
748
749 #ifdef CONFIG_MIGRATION
750 /*
751 * page migration
752 */
753 static void migrate_page_add(struct page *page, struct list_head *pagelist,
754 unsigned long flags)
755 {
756 /*
757 * Avoid migrating a page that is shared with others.
758 */
759 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
760 isolate_lru_page(page, pagelist);
761 }
762
763 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
764 {
765 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
766 }
767
768 /*
769 * Migrate pages from one node to a target node.
770 * Returns error or the number of pages not migrated.
771 */
772 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
773 int flags)
774 {
775 nodemask_t nmask;
776 LIST_HEAD(pagelist);
777 int err = 0;
778
779 nodes_clear(nmask);
780 node_set(source, nmask);
781
782 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
783 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
784
785 if (!list_empty(&pagelist))
786 err = migrate_pages(&pagelist, new_node_page, dest);
787
788 return err;
789 }
790
791 /*
792 * Move pages between the two nodesets so as to preserve the physical
793 * layout as much as possible.
794 *
795 * Returns the number of page that could not be moved.
796 */
797 int do_migrate_pages(struct mm_struct *mm,
798 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
799 {
800 LIST_HEAD(pagelist);
801 int busy = 0;
802 int err = 0;
803 nodemask_t tmp;
804
805 down_read(&mm->mmap_sem);
806
807 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
808 if (err)
809 goto out;
810
811 /*
812 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
813 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
814 * bit in 'tmp', and return that <source, dest> pair for migration.
815 * The pair of nodemasks 'to' and 'from' define the map.
816 *
817 * If no pair of bits is found that way, fallback to picking some
818 * pair of 'source' and 'dest' bits that are not the same. If the
819 * 'source' and 'dest' bits are the same, this represents a node
820 * that will be migrating to itself, so no pages need move.
821 *
822 * If no bits are left in 'tmp', or if all remaining bits left
823 * in 'tmp' correspond to the same bit in 'to', return false
824 * (nothing left to migrate).
825 *
826 * This lets us pick a pair of nodes to migrate between, such that
827 * if possible the dest node is not already occupied by some other
828 * source node, minimizing the risk of overloading the memory on a
829 * node that would happen if we migrated incoming memory to a node
830 * before migrating outgoing memory source that same node.
831 *
832 * A single scan of tmp is sufficient. As we go, we remember the
833 * most recent <s, d> pair that moved (s != d). If we find a pair
834 * that not only moved, but what's better, moved to an empty slot
835 * (d is not set in tmp), then we break out then, with that pair.
836 * Otherwise when we finish scannng from_tmp, we at least have the
837 * most recent <s, d> pair that moved. If we get all the way through
838 * the scan of tmp without finding any node that moved, much less
839 * moved to an empty node, then there is nothing left worth migrating.
840 */
841
842 tmp = *from_nodes;
843 while (!nodes_empty(tmp)) {
844 int s,d;
845 int source = -1;
846 int dest = 0;
847
848 for_each_node_mask(s, tmp) {
849 d = node_remap(s, *from_nodes, *to_nodes);
850 if (s == d)
851 continue;
852
853 source = s; /* Node moved. Memorize */
854 dest = d;
855
856 /* dest not in remaining from nodes? */
857 if (!node_isset(dest, tmp))
858 break;
859 }
860 if (source == -1)
861 break;
862
863 node_clear(source, tmp);
864 err = migrate_to_node(mm, source, dest, flags);
865 if (err > 0)
866 busy += err;
867 if (err < 0)
868 break;
869 }
870 out:
871 up_read(&mm->mmap_sem);
872 if (err < 0)
873 return err;
874 return busy;
875
876 }
877
878 /*
879 * Allocate a new page for page migration based on vma policy.
880 * Start assuming that page is mapped by vma pointed to by @private.
881 * Search forward from there, if not. N.B., this assumes that the
882 * list of pages handed to migrate_pages()--which is how we get here--
883 * is in virtual address order.
884 */
885 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
886 {
887 struct vm_area_struct *vma = (struct vm_area_struct *)private;
888 unsigned long uninitialized_var(address);
889
890 while (vma) {
891 address = page_address_in_vma(page, vma);
892 if (address != -EFAULT)
893 break;
894 vma = vma->vm_next;
895 }
896
897 /*
898 * if !vma, alloc_page_vma() will use task or system default policy
899 */
900 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
901 }
902 #else
903
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 unsigned long flags)
906 {
907 }
908
909 int do_migrate_pages(struct mm_struct *mm,
910 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
911 {
912 return -ENOSYS;
913 }
914
915 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
916 {
917 return NULL;
918 }
919 #endif
920
921 static long do_mbind(unsigned long start, unsigned long len,
922 unsigned short mode, unsigned short mode_flags,
923 nodemask_t *nmask, unsigned long flags)
924 {
925 struct vm_area_struct *vma;
926 struct mm_struct *mm = current->mm;
927 struct mempolicy *new;
928 unsigned long end;
929 int err;
930 LIST_HEAD(pagelist);
931
932 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
933 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
934 return -EINVAL;
935 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
936 return -EPERM;
937
938 if (start & ~PAGE_MASK)
939 return -EINVAL;
940
941 if (mode == MPOL_DEFAULT)
942 flags &= ~MPOL_MF_STRICT;
943
944 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
945 end = start + len;
946
947 if (end < start)
948 return -EINVAL;
949 if (end == start)
950 return 0;
951
952 new = mpol_new(mode, mode_flags, nmask);
953 if (IS_ERR(new))
954 return PTR_ERR(new);
955
956 /*
957 * If we are using the default policy then operation
958 * on discontinuous address spaces is okay after all
959 */
960 if (!new)
961 flags |= MPOL_MF_DISCONTIG_OK;
962
963 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
964 start, start + len, mode, mode_flags,
965 nmask ? nodes_addr(*nmask)[0] : -1);
966
967 down_write(&mm->mmap_sem);
968 vma = check_range(mm, start, end, nmask,
969 flags | MPOL_MF_INVERT, &pagelist);
970
971 err = PTR_ERR(vma);
972 if (!IS_ERR(vma)) {
973 int nr_failed = 0;
974
975 err = mbind_range(vma, start, end, new);
976
977 if (!list_empty(&pagelist))
978 nr_failed = migrate_pages(&pagelist, new_vma_page,
979 (unsigned long)vma);
980
981 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
982 err = -EIO;
983 }
984
985 up_write(&mm->mmap_sem);
986 mpol_put(new);
987 return err;
988 }
989
990 /*
991 * User space interface with variable sized bitmaps for nodelists.
992 */
993
994 /* Copy a node mask from user space. */
995 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
996 unsigned long maxnode)
997 {
998 unsigned long k;
999 unsigned long nlongs;
1000 unsigned long endmask;
1001
1002 --maxnode;
1003 nodes_clear(*nodes);
1004 if (maxnode == 0 || !nmask)
1005 return 0;
1006 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1007 return -EINVAL;
1008
1009 nlongs = BITS_TO_LONGS(maxnode);
1010 if ((maxnode % BITS_PER_LONG) == 0)
1011 endmask = ~0UL;
1012 else
1013 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1014
1015 /* When the user specified more nodes than supported just check
1016 if the non supported part is all zero. */
1017 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1018 if (nlongs > PAGE_SIZE/sizeof(long))
1019 return -EINVAL;
1020 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1021 unsigned long t;
1022 if (get_user(t, nmask + k))
1023 return -EFAULT;
1024 if (k == nlongs - 1) {
1025 if (t & endmask)
1026 return -EINVAL;
1027 } else if (t)
1028 return -EINVAL;
1029 }
1030 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1031 endmask = ~0UL;
1032 }
1033
1034 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1035 return -EFAULT;
1036 nodes_addr(*nodes)[nlongs-1] &= endmask;
1037 return 0;
1038 }
1039
1040 /* Copy a kernel node mask to user space */
1041 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1042 nodemask_t *nodes)
1043 {
1044 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1045 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1046
1047 if (copy > nbytes) {
1048 if (copy > PAGE_SIZE)
1049 return -EINVAL;
1050 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1051 return -EFAULT;
1052 copy = nbytes;
1053 }
1054 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1055 }
1056
1057 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1058 unsigned long mode,
1059 unsigned long __user *nmask, unsigned long maxnode,
1060 unsigned flags)
1061 {
1062 nodemask_t nodes;
1063 int err;
1064 unsigned short mode_flags;
1065
1066 mode_flags = mode & MPOL_MODE_FLAGS;
1067 mode &= ~MPOL_MODE_FLAGS;
1068 if (mode >= MPOL_MAX)
1069 return -EINVAL;
1070 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1071 (mode_flags & MPOL_F_RELATIVE_NODES))
1072 return -EINVAL;
1073 err = get_nodes(&nodes, nmask, maxnode);
1074 if (err)
1075 return err;
1076 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1077 }
1078
1079 /* Set the process memory policy */
1080 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1081 unsigned long maxnode)
1082 {
1083 int err;
1084 nodemask_t nodes;
1085 unsigned short flags;
1086
1087 flags = mode & MPOL_MODE_FLAGS;
1088 mode &= ~MPOL_MODE_FLAGS;
1089 if ((unsigned int)mode >= MPOL_MAX)
1090 return -EINVAL;
1091 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1092 return -EINVAL;
1093 err = get_nodes(&nodes, nmask, maxnode);
1094 if (err)
1095 return err;
1096 return do_set_mempolicy(mode, flags, &nodes);
1097 }
1098
1099 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1100 const unsigned long __user *old_nodes,
1101 const unsigned long __user *new_nodes)
1102 {
1103 struct mm_struct *mm;
1104 struct task_struct *task;
1105 nodemask_t old;
1106 nodemask_t new;
1107 nodemask_t task_nodes;
1108 int err;
1109
1110 err = get_nodes(&old, old_nodes, maxnode);
1111 if (err)
1112 return err;
1113
1114 err = get_nodes(&new, new_nodes, maxnode);
1115 if (err)
1116 return err;
1117
1118 /* Find the mm_struct */
1119 read_lock(&tasklist_lock);
1120 task = pid ? find_task_by_vpid(pid) : current;
1121 if (!task) {
1122 read_unlock(&tasklist_lock);
1123 return -ESRCH;
1124 }
1125 mm = get_task_mm(task);
1126 read_unlock(&tasklist_lock);
1127
1128 if (!mm)
1129 return -EINVAL;
1130
1131 /*
1132 * Check if this process has the right to modify the specified
1133 * process. The right exists if the process has administrative
1134 * capabilities, superuser privileges or the same
1135 * userid as the target process.
1136 */
1137 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1138 (current->uid != task->suid) && (current->uid != task->uid) &&
1139 !capable(CAP_SYS_NICE)) {
1140 err = -EPERM;
1141 goto out;
1142 }
1143
1144 task_nodes = cpuset_mems_allowed(task);
1145 /* Is the user allowed to access the target nodes? */
1146 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1147 err = -EPERM;
1148 goto out;
1149 }
1150
1151 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1152 err = -EINVAL;
1153 goto out;
1154 }
1155
1156 err = security_task_movememory(task);
1157 if (err)
1158 goto out;
1159
1160 err = do_migrate_pages(mm, &old, &new,
1161 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1162 out:
1163 mmput(mm);
1164 return err;
1165 }
1166
1167
1168 /* Retrieve NUMA policy */
1169 asmlinkage long sys_get_mempolicy(int __user *policy,
1170 unsigned long __user *nmask,
1171 unsigned long maxnode,
1172 unsigned long addr, unsigned long flags)
1173 {
1174 int err;
1175 int uninitialized_var(pval);
1176 nodemask_t nodes;
1177
1178 if (nmask != NULL && maxnode < MAX_NUMNODES)
1179 return -EINVAL;
1180
1181 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1182
1183 if (err)
1184 return err;
1185
1186 if (policy && put_user(pval, policy))
1187 return -EFAULT;
1188
1189 if (nmask)
1190 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1191
1192 return err;
1193 }
1194
1195 #ifdef CONFIG_COMPAT
1196
1197 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1198 compat_ulong_t __user *nmask,
1199 compat_ulong_t maxnode,
1200 compat_ulong_t addr, compat_ulong_t flags)
1201 {
1202 long err;
1203 unsigned long __user *nm = NULL;
1204 unsigned long nr_bits, alloc_size;
1205 DECLARE_BITMAP(bm, MAX_NUMNODES);
1206
1207 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1208 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1209
1210 if (nmask)
1211 nm = compat_alloc_user_space(alloc_size);
1212
1213 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1214
1215 if (!err && nmask) {
1216 err = copy_from_user(bm, nm, alloc_size);
1217 /* ensure entire bitmap is zeroed */
1218 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1219 err |= compat_put_bitmap(nmask, bm, nr_bits);
1220 }
1221
1222 return err;
1223 }
1224
1225 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1226 compat_ulong_t maxnode)
1227 {
1228 long err = 0;
1229 unsigned long __user *nm = NULL;
1230 unsigned long nr_bits, alloc_size;
1231 DECLARE_BITMAP(bm, MAX_NUMNODES);
1232
1233 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1234 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1235
1236 if (nmask) {
1237 err = compat_get_bitmap(bm, nmask, nr_bits);
1238 nm = compat_alloc_user_space(alloc_size);
1239 err |= copy_to_user(nm, bm, alloc_size);
1240 }
1241
1242 if (err)
1243 return -EFAULT;
1244
1245 return sys_set_mempolicy(mode, nm, nr_bits+1);
1246 }
1247
1248 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1249 compat_ulong_t mode, compat_ulong_t __user *nmask,
1250 compat_ulong_t maxnode, compat_ulong_t flags)
1251 {
1252 long err = 0;
1253 unsigned long __user *nm = NULL;
1254 unsigned long nr_bits, alloc_size;
1255 nodemask_t bm;
1256
1257 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1258 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1259
1260 if (nmask) {
1261 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1262 nm = compat_alloc_user_space(alloc_size);
1263 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1264 }
1265
1266 if (err)
1267 return -EFAULT;
1268
1269 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1270 }
1271
1272 #endif
1273
1274 /*
1275 * get_vma_policy(@task, @vma, @addr)
1276 * @task - task for fallback if vma policy == default
1277 * @vma - virtual memory area whose policy is sought
1278 * @addr - address in @vma for shared policy lookup
1279 *
1280 * Returns effective policy for a VMA at specified address.
1281 * Falls back to @task or system default policy, as necessary.
1282 * Current or other task's task mempolicy and non-shared vma policies
1283 * are protected by the task's mmap_sem, which must be held for read by
1284 * the caller.
1285 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1286 * count--added by the get_policy() vm_op, as appropriate--to protect against
1287 * freeing by another task. It is the caller's responsibility to free the
1288 * extra reference for shared policies.
1289 */
1290 static struct mempolicy *get_vma_policy(struct task_struct *task,
1291 struct vm_area_struct *vma, unsigned long addr)
1292 {
1293 struct mempolicy *pol = task->mempolicy;
1294
1295 if (vma) {
1296 if (vma->vm_ops && vma->vm_ops->get_policy) {
1297 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1298 addr);
1299 if (vpol)
1300 pol = vpol;
1301 } else if (vma->vm_policy)
1302 pol = vma->vm_policy;
1303 }
1304 if (!pol)
1305 pol = &default_policy;
1306 return pol;
1307 }
1308
1309 /*
1310 * Return a nodemask representing a mempolicy for filtering nodes for
1311 * page allocation
1312 */
1313 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1314 {
1315 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1316 if (unlikely(policy->mode == MPOL_BIND) &&
1317 gfp_zone(gfp) >= policy_zone &&
1318 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1319 return &policy->v.nodes;
1320
1321 return NULL;
1322 }
1323
1324 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1325 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy)
1326 {
1327 int nd;
1328
1329 switch (policy->mode) {
1330 case MPOL_PREFERRED:
1331 nd = policy->v.preferred_node;
1332 if (nd < 0)
1333 nd = numa_node_id();
1334 break;
1335 case MPOL_BIND:
1336 /*
1337 * Normally, MPOL_BIND allocations are node-local within the
1338 * allowed nodemask. However, if __GFP_THISNODE is set and the
1339 * current node is part of the mask, we use the zonelist for
1340 * the first node in the mask instead.
1341 */
1342 nd = numa_node_id();
1343 if (unlikely(gfp & __GFP_THISNODE) &&
1344 unlikely(!node_isset(nd, policy->v.nodes)))
1345 nd = first_node(policy->v.nodes);
1346 break;
1347 case MPOL_INTERLEAVE: /* should not happen */
1348 nd = numa_node_id();
1349 break;
1350 default:
1351 nd = 0;
1352 BUG();
1353 }
1354 return node_zonelist(nd, gfp);
1355 }
1356
1357 /* Do dynamic interleaving for a process */
1358 static unsigned interleave_nodes(struct mempolicy *policy)
1359 {
1360 unsigned nid, next;
1361 struct task_struct *me = current;
1362
1363 nid = me->il_next;
1364 next = next_node(nid, policy->v.nodes);
1365 if (next >= MAX_NUMNODES)
1366 next = first_node(policy->v.nodes);
1367 if (next < MAX_NUMNODES)
1368 me->il_next = next;
1369 return nid;
1370 }
1371
1372 /*
1373 * Depending on the memory policy provide a node from which to allocate the
1374 * next slab entry.
1375 * @policy must be protected by freeing by the caller. If @policy is
1376 * the current task's mempolicy, this protection is implicit, as only the
1377 * task can change it's policy. The system default policy requires no
1378 * such protection.
1379 */
1380 unsigned slab_node(struct mempolicy *policy)
1381 {
1382 if (!policy)
1383 return numa_node_id();
1384
1385 switch (policy->mode) {
1386 case MPOL_PREFERRED:
1387 if (unlikely(policy->v.preferred_node >= 0))
1388 return policy->v.preferred_node;
1389 return numa_node_id();
1390
1391 case MPOL_INTERLEAVE:
1392 return interleave_nodes(policy);
1393
1394 case MPOL_BIND: {
1395 /*
1396 * Follow bind policy behavior and start allocation at the
1397 * first node.
1398 */
1399 struct zonelist *zonelist;
1400 struct zone *zone;
1401 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1402 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1403 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1404 &policy->v.nodes,
1405 &zone);
1406 return zone->node;
1407 }
1408
1409 default:
1410 BUG();
1411 }
1412 }
1413
1414 /* Do static interleaving for a VMA with known offset. */
1415 static unsigned offset_il_node(struct mempolicy *pol,
1416 struct vm_area_struct *vma, unsigned long off)
1417 {
1418 unsigned nnodes = nodes_weight(pol->v.nodes);
1419 unsigned target;
1420 int c;
1421 int nid = -1;
1422
1423 if (!nnodes)
1424 return numa_node_id();
1425 target = (unsigned int)off % nnodes;
1426 c = 0;
1427 do {
1428 nid = next_node(nid, pol->v.nodes);
1429 c++;
1430 } while (c <= target);
1431 return nid;
1432 }
1433
1434 /* Determine a node number for interleave */
1435 static inline unsigned interleave_nid(struct mempolicy *pol,
1436 struct vm_area_struct *vma, unsigned long addr, int shift)
1437 {
1438 if (vma) {
1439 unsigned long off;
1440
1441 /*
1442 * for small pages, there is no difference between
1443 * shift and PAGE_SHIFT, so the bit-shift is safe.
1444 * for huge pages, since vm_pgoff is in units of small
1445 * pages, we need to shift off the always 0 bits to get
1446 * a useful offset.
1447 */
1448 BUG_ON(shift < PAGE_SHIFT);
1449 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1450 off += (addr - vma->vm_start) >> shift;
1451 return offset_il_node(pol, vma, off);
1452 } else
1453 return interleave_nodes(pol);
1454 }
1455
1456 #ifdef CONFIG_HUGETLBFS
1457 /*
1458 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1459 * @vma = virtual memory area whose policy is sought
1460 * @addr = address in @vma for shared policy lookup and interleave policy
1461 * @gfp_flags = for requested zone
1462 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1463 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1464 *
1465 * Returns a zonelist suitable for a huge page allocation and a pointer
1466 * to the struct mempolicy for conditional unref after allocation.
1467 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1468 * @nodemask for filtering the zonelist.
1469 */
1470 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1471 gfp_t gfp_flags, struct mempolicy **mpol,
1472 nodemask_t **nodemask)
1473 {
1474 struct zonelist *zl;
1475
1476 *mpol = get_vma_policy(current, vma, addr);
1477 *nodemask = NULL; /* assume !MPOL_BIND */
1478
1479 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1480 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1481 HPAGE_SHIFT), gfp_flags);
1482 } else {
1483 zl = policy_zonelist(gfp_flags, *mpol);
1484 if ((*mpol)->mode == MPOL_BIND)
1485 *nodemask = &(*mpol)->v.nodes;
1486 }
1487 return zl;
1488 }
1489 #endif
1490
1491 /* Allocate a page in interleaved policy.
1492 Own path because it needs to do special accounting. */
1493 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1494 unsigned nid)
1495 {
1496 struct zonelist *zl;
1497 struct page *page;
1498
1499 zl = node_zonelist(nid, gfp);
1500 page = __alloc_pages(gfp, order, zl);
1501 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1502 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1503 return page;
1504 }
1505
1506 /**
1507 * alloc_page_vma - Allocate a page for a VMA.
1508 *
1509 * @gfp:
1510 * %GFP_USER user allocation.
1511 * %GFP_KERNEL kernel allocations,
1512 * %GFP_HIGHMEM highmem/user allocations,
1513 * %GFP_FS allocation should not call back into a file system.
1514 * %GFP_ATOMIC don't sleep.
1515 *
1516 * @vma: Pointer to VMA or NULL if not available.
1517 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1518 *
1519 * This function allocates a page from the kernel page pool and applies
1520 * a NUMA policy associated with the VMA or the current process.
1521 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1522 * mm_struct of the VMA to prevent it from going away. Should be used for
1523 * all allocations for pages that will be mapped into
1524 * user space. Returns NULL when no page can be allocated.
1525 *
1526 * Should be called with the mm_sem of the vma hold.
1527 */
1528 struct page *
1529 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1530 {
1531 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1532 struct zonelist *zl;
1533
1534 cpuset_update_task_memory_state();
1535
1536 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1537 unsigned nid;
1538
1539 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1540 mpol_cond_put(pol);
1541 return alloc_page_interleave(gfp, 0, nid);
1542 }
1543 zl = policy_zonelist(gfp, pol);
1544 if (unlikely(mpol_needs_cond_ref(pol))) {
1545 /*
1546 * slow path: ref counted shared policy
1547 */
1548 struct page *page = __alloc_pages_nodemask(gfp, 0,
1549 zl, policy_nodemask(gfp, pol));
1550 __mpol_put(pol);
1551 return page;
1552 }
1553 /*
1554 * fast path: default or task policy
1555 */
1556 return __alloc_pages_nodemask(gfp, 0, zl, policy_nodemask(gfp, pol));
1557 }
1558
1559 /**
1560 * alloc_pages_current - Allocate pages.
1561 *
1562 * @gfp:
1563 * %GFP_USER user allocation,
1564 * %GFP_KERNEL kernel allocation,
1565 * %GFP_HIGHMEM highmem allocation,
1566 * %GFP_FS don't call back into a file system.
1567 * %GFP_ATOMIC don't sleep.
1568 * @order: Power of two of allocation size in pages. 0 is a single page.
1569 *
1570 * Allocate a page from the kernel page pool. When not in
1571 * interrupt context and apply the current process NUMA policy.
1572 * Returns NULL when no page can be allocated.
1573 *
1574 * Don't call cpuset_update_task_memory_state() unless
1575 * 1) it's ok to take cpuset_sem (can WAIT), and
1576 * 2) allocating for current task (not interrupt).
1577 */
1578 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1579 {
1580 struct mempolicy *pol = current->mempolicy;
1581
1582 if ((gfp & __GFP_WAIT) && !in_interrupt())
1583 cpuset_update_task_memory_state();
1584 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1585 pol = &default_policy;
1586
1587 /*
1588 * No reference counting needed for current->mempolicy
1589 * nor system default_policy
1590 */
1591 if (pol->mode == MPOL_INTERLEAVE)
1592 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1593 return __alloc_pages_nodemask(gfp, order,
1594 policy_zonelist(gfp, pol), policy_nodemask(gfp, pol));
1595 }
1596 EXPORT_SYMBOL(alloc_pages_current);
1597
1598 /*
1599 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1600 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1601 * with the mems_allowed returned by cpuset_mems_allowed(). This
1602 * keeps mempolicies cpuset relative after its cpuset moves. See
1603 * further kernel/cpuset.c update_nodemask().
1604 */
1605
1606 /* Slow path of a mempolicy duplicate */
1607 struct mempolicy *__mpol_dup(struct mempolicy *old)
1608 {
1609 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1610
1611 if (!new)
1612 return ERR_PTR(-ENOMEM);
1613 if (current_cpuset_is_being_rebound()) {
1614 nodemask_t mems = cpuset_mems_allowed(current);
1615 mpol_rebind_policy(old, &mems);
1616 }
1617 *new = *old;
1618 atomic_set(&new->refcnt, 1);
1619 return new;
1620 }
1621
1622 /*
1623 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
1624 * eliminate the * MPOL_F_* flags that require conditional ref and
1625 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
1626 * after return. Use the returned value.
1627 *
1628 * Allows use of a mempolicy for, e.g., multiple allocations with a single
1629 * policy lookup, even if the policy needs/has extra ref on lookup.
1630 * shmem_readahead needs this.
1631 */
1632 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
1633 struct mempolicy *frompol)
1634 {
1635 if (!mpol_needs_cond_ref(frompol))
1636 return frompol;
1637
1638 *tompol = *frompol;
1639 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
1640 __mpol_put(frompol);
1641 return tompol;
1642 }
1643
1644 static int mpol_match_intent(const struct mempolicy *a,
1645 const struct mempolicy *b)
1646 {
1647 if (a->flags != b->flags)
1648 return 0;
1649 if (!mpol_store_user_nodemask(a))
1650 return 1;
1651 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1652 }
1653
1654 /* Slow path of a mempolicy comparison */
1655 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1656 {
1657 if (!a || !b)
1658 return 0;
1659 if (a->mode != b->mode)
1660 return 0;
1661 if (a->mode != MPOL_DEFAULT && !mpol_match_intent(a, b))
1662 return 0;
1663 switch (a->mode) {
1664 case MPOL_BIND:
1665 /* Fall through */
1666 case MPOL_INTERLEAVE:
1667 return nodes_equal(a->v.nodes, b->v.nodes);
1668 case MPOL_PREFERRED:
1669 return a->v.preferred_node == b->v.preferred_node;
1670 default:
1671 BUG();
1672 return 0;
1673 }
1674 }
1675
1676 /*
1677 * Shared memory backing store policy support.
1678 *
1679 * Remember policies even when nobody has shared memory mapped.
1680 * The policies are kept in Red-Black tree linked from the inode.
1681 * They are protected by the sp->lock spinlock, which should be held
1682 * for any accesses to the tree.
1683 */
1684
1685 /* lookup first element intersecting start-end */
1686 /* Caller holds sp->lock */
1687 static struct sp_node *
1688 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1689 {
1690 struct rb_node *n = sp->root.rb_node;
1691
1692 while (n) {
1693 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1694
1695 if (start >= p->end)
1696 n = n->rb_right;
1697 else if (end <= p->start)
1698 n = n->rb_left;
1699 else
1700 break;
1701 }
1702 if (!n)
1703 return NULL;
1704 for (;;) {
1705 struct sp_node *w = NULL;
1706 struct rb_node *prev = rb_prev(n);
1707 if (!prev)
1708 break;
1709 w = rb_entry(prev, struct sp_node, nd);
1710 if (w->end <= start)
1711 break;
1712 n = prev;
1713 }
1714 return rb_entry(n, struct sp_node, nd);
1715 }
1716
1717 /* Insert a new shared policy into the list. */
1718 /* Caller holds sp->lock */
1719 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1720 {
1721 struct rb_node **p = &sp->root.rb_node;
1722 struct rb_node *parent = NULL;
1723 struct sp_node *nd;
1724
1725 while (*p) {
1726 parent = *p;
1727 nd = rb_entry(parent, struct sp_node, nd);
1728 if (new->start < nd->start)
1729 p = &(*p)->rb_left;
1730 else if (new->end > nd->end)
1731 p = &(*p)->rb_right;
1732 else
1733 BUG();
1734 }
1735 rb_link_node(&new->nd, parent, p);
1736 rb_insert_color(&new->nd, &sp->root);
1737 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1738 new->policy ? new->policy->mode : 0);
1739 }
1740
1741 /* Find shared policy intersecting idx */
1742 struct mempolicy *
1743 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1744 {
1745 struct mempolicy *pol = NULL;
1746 struct sp_node *sn;
1747
1748 if (!sp->root.rb_node)
1749 return NULL;
1750 spin_lock(&sp->lock);
1751 sn = sp_lookup(sp, idx, idx+1);
1752 if (sn) {
1753 mpol_get(sn->policy);
1754 pol = sn->policy;
1755 }
1756 spin_unlock(&sp->lock);
1757 return pol;
1758 }
1759
1760 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1761 {
1762 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1763 rb_erase(&n->nd, &sp->root);
1764 mpol_put(n->policy);
1765 kmem_cache_free(sn_cache, n);
1766 }
1767
1768 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1769 struct mempolicy *pol)
1770 {
1771 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1772
1773 if (!n)
1774 return NULL;
1775 n->start = start;
1776 n->end = end;
1777 mpol_get(pol);
1778 pol->flags |= MPOL_F_SHARED; /* for unref */
1779 n->policy = pol;
1780 return n;
1781 }
1782
1783 /* Replace a policy range. */
1784 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1785 unsigned long end, struct sp_node *new)
1786 {
1787 struct sp_node *n, *new2 = NULL;
1788
1789 restart:
1790 spin_lock(&sp->lock);
1791 n = sp_lookup(sp, start, end);
1792 /* Take care of old policies in the same range. */
1793 while (n && n->start < end) {
1794 struct rb_node *next = rb_next(&n->nd);
1795 if (n->start >= start) {
1796 if (n->end <= end)
1797 sp_delete(sp, n);
1798 else
1799 n->start = end;
1800 } else {
1801 /* Old policy spanning whole new range. */
1802 if (n->end > end) {
1803 if (!new2) {
1804 spin_unlock(&sp->lock);
1805 new2 = sp_alloc(end, n->end, n->policy);
1806 if (!new2)
1807 return -ENOMEM;
1808 goto restart;
1809 }
1810 n->end = start;
1811 sp_insert(sp, new2);
1812 new2 = NULL;
1813 break;
1814 } else
1815 n->end = start;
1816 }
1817 if (!next)
1818 break;
1819 n = rb_entry(next, struct sp_node, nd);
1820 }
1821 if (new)
1822 sp_insert(sp, new);
1823 spin_unlock(&sp->lock);
1824 if (new2) {
1825 mpol_put(new2->policy);
1826 kmem_cache_free(sn_cache, new2);
1827 }
1828 return 0;
1829 }
1830
1831 void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1832 unsigned short flags, nodemask_t *policy_nodes)
1833 {
1834 info->root = RB_ROOT;
1835 spin_lock_init(&info->lock);
1836
1837 if (policy != MPOL_DEFAULT) {
1838 struct mempolicy *newpol;
1839
1840 /* Falls back to NULL policy [MPOL_DEFAULT] on any error */
1841 newpol = mpol_new(policy, flags, policy_nodes);
1842 if (!IS_ERR(newpol)) {
1843 /* Create pseudo-vma that contains just the policy */
1844 struct vm_area_struct pvma;
1845
1846 memset(&pvma, 0, sizeof(struct vm_area_struct));
1847 /* Policy covers entire file */
1848 pvma.vm_end = TASK_SIZE;
1849 mpol_set_shared_policy(info, &pvma, newpol);
1850 mpol_put(newpol);
1851 }
1852 }
1853 }
1854
1855 int mpol_set_shared_policy(struct shared_policy *info,
1856 struct vm_area_struct *vma, struct mempolicy *npol)
1857 {
1858 int err;
1859 struct sp_node *new = NULL;
1860 unsigned long sz = vma_pages(vma);
1861
1862 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1863 vma->vm_pgoff,
1864 sz, npol ? npol->mode : -1,
1865 npol ? npol->flags : -1,
1866 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1867
1868 if (npol) {
1869 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1870 if (!new)
1871 return -ENOMEM;
1872 }
1873 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1874 if (err && new)
1875 kmem_cache_free(sn_cache, new);
1876 return err;
1877 }
1878
1879 /* Free a backing policy store on inode delete. */
1880 void mpol_free_shared_policy(struct shared_policy *p)
1881 {
1882 struct sp_node *n;
1883 struct rb_node *next;
1884
1885 if (!p->root.rb_node)
1886 return;
1887 spin_lock(&p->lock);
1888 next = rb_first(&p->root);
1889 while (next) {
1890 n = rb_entry(next, struct sp_node, nd);
1891 next = rb_next(&n->nd);
1892 rb_erase(&n->nd, &p->root);
1893 mpol_put(n->policy);
1894 kmem_cache_free(sn_cache, n);
1895 }
1896 spin_unlock(&p->lock);
1897 }
1898
1899 /* assumes fs == KERNEL_DS */
1900 void __init numa_policy_init(void)
1901 {
1902 nodemask_t interleave_nodes;
1903 unsigned long largest = 0;
1904 int nid, prefer = 0;
1905
1906 policy_cache = kmem_cache_create("numa_policy",
1907 sizeof(struct mempolicy),
1908 0, SLAB_PANIC, NULL);
1909
1910 sn_cache = kmem_cache_create("shared_policy_node",
1911 sizeof(struct sp_node),
1912 0, SLAB_PANIC, NULL);
1913
1914 /*
1915 * Set interleaving policy for system init. Interleaving is only
1916 * enabled across suitably sized nodes (default is >= 16MB), or
1917 * fall back to the largest node if they're all smaller.
1918 */
1919 nodes_clear(interleave_nodes);
1920 for_each_node_state(nid, N_HIGH_MEMORY) {
1921 unsigned long total_pages = node_present_pages(nid);
1922
1923 /* Preserve the largest node */
1924 if (largest < total_pages) {
1925 largest = total_pages;
1926 prefer = nid;
1927 }
1928
1929 /* Interleave this node? */
1930 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1931 node_set(nid, interleave_nodes);
1932 }
1933
1934 /* All too small, use the largest */
1935 if (unlikely(nodes_empty(interleave_nodes)))
1936 node_set(prefer, interleave_nodes);
1937
1938 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1939 printk("numa_policy_init: interleaving failed\n");
1940 }
1941
1942 /* Reset policy of current process to default */
1943 void numa_default_policy(void)
1944 {
1945 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1946 }
1947
1948 /*
1949 * "local" is pseudo-policy: MPOL_PREFERRED with preferred_node == -1
1950 * Used only for mpol_to_str()
1951 */
1952 #define MPOL_LOCAL (MPOL_INTERLEAVE + 1)
1953 static const char * const policy_types[] =
1954 { "default", "prefer", "bind", "interleave", "local" };
1955
1956 /*
1957 * Convert a mempolicy into a string.
1958 * Returns the number of characters in buffer (if positive)
1959 * or an error (negative)
1960 */
1961 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1962 {
1963 char *p = buffer;
1964 int l;
1965 int nid;
1966 nodemask_t nodes;
1967 unsigned short mode;
1968 unsigned short flags = pol ? pol->flags : 0;
1969
1970 if (!pol || pol == &default_policy)
1971 mode = MPOL_DEFAULT;
1972 else
1973 mode = pol->mode;
1974
1975 switch (mode) {
1976 case MPOL_DEFAULT:
1977 nodes_clear(nodes);
1978 break;
1979
1980 case MPOL_PREFERRED:
1981 nodes_clear(nodes);
1982 nid = pol->v.preferred_node;
1983 if (nid < 0)
1984 mode = MPOL_LOCAL; /* pseudo-policy */
1985 else
1986 node_set(nid, nodes);
1987 break;
1988
1989 case MPOL_BIND:
1990 /* Fall through */
1991 case MPOL_INTERLEAVE:
1992 nodes = pol->v.nodes;
1993 break;
1994
1995 default:
1996 BUG();
1997 return -EFAULT;
1998 }
1999
2000 l = strlen(policy_types[mode]);
2001 if (buffer + maxlen < p + l + 1)
2002 return -ENOSPC;
2003
2004 strcpy(p, policy_types[mode]);
2005 p += l;
2006
2007 if (flags) {
2008 int need_bar = 0;
2009
2010 if (buffer + maxlen < p + 2)
2011 return -ENOSPC;
2012 *p++ = '=';
2013
2014 if (flags & MPOL_F_STATIC_NODES)
2015 p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
2016 if (flags & MPOL_F_RELATIVE_NODES)
2017 p += sprintf(p, "%srelative", need_bar++ ? "|" : "");
2018 }
2019
2020 if (!nodes_empty(nodes)) {
2021 if (buffer + maxlen < p + 2)
2022 return -ENOSPC;
2023 *p++ = '=';
2024 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2025 }
2026 return p - buffer;
2027 }
2028
2029 struct numa_maps {
2030 unsigned long pages;
2031 unsigned long anon;
2032 unsigned long active;
2033 unsigned long writeback;
2034 unsigned long mapcount_max;
2035 unsigned long dirty;
2036 unsigned long swapcache;
2037 unsigned long node[MAX_NUMNODES];
2038 };
2039
2040 static void gather_stats(struct page *page, void *private, int pte_dirty)
2041 {
2042 struct numa_maps *md = private;
2043 int count = page_mapcount(page);
2044
2045 md->pages++;
2046 if (pte_dirty || PageDirty(page))
2047 md->dirty++;
2048
2049 if (PageSwapCache(page))
2050 md->swapcache++;
2051
2052 if (PageActive(page))
2053 md->active++;
2054
2055 if (PageWriteback(page))
2056 md->writeback++;
2057
2058 if (PageAnon(page))
2059 md->anon++;
2060
2061 if (count > md->mapcount_max)
2062 md->mapcount_max = count;
2063
2064 md->node[page_to_nid(page)]++;
2065 }
2066
2067 #ifdef CONFIG_HUGETLB_PAGE
2068 static void check_huge_range(struct vm_area_struct *vma,
2069 unsigned long start, unsigned long end,
2070 struct numa_maps *md)
2071 {
2072 unsigned long addr;
2073 struct page *page;
2074
2075 for (addr = start; addr < end; addr += HPAGE_SIZE) {
2076 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2077 pte_t pte;
2078
2079 if (!ptep)
2080 continue;
2081
2082 pte = *ptep;
2083 if (pte_none(pte))
2084 continue;
2085
2086 page = pte_page(pte);
2087 if (!page)
2088 continue;
2089
2090 gather_stats(page, md, pte_dirty(*ptep));
2091 }
2092 }
2093 #else
2094 static inline void check_huge_range(struct vm_area_struct *vma,
2095 unsigned long start, unsigned long end,
2096 struct numa_maps *md)
2097 {
2098 }
2099 #endif
2100
2101 /*
2102 * Display pages allocated per node and memory policy via /proc.
2103 */
2104 int show_numa_map(struct seq_file *m, void *v)
2105 {
2106 struct proc_maps_private *priv = m->private;
2107 struct vm_area_struct *vma = v;
2108 struct numa_maps *md;
2109 struct file *file = vma->vm_file;
2110 struct mm_struct *mm = vma->vm_mm;
2111 struct mempolicy *pol;
2112 int n;
2113 char buffer[50];
2114
2115 if (!mm)
2116 return 0;
2117
2118 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2119 if (!md)
2120 return 0;
2121
2122 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2123 mpol_to_str(buffer, sizeof(buffer), pol);
2124 mpol_cond_put(pol);
2125
2126 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2127
2128 if (file) {
2129 seq_printf(m, " file=");
2130 seq_path(m, &file->f_path, "\n\t= ");
2131 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2132 seq_printf(m, " heap");
2133 } else if (vma->vm_start <= mm->start_stack &&
2134 vma->vm_end >= mm->start_stack) {
2135 seq_printf(m, " stack");
2136 }
2137
2138 if (is_vm_hugetlb_page(vma)) {
2139 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2140 seq_printf(m, " huge");
2141 } else {
2142 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2143 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2144 }
2145
2146 if (!md->pages)
2147 goto out;
2148
2149 if (md->anon)
2150 seq_printf(m," anon=%lu",md->anon);
2151
2152 if (md->dirty)
2153 seq_printf(m," dirty=%lu",md->dirty);
2154
2155 if (md->pages != md->anon && md->pages != md->dirty)
2156 seq_printf(m, " mapped=%lu", md->pages);
2157
2158 if (md->mapcount_max > 1)
2159 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2160
2161 if (md->swapcache)
2162 seq_printf(m," swapcache=%lu", md->swapcache);
2163
2164 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2165 seq_printf(m," active=%lu", md->active);
2166
2167 if (md->writeback)
2168 seq_printf(m," writeback=%lu", md->writeback);
2169
2170 for_each_node_state(n, N_HIGH_MEMORY)
2171 if (md->node[n])
2172 seq_printf(m, " N%d=%lu", n, md->node[n]);
2173 out:
2174 seq_putc(m, '\n');
2175 kfree(md);
2176
2177 if (m->count < m->size)
2178 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2179 return 0;
2180 }
This page took 0.072929 seconds and 6 git commands to generate.