mm: mbind: add hugepage migration code to mbind()
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126
127 if (!pol) {
128 int node = numa_node_id();
129
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
132 /*
133 * preferred_node_policy is not initialised early in
134 * boot
135 */
136 if (!pol->mode)
137 pol = NULL;
138 }
139 }
140
141 return pol;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 return pol->flags & MPOL_MODE_FLAGS;
173 }
174
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
177 {
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
181 }
182
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
189 }
190
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
200 }
201
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
208 }
209
210 /*
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
215 *
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
218 */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 int ret;
223
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
230
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
239
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
245 }
246
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283 }
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
296
297 return policy;
298 }
299
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
306 }
307
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
310 {
311 }
312
313 /*
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
321 {
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 /*
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
332 */
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
342 }
343
344 if (nodes_empty(tmp))
345 tmp = *nodes;
346
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
353
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
360 }
361 }
362
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
366 {
367 nodemask_t tmp;
368
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
371
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
385 }
386 }
387
388 /*
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
390 *
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
398 *
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
403 */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
406 {
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
412
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
415
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
418
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
425
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428
429 /*
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
432 *
433 * Called with task's alloc_lock held.
434 */
435
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
438 {
439 mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441
442 /*
443 * Rebind each vma in mm to new nodemask.
444 *
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
446 */
447
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 struct vm_area_struct *vma;
451
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
456 }
457
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
461 },
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
465 },
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
469 },
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
473 },
474 };
475
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
478
479 /* Scan through pages checking if pages follow certain conditions. */
480 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
481 unsigned long addr, unsigned long end,
482 const nodemask_t *nodes, unsigned long flags,
483 void *private)
484 {
485 pte_t *orig_pte;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
490 do {
491 struct page *page;
492 int nid;
493
494 if (!pte_present(*pte))
495 continue;
496 page = vm_normal_page(vma, addr, *pte);
497 if (!page)
498 continue;
499 /*
500 * vm_normal_page() filters out zero pages, but there might
501 * still be PageReserved pages to skip, perhaps in a VDSO.
502 */
503 if (PageReserved(page))
504 continue;
505 nid = page_to_nid(page);
506 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
507 continue;
508
509 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
510 migrate_page_add(page, private, flags);
511 else
512 break;
513 } while (pte++, addr += PAGE_SIZE, addr != end);
514 pte_unmap_unlock(orig_pte, ptl);
515 return addr != end;
516 }
517
518 static void check_hugetlb_pmd_range(struct vm_area_struct *vma, pmd_t *pmd,
519 const nodemask_t *nodes, unsigned long flags,
520 void *private)
521 {
522 #ifdef CONFIG_HUGETLB_PAGE
523 int nid;
524 struct page *page;
525
526 spin_lock(&vma->vm_mm->page_table_lock);
527 page = pte_page(huge_ptep_get((pte_t *)pmd));
528 nid = page_to_nid(page);
529 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
530 goto unlock;
531 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
532 if (flags & (MPOL_MF_MOVE_ALL) ||
533 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
534 isolate_huge_page(page, private);
535 unlock:
536 spin_unlock(&vma->vm_mm->page_table_lock);
537 #else
538 BUG();
539 #endif
540 }
541
542 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
543 unsigned long addr, unsigned long end,
544 const nodemask_t *nodes, unsigned long flags,
545 void *private)
546 {
547 pmd_t *pmd;
548 unsigned long next;
549
550 pmd = pmd_offset(pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (!pmd_present(*pmd))
554 continue;
555 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
556 check_hugetlb_pmd_range(vma, pmd, nodes,
557 flags, private);
558 continue;
559 }
560 split_huge_page_pmd(vma, addr, pmd);
561 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
562 continue;
563 if (check_pte_range(vma, pmd, addr, next, nodes,
564 flags, private))
565 return -EIO;
566 } while (pmd++, addr = next, addr != end);
567 return 0;
568 }
569
570 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
571 unsigned long addr, unsigned long end,
572 const nodemask_t *nodes, unsigned long flags,
573 void *private)
574 {
575 pud_t *pud;
576 unsigned long next;
577
578 pud = pud_offset(pgd, addr);
579 do {
580 next = pud_addr_end(addr, end);
581 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
582 continue;
583 if (pud_none_or_clear_bad(pud))
584 continue;
585 if (check_pmd_range(vma, pud, addr, next, nodes,
586 flags, private))
587 return -EIO;
588 } while (pud++, addr = next, addr != end);
589 return 0;
590 }
591
592 static inline int check_pgd_range(struct vm_area_struct *vma,
593 unsigned long addr, unsigned long end,
594 const nodemask_t *nodes, unsigned long flags,
595 void *private)
596 {
597 pgd_t *pgd;
598 unsigned long next;
599
600 pgd = pgd_offset(vma->vm_mm, addr);
601 do {
602 next = pgd_addr_end(addr, end);
603 if (pgd_none_or_clear_bad(pgd))
604 continue;
605 if (check_pud_range(vma, pgd, addr, next, nodes,
606 flags, private))
607 return -EIO;
608 } while (pgd++, addr = next, addr != end);
609 return 0;
610 }
611
612 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
613 /*
614 * This is used to mark a range of virtual addresses to be inaccessible.
615 * These are later cleared by a NUMA hinting fault. Depending on these
616 * faults, pages may be migrated for better NUMA placement.
617 *
618 * This is assuming that NUMA faults are handled using PROT_NONE. If
619 * an architecture makes a different choice, it will need further
620 * changes to the core.
621 */
622 unsigned long change_prot_numa(struct vm_area_struct *vma,
623 unsigned long addr, unsigned long end)
624 {
625 int nr_updated;
626 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
627
628 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
629 if (nr_updated)
630 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
631
632 return nr_updated;
633 }
634 #else
635 static unsigned long change_prot_numa(struct vm_area_struct *vma,
636 unsigned long addr, unsigned long end)
637 {
638 return 0;
639 }
640 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
641
642 /*
643 * Check if all pages in a range are on a set of nodes.
644 * If pagelist != NULL then isolate pages from the LRU and
645 * put them on the pagelist.
646 */
647 static struct vm_area_struct *
648 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
649 const nodemask_t *nodes, unsigned long flags, void *private)
650 {
651 int err;
652 struct vm_area_struct *first, *vma, *prev;
653
654
655 first = find_vma(mm, start);
656 if (!first)
657 return ERR_PTR(-EFAULT);
658 prev = NULL;
659 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
660 unsigned long endvma = vma->vm_end;
661
662 if (endvma > end)
663 endvma = end;
664 if (vma->vm_start > start)
665 start = vma->vm_start;
666
667 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
668 if (!vma->vm_next && vma->vm_end < end)
669 return ERR_PTR(-EFAULT);
670 if (prev && prev->vm_end < vma->vm_start)
671 return ERR_PTR(-EFAULT);
672 }
673
674 if (flags & MPOL_MF_LAZY) {
675 change_prot_numa(vma, start, endvma);
676 goto next;
677 }
678
679 if ((flags & MPOL_MF_STRICT) ||
680 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
681 vma_migratable(vma))) {
682
683 err = check_pgd_range(vma, start, endvma, nodes,
684 flags, private);
685 if (err) {
686 first = ERR_PTR(err);
687 break;
688 }
689 }
690 next:
691 prev = vma;
692 }
693 return first;
694 }
695
696 /*
697 * Apply policy to a single VMA
698 * This must be called with the mmap_sem held for writing.
699 */
700 static int vma_replace_policy(struct vm_area_struct *vma,
701 struct mempolicy *pol)
702 {
703 int err;
704 struct mempolicy *old;
705 struct mempolicy *new;
706
707 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
708 vma->vm_start, vma->vm_end, vma->vm_pgoff,
709 vma->vm_ops, vma->vm_file,
710 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
711
712 new = mpol_dup(pol);
713 if (IS_ERR(new))
714 return PTR_ERR(new);
715
716 if (vma->vm_ops && vma->vm_ops->set_policy) {
717 err = vma->vm_ops->set_policy(vma, new);
718 if (err)
719 goto err_out;
720 }
721
722 old = vma->vm_policy;
723 vma->vm_policy = new; /* protected by mmap_sem */
724 mpol_put(old);
725
726 return 0;
727 err_out:
728 mpol_put(new);
729 return err;
730 }
731
732 /* Step 2: apply policy to a range and do splits. */
733 static int mbind_range(struct mm_struct *mm, unsigned long start,
734 unsigned long end, struct mempolicy *new_pol)
735 {
736 struct vm_area_struct *next;
737 struct vm_area_struct *prev;
738 struct vm_area_struct *vma;
739 int err = 0;
740 pgoff_t pgoff;
741 unsigned long vmstart;
742 unsigned long vmend;
743
744 vma = find_vma(mm, start);
745 if (!vma || vma->vm_start > start)
746 return -EFAULT;
747
748 prev = vma->vm_prev;
749 if (start > vma->vm_start)
750 prev = vma;
751
752 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
753 next = vma->vm_next;
754 vmstart = max(start, vma->vm_start);
755 vmend = min(end, vma->vm_end);
756
757 if (mpol_equal(vma_policy(vma), new_pol))
758 continue;
759
760 pgoff = vma->vm_pgoff +
761 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
762 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
763 vma->anon_vma, vma->vm_file, pgoff,
764 new_pol);
765 if (prev) {
766 vma = prev;
767 next = vma->vm_next;
768 if (mpol_equal(vma_policy(vma), new_pol))
769 continue;
770 /* vma_merge() joined vma && vma->next, case 8 */
771 goto replace;
772 }
773 if (vma->vm_start != vmstart) {
774 err = split_vma(vma->vm_mm, vma, vmstart, 1);
775 if (err)
776 goto out;
777 }
778 if (vma->vm_end != vmend) {
779 err = split_vma(vma->vm_mm, vma, vmend, 0);
780 if (err)
781 goto out;
782 }
783 replace:
784 err = vma_replace_policy(vma, new_pol);
785 if (err)
786 goto out;
787 }
788
789 out:
790 return err;
791 }
792
793 /*
794 * Update task->flags PF_MEMPOLICY bit: set iff non-default
795 * mempolicy. Allows more rapid checking of this (combined perhaps
796 * with other PF_* flag bits) on memory allocation hot code paths.
797 *
798 * If called from outside this file, the task 'p' should -only- be
799 * a newly forked child not yet visible on the task list, because
800 * manipulating the task flags of a visible task is not safe.
801 *
802 * The above limitation is why this routine has the funny name
803 * mpol_fix_fork_child_flag().
804 *
805 * It is also safe to call this with a task pointer of current,
806 * which the static wrapper mpol_set_task_struct_flag() does,
807 * for use within this file.
808 */
809
810 void mpol_fix_fork_child_flag(struct task_struct *p)
811 {
812 if (p->mempolicy)
813 p->flags |= PF_MEMPOLICY;
814 else
815 p->flags &= ~PF_MEMPOLICY;
816 }
817
818 static void mpol_set_task_struct_flag(void)
819 {
820 mpol_fix_fork_child_flag(current);
821 }
822
823 /* Set the process memory policy */
824 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
825 nodemask_t *nodes)
826 {
827 struct mempolicy *new, *old;
828 struct mm_struct *mm = current->mm;
829 NODEMASK_SCRATCH(scratch);
830 int ret;
831
832 if (!scratch)
833 return -ENOMEM;
834
835 new = mpol_new(mode, flags, nodes);
836 if (IS_ERR(new)) {
837 ret = PTR_ERR(new);
838 goto out;
839 }
840 /*
841 * prevent changing our mempolicy while show_numa_maps()
842 * is using it.
843 * Note: do_set_mempolicy() can be called at init time
844 * with no 'mm'.
845 */
846 if (mm)
847 down_write(&mm->mmap_sem);
848 task_lock(current);
849 ret = mpol_set_nodemask(new, nodes, scratch);
850 if (ret) {
851 task_unlock(current);
852 if (mm)
853 up_write(&mm->mmap_sem);
854 mpol_put(new);
855 goto out;
856 }
857 old = current->mempolicy;
858 current->mempolicy = new;
859 mpol_set_task_struct_flag();
860 if (new && new->mode == MPOL_INTERLEAVE &&
861 nodes_weight(new->v.nodes))
862 current->il_next = first_node(new->v.nodes);
863 task_unlock(current);
864 if (mm)
865 up_write(&mm->mmap_sem);
866
867 mpol_put(old);
868 ret = 0;
869 out:
870 NODEMASK_SCRATCH_FREE(scratch);
871 return ret;
872 }
873
874 /*
875 * Return nodemask for policy for get_mempolicy() query
876 *
877 * Called with task's alloc_lock held
878 */
879 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
880 {
881 nodes_clear(*nodes);
882 if (p == &default_policy)
883 return;
884
885 switch (p->mode) {
886 case MPOL_BIND:
887 /* Fall through */
888 case MPOL_INTERLEAVE:
889 *nodes = p->v.nodes;
890 break;
891 case MPOL_PREFERRED:
892 if (!(p->flags & MPOL_F_LOCAL))
893 node_set(p->v.preferred_node, *nodes);
894 /* else return empty node mask for local allocation */
895 break;
896 default:
897 BUG();
898 }
899 }
900
901 static int lookup_node(struct mm_struct *mm, unsigned long addr)
902 {
903 struct page *p;
904 int err;
905
906 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
907 if (err >= 0) {
908 err = page_to_nid(p);
909 put_page(p);
910 }
911 return err;
912 }
913
914 /* Retrieve NUMA policy */
915 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
916 unsigned long addr, unsigned long flags)
917 {
918 int err;
919 struct mm_struct *mm = current->mm;
920 struct vm_area_struct *vma = NULL;
921 struct mempolicy *pol = current->mempolicy;
922
923 if (flags &
924 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
925 return -EINVAL;
926
927 if (flags & MPOL_F_MEMS_ALLOWED) {
928 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 return -EINVAL;
930 *policy = 0; /* just so it's initialized */
931 task_lock(current);
932 *nmask = cpuset_current_mems_allowed;
933 task_unlock(current);
934 return 0;
935 }
936
937 if (flags & MPOL_F_ADDR) {
938 /*
939 * Do NOT fall back to task policy if the
940 * vma/shared policy at addr is NULL. We
941 * want to return MPOL_DEFAULT in this case.
942 */
943 down_read(&mm->mmap_sem);
944 vma = find_vma_intersection(mm, addr, addr+1);
945 if (!vma) {
946 up_read(&mm->mmap_sem);
947 return -EFAULT;
948 }
949 if (vma->vm_ops && vma->vm_ops->get_policy)
950 pol = vma->vm_ops->get_policy(vma, addr);
951 else
952 pol = vma->vm_policy;
953 } else if (addr)
954 return -EINVAL;
955
956 if (!pol)
957 pol = &default_policy; /* indicates default behavior */
958
959 if (flags & MPOL_F_NODE) {
960 if (flags & MPOL_F_ADDR) {
961 err = lookup_node(mm, addr);
962 if (err < 0)
963 goto out;
964 *policy = err;
965 } else if (pol == current->mempolicy &&
966 pol->mode == MPOL_INTERLEAVE) {
967 *policy = current->il_next;
968 } else {
969 err = -EINVAL;
970 goto out;
971 }
972 } else {
973 *policy = pol == &default_policy ? MPOL_DEFAULT :
974 pol->mode;
975 /*
976 * Internal mempolicy flags must be masked off before exposing
977 * the policy to userspace.
978 */
979 *policy |= (pol->flags & MPOL_MODE_FLAGS);
980 }
981
982 if (vma) {
983 up_read(&current->mm->mmap_sem);
984 vma = NULL;
985 }
986
987 err = 0;
988 if (nmask) {
989 if (mpol_store_user_nodemask(pol)) {
990 *nmask = pol->w.user_nodemask;
991 } else {
992 task_lock(current);
993 get_policy_nodemask(pol, nmask);
994 task_unlock(current);
995 }
996 }
997
998 out:
999 mpol_cond_put(pol);
1000 if (vma)
1001 up_read(&current->mm->mmap_sem);
1002 return err;
1003 }
1004
1005 #ifdef CONFIG_MIGRATION
1006 /*
1007 * page migration
1008 */
1009 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1010 unsigned long flags)
1011 {
1012 /*
1013 * Avoid migrating a page that is shared with others.
1014 */
1015 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1016 if (!isolate_lru_page(page)) {
1017 list_add_tail(&page->lru, pagelist);
1018 inc_zone_page_state(page, NR_ISOLATED_ANON +
1019 page_is_file_cache(page));
1020 }
1021 }
1022 }
1023
1024 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1025 {
1026 if (PageHuge(page))
1027 return alloc_huge_page_node(page_hstate(compound_head(page)),
1028 node);
1029 else
1030 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1031 }
1032
1033 /*
1034 * Migrate pages from one node to a target node.
1035 * Returns error or the number of pages not migrated.
1036 */
1037 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1038 int flags)
1039 {
1040 nodemask_t nmask;
1041 LIST_HEAD(pagelist);
1042 int err = 0;
1043
1044 nodes_clear(nmask);
1045 node_set(source, nmask);
1046
1047 /*
1048 * This does not "check" the range but isolates all pages that
1049 * need migration. Between passing in the full user address
1050 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1051 */
1052 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1053 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1054 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1055
1056 if (!list_empty(&pagelist)) {
1057 err = migrate_pages(&pagelist, new_node_page, dest,
1058 MIGRATE_SYNC, MR_SYSCALL);
1059 if (err)
1060 putback_movable_pages(&pagelist);
1061 }
1062
1063 return err;
1064 }
1065
1066 /*
1067 * Move pages between the two nodesets so as to preserve the physical
1068 * layout as much as possible.
1069 *
1070 * Returns the number of page that could not be moved.
1071 */
1072 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1073 const nodemask_t *to, int flags)
1074 {
1075 int busy = 0;
1076 int err;
1077 nodemask_t tmp;
1078
1079 err = migrate_prep();
1080 if (err)
1081 return err;
1082
1083 down_read(&mm->mmap_sem);
1084
1085 err = migrate_vmas(mm, from, to, flags);
1086 if (err)
1087 goto out;
1088
1089 /*
1090 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1091 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1092 * bit in 'tmp', and return that <source, dest> pair for migration.
1093 * The pair of nodemasks 'to' and 'from' define the map.
1094 *
1095 * If no pair of bits is found that way, fallback to picking some
1096 * pair of 'source' and 'dest' bits that are not the same. If the
1097 * 'source' and 'dest' bits are the same, this represents a node
1098 * that will be migrating to itself, so no pages need move.
1099 *
1100 * If no bits are left in 'tmp', or if all remaining bits left
1101 * in 'tmp' correspond to the same bit in 'to', return false
1102 * (nothing left to migrate).
1103 *
1104 * This lets us pick a pair of nodes to migrate between, such that
1105 * if possible the dest node is not already occupied by some other
1106 * source node, minimizing the risk of overloading the memory on a
1107 * node that would happen if we migrated incoming memory to a node
1108 * before migrating outgoing memory source that same node.
1109 *
1110 * A single scan of tmp is sufficient. As we go, we remember the
1111 * most recent <s, d> pair that moved (s != d). If we find a pair
1112 * that not only moved, but what's better, moved to an empty slot
1113 * (d is not set in tmp), then we break out then, with that pair.
1114 * Otherwise when we finish scanning from_tmp, we at least have the
1115 * most recent <s, d> pair that moved. If we get all the way through
1116 * the scan of tmp without finding any node that moved, much less
1117 * moved to an empty node, then there is nothing left worth migrating.
1118 */
1119
1120 tmp = *from;
1121 while (!nodes_empty(tmp)) {
1122 int s,d;
1123 int source = -1;
1124 int dest = 0;
1125
1126 for_each_node_mask(s, tmp) {
1127
1128 /*
1129 * do_migrate_pages() tries to maintain the relative
1130 * node relationship of the pages established between
1131 * threads and memory areas.
1132 *
1133 * However if the number of source nodes is not equal to
1134 * the number of destination nodes we can not preserve
1135 * this node relative relationship. In that case, skip
1136 * copying memory from a node that is in the destination
1137 * mask.
1138 *
1139 * Example: [2,3,4] -> [3,4,5] moves everything.
1140 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1141 */
1142
1143 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1144 (node_isset(s, *to)))
1145 continue;
1146
1147 d = node_remap(s, *from, *to);
1148 if (s == d)
1149 continue;
1150
1151 source = s; /* Node moved. Memorize */
1152 dest = d;
1153
1154 /* dest not in remaining from nodes? */
1155 if (!node_isset(dest, tmp))
1156 break;
1157 }
1158 if (source == -1)
1159 break;
1160
1161 node_clear(source, tmp);
1162 err = migrate_to_node(mm, source, dest, flags);
1163 if (err > 0)
1164 busy += err;
1165 if (err < 0)
1166 break;
1167 }
1168 out:
1169 up_read(&mm->mmap_sem);
1170 if (err < 0)
1171 return err;
1172 return busy;
1173
1174 }
1175
1176 /*
1177 * Allocate a new page for page migration based on vma policy.
1178 * Start assuming that page is mapped by vma pointed to by @private.
1179 * Search forward from there, if not. N.B., this assumes that the
1180 * list of pages handed to migrate_pages()--which is how we get here--
1181 * is in virtual address order.
1182 */
1183 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1184 {
1185 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1186 unsigned long uninitialized_var(address);
1187
1188 while (vma) {
1189 address = page_address_in_vma(page, vma);
1190 if (address != -EFAULT)
1191 break;
1192 vma = vma->vm_next;
1193 }
1194
1195 if (PageHuge(page))
1196 return alloc_huge_page_noerr(vma, address, 1);
1197 /*
1198 * if !vma, alloc_page_vma() will use task or system default policy
1199 */
1200 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1201 }
1202 #else
1203
1204 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1205 unsigned long flags)
1206 {
1207 }
1208
1209 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1210 const nodemask_t *to, int flags)
1211 {
1212 return -ENOSYS;
1213 }
1214
1215 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1216 {
1217 return NULL;
1218 }
1219 #endif
1220
1221 static long do_mbind(unsigned long start, unsigned long len,
1222 unsigned short mode, unsigned short mode_flags,
1223 nodemask_t *nmask, unsigned long flags)
1224 {
1225 struct vm_area_struct *vma;
1226 struct mm_struct *mm = current->mm;
1227 struct mempolicy *new;
1228 unsigned long end;
1229 int err;
1230 LIST_HEAD(pagelist);
1231
1232 if (flags & ~(unsigned long)MPOL_MF_VALID)
1233 return -EINVAL;
1234 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1235 return -EPERM;
1236
1237 if (start & ~PAGE_MASK)
1238 return -EINVAL;
1239
1240 if (mode == MPOL_DEFAULT)
1241 flags &= ~MPOL_MF_STRICT;
1242
1243 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1244 end = start + len;
1245
1246 if (end < start)
1247 return -EINVAL;
1248 if (end == start)
1249 return 0;
1250
1251 new = mpol_new(mode, mode_flags, nmask);
1252 if (IS_ERR(new))
1253 return PTR_ERR(new);
1254
1255 if (flags & MPOL_MF_LAZY)
1256 new->flags |= MPOL_F_MOF;
1257
1258 /*
1259 * If we are using the default policy then operation
1260 * on discontinuous address spaces is okay after all
1261 */
1262 if (!new)
1263 flags |= MPOL_MF_DISCONTIG_OK;
1264
1265 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1266 start, start + len, mode, mode_flags,
1267 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1268
1269 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1270
1271 err = migrate_prep();
1272 if (err)
1273 goto mpol_out;
1274 }
1275 {
1276 NODEMASK_SCRATCH(scratch);
1277 if (scratch) {
1278 down_write(&mm->mmap_sem);
1279 task_lock(current);
1280 err = mpol_set_nodemask(new, nmask, scratch);
1281 task_unlock(current);
1282 if (err)
1283 up_write(&mm->mmap_sem);
1284 } else
1285 err = -ENOMEM;
1286 NODEMASK_SCRATCH_FREE(scratch);
1287 }
1288 if (err)
1289 goto mpol_out;
1290
1291 vma = check_range(mm, start, end, nmask,
1292 flags | MPOL_MF_INVERT, &pagelist);
1293
1294 err = PTR_ERR(vma); /* maybe ... */
1295 if (!IS_ERR(vma))
1296 err = mbind_range(mm, start, end, new);
1297
1298 if (!err) {
1299 int nr_failed = 0;
1300
1301 if (!list_empty(&pagelist)) {
1302 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1303 nr_failed = migrate_pages(&pagelist, new_vma_page,
1304 (unsigned long)vma,
1305 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1306 if (nr_failed)
1307 putback_movable_pages(&pagelist);
1308 }
1309
1310 if (nr_failed && (flags & MPOL_MF_STRICT))
1311 err = -EIO;
1312 } else
1313 putback_lru_pages(&pagelist);
1314
1315 up_write(&mm->mmap_sem);
1316 mpol_out:
1317 mpol_put(new);
1318 return err;
1319 }
1320
1321 /*
1322 * User space interface with variable sized bitmaps for nodelists.
1323 */
1324
1325 /* Copy a node mask from user space. */
1326 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1327 unsigned long maxnode)
1328 {
1329 unsigned long k;
1330 unsigned long nlongs;
1331 unsigned long endmask;
1332
1333 --maxnode;
1334 nodes_clear(*nodes);
1335 if (maxnode == 0 || !nmask)
1336 return 0;
1337 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1338 return -EINVAL;
1339
1340 nlongs = BITS_TO_LONGS(maxnode);
1341 if ((maxnode % BITS_PER_LONG) == 0)
1342 endmask = ~0UL;
1343 else
1344 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1345
1346 /* When the user specified more nodes than supported just check
1347 if the non supported part is all zero. */
1348 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1349 if (nlongs > PAGE_SIZE/sizeof(long))
1350 return -EINVAL;
1351 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1352 unsigned long t;
1353 if (get_user(t, nmask + k))
1354 return -EFAULT;
1355 if (k == nlongs - 1) {
1356 if (t & endmask)
1357 return -EINVAL;
1358 } else if (t)
1359 return -EINVAL;
1360 }
1361 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1362 endmask = ~0UL;
1363 }
1364
1365 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1366 return -EFAULT;
1367 nodes_addr(*nodes)[nlongs-1] &= endmask;
1368 return 0;
1369 }
1370
1371 /* Copy a kernel node mask to user space */
1372 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1373 nodemask_t *nodes)
1374 {
1375 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1376 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1377
1378 if (copy > nbytes) {
1379 if (copy > PAGE_SIZE)
1380 return -EINVAL;
1381 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1382 return -EFAULT;
1383 copy = nbytes;
1384 }
1385 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1386 }
1387
1388 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1389 unsigned long, mode, unsigned long __user *, nmask,
1390 unsigned long, maxnode, unsigned, flags)
1391 {
1392 nodemask_t nodes;
1393 int err;
1394 unsigned short mode_flags;
1395
1396 mode_flags = mode & MPOL_MODE_FLAGS;
1397 mode &= ~MPOL_MODE_FLAGS;
1398 if (mode >= MPOL_MAX)
1399 return -EINVAL;
1400 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1401 (mode_flags & MPOL_F_RELATIVE_NODES))
1402 return -EINVAL;
1403 err = get_nodes(&nodes, nmask, maxnode);
1404 if (err)
1405 return err;
1406 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1407 }
1408
1409 /* Set the process memory policy */
1410 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1411 unsigned long, maxnode)
1412 {
1413 int err;
1414 nodemask_t nodes;
1415 unsigned short flags;
1416
1417 flags = mode & MPOL_MODE_FLAGS;
1418 mode &= ~MPOL_MODE_FLAGS;
1419 if ((unsigned int)mode >= MPOL_MAX)
1420 return -EINVAL;
1421 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1422 return -EINVAL;
1423 err = get_nodes(&nodes, nmask, maxnode);
1424 if (err)
1425 return err;
1426 return do_set_mempolicy(mode, flags, &nodes);
1427 }
1428
1429 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1430 const unsigned long __user *, old_nodes,
1431 const unsigned long __user *, new_nodes)
1432 {
1433 const struct cred *cred = current_cred(), *tcred;
1434 struct mm_struct *mm = NULL;
1435 struct task_struct *task;
1436 nodemask_t task_nodes;
1437 int err;
1438 nodemask_t *old;
1439 nodemask_t *new;
1440 NODEMASK_SCRATCH(scratch);
1441
1442 if (!scratch)
1443 return -ENOMEM;
1444
1445 old = &scratch->mask1;
1446 new = &scratch->mask2;
1447
1448 err = get_nodes(old, old_nodes, maxnode);
1449 if (err)
1450 goto out;
1451
1452 err = get_nodes(new, new_nodes, maxnode);
1453 if (err)
1454 goto out;
1455
1456 /* Find the mm_struct */
1457 rcu_read_lock();
1458 task = pid ? find_task_by_vpid(pid) : current;
1459 if (!task) {
1460 rcu_read_unlock();
1461 err = -ESRCH;
1462 goto out;
1463 }
1464 get_task_struct(task);
1465
1466 err = -EINVAL;
1467
1468 /*
1469 * Check if this process has the right to modify the specified
1470 * process. The right exists if the process has administrative
1471 * capabilities, superuser privileges or the same
1472 * userid as the target process.
1473 */
1474 tcred = __task_cred(task);
1475 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1476 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1477 !capable(CAP_SYS_NICE)) {
1478 rcu_read_unlock();
1479 err = -EPERM;
1480 goto out_put;
1481 }
1482 rcu_read_unlock();
1483
1484 task_nodes = cpuset_mems_allowed(task);
1485 /* Is the user allowed to access the target nodes? */
1486 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1487 err = -EPERM;
1488 goto out_put;
1489 }
1490
1491 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1492 err = -EINVAL;
1493 goto out_put;
1494 }
1495
1496 err = security_task_movememory(task);
1497 if (err)
1498 goto out_put;
1499
1500 mm = get_task_mm(task);
1501 put_task_struct(task);
1502
1503 if (!mm) {
1504 err = -EINVAL;
1505 goto out;
1506 }
1507
1508 err = do_migrate_pages(mm, old, new,
1509 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1510
1511 mmput(mm);
1512 out:
1513 NODEMASK_SCRATCH_FREE(scratch);
1514
1515 return err;
1516
1517 out_put:
1518 put_task_struct(task);
1519 goto out;
1520
1521 }
1522
1523
1524 /* Retrieve NUMA policy */
1525 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1526 unsigned long __user *, nmask, unsigned long, maxnode,
1527 unsigned long, addr, unsigned long, flags)
1528 {
1529 int err;
1530 int uninitialized_var(pval);
1531 nodemask_t nodes;
1532
1533 if (nmask != NULL && maxnode < MAX_NUMNODES)
1534 return -EINVAL;
1535
1536 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1537
1538 if (err)
1539 return err;
1540
1541 if (policy && put_user(pval, policy))
1542 return -EFAULT;
1543
1544 if (nmask)
1545 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1546
1547 return err;
1548 }
1549
1550 #ifdef CONFIG_COMPAT
1551
1552 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1553 compat_ulong_t __user *nmask,
1554 compat_ulong_t maxnode,
1555 compat_ulong_t addr, compat_ulong_t flags)
1556 {
1557 long err;
1558 unsigned long __user *nm = NULL;
1559 unsigned long nr_bits, alloc_size;
1560 DECLARE_BITMAP(bm, MAX_NUMNODES);
1561
1562 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1563 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1564
1565 if (nmask)
1566 nm = compat_alloc_user_space(alloc_size);
1567
1568 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1569
1570 if (!err && nmask) {
1571 unsigned long copy_size;
1572 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1573 err = copy_from_user(bm, nm, copy_size);
1574 /* ensure entire bitmap is zeroed */
1575 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1576 err |= compat_put_bitmap(nmask, bm, nr_bits);
1577 }
1578
1579 return err;
1580 }
1581
1582 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1583 compat_ulong_t maxnode)
1584 {
1585 long err = 0;
1586 unsigned long __user *nm = NULL;
1587 unsigned long nr_bits, alloc_size;
1588 DECLARE_BITMAP(bm, MAX_NUMNODES);
1589
1590 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1591 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1592
1593 if (nmask) {
1594 err = compat_get_bitmap(bm, nmask, nr_bits);
1595 nm = compat_alloc_user_space(alloc_size);
1596 err |= copy_to_user(nm, bm, alloc_size);
1597 }
1598
1599 if (err)
1600 return -EFAULT;
1601
1602 return sys_set_mempolicy(mode, nm, nr_bits+1);
1603 }
1604
1605 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1606 compat_ulong_t mode, compat_ulong_t __user *nmask,
1607 compat_ulong_t maxnode, compat_ulong_t flags)
1608 {
1609 long err = 0;
1610 unsigned long __user *nm = NULL;
1611 unsigned long nr_bits, alloc_size;
1612 nodemask_t bm;
1613
1614 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1615 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1616
1617 if (nmask) {
1618 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1619 nm = compat_alloc_user_space(alloc_size);
1620 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1621 }
1622
1623 if (err)
1624 return -EFAULT;
1625
1626 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1627 }
1628
1629 #endif
1630
1631 /*
1632 * get_vma_policy(@task, @vma, @addr)
1633 * @task - task for fallback if vma policy == default
1634 * @vma - virtual memory area whose policy is sought
1635 * @addr - address in @vma for shared policy lookup
1636 *
1637 * Returns effective policy for a VMA at specified address.
1638 * Falls back to @task or system default policy, as necessary.
1639 * Current or other task's task mempolicy and non-shared vma policies must be
1640 * protected by task_lock(task) by the caller.
1641 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1642 * count--added by the get_policy() vm_op, as appropriate--to protect against
1643 * freeing by another task. It is the caller's responsibility to free the
1644 * extra reference for shared policies.
1645 */
1646 struct mempolicy *get_vma_policy(struct task_struct *task,
1647 struct vm_area_struct *vma, unsigned long addr)
1648 {
1649 struct mempolicy *pol = get_task_policy(task);
1650
1651 if (vma) {
1652 if (vma->vm_ops && vma->vm_ops->get_policy) {
1653 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1654 addr);
1655 if (vpol)
1656 pol = vpol;
1657 } else if (vma->vm_policy) {
1658 pol = vma->vm_policy;
1659
1660 /*
1661 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1662 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1663 * count on these policies which will be dropped by
1664 * mpol_cond_put() later
1665 */
1666 if (mpol_needs_cond_ref(pol))
1667 mpol_get(pol);
1668 }
1669 }
1670 if (!pol)
1671 pol = &default_policy;
1672 return pol;
1673 }
1674
1675 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1676 {
1677 enum zone_type dynamic_policy_zone = policy_zone;
1678
1679 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1680
1681 /*
1682 * if policy->v.nodes has movable memory only,
1683 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1684 *
1685 * policy->v.nodes is intersect with node_states[N_MEMORY].
1686 * so if the following test faile, it implies
1687 * policy->v.nodes has movable memory only.
1688 */
1689 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1690 dynamic_policy_zone = ZONE_MOVABLE;
1691
1692 return zone >= dynamic_policy_zone;
1693 }
1694
1695 /*
1696 * Return a nodemask representing a mempolicy for filtering nodes for
1697 * page allocation
1698 */
1699 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1700 {
1701 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1702 if (unlikely(policy->mode == MPOL_BIND) &&
1703 apply_policy_zone(policy, gfp_zone(gfp)) &&
1704 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1705 return &policy->v.nodes;
1706
1707 return NULL;
1708 }
1709
1710 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1711 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1712 int nd)
1713 {
1714 switch (policy->mode) {
1715 case MPOL_PREFERRED:
1716 if (!(policy->flags & MPOL_F_LOCAL))
1717 nd = policy->v.preferred_node;
1718 break;
1719 case MPOL_BIND:
1720 /*
1721 * Normally, MPOL_BIND allocations are node-local within the
1722 * allowed nodemask. However, if __GFP_THISNODE is set and the
1723 * current node isn't part of the mask, we use the zonelist for
1724 * the first node in the mask instead.
1725 */
1726 if (unlikely(gfp & __GFP_THISNODE) &&
1727 unlikely(!node_isset(nd, policy->v.nodes)))
1728 nd = first_node(policy->v.nodes);
1729 break;
1730 default:
1731 BUG();
1732 }
1733 return node_zonelist(nd, gfp);
1734 }
1735
1736 /* Do dynamic interleaving for a process */
1737 static unsigned interleave_nodes(struct mempolicy *policy)
1738 {
1739 unsigned nid, next;
1740 struct task_struct *me = current;
1741
1742 nid = me->il_next;
1743 next = next_node(nid, policy->v.nodes);
1744 if (next >= MAX_NUMNODES)
1745 next = first_node(policy->v.nodes);
1746 if (next < MAX_NUMNODES)
1747 me->il_next = next;
1748 return nid;
1749 }
1750
1751 /*
1752 * Depending on the memory policy provide a node from which to allocate the
1753 * next slab entry.
1754 * @policy must be protected by freeing by the caller. If @policy is
1755 * the current task's mempolicy, this protection is implicit, as only the
1756 * task can change it's policy. The system default policy requires no
1757 * such protection.
1758 */
1759 unsigned slab_node(void)
1760 {
1761 struct mempolicy *policy;
1762
1763 if (in_interrupt())
1764 return numa_node_id();
1765
1766 policy = current->mempolicy;
1767 if (!policy || policy->flags & MPOL_F_LOCAL)
1768 return numa_node_id();
1769
1770 switch (policy->mode) {
1771 case MPOL_PREFERRED:
1772 /*
1773 * handled MPOL_F_LOCAL above
1774 */
1775 return policy->v.preferred_node;
1776
1777 case MPOL_INTERLEAVE:
1778 return interleave_nodes(policy);
1779
1780 case MPOL_BIND: {
1781 /*
1782 * Follow bind policy behavior and start allocation at the
1783 * first node.
1784 */
1785 struct zonelist *zonelist;
1786 struct zone *zone;
1787 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1788 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1789 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1790 &policy->v.nodes,
1791 &zone);
1792 return zone ? zone->node : numa_node_id();
1793 }
1794
1795 default:
1796 BUG();
1797 }
1798 }
1799
1800 /* Do static interleaving for a VMA with known offset. */
1801 static unsigned offset_il_node(struct mempolicy *pol,
1802 struct vm_area_struct *vma, unsigned long off)
1803 {
1804 unsigned nnodes = nodes_weight(pol->v.nodes);
1805 unsigned target;
1806 int c;
1807 int nid = -1;
1808
1809 if (!nnodes)
1810 return numa_node_id();
1811 target = (unsigned int)off % nnodes;
1812 c = 0;
1813 do {
1814 nid = next_node(nid, pol->v.nodes);
1815 c++;
1816 } while (c <= target);
1817 return nid;
1818 }
1819
1820 /* Determine a node number for interleave */
1821 static inline unsigned interleave_nid(struct mempolicy *pol,
1822 struct vm_area_struct *vma, unsigned long addr, int shift)
1823 {
1824 if (vma) {
1825 unsigned long off;
1826
1827 /*
1828 * for small pages, there is no difference between
1829 * shift and PAGE_SHIFT, so the bit-shift is safe.
1830 * for huge pages, since vm_pgoff is in units of small
1831 * pages, we need to shift off the always 0 bits to get
1832 * a useful offset.
1833 */
1834 BUG_ON(shift < PAGE_SHIFT);
1835 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1836 off += (addr - vma->vm_start) >> shift;
1837 return offset_il_node(pol, vma, off);
1838 } else
1839 return interleave_nodes(pol);
1840 }
1841
1842 /*
1843 * Return the bit number of a random bit set in the nodemask.
1844 * (returns -1 if nodemask is empty)
1845 */
1846 int node_random(const nodemask_t *maskp)
1847 {
1848 int w, bit = -1;
1849
1850 w = nodes_weight(*maskp);
1851 if (w)
1852 bit = bitmap_ord_to_pos(maskp->bits,
1853 get_random_int() % w, MAX_NUMNODES);
1854 return bit;
1855 }
1856
1857 #ifdef CONFIG_HUGETLBFS
1858 /*
1859 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1860 * @vma = virtual memory area whose policy is sought
1861 * @addr = address in @vma for shared policy lookup and interleave policy
1862 * @gfp_flags = for requested zone
1863 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1864 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1865 *
1866 * Returns a zonelist suitable for a huge page allocation and a pointer
1867 * to the struct mempolicy for conditional unref after allocation.
1868 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1869 * @nodemask for filtering the zonelist.
1870 *
1871 * Must be protected by get_mems_allowed()
1872 */
1873 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1874 gfp_t gfp_flags, struct mempolicy **mpol,
1875 nodemask_t **nodemask)
1876 {
1877 struct zonelist *zl;
1878
1879 *mpol = get_vma_policy(current, vma, addr);
1880 *nodemask = NULL; /* assume !MPOL_BIND */
1881
1882 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1883 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1884 huge_page_shift(hstate_vma(vma))), gfp_flags);
1885 } else {
1886 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1887 if ((*mpol)->mode == MPOL_BIND)
1888 *nodemask = &(*mpol)->v.nodes;
1889 }
1890 return zl;
1891 }
1892
1893 /*
1894 * init_nodemask_of_mempolicy
1895 *
1896 * If the current task's mempolicy is "default" [NULL], return 'false'
1897 * to indicate default policy. Otherwise, extract the policy nodemask
1898 * for 'bind' or 'interleave' policy into the argument nodemask, or
1899 * initialize the argument nodemask to contain the single node for
1900 * 'preferred' or 'local' policy and return 'true' to indicate presence
1901 * of non-default mempolicy.
1902 *
1903 * We don't bother with reference counting the mempolicy [mpol_get/put]
1904 * because the current task is examining it's own mempolicy and a task's
1905 * mempolicy is only ever changed by the task itself.
1906 *
1907 * N.B., it is the caller's responsibility to free a returned nodemask.
1908 */
1909 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1910 {
1911 struct mempolicy *mempolicy;
1912 int nid;
1913
1914 if (!(mask && current->mempolicy))
1915 return false;
1916
1917 task_lock(current);
1918 mempolicy = current->mempolicy;
1919 switch (mempolicy->mode) {
1920 case MPOL_PREFERRED:
1921 if (mempolicy->flags & MPOL_F_LOCAL)
1922 nid = numa_node_id();
1923 else
1924 nid = mempolicy->v.preferred_node;
1925 init_nodemask_of_node(mask, nid);
1926 break;
1927
1928 case MPOL_BIND:
1929 /* Fall through */
1930 case MPOL_INTERLEAVE:
1931 *mask = mempolicy->v.nodes;
1932 break;
1933
1934 default:
1935 BUG();
1936 }
1937 task_unlock(current);
1938
1939 return true;
1940 }
1941 #endif
1942
1943 /*
1944 * mempolicy_nodemask_intersects
1945 *
1946 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1947 * policy. Otherwise, check for intersection between mask and the policy
1948 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1949 * policy, always return true since it may allocate elsewhere on fallback.
1950 *
1951 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1952 */
1953 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1954 const nodemask_t *mask)
1955 {
1956 struct mempolicy *mempolicy;
1957 bool ret = true;
1958
1959 if (!mask)
1960 return ret;
1961 task_lock(tsk);
1962 mempolicy = tsk->mempolicy;
1963 if (!mempolicy)
1964 goto out;
1965
1966 switch (mempolicy->mode) {
1967 case MPOL_PREFERRED:
1968 /*
1969 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1970 * allocate from, they may fallback to other nodes when oom.
1971 * Thus, it's possible for tsk to have allocated memory from
1972 * nodes in mask.
1973 */
1974 break;
1975 case MPOL_BIND:
1976 case MPOL_INTERLEAVE:
1977 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1978 break;
1979 default:
1980 BUG();
1981 }
1982 out:
1983 task_unlock(tsk);
1984 return ret;
1985 }
1986
1987 /* Allocate a page in interleaved policy.
1988 Own path because it needs to do special accounting. */
1989 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1990 unsigned nid)
1991 {
1992 struct zonelist *zl;
1993 struct page *page;
1994
1995 zl = node_zonelist(nid, gfp);
1996 page = __alloc_pages(gfp, order, zl);
1997 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1998 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1999 return page;
2000 }
2001
2002 /**
2003 * alloc_pages_vma - Allocate a page for a VMA.
2004 *
2005 * @gfp:
2006 * %GFP_USER user allocation.
2007 * %GFP_KERNEL kernel allocations,
2008 * %GFP_HIGHMEM highmem/user allocations,
2009 * %GFP_FS allocation should not call back into a file system.
2010 * %GFP_ATOMIC don't sleep.
2011 *
2012 * @order:Order of the GFP allocation.
2013 * @vma: Pointer to VMA or NULL if not available.
2014 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2015 *
2016 * This function allocates a page from the kernel page pool and applies
2017 * a NUMA policy associated with the VMA or the current process.
2018 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2019 * mm_struct of the VMA to prevent it from going away. Should be used for
2020 * all allocations for pages that will be mapped into
2021 * user space. Returns NULL when no page can be allocated.
2022 *
2023 * Should be called with the mm_sem of the vma hold.
2024 */
2025 struct page *
2026 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2027 unsigned long addr, int node)
2028 {
2029 struct mempolicy *pol;
2030 struct page *page;
2031 unsigned int cpuset_mems_cookie;
2032
2033 retry_cpuset:
2034 pol = get_vma_policy(current, vma, addr);
2035 cpuset_mems_cookie = get_mems_allowed();
2036
2037 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2038 unsigned nid;
2039
2040 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2041 mpol_cond_put(pol);
2042 page = alloc_page_interleave(gfp, order, nid);
2043 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2044 goto retry_cpuset;
2045
2046 return page;
2047 }
2048 page = __alloc_pages_nodemask(gfp, order,
2049 policy_zonelist(gfp, pol, node),
2050 policy_nodemask(gfp, pol));
2051 if (unlikely(mpol_needs_cond_ref(pol)))
2052 __mpol_put(pol);
2053 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2054 goto retry_cpuset;
2055 return page;
2056 }
2057
2058 /**
2059 * alloc_pages_current - Allocate pages.
2060 *
2061 * @gfp:
2062 * %GFP_USER user allocation,
2063 * %GFP_KERNEL kernel allocation,
2064 * %GFP_HIGHMEM highmem allocation,
2065 * %GFP_FS don't call back into a file system.
2066 * %GFP_ATOMIC don't sleep.
2067 * @order: Power of two of allocation size in pages. 0 is a single page.
2068 *
2069 * Allocate a page from the kernel page pool. When not in
2070 * interrupt context and apply the current process NUMA policy.
2071 * Returns NULL when no page can be allocated.
2072 *
2073 * Don't call cpuset_update_task_memory_state() unless
2074 * 1) it's ok to take cpuset_sem (can WAIT), and
2075 * 2) allocating for current task (not interrupt).
2076 */
2077 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2078 {
2079 struct mempolicy *pol = get_task_policy(current);
2080 struct page *page;
2081 unsigned int cpuset_mems_cookie;
2082
2083 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2084 pol = &default_policy;
2085
2086 retry_cpuset:
2087 cpuset_mems_cookie = get_mems_allowed();
2088
2089 /*
2090 * No reference counting needed for current->mempolicy
2091 * nor system default_policy
2092 */
2093 if (pol->mode == MPOL_INTERLEAVE)
2094 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2095 else
2096 page = __alloc_pages_nodemask(gfp, order,
2097 policy_zonelist(gfp, pol, numa_node_id()),
2098 policy_nodemask(gfp, pol));
2099
2100 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2101 goto retry_cpuset;
2102
2103 return page;
2104 }
2105 EXPORT_SYMBOL(alloc_pages_current);
2106
2107 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2108 {
2109 struct mempolicy *pol = mpol_dup(vma_policy(src));
2110
2111 if (IS_ERR(pol))
2112 return PTR_ERR(pol);
2113 dst->vm_policy = pol;
2114 return 0;
2115 }
2116
2117 /*
2118 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2119 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2120 * with the mems_allowed returned by cpuset_mems_allowed(). This
2121 * keeps mempolicies cpuset relative after its cpuset moves. See
2122 * further kernel/cpuset.c update_nodemask().
2123 *
2124 * current's mempolicy may be rebinded by the other task(the task that changes
2125 * cpuset's mems), so we needn't do rebind work for current task.
2126 */
2127
2128 /* Slow path of a mempolicy duplicate */
2129 struct mempolicy *__mpol_dup(struct mempolicy *old)
2130 {
2131 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2132
2133 if (!new)
2134 return ERR_PTR(-ENOMEM);
2135
2136 /* task's mempolicy is protected by alloc_lock */
2137 if (old == current->mempolicy) {
2138 task_lock(current);
2139 *new = *old;
2140 task_unlock(current);
2141 } else
2142 *new = *old;
2143
2144 rcu_read_lock();
2145 if (current_cpuset_is_being_rebound()) {
2146 nodemask_t mems = cpuset_mems_allowed(current);
2147 if (new->flags & MPOL_F_REBINDING)
2148 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2149 else
2150 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2151 }
2152 rcu_read_unlock();
2153 atomic_set(&new->refcnt, 1);
2154 return new;
2155 }
2156
2157 /* Slow path of a mempolicy comparison */
2158 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2159 {
2160 if (!a || !b)
2161 return false;
2162 if (a->mode != b->mode)
2163 return false;
2164 if (a->flags != b->flags)
2165 return false;
2166 if (mpol_store_user_nodemask(a))
2167 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2168 return false;
2169
2170 switch (a->mode) {
2171 case MPOL_BIND:
2172 /* Fall through */
2173 case MPOL_INTERLEAVE:
2174 return !!nodes_equal(a->v.nodes, b->v.nodes);
2175 case MPOL_PREFERRED:
2176 return a->v.preferred_node == b->v.preferred_node;
2177 default:
2178 BUG();
2179 return false;
2180 }
2181 }
2182
2183 /*
2184 * Shared memory backing store policy support.
2185 *
2186 * Remember policies even when nobody has shared memory mapped.
2187 * The policies are kept in Red-Black tree linked from the inode.
2188 * They are protected by the sp->lock spinlock, which should be held
2189 * for any accesses to the tree.
2190 */
2191
2192 /* lookup first element intersecting start-end */
2193 /* Caller holds sp->lock */
2194 static struct sp_node *
2195 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2196 {
2197 struct rb_node *n = sp->root.rb_node;
2198
2199 while (n) {
2200 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2201
2202 if (start >= p->end)
2203 n = n->rb_right;
2204 else if (end <= p->start)
2205 n = n->rb_left;
2206 else
2207 break;
2208 }
2209 if (!n)
2210 return NULL;
2211 for (;;) {
2212 struct sp_node *w = NULL;
2213 struct rb_node *prev = rb_prev(n);
2214 if (!prev)
2215 break;
2216 w = rb_entry(prev, struct sp_node, nd);
2217 if (w->end <= start)
2218 break;
2219 n = prev;
2220 }
2221 return rb_entry(n, struct sp_node, nd);
2222 }
2223
2224 /* Insert a new shared policy into the list. */
2225 /* Caller holds sp->lock */
2226 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2227 {
2228 struct rb_node **p = &sp->root.rb_node;
2229 struct rb_node *parent = NULL;
2230 struct sp_node *nd;
2231
2232 while (*p) {
2233 parent = *p;
2234 nd = rb_entry(parent, struct sp_node, nd);
2235 if (new->start < nd->start)
2236 p = &(*p)->rb_left;
2237 else if (new->end > nd->end)
2238 p = &(*p)->rb_right;
2239 else
2240 BUG();
2241 }
2242 rb_link_node(&new->nd, parent, p);
2243 rb_insert_color(&new->nd, &sp->root);
2244 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2245 new->policy ? new->policy->mode : 0);
2246 }
2247
2248 /* Find shared policy intersecting idx */
2249 struct mempolicy *
2250 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2251 {
2252 struct mempolicy *pol = NULL;
2253 struct sp_node *sn;
2254
2255 if (!sp->root.rb_node)
2256 return NULL;
2257 spin_lock(&sp->lock);
2258 sn = sp_lookup(sp, idx, idx+1);
2259 if (sn) {
2260 mpol_get(sn->policy);
2261 pol = sn->policy;
2262 }
2263 spin_unlock(&sp->lock);
2264 return pol;
2265 }
2266
2267 static void sp_free(struct sp_node *n)
2268 {
2269 mpol_put(n->policy);
2270 kmem_cache_free(sn_cache, n);
2271 }
2272
2273 /**
2274 * mpol_misplaced - check whether current page node is valid in policy
2275 *
2276 * @page - page to be checked
2277 * @vma - vm area where page mapped
2278 * @addr - virtual address where page mapped
2279 *
2280 * Lookup current policy node id for vma,addr and "compare to" page's
2281 * node id.
2282 *
2283 * Returns:
2284 * -1 - not misplaced, page is in the right node
2285 * node - node id where the page should be
2286 *
2287 * Policy determination "mimics" alloc_page_vma().
2288 * Called from fault path where we know the vma and faulting address.
2289 */
2290 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2291 {
2292 struct mempolicy *pol;
2293 struct zone *zone;
2294 int curnid = page_to_nid(page);
2295 unsigned long pgoff;
2296 int polnid = -1;
2297 int ret = -1;
2298
2299 BUG_ON(!vma);
2300
2301 pol = get_vma_policy(current, vma, addr);
2302 if (!(pol->flags & MPOL_F_MOF))
2303 goto out;
2304
2305 switch (pol->mode) {
2306 case MPOL_INTERLEAVE:
2307 BUG_ON(addr >= vma->vm_end);
2308 BUG_ON(addr < vma->vm_start);
2309
2310 pgoff = vma->vm_pgoff;
2311 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2312 polnid = offset_il_node(pol, vma, pgoff);
2313 break;
2314
2315 case MPOL_PREFERRED:
2316 if (pol->flags & MPOL_F_LOCAL)
2317 polnid = numa_node_id();
2318 else
2319 polnid = pol->v.preferred_node;
2320 break;
2321
2322 case MPOL_BIND:
2323 /*
2324 * allows binding to multiple nodes.
2325 * use current page if in policy nodemask,
2326 * else select nearest allowed node, if any.
2327 * If no allowed nodes, use current [!misplaced].
2328 */
2329 if (node_isset(curnid, pol->v.nodes))
2330 goto out;
2331 (void)first_zones_zonelist(
2332 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2333 gfp_zone(GFP_HIGHUSER),
2334 &pol->v.nodes, &zone);
2335 polnid = zone->node;
2336 break;
2337
2338 default:
2339 BUG();
2340 }
2341
2342 /* Migrate the page towards the node whose CPU is referencing it */
2343 if (pol->flags & MPOL_F_MORON) {
2344 int last_nid;
2345
2346 polnid = numa_node_id();
2347
2348 /*
2349 * Multi-stage node selection is used in conjunction
2350 * with a periodic migration fault to build a temporal
2351 * task<->page relation. By using a two-stage filter we
2352 * remove short/unlikely relations.
2353 *
2354 * Using P(p) ~ n_p / n_t as per frequentist
2355 * probability, we can equate a task's usage of a
2356 * particular page (n_p) per total usage of this
2357 * page (n_t) (in a given time-span) to a probability.
2358 *
2359 * Our periodic faults will sample this probability and
2360 * getting the same result twice in a row, given these
2361 * samples are fully independent, is then given by
2362 * P(n)^2, provided our sample period is sufficiently
2363 * short compared to the usage pattern.
2364 *
2365 * This quadric squishes small probabilities, making
2366 * it less likely we act on an unlikely task<->page
2367 * relation.
2368 */
2369 last_nid = page_nid_xchg_last(page, polnid);
2370 if (last_nid != polnid)
2371 goto out;
2372 }
2373
2374 if (curnid != polnid)
2375 ret = polnid;
2376 out:
2377 mpol_cond_put(pol);
2378
2379 return ret;
2380 }
2381
2382 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2383 {
2384 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2385 rb_erase(&n->nd, &sp->root);
2386 sp_free(n);
2387 }
2388
2389 static void sp_node_init(struct sp_node *node, unsigned long start,
2390 unsigned long end, struct mempolicy *pol)
2391 {
2392 node->start = start;
2393 node->end = end;
2394 node->policy = pol;
2395 }
2396
2397 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2398 struct mempolicy *pol)
2399 {
2400 struct sp_node *n;
2401 struct mempolicy *newpol;
2402
2403 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2404 if (!n)
2405 return NULL;
2406
2407 newpol = mpol_dup(pol);
2408 if (IS_ERR(newpol)) {
2409 kmem_cache_free(sn_cache, n);
2410 return NULL;
2411 }
2412 newpol->flags |= MPOL_F_SHARED;
2413 sp_node_init(n, start, end, newpol);
2414
2415 return n;
2416 }
2417
2418 /* Replace a policy range. */
2419 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2420 unsigned long end, struct sp_node *new)
2421 {
2422 struct sp_node *n;
2423 struct sp_node *n_new = NULL;
2424 struct mempolicy *mpol_new = NULL;
2425 int ret = 0;
2426
2427 restart:
2428 spin_lock(&sp->lock);
2429 n = sp_lookup(sp, start, end);
2430 /* Take care of old policies in the same range. */
2431 while (n && n->start < end) {
2432 struct rb_node *next = rb_next(&n->nd);
2433 if (n->start >= start) {
2434 if (n->end <= end)
2435 sp_delete(sp, n);
2436 else
2437 n->start = end;
2438 } else {
2439 /* Old policy spanning whole new range. */
2440 if (n->end > end) {
2441 if (!n_new)
2442 goto alloc_new;
2443
2444 *mpol_new = *n->policy;
2445 atomic_set(&mpol_new->refcnt, 1);
2446 sp_node_init(n_new, end, n->end, mpol_new);
2447 n->end = start;
2448 sp_insert(sp, n_new);
2449 n_new = NULL;
2450 mpol_new = NULL;
2451 break;
2452 } else
2453 n->end = start;
2454 }
2455 if (!next)
2456 break;
2457 n = rb_entry(next, struct sp_node, nd);
2458 }
2459 if (new)
2460 sp_insert(sp, new);
2461 spin_unlock(&sp->lock);
2462 ret = 0;
2463
2464 err_out:
2465 if (mpol_new)
2466 mpol_put(mpol_new);
2467 if (n_new)
2468 kmem_cache_free(sn_cache, n_new);
2469
2470 return ret;
2471
2472 alloc_new:
2473 spin_unlock(&sp->lock);
2474 ret = -ENOMEM;
2475 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2476 if (!n_new)
2477 goto err_out;
2478 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2479 if (!mpol_new)
2480 goto err_out;
2481 goto restart;
2482 }
2483
2484 /**
2485 * mpol_shared_policy_init - initialize shared policy for inode
2486 * @sp: pointer to inode shared policy
2487 * @mpol: struct mempolicy to install
2488 *
2489 * Install non-NULL @mpol in inode's shared policy rb-tree.
2490 * On entry, the current task has a reference on a non-NULL @mpol.
2491 * This must be released on exit.
2492 * This is called at get_inode() calls and we can use GFP_KERNEL.
2493 */
2494 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2495 {
2496 int ret;
2497
2498 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2499 spin_lock_init(&sp->lock);
2500
2501 if (mpol) {
2502 struct vm_area_struct pvma;
2503 struct mempolicy *new;
2504 NODEMASK_SCRATCH(scratch);
2505
2506 if (!scratch)
2507 goto put_mpol;
2508 /* contextualize the tmpfs mount point mempolicy */
2509 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2510 if (IS_ERR(new))
2511 goto free_scratch; /* no valid nodemask intersection */
2512
2513 task_lock(current);
2514 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2515 task_unlock(current);
2516 if (ret)
2517 goto put_new;
2518
2519 /* Create pseudo-vma that contains just the policy */
2520 memset(&pvma, 0, sizeof(struct vm_area_struct));
2521 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2522 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2523
2524 put_new:
2525 mpol_put(new); /* drop initial ref */
2526 free_scratch:
2527 NODEMASK_SCRATCH_FREE(scratch);
2528 put_mpol:
2529 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2530 }
2531 }
2532
2533 int mpol_set_shared_policy(struct shared_policy *info,
2534 struct vm_area_struct *vma, struct mempolicy *npol)
2535 {
2536 int err;
2537 struct sp_node *new = NULL;
2538 unsigned long sz = vma_pages(vma);
2539
2540 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2541 vma->vm_pgoff,
2542 sz, npol ? npol->mode : -1,
2543 npol ? npol->flags : -1,
2544 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2545
2546 if (npol) {
2547 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2548 if (!new)
2549 return -ENOMEM;
2550 }
2551 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2552 if (err && new)
2553 sp_free(new);
2554 return err;
2555 }
2556
2557 /* Free a backing policy store on inode delete. */
2558 void mpol_free_shared_policy(struct shared_policy *p)
2559 {
2560 struct sp_node *n;
2561 struct rb_node *next;
2562
2563 if (!p->root.rb_node)
2564 return;
2565 spin_lock(&p->lock);
2566 next = rb_first(&p->root);
2567 while (next) {
2568 n = rb_entry(next, struct sp_node, nd);
2569 next = rb_next(&n->nd);
2570 sp_delete(p, n);
2571 }
2572 spin_unlock(&p->lock);
2573 }
2574
2575 #ifdef CONFIG_NUMA_BALANCING
2576 static bool __initdata numabalancing_override;
2577
2578 static void __init check_numabalancing_enable(void)
2579 {
2580 bool numabalancing_default = false;
2581
2582 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2583 numabalancing_default = true;
2584
2585 if (nr_node_ids > 1 && !numabalancing_override) {
2586 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2587 "Configure with numa_balancing= or sysctl");
2588 set_numabalancing_state(numabalancing_default);
2589 }
2590 }
2591
2592 static int __init setup_numabalancing(char *str)
2593 {
2594 int ret = 0;
2595 if (!str)
2596 goto out;
2597 numabalancing_override = true;
2598
2599 if (!strcmp(str, "enable")) {
2600 set_numabalancing_state(true);
2601 ret = 1;
2602 } else if (!strcmp(str, "disable")) {
2603 set_numabalancing_state(false);
2604 ret = 1;
2605 }
2606 out:
2607 if (!ret)
2608 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2609
2610 return ret;
2611 }
2612 __setup("numa_balancing=", setup_numabalancing);
2613 #else
2614 static inline void __init check_numabalancing_enable(void)
2615 {
2616 }
2617 #endif /* CONFIG_NUMA_BALANCING */
2618
2619 /* assumes fs == KERNEL_DS */
2620 void __init numa_policy_init(void)
2621 {
2622 nodemask_t interleave_nodes;
2623 unsigned long largest = 0;
2624 int nid, prefer = 0;
2625
2626 policy_cache = kmem_cache_create("numa_policy",
2627 sizeof(struct mempolicy),
2628 0, SLAB_PANIC, NULL);
2629
2630 sn_cache = kmem_cache_create("shared_policy_node",
2631 sizeof(struct sp_node),
2632 0, SLAB_PANIC, NULL);
2633
2634 for_each_node(nid) {
2635 preferred_node_policy[nid] = (struct mempolicy) {
2636 .refcnt = ATOMIC_INIT(1),
2637 .mode = MPOL_PREFERRED,
2638 .flags = MPOL_F_MOF | MPOL_F_MORON,
2639 .v = { .preferred_node = nid, },
2640 };
2641 }
2642
2643 /*
2644 * Set interleaving policy for system init. Interleaving is only
2645 * enabled across suitably sized nodes (default is >= 16MB), or
2646 * fall back to the largest node if they're all smaller.
2647 */
2648 nodes_clear(interleave_nodes);
2649 for_each_node_state(nid, N_MEMORY) {
2650 unsigned long total_pages = node_present_pages(nid);
2651
2652 /* Preserve the largest node */
2653 if (largest < total_pages) {
2654 largest = total_pages;
2655 prefer = nid;
2656 }
2657
2658 /* Interleave this node? */
2659 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2660 node_set(nid, interleave_nodes);
2661 }
2662
2663 /* All too small, use the largest */
2664 if (unlikely(nodes_empty(interleave_nodes)))
2665 node_set(prefer, interleave_nodes);
2666
2667 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2668 printk("numa_policy_init: interleaving failed\n");
2669
2670 check_numabalancing_enable();
2671 }
2672
2673 /* Reset policy of current process to default */
2674 void numa_default_policy(void)
2675 {
2676 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2677 }
2678
2679 /*
2680 * Parse and format mempolicy from/to strings
2681 */
2682
2683 /*
2684 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2685 */
2686 static const char * const policy_modes[] =
2687 {
2688 [MPOL_DEFAULT] = "default",
2689 [MPOL_PREFERRED] = "prefer",
2690 [MPOL_BIND] = "bind",
2691 [MPOL_INTERLEAVE] = "interleave",
2692 [MPOL_LOCAL] = "local",
2693 };
2694
2695
2696 #ifdef CONFIG_TMPFS
2697 /**
2698 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2699 * @str: string containing mempolicy to parse
2700 * @mpol: pointer to struct mempolicy pointer, returned on success.
2701 *
2702 * Format of input:
2703 * <mode>[=<flags>][:<nodelist>]
2704 *
2705 * On success, returns 0, else 1
2706 */
2707 int mpol_parse_str(char *str, struct mempolicy **mpol)
2708 {
2709 struct mempolicy *new = NULL;
2710 unsigned short mode;
2711 unsigned short mode_flags;
2712 nodemask_t nodes;
2713 char *nodelist = strchr(str, ':');
2714 char *flags = strchr(str, '=');
2715 int err = 1;
2716
2717 if (nodelist) {
2718 /* NUL-terminate mode or flags string */
2719 *nodelist++ = '\0';
2720 if (nodelist_parse(nodelist, nodes))
2721 goto out;
2722 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2723 goto out;
2724 } else
2725 nodes_clear(nodes);
2726
2727 if (flags)
2728 *flags++ = '\0'; /* terminate mode string */
2729
2730 for (mode = 0; mode < MPOL_MAX; mode++) {
2731 if (!strcmp(str, policy_modes[mode])) {
2732 break;
2733 }
2734 }
2735 if (mode >= MPOL_MAX)
2736 goto out;
2737
2738 switch (mode) {
2739 case MPOL_PREFERRED:
2740 /*
2741 * Insist on a nodelist of one node only
2742 */
2743 if (nodelist) {
2744 char *rest = nodelist;
2745 while (isdigit(*rest))
2746 rest++;
2747 if (*rest)
2748 goto out;
2749 }
2750 break;
2751 case MPOL_INTERLEAVE:
2752 /*
2753 * Default to online nodes with memory if no nodelist
2754 */
2755 if (!nodelist)
2756 nodes = node_states[N_MEMORY];
2757 break;
2758 case MPOL_LOCAL:
2759 /*
2760 * Don't allow a nodelist; mpol_new() checks flags
2761 */
2762 if (nodelist)
2763 goto out;
2764 mode = MPOL_PREFERRED;
2765 break;
2766 case MPOL_DEFAULT:
2767 /*
2768 * Insist on a empty nodelist
2769 */
2770 if (!nodelist)
2771 err = 0;
2772 goto out;
2773 case MPOL_BIND:
2774 /*
2775 * Insist on a nodelist
2776 */
2777 if (!nodelist)
2778 goto out;
2779 }
2780
2781 mode_flags = 0;
2782 if (flags) {
2783 /*
2784 * Currently, we only support two mutually exclusive
2785 * mode flags.
2786 */
2787 if (!strcmp(flags, "static"))
2788 mode_flags |= MPOL_F_STATIC_NODES;
2789 else if (!strcmp(flags, "relative"))
2790 mode_flags |= MPOL_F_RELATIVE_NODES;
2791 else
2792 goto out;
2793 }
2794
2795 new = mpol_new(mode, mode_flags, &nodes);
2796 if (IS_ERR(new))
2797 goto out;
2798
2799 /*
2800 * Save nodes for mpol_to_str() to show the tmpfs mount options
2801 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2802 */
2803 if (mode != MPOL_PREFERRED)
2804 new->v.nodes = nodes;
2805 else if (nodelist)
2806 new->v.preferred_node = first_node(nodes);
2807 else
2808 new->flags |= MPOL_F_LOCAL;
2809
2810 /*
2811 * Save nodes for contextualization: this will be used to "clone"
2812 * the mempolicy in a specific context [cpuset] at a later time.
2813 */
2814 new->w.user_nodemask = nodes;
2815
2816 err = 0;
2817
2818 out:
2819 /* Restore string for error message */
2820 if (nodelist)
2821 *--nodelist = ':';
2822 if (flags)
2823 *--flags = '=';
2824 if (!err)
2825 *mpol = new;
2826 return err;
2827 }
2828 #endif /* CONFIG_TMPFS */
2829
2830 /**
2831 * mpol_to_str - format a mempolicy structure for printing
2832 * @buffer: to contain formatted mempolicy string
2833 * @maxlen: length of @buffer
2834 * @pol: pointer to mempolicy to be formatted
2835 *
2836 * Convert a mempolicy into a string.
2837 * Returns the number of characters in buffer (if positive)
2838 * or an error (negative)
2839 */
2840 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2841 {
2842 char *p = buffer;
2843 int l;
2844 nodemask_t nodes;
2845 unsigned short mode;
2846 unsigned short flags = pol ? pol->flags : 0;
2847
2848 /*
2849 * Sanity check: room for longest mode, flag and some nodes
2850 */
2851 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2852
2853 if (!pol || pol == &default_policy)
2854 mode = MPOL_DEFAULT;
2855 else
2856 mode = pol->mode;
2857
2858 switch (mode) {
2859 case MPOL_DEFAULT:
2860 nodes_clear(nodes);
2861 break;
2862
2863 case MPOL_PREFERRED:
2864 nodes_clear(nodes);
2865 if (flags & MPOL_F_LOCAL)
2866 mode = MPOL_LOCAL;
2867 else
2868 node_set(pol->v.preferred_node, nodes);
2869 break;
2870
2871 case MPOL_BIND:
2872 /* Fall through */
2873 case MPOL_INTERLEAVE:
2874 nodes = pol->v.nodes;
2875 break;
2876
2877 default:
2878 return -EINVAL;
2879 }
2880
2881 l = strlen(policy_modes[mode]);
2882 if (buffer + maxlen < p + l + 1)
2883 return -ENOSPC;
2884
2885 strcpy(p, policy_modes[mode]);
2886 p += l;
2887
2888 if (flags & MPOL_MODE_FLAGS) {
2889 if (buffer + maxlen < p + 2)
2890 return -ENOSPC;
2891 *p++ = '=';
2892
2893 /*
2894 * Currently, the only defined flags are mutually exclusive
2895 */
2896 if (flags & MPOL_F_STATIC_NODES)
2897 p += snprintf(p, buffer + maxlen - p, "static");
2898 else if (flags & MPOL_F_RELATIVE_NODES)
2899 p += snprintf(p, buffer + maxlen - p, "relative");
2900 }
2901
2902 if (!nodes_empty(nodes)) {
2903 if (buffer + maxlen < p + 2)
2904 return -ENOSPC;
2905 *p++ = ':';
2906 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2907 }
2908 return p - buffer;
2909 }
This page took 0.091313 seconds and 6 git commands to generate.