revert "mm: mempolicy: Let vma_merge and vma_split handle vma->vm_policy linkages"
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97
98 #include "internal.h"
99
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156 }
157
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 return pol->flags & MPOL_MODE_FLAGS;
161 }
162
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165 {
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169 }
170
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177 }
178
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188 }
189
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196 }
197
198 /*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240 }
241
242 /*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248 {
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294 {
295 }
296
297 /*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345 }
346
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350 {
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370 }
371
372 /*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390 {
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412
413 /*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422 {
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425
426 /*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440 }
441
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458 };
459
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468 {
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501 }
502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507 {
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522 }
523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528 {
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542 }
543
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548 {
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562 }
563
564 /*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608 }
609
610 /* Apply policy to a single VMA */
611 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
612 {
613 int err = 0;
614 struct mempolicy *old = vma->vm_policy;
615
616 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
617 vma->vm_start, vma->vm_end, vma->vm_pgoff,
618 vma->vm_ops, vma->vm_file,
619 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
620
621 if (vma->vm_ops && vma->vm_ops->set_policy)
622 err = vma->vm_ops->set_policy(vma, new);
623 if (!err) {
624 mpol_get(new);
625 vma->vm_policy = new;
626 mpol_put(old);
627 }
628 return err;
629 }
630
631 /* Step 2: apply policy to a range and do splits. */
632 static int mbind_range(struct mm_struct *mm, unsigned long start,
633 unsigned long end, struct mempolicy *new_pol)
634 {
635 struct vm_area_struct *next;
636 struct vm_area_struct *prev;
637 struct vm_area_struct *vma;
638 int err = 0;
639 pgoff_t pgoff;
640 unsigned long vmstart;
641 unsigned long vmend;
642
643 vma = find_vma(mm, start);
644 if (!vma || vma->vm_start > start)
645 return -EFAULT;
646
647 prev = vma->vm_prev;
648 if (start > vma->vm_start)
649 prev = vma;
650
651 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
652 next = vma->vm_next;
653 vmstart = max(start, vma->vm_start);
654 vmend = min(end, vma->vm_end);
655
656 if (mpol_equal(vma_policy(vma), new_pol))
657 continue;
658
659 pgoff = vma->vm_pgoff +
660 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
661 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
662 vma->anon_vma, vma->vm_file, pgoff,
663 new_pol);
664 if (prev) {
665 vma = prev;
666 next = vma->vm_next;
667 continue;
668 }
669 if (vma->vm_start != vmstart) {
670 err = split_vma(vma->vm_mm, vma, vmstart, 1);
671 if (err)
672 goto out;
673 }
674 if (vma->vm_end != vmend) {
675 err = split_vma(vma->vm_mm, vma, vmend, 0);
676 if (err)
677 goto out;
678 }
679 err = policy_vma(vma, new_pol);
680 if (err)
681 goto out;
682 }
683
684 out:
685 return err;
686 }
687
688 /*
689 * Update task->flags PF_MEMPOLICY bit: set iff non-default
690 * mempolicy. Allows more rapid checking of this (combined perhaps
691 * with other PF_* flag bits) on memory allocation hot code paths.
692 *
693 * If called from outside this file, the task 'p' should -only- be
694 * a newly forked child not yet visible on the task list, because
695 * manipulating the task flags of a visible task is not safe.
696 *
697 * The above limitation is why this routine has the funny name
698 * mpol_fix_fork_child_flag().
699 *
700 * It is also safe to call this with a task pointer of current,
701 * which the static wrapper mpol_set_task_struct_flag() does,
702 * for use within this file.
703 */
704
705 void mpol_fix_fork_child_flag(struct task_struct *p)
706 {
707 if (p->mempolicy)
708 p->flags |= PF_MEMPOLICY;
709 else
710 p->flags &= ~PF_MEMPOLICY;
711 }
712
713 static void mpol_set_task_struct_flag(void)
714 {
715 mpol_fix_fork_child_flag(current);
716 }
717
718 /* Set the process memory policy */
719 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
720 nodemask_t *nodes)
721 {
722 struct mempolicy *new, *old;
723 struct mm_struct *mm = current->mm;
724 NODEMASK_SCRATCH(scratch);
725 int ret;
726
727 if (!scratch)
728 return -ENOMEM;
729
730 new = mpol_new(mode, flags, nodes);
731 if (IS_ERR(new)) {
732 ret = PTR_ERR(new);
733 goto out;
734 }
735 /*
736 * prevent changing our mempolicy while show_numa_maps()
737 * is using it.
738 * Note: do_set_mempolicy() can be called at init time
739 * with no 'mm'.
740 */
741 if (mm)
742 down_write(&mm->mmap_sem);
743 task_lock(current);
744 ret = mpol_set_nodemask(new, nodes, scratch);
745 if (ret) {
746 task_unlock(current);
747 if (mm)
748 up_write(&mm->mmap_sem);
749 mpol_put(new);
750 goto out;
751 }
752 old = current->mempolicy;
753 current->mempolicy = new;
754 mpol_set_task_struct_flag();
755 if (new && new->mode == MPOL_INTERLEAVE &&
756 nodes_weight(new->v.nodes))
757 current->il_next = first_node(new->v.nodes);
758 task_unlock(current);
759 if (mm)
760 up_write(&mm->mmap_sem);
761
762 mpol_put(old);
763 ret = 0;
764 out:
765 NODEMASK_SCRATCH_FREE(scratch);
766 return ret;
767 }
768
769 /*
770 * Return nodemask for policy for get_mempolicy() query
771 *
772 * Called with task's alloc_lock held
773 */
774 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
775 {
776 nodes_clear(*nodes);
777 if (p == &default_policy)
778 return;
779
780 switch (p->mode) {
781 case MPOL_BIND:
782 /* Fall through */
783 case MPOL_INTERLEAVE:
784 *nodes = p->v.nodes;
785 break;
786 case MPOL_PREFERRED:
787 if (!(p->flags & MPOL_F_LOCAL))
788 node_set(p->v.preferred_node, *nodes);
789 /* else return empty node mask for local allocation */
790 break;
791 default:
792 BUG();
793 }
794 }
795
796 static int lookup_node(struct mm_struct *mm, unsigned long addr)
797 {
798 struct page *p;
799 int err;
800
801 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
802 if (err >= 0) {
803 err = page_to_nid(p);
804 put_page(p);
805 }
806 return err;
807 }
808
809 /* Retrieve NUMA policy */
810 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
811 unsigned long addr, unsigned long flags)
812 {
813 int err;
814 struct mm_struct *mm = current->mm;
815 struct vm_area_struct *vma = NULL;
816 struct mempolicy *pol = current->mempolicy;
817
818 if (flags &
819 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
820 return -EINVAL;
821
822 if (flags & MPOL_F_MEMS_ALLOWED) {
823 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
824 return -EINVAL;
825 *policy = 0; /* just so it's initialized */
826 task_lock(current);
827 *nmask = cpuset_current_mems_allowed;
828 task_unlock(current);
829 return 0;
830 }
831
832 if (flags & MPOL_F_ADDR) {
833 /*
834 * Do NOT fall back to task policy if the
835 * vma/shared policy at addr is NULL. We
836 * want to return MPOL_DEFAULT in this case.
837 */
838 down_read(&mm->mmap_sem);
839 vma = find_vma_intersection(mm, addr, addr+1);
840 if (!vma) {
841 up_read(&mm->mmap_sem);
842 return -EFAULT;
843 }
844 if (vma->vm_ops && vma->vm_ops->get_policy)
845 pol = vma->vm_ops->get_policy(vma, addr);
846 else
847 pol = vma->vm_policy;
848 } else if (addr)
849 return -EINVAL;
850
851 if (!pol)
852 pol = &default_policy; /* indicates default behavior */
853
854 if (flags & MPOL_F_NODE) {
855 if (flags & MPOL_F_ADDR) {
856 err = lookup_node(mm, addr);
857 if (err < 0)
858 goto out;
859 *policy = err;
860 } else if (pol == current->mempolicy &&
861 pol->mode == MPOL_INTERLEAVE) {
862 *policy = current->il_next;
863 } else {
864 err = -EINVAL;
865 goto out;
866 }
867 } else {
868 *policy = pol == &default_policy ? MPOL_DEFAULT :
869 pol->mode;
870 /*
871 * Internal mempolicy flags must be masked off before exposing
872 * the policy to userspace.
873 */
874 *policy |= (pol->flags & MPOL_MODE_FLAGS);
875 }
876
877 if (vma) {
878 up_read(&current->mm->mmap_sem);
879 vma = NULL;
880 }
881
882 err = 0;
883 if (nmask) {
884 if (mpol_store_user_nodemask(pol)) {
885 *nmask = pol->w.user_nodemask;
886 } else {
887 task_lock(current);
888 get_policy_nodemask(pol, nmask);
889 task_unlock(current);
890 }
891 }
892
893 out:
894 mpol_cond_put(pol);
895 if (vma)
896 up_read(&current->mm->mmap_sem);
897 return err;
898 }
899
900 #ifdef CONFIG_MIGRATION
901 /*
902 * page migration
903 */
904 static void migrate_page_add(struct page *page, struct list_head *pagelist,
905 unsigned long flags)
906 {
907 /*
908 * Avoid migrating a page that is shared with others.
909 */
910 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
911 if (!isolate_lru_page(page)) {
912 list_add_tail(&page->lru, pagelist);
913 inc_zone_page_state(page, NR_ISOLATED_ANON +
914 page_is_file_cache(page));
915 }
916 }
917 }
918
919 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
920 {
921 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
922 }
923
924 /*
925 * Migrate pages from one node to a target node.
926 * Returns error or the number of pages not migrated.
927 */
928 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
929 int flags)
930 {
931 nodemask_t nmask;
932 LIST_HEAD(pagelist);
933 int err = 0;
934 struct vm_area_struct *vma;
935
936 nodes_clear(nmask);
937 node_set(source, nmask);
938
939 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
940 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
941 if (IS_ERR(vma))
942 return PTR_ERR(vma);
943
944 if (!list_empty(&pagelist)) {
945 err = migrate_pages(&pagelist, new_node_page, dest,
946 false, MIGRATE_SYNC);
947 if (err)
948 putback_lru_pages(&pagelist);
949 }
950
951 return err;
952 }
953
954 /*
955 * Move pages between the two nodesets so as to preserve the physical
956 * layout as much as possible.
957 *
958 * Returns the number of page that could not be moved.
959 */
960 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
961 const nodemask_t *to, int flags)
962 {
963 int busy = 0;
964 int err;
965 nodemask_t tmp;
966
967 err = migrate_prep();
968 if (err)
969 return err;
970
971 down_read(&mm->mmap_sem);
972
973 err = migrate_vmas(mm, from, to, flags);
974 if (err)
975 goto out;
976
977 /*
978 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
979 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
980 * bit in 'tmp', and return that <source, dest> pair for migration.
981 * The pair of nodemasks 'to' and 'from' define the map.
982 *
983 * If no pair of bits is found that way, fallback to picking some
984 * pair of 'source' and 'dest' bits that are not the same. If the
985 * 'source' and 'dest' bits are the same, this represents a node
986 * that will be migrating to itself, so no pages need move.
987 *
988 * If no bits are left in 'tmp', or if all remaining bits left
989 * in 'tmp' correspond to the same bit in 'to', return false
990 * (nothing left to migrate).
991 *
992 * This lets us pick a pair of nodes to migrate between, such that
993 * if possible the dest node is not already occupied by some other
994 * source node, minimizing the risk of overloading the memory on a
995 * node that would happen if we migrated incoming memory to a node
996 * before migrating outgoing memory source that same node.
997 *
998 * A single scan of tmp is sufficient. As we go, we remember the
999 * most recent <s, d> pair that moved (s != d). If we find a pair
1000 * that not only moved, but what's better, moved to an empty slot
1001 * (d is not set in tmp), then we break out then, with that pair.
1002 * Otherwise when we finish scanning from_tmp, we at least have the
1003 * most recent <s, d> pair that moved. If we get all the way through
1004 * the scan of tmp without finding any node that moved, much less
1005 * moved to an empty node, then there is nothing left worth migrating.
1006 */
1007
1008 tmp = *from;
1009 while (!nodes_empty(tmp)) {
1010 int s,d;
1011 int source = -1;
1012 int dest = 0;
1013
1014 for_each_node_mask(s, tmp) {
1015
1016 /*
1017 * do_migrate_pages() tries to maintain the relative
1018 * node relationship of the pages established between
1019 * threads and memory areas.
1020 *
1021 * However if the number of source nodes is not equal to
1022 * the number of destination nodes we can not preserve
1023 * this node relative relationship. In that case, skip
1024 * copying memory from a node that is in the destination
1025 * mask.
1026 *
1027 * Example: [2,3,4] -> [3,4,5] moves everything.
1028 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1029 */
1030
1031 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1032 (node_isset(s, *to)))
1033 continue;
1034
1035 d = node_remap(s, *from, *to);
1036 if (s == d)
1037 continue;
1038
1039 source = s; /* Node moved. Memorize */
1040 dest = d;
1041
1042 /* dest not in remaining from nodes? */
1043 if (!node_isset(dest, tmp))
1044 break;
1045 }
1046 if (source == -1)
1047 break;
1048
1049 node_clear(source, tmp);
1050 err = migrate_to_node(mm, source, dest, flags);
1051 if (err > 0)
1052 busy += err;
1053 if (err < 0)
1054 break;
1055 }
1056 out:
1057 up_read(&mm->mmap_sem);
1058 if (err < 0)
1059 return err;
1060 return busy;
1061
1062 }
1063
1064 /*
1065 * Allocate a new page for page migration based on vma policy.
1066 * Start assuming that page is mapped by vma pointed to by @private.
1067 * Search forward from there, if not. N.B., this assumes that the
1068 * list of pages handed to migrate_pages()--which is how we get here--
1069 * is in virtual address order.
1070 */
1071 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1072 {
1073 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1074 unsigned long uninitialized_var(address);
1075
1076 while (vma) {
1077 address = page_address_in_vma(page, vma);
1078 if (address != -EFAULT)
1079 break;
1080 vma = vma->vm_next;
1081 }
1082
1083 /*
1084 * if !vma, alloc_page_vma() will use task or system default policy
1085 */
1086 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1087 }
1088 #else
1089
1090 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1091 unsigned long flags)
1092 {
1093 }
1094
1095 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1096 const nodemask_t *to, int flags)
1097 {
1098 return -ENOSYS;
1099 }
1100
1101 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1102 {
1103 return NULL;
1104 }
1105 #endif
1106
1107 static long do_mbind(unsigned long start, unsigned long len,
1108 unsigned short mode, unsigned short mode_flags,
1109 nodemask_t *nmask, unsigned long flags)
1110 {
1111 struct vm_area_struct *vma;
1112 struct mm_struct *mm = current->mm;
1113 struct mempolicy *new;
1114 unsigned long end;
1115 int err;
1116 LIST_HEAD(pagelist);
1117
1118 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1119 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1120 return -EINVAL;
1121 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1122 return -EPERM;
1123
1124 if (start & ~PAGE_MASK)
1125 return -EINVAL;
1126
1127 if (mode == MPOL_DEFAULT)
1128 flags &= ~MPOL_MF_STRICT;
1129
1130 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1131 end = start + len;
1132
1133 if (end < start)
1134 return -EINVAL;
1135 if (end == start)
1136 return 0;
1137
1138 new = mpol_new(mode, mode_flags, nmask);
1139 if (IS_ERR(new))
1140 return PTR_ERR(new);
1141
1142 /*
1143 * If we are using the default policy then operation
1144 * on discontinuous address spaces is okay after all
1145 */
1146 if (!new)
1147 flags |= MPOL_MF_DISCONTIG_OK;
1148
1149 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1150 start, start + len, mode, mode_flags,
1151 nmask ? nodes_addr(*nmask)[0] : -1);
1152
1153 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1154
1155 err = migrate_prep();
1156 if (err)
1157 goto mpol_out;
1158 }
1159 {
1160 NODEMASK_SCRATCH(scratch);
1161 if (scratch) {
1162 down_write(&mm->mmap_sem);
1163 task_lock(current);
1164 err = mpol_set_nodemask(new, nmask, scratch);
1165 task_unlock(current);
1166 if (err)
1167 up_write(&mm->mmap_sem);
1168 } else
1169 err = -ENOMEM;
1170 NODEMASK_SCRATCH_FREE(scratch);
1171 }
1172 if (err)
1173 goto mpol_out;
1174
1175 vma = check_range(mm, start, end, nmask,
1176 flags | MPOL_MF_INVERT, &pagelist);
1177
1178 err = PTR_ERR(vma);
1179 if (!IS_ERR(vma)) {
1180 int nr_failed = 0;
1181
1182 err = mbind_range(mm, start, end, new);
1183
1184 if (!list_empty(&pagelist)) {
1185 nr_failed = migrate_pages(&pagelist, new_vma_page,
1186 (unsigned long)vma,
1187 false, MIGRATE_SYNC);
1188 if (nr_failed)
1189 putback_lru_pages(&pagelist);
1190 }
1191
1192 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1193 err = -EIO;
1194 } else
1195 putback_lru_pages(&pagelist);
1196
1197 up_write(&mm->mmap_sem);
1198 mpol_out:
1199 mpol_put(new);
1200 return err;
1201 }
1202
1203 /*
1204 * User space interface with variable sized bitmaps for nodelists.
1205 */
1206
1207 /* Copy a node mask from user space. */
1208 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1209 unsigned long maxnode)
1210 {
1211 unsigned long k;
1212 unsigned long nlongs;
1213 unsigned long endmask;
1214
1215 --maxnode;
1216 nodes_clear(*nodes);
1217 if (maxnode == 0 || !nmask)
1218 return 0;
1219 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1220 return -EINVAL;
1221
1222 nlongs = BITS_TO_LONGS(maxnode);
1223 if ((maxnode % BITS_PER_LONG) == 0)
1224 endmask = ~0UL;
1225 else
1226 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1227
1228 /* When the user specified more nodes than supported just check
1229 if the non supported part is all zero. */
1230 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1231 if (nlongs > PAGE_SIZE/sizeof(long))
1232 return -EINVAL;
1233 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1234 unsigned long t;
1235 if (get_user(t, nmask + k))
1236 return -EFAULT;
1237 if (k == nlongs - 1) {
1238 if (t & endmask)
1239 return -EINVAL;
1240 } else if (t)
1241 return -EINVAL;
1242 }
1243 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1244 endmask = ~0UL;
1245 }
1246
1247 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1248 return -EFAULT;
1249 nodes_addr(*nodes)[nlongs-1] &= endmask;
1250 return 0;
1251 }
1252
1253 /* Copy a kernel node mask to user space */
1254 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1255 nodemask_t *nodes)
1256 {
1257 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1258 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1259
1260 if (copy > nbytes) {
1261 if (copy > PAGE_SIZE)
1262 return -EINVAL;
1263 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1264 return -EFAULT;
1265 copy = nbytes;
1266 }
1267 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1268 }
1269
1270 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1271 unsigned long, mode, unsigned long __user *, nmask,
1272 unsigned long, maxnode, unsigned, flags)
1273 {
1274 nodemask_t nodes;
1275 int err;
1276 unsigned short mode_flags;
1277
1278 mode_flags = mode & MPOL_MODE_FLAGS;
1279 mode &= ~MPOL_MODE_FLAGS;
1280 if (mode >= MPOL_MAX)
1281 return -EINVAL;
1282 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1283 (mode_flags & MPOL_F_RELATIVE_NODES))
1284 return -EINVAL;
1285 err = get_nodes(&nodes, nmask, maxnode);
1286 if (err)
1287 return err;
1288 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1289 }
1290
1291 /* Set the process memory policy */
1292 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1293 unsigned long, maxnode)
1294 {
1295 int err;
1296 nodemask_t nodes;
1297 unsigned short flags;
1298
1299 flags = mode & MPOL_MODE_FLAGS;
1300 mode &= ~MPOL_MODE_FLAGS;
1301 if ((unsigned int)mode >= MPOL_MAX)
1302 return -EINVAL;
1303 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1304 return -EINVAL;
1305 err = get_nodes(&nodes, nmask, maxnode);
1306 if (err)
1307 return err;
1308 return do_set_mempolicy(mode, flags, &nodes);
1309 }
1310
1311 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1312 const unsigned long __user *, old_nodes,
1313 const unsigned long __user *, new_nodes)
1314 {
1315 const struct cred *cred = current_cred(), *tcred;
1316 struct mm_struct *mm = NULL;
1317 struct task_struct *task;
1318 nodemask_t task_nodes;
1319 int err;
1320 nodemask_t *old;
1321 nodemask_t *new;
1322 NODEMASK_SCRATCH(scratch);
1323
1324 if (!scratch)
1325 return -ENOMEM;
1326
1327 old = &scratch->mask1;
1328 new = &scratch->mask2;
1329
1330 err = get_nodes(old, old_nodes, maxnode);
1331 if (err)
1332 goto out;
1333
1334 err = get_nodes(new, new_nodes, maxnode);
1335 if (err)
1336 goto out;
1337
1338 /* Find the mm_struct */
1339 rcu_read_lock();
1340 task = pid ? find_task_by_vpid(pid) : current;
1341 if (!task) {
1342 rcu_read_unlock();
1343 err = -ESRCH;
1344 goto out;
1345 }
1346 get_task_struct(task);
1347
1348 err = -EINVAL;
1349
1350 /*
1351 * Check if this process has the right to modify the specified
1352 * process. The right exists if the process has administrative
1353 * capabilities, superuser privileges or the same
1354 * userid as the target process.
1355 */
1356 tcred = __task_cred(task);
1357 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1358 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1359 !capable(CAP_SYS_NICE)) {
1360 rcu_read_unlock();
1361 err = -EPERM;
1362 goto out_put;
1363 }
1364 rcu_read_unlock();
1365
1366 task_nodes = cpuset_mems_allowed(task);
1367 /* Is the user allowed to access the target nodes? */
1368 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1369 err = -EPERM;
1370 goto out_put;
1371 }
1372
1373 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1374 err = -EINVAL;
1375 goto out_put;
1376 }
1377
1378 err = security_task_movememory(task);
1379 if (err)
1380 goto out_put;
1381
1382 mm = get_task_mm(task);
1383 put_task_struct(task);
1384
1385 if (!mm) {
1386 err = -EINVAL;
1387 goto out;
1388 }
1389
1390 err = do_migrate_pages(mm, old, new,
1391 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1392
1393 mmput(mm);
1394 out:
1395 NODEMASK_SCRATCH_FREE(scratch);
1396
1397 return err;
1398
1399 out_put:
1400 put_task_struct(task);
1401 goto out;
1402
1403 }
1404
1405
1406 /* Retrieve NUMA policy */
1407 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1408 unsigned long __user *, nmask, unsigned long, maxnode,
1409 unsigned long, addr, unsigned long, flags)
1410 {
1411 int err;
1412 int uninitialized_var(pval);
1413 nodemask_t nodes;
1414
1415 if (nmask != NULL && maxnode < MAX_NUMNODES)
1416 return -EINVAL;
1417
1418 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1419
1420 if (err)
1421 return err;
1422
1423 if (policy && put_user(pval, policy))
1424 return -EFAULT;
1425
1426 if (nmask)
1427 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1428
1429 return err;
1430 }
1431
1432 #ifdef CONFIG_COMPAT
1433
1434 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1435 compat_ulong_t __user *nmask,
1436 compat_ulong_t maxnode,
1437 compat_ulong_t addr, compat_ulong_t flags)
1438 {
1439 long err;
1440 unsigned long __user *nm = NULL;
1441 unsigned long nr_bits, alloc_size;
1442 DECLARE_BITMAP(bm, MAX_NUMNODES);
1443
1444 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1445 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1446
1447 if (nmask)
1448 nm = compat_alloc_user_space(alloc_size);
1449
1450 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1451
1452 if (!err && nmask) {
1453 unsigned long copy_size;
1454 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1455 err = copy_from_user(bm, nm, copy_size);
1456 /* ensure entire bitmap is zeroed */
1457 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1458 err |= compat_put_bitmap(nmask, bm, nr_bits);
1459 }
1460
1461 return err;
1462 }
1463
1464 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1465 compat_ulong_t maxnode)
1466 {
1467 long err = 0;
1468 unsigned long __user *nm = NULL;
1469 unsigned long nr_bits, alloc_size;
1470 DECLARE_BITMAP(bm, MAX_NUMNODES);
1471
1472 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1473 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1474
1475 if (nmask) {
1476 err = compat_get_bitmap(bm, nmask, nr_bits);
1477 nm = compat_alloc_user_space(alloc_size);
1478 err |= copy_to_user(nm, bm, alloc_size);
1479 }
1480
1481 if (err)
1482 return -EFAULT;
1483
1484 return sys_set_mempolicy(mode, nm, nr_bits+1);
1485 }
1486
1487 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1488 compat_ulong_t mode, compat_ulong_t __user *nmask,
1489 compat_ulong_t maxnode, compat_ulong_t flags)
1490 {
1491 long err = 0;
1492 unsigned long __user *nm = NULL;
1493 unsigned long nr_bits, alloc_size;
1494 nodemask_t bm;
1495
1496 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1497 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1498
1499 if (nmask) {
1500 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1501 nm = compat_alloc_user_space(alloc_size);
1502 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1503 }
1504
1505 if (err)
1506 return -EFAULT;
1507
1508 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1509 }
1510
1511 #endif
1512
1513 /*
1514 * get_vma_policy(@task, @vma, @addr)
1515 * @task - task for fallback if vma policy == default
1516 * @vma - virtual memory area whose policy is sought
1517 * @addr - address in @vma for shared policy lookup
1518 *
1519 * Returns effective policy for a VMA at specified address.
1520 * Falls back to @task or system default policy, as necessary.
1521 * Current or other task's task mempolicy and non-shared vma policies
1522 * are protected by the task's mmap_sem, which must be held for read by
1523 * the caller.
1524 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1525 * count--added by the get_policy() vm_op, as appropriate--to protect against
1526 * freeing by another task. It is the caller's responsibility to free the
1527 * extra reference for shared policies.
1528 */
1529 struct mempolicy *get_vma_policy(struct task_struct *task,
1530 struct vm_area_struct *vma, unsigned long addr)
1531 {
1532 struct mempolicy *pol = task->mempolicy;
1533
1534 if (vma) {
1535 if (vma->vm_ops && vma->vm_ops->get_policy) {
1536 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1537 addr);
1538 if (vpol)
1539 pol = vpol;
1540 } else if (vma->vm_policy)
1541 pol = vma->vm_policy;
1542 }
1543 if (!pol)
1544 pol = &default_policy;
1545 return pol;
1546 }
1547
1548 /*
1549 * Return a nodemask representing a mempolicy for filtering nodes for
1550 * page allocation
1551 */
1552 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1553 {
1554 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1555 if (unlikely(policy->mode == MPOL_BIND) &&
1556 gfp_zone(gfp) >= policy_zone &&
1557 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1558 return &policy->v.nodes;
1559
1560 return NULL;
1561 }
1562
1563 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1564 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1565 int nd)
1566 {
1567 switch (policy->mode) {
1568 case MPOL_PREFERRED:
1569 if (!(policy->flags & MPOL_F_LOCAL))
1570 nd = policy->v.preferred_node;
1571 break;
1572 case MPOL_BIND:
1573 /*
1574 * Normally, MPOL_BIND allocations are node-local within the
1575 * allowed nodemask. However, if __GFP_THISNODE is set and the
1576 * current node isn't part of the mask, we use the zonelist for
1577 * the first node in the mask instead.
1578 */
1579 if (unlikely(gfp & __GFP_THISNODE) &&
1580 unlikely(!node_isset(nd, policy->v.nodes)))
1581 nd = first_node(policy->v.nodes);
1582 break;
1583 default:
1584 BUG();
1585 }
1586 return node_zonelist(nd, gfp);
1587 }
1588
1589 /* Do dynamic interleaving for a process */
1590 static unsigned interleave_nodes(struct mempolicy *policy)
1591 {
1592 unsigned nid, next;
1593 struct task_struct *me = current;
1594
1595 nid = me->il_next;
1596 next = next_node(nid, policy->v.nodes);
1597 if (next >= MAX_NUMNODES)
1598 next = first_node(policy->v.nodes);
1599 if (next < MAX_NUMNODES)
1600 me->il_next = next;
1601 return nid;
1602 }
1603
1604 /*
1605 * Depending on the memory policy provide a node from which to allocate the
1606 * next slab entry.
1607 * @policy must be protected by freeing by the caller. If @policy is
1608 * the current task's mempolicy, this protection is implicit, as only the
1609 * task can change it's policy. The system default policy requires no
1610 * such protection.
1611 */
1612 unsigned slab_node(void)
1613 {
1614 struct mempolicy *policy;
1615
1616 if (in_interrupt())
1617 return numa_node_id();
1618
1619 policy = current->mempolicy;
1620 if (!policy || policy->flags & MPOL_F_LOCAL)
1621 return numa_node_id();
1622
1623 switch (policy->mode) {
1624 case MPOL_PREFERRED:
1625 /*
1626 * handled MPOL_F_LOCAL above
1627 */
1628 return policy->v.preferred_node;
1629
1630 case MPOL_INTERLEAVE:
1631 return interleave_nodes(policy);
1632
1633 case MPOL_BIND: {
1634 /*
1635 * Follow bind policy behavior and start allocation at the
1636 * first node.
1637 */
1638 struct zonelist *zonelist;
1639 struct zone *zone;
1640 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1641 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1642 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1643 &policy->v.nodes,
1644 &zone);
1645 return zone ? zone->node : numa_node_id();
1646 }
1647
1648 default:
1649 BUG();
1650 }
1651 }
1652
1653 /* Do static interleaving for a VMA with known offset. */
1654 static unsigned offset_il_node(struct mempolicy *pol,
1655 struct vm_area_struct *vma, unsigned long off)
1656 {
1657 unsigned nnodes = nodes_weight(pol->v.nodes);
1658 unsigned target;
1659 int c;
1660 int nid = -1;
1661
1662 if (!nnodes)
1663 return numa_node_id();
1664 target = (unsigned int)off % nnodes;
1665 c = 0;
1666 do {
1667 nid = next_node(nid, pol->v.nodes);
1668 c++;
1669 } while (c <= target);
1670 return nid;
1671 }
1672
1673 /* Determine a node number for interleave */
1674 static inline unsigned interleave_nid(struct mempolicy *pol,
1675 struct vm_area_struct *vma, unsigned long addr, int shift)
1676 {
1677 if (vma) {
1678 unsigned long off;
1679
1680 /*
1681 * for small pages, there is no difference between
1682 * shift and PAGE_SHIFT, so the bit-shift is safe.
1683 * for huge pages, since vm_pgoff is in units of small
1684 * pages, we need to shift off the always 0 bits to get
1685 * a useful offset.
1686 */
1687 BUG_ON(shift < PAGE_SHIFT);
1688 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1689 off += (addr - vma->vm_start) >> shift;
1690 return offset_il_node(pol, vma, off);
1691 } else
1692 return interleave_nodes(pol);
1693 }
1694
1695 /*
1696 * Return the bit number of a random bit set in the nodemask.
1697 * (returns -1 if nodemask is empty)
1698 */
1699 int node_random(const nodemask_t *maskp)
1700 {
1701 int w, bit = -1;
1702
1703 w = nodes_weight(*maskp);
1704 if (w)
1705 bit = bitmap_ord_to_pos(maskp->bits,
1706 get_random_int() % w, MAX_NUMNODES);
1707 return bit;
1708 }
1709
1710 #ifdef CONFIG_HUGETLBFS
1711 /*
1712 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1713 * @vma = virtual memory area whose policy is sought
1714 * @addr = address in @vma for shared policy lookup and interleave policy
1715 * @gfp_flags = for requested zone
1716 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1717 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1718 *
1719 * Returns a zonelist suitable for a huge page allocation and a pointer
1720 * to the struct mempolicy for conditional unref after allocation.
1721 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1722 * @nodemask for filtering the zonelist.
1723 *
1724 * Must be protected by get_mems_allowed()
1725 */
1726 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1727 gfp_t gfp_flags, struct mempolicy **mpol,
1728 nodemask_t **nodemask)
1729 {
1730 struct zonelist *zl;
1731
1732 *mpol = get_vma_policy(current, vma, addr);
1733 *nodemask = NULL; /* assume !MPOL_BIND */
1734
1735 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1736 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1737 huge_page_shift(hstate_vma(vma))), gfp_flags);
1738 } else {
1739 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1740 if ((*mpol)->mode == MPOL_BIND)
1741 *nodemask = &(*mpol)->v.nodes;
1742 }
1743 return zl;
1744 }
1745
1746 /*
1747 * init_nodemask_of_mempolicy
1748 *
1749 * If the current task's mempolicy is "default" [NULL], return 'false'
1750 * to indicate default policy. Otherwise, extract the policy nodemask
1751 * for 'bind' or 'interleave' policy into the argument nodemask, or
1752 * initialize the argument nodemask to contain the single node for
1753 * 'preferred' or 'local' policy and return 'true' to indicate presence
1754 * of non-default mempolicy.
1755 *
1756 * We don't bother with reference counting the mempolicy [mpol_get/put]
1757 * because the current task is examining it's own mempolicy and a task's
1758 * mempolicy is only ever changed by the task itself.
1759 *
1760 * N.B., it is the caller's responsibility to free a returned nodemask.
1761 */
1762 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1763 {
1764 struct mempolicy *mempolicy;
1765 int nid;
1766
1767 if (!(mask && current->mempolicy))
1768 return false;
1769
1770 task_lock(current);
1771 mempolicy = current->mempolicy;
1772 switch (mempolicy->mode) {
1773 case MPOL_PREFERRED:
1774 if (mempolicy->flags & MPOL_F_LOCAL)
1775 nid = numa_node_id();
1776 else
1777 nid = mempolicy->v.preferred_node;
1778 init_nodemask_of_node(mask, nid);
1779 break;
1780
1781 case MPOL_BIND:
1782 /* Fall through */
1783 case MPOL_INTERLEAVE:
1784 *mask = mempolicy->v.nodes;
1785 break;
1786
1787 default:
1788 BUG();
1789 }
1790 task_unlock(current);
1791
1792 return true;
1793 }
1794 #endif
1795
1796 /*
1797 * mempolicy_nodemask_intersects
1798 *
1799 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1800 * policy. Otherwise, check for intersection between mask and the policy
1801 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1802 * policy, always return true since it may allocate elsewhere on fallback.
1803 *
1804 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1805 */
1806 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1807 const nodemask_t *mask)
1808 {
1809 struct mempolicy *mempolicy;
1810 bool ret = true;
1811
1812 if (!mask)
1813 return ret;
1814 task_lock(tsk);
1815 mempolicy = tsk->mempolicy;
1816 if (!mempolicy)
1817 goto out;
1818
1819 switch (mempolicy->mode) {
1820 case MPOL_PREFERRED:
1821 /*
1822 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1823 * allocate from, they may fallback to other nodes when oom.
1824 * Thus, it's possible for tsk to have allocated memory from
1825 * nodes in mask.
1826 */
1827 break;
1828 case MPOL_BIND:
1829 case MPOL_INTERLEAVE:
1830 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1831 break;
1832 default:
1833 BUG();
1834 }
1835 out:
1836 task_unlock(tsk);
1837 return ret;
1838 }
1839
1840 /* Allocate a page in interleaved policy.
1841 Own path because it needs to do special accounting. */
1842 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1843 unsigned nid)
1844 {
1845 struct zonelist *zl;
1846 struct page *page;
1847
1848 zl = node_zonelist(nid, gfp);
1849 page = __alloc_pages(gfp, order, zl);
1850 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1851 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1852 return page;
1853 }
1854
1855 /**
1856 * alloc_pages_vma - Allocate a page for a VMA.
1857 *
1858 * @gfp:
1859 * %GFP_USER user allocation.
1860 * %GFP_KERNEL kernel allocations,
1861 * %GFP_HIGHMEM highmem/user allocations,
1862 * %GFP_FS allocation should not call back into a file system.
1863 * %GFP_ATOMIC don't sleep.
1864 *
1865 * @order:Order of the GFP allocation.
1866 * @vma: Pointer to VMA or NULL if not available.
1867 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1868 *
1869 * This function allocates a page from the kernel page pool and applies
1870 * a NUMA policy associated with the VMA or the current process.
1871 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1872 * mm_struct of the VMA to prevent it from going away. Should be used for
1873 * all allocations for pages that will be mapped into
1874 * user space. Returns NULL when no page can be allocated.
1875 *
1876 * Should be called with the mm_sem of the vma hold.
1877 */
1878 struct page *
1879 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1880 unsigned long addr, int node)
1881 {
1882 struct mempolicy *pol;
1883 struct zonelist *zl;
1884 struct page *page;
1885 unsigned int cpuset_mems_cookie;
1886
1887 retry_cpuset:
1888 pol = get_vma_policy(current, vma, addr);
1889 cpuset_mems_cookie = get_mems_allowed();
1890
1891 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1892 unsigned nid;
1893
1894 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1895 mpol_cond_put(pol);
1896 page = alloc_page_interleave(gfp, order, nid);
1897 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1898 goto retry_cpuset;
1899
1900 return page;
1901 }
1902 zl = policy_zonelist(gfp, pol, node);
1903 if (unlikely(mpol_needs_cond_ref(pol))) {
1904 /*
1905 * slow path: ref counted shared policy
1906 */
1907 struct page *page = __alloc_pages_nodemask(gfp, order,
1908 zl, policy_nodemask(gfp, pol));
1909 __mpol_put(pol);
1910 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1911 goto retry_cpuset;
1912 return page;
1913 }
1914 /*
1915 * fast path: default or task policy
1916 */
1917 page = __alloc_pages_nodemask(gfp, order, zl,
1918 policy_nodemask(gfp, pol));
1919 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1920 goto retry_cpuset;
1921 return page;
1922 }
1923
1924 /**
1925 * alloc_pages_current - Allocate pages.
1926 *
1927 * @gfp:
1928 * %GFP_USER user allocation,
1929 * %GFP_KERNEL kernel allocation,
1930 * %GFP_HIGHMEM highmem allocation,
1931 * %GFP_FS don't call back into a file system.
1932 * %GFP_ATOMIC don't sleep.
1933 * @order: Power of two of allocation size in pages. 0 is a single page.
1934 *
1935 * Allocate a page from the kernel page pool. When not in
1936 * interrupt context and apply the current process NUMA policy.
1937 * Returns NULL when no page can be allocated.
1938 *
1939 * Don't call cpuset_update_task_memory_state() unless
1940 * 1) it's ok to take cpuset_sem (can WAIT), and
1941 * 2) allocating for current task (not interrupt).
1942 */
1943 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1944 {
1945 struct mempolicy *pol = current->mempolicy;
1946 struct page *page;
1947 unsigned int cpuset_mems_cookie;
1948
1949 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1950 pol = &default_policy;
1951
1952 retry_cpuset:
1953 cpuset_mems_cookie = get_mems_allowed();
1954
1955 /*
1956 * No reference counting needed for current->mempolicy
1957 * nor system default_policy
1958 */
1959 if (pol->mode == MPOL_INTERLEAVE)
1960 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1961 else
1962 page = __alloc_pages_nodemask(gfp, order,
1963 policy_zonelist(gfp, pol, numa_node_id()),
1964 policy_nodemask(gfp, pol));
1965
1966 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1967 goto retry_cpuset;
1968
1969 return page;
1970 }
1971 EXPORT_SYMBOL(alloc_pages_current);
1972
1973 /*
1974 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1975 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1976 * with the mems_allowed returned by cpuset_mems_allowed(). This
1977 * keeps mempolicies cpuset relative after its cpuset moves. See
1978 * further kernel/cpuset.c update_nodemask().
1979 *
1980 * current's mempolicy may be rebinded by the other task(the task that changes
1981 * cpuset's mems), so we needn't do rebind work for current task.
1982 */
1983
1984 /* Slow path of a mempolicy duplicate */
1985 struct mempolicy *__mpol_dup(struct mempolicy *old)
1986 {
1987 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1988
1989 if (!new)
1990 return ERR_PTR(-ENOMEM);
1991
1992 /* task's mempolicy is protected by alloc_lock */
1993 if (old == current->mempolicy) {
1994 task_lock(current);
1995 *new = *old;
1996 task_unlock(current);
1997 } else
1998 *new = *old;
1999
2000 rcu_read_lock();
2001 if (current_cpuset_is_being_rebound()) {
2002 nodemask_t mems = cpuset_mems_allowed(current);
2003 if (new->flags & MPOL_F_REBINDING)
2004 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2005 else
2006 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2007 }
2008 rcu_read_unlock();
2009 atomic_set(&new->refcnt, 1);
2010 return new;
2011 }
2012
2013 /*
2014 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2015 * eliminate the * MPOL_F_* flags that require conditional ref and
2016 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2017 * after return. Use the returned value.
2018 *
2019 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2020 * policy lookup, even if the policy needs/has extra ref on lookup.
2021 * shmem_readahead needs this.
2022 */
2023 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2024 struct mempolicy *frompol)
2025 {
2026 if (!mpol_needs_cond_ref(frompol))
2027 return frompol;
2028
2029 *tompol = *frompol;
2030 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2031 __mpol_put(frompol);
2032 return tompol;
2033 }
2034
2035 /* Slow path of a mempolicy comparison */
2036 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2037 {
2038 if (!a || !b)
2039 return false;
2040 if (a->mode != b->mode)
2041 return false;
2042 if (a->flags != b->flags)
2043 return false;
2044 if (mpol_store_user_nodemask(a))
2045 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2046 return false;
2047
2048 switch (a->mode) {
2049 case MPOL_BIND:
2050 /* Fall through */
2051 case MPOL_INTERLEAVE:
2052 return !!nodes_equal(a->v.nodes, b->v.nodes);
2053 case MPOL_PREFERRED:
2054 return a->v.preferred_node == b->v.preferred_node;
2055 default:
2056 BUG();
2057 return false;
2058 }
2059 }
2060
2061 /*
2062 * Shared memory backing store policy support.
2063 *
2064 * Remember policies even when nobody has shared memory mapped.
2065 * The policies are kept in Red-Black tree linked from the inode.
2066 * They are protected by the sp->lock spinlock, which should be held
2067 * for any accesses to the tree.
2068 */
2069
2070 /* lookup first element intersecting start-end */
2071 /* Caller holds sp->lock */
2072 static struct sp_node *
2073 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2074 {
2075 struct rb_node *n = sp->root.rb_node;
2076
2077 while (n) {
2078 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2079
2080 if (start >= p->end)
2081 n = n->rb_right;
2082 else if (end <= p->start)
2083 n = n->rb_left;
2084 else
2085 break;
2086 }
2087 if (!n)
2088 return NULL;
2089 for (;;) {
2090 struct sp_node *w = NULL;
2091 struct rb_node *prev = rb_prev(n);
2092 if (!prev)
2093 break;
2094 w = rb_entry(prev, struct sp_node, nd);
2095 if (w->end <= start)
2096 break;
2097 n = prev;
2098 }
2099 return rb_entry(n, struct sp_node, nd);
2100 }
2101
2102 /* Insert a new shared policy into the list. */
2103 /* Caller holds sp->lock */
2104 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2105 {
2106 struct rb_node **p = &sp->root.rb_node;
2107 struct rb_node *parent = NULL;
2108 struct sp_node *nd;
2109
2110 while (*p) {
2111 parent = *p;
2112 nd = rb_entry(parent, struct sp_node, nd);
2113 if (new->start < nd->start)
2114 p = &(*p)->rb_left;
2115 else if (new->end > nd->end)
2116 p = &(*p)->rb_right;
2117 else
2118 BUG();
2119 }
2120 rb_link_node(&new->nd, parent, p);
2121 rb_insert_color(&new->nd, &sp->root);
2122 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2123 new->policy ? new->policy->mode : 0);
2124 }
2125
2126 /* Find shared policy intersecting idx */
2127 struct mempolicy *
2128 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2129 {
2130 struct mempolicy *pol = NULL;
2131 struct sp_node *sn;
2132
2133 if (!sp->root.rb_node)
2134 return NULL;
2135 spin_lock(&sp->lock);
2136 sn = sp_lookup(sp, idx, idx+1);
2137 if (sn) {
2138 mpol_get(sn->policy);
2139 pol = sn->policy;
2140 }
2141 spin_unlock(&sp->lock);
2142 return pol;
2143 }
2144
2145 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2146 {
2147 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2148 rb_erase(&n->nd, &sp->root);
2149 mpol_put(n->policy);
2150 kmem_cache_free(sn_cache, n);
2151 }
2152
2153 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2154 struct mempolicy *pol)
2155 {
2156 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2157
2158 if (!n)
2159 return NULL;
2160 n->start = start;
2161 n->end = end;
2162 mpol_get(pol);
2163 pol->flags |= MPOL_F_SHARED; /* for unref */
2164 n->policy = pol;
2165 return n;
2166 }
2167
2168 /* Replace a policy range. */
2169 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2170 unsigned long end, struct sp_node *new)
2171 {
2172 struct sp_node *n, *new2 = NULL;
2173
2174 restart:
2175 spin_lock(&sp->lock);
2176 n = sp_lookup(sp, start, end);
2177 /* Take care of old policies in the same range. */
2178 while (n && n->start < end) {
2179 struct rb_node *next = rb_next(&n->nd);
2180 if (n->start >= start) {
2181 if (n->end <= end)
2182 sp_delete(sp, n);
2183 else
2184 n->start = end;
2185 } else {
2186 /* Old policy spanning whole new range. */
2187 if (n->end > end) {
2188 if (!new2) {
2189 spin_unlock(&sp->lock);
2190 new2 = sp_alloc(end, n->end, n->policy);
2191 if (!new2)
2192 return -ENOMEM;
2193 goto restart;
2194 }
2195 n->end = start;
2196 sp_insert(sp, new2);
2197 new2 = NULL;
2198 break;
2199 } else
2200 n->end = start;
2201 }
2202 if (!next)
2203 break;
2204 n = rb_entry(next, struct sp_node, nd);
2205 }
2206 if (new)
2207 sp_insert(sp, new);
2208 spin_unlock(&sp->lock);
2209 if (new2) {
2210 mpol_put(new2->policy);
2211 kmem_cache_free(sn_cache, new2);
2212 }
2213 return 0;
2214 }
2215
2216 /**
2217 * mpol_shared_policy_init - initialize shared policy for inode
2218 * @sp: pointer to inode shared policy
2219 * @mpol: struct mempolicy to install
2220 *
2221 * Install non-NULL @mpol in inode's shared policy rb-tree.
2222 * On entry, the current task has a reference on a non-NULL @mpol.
2223 * This must be released on exit.
2224 * This is called at get_inode() calls and we can use GFP_KERNEL.
2225 */
2226 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2227 {
2228 int ret;
2229
2230 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2231 spin_lock_init(&sp->lock);
2232
2233 if (mpol) {
2234 struct vm_area_struct pvma;
2235 struct mempolicy *new;
2236 NODEMASK_SCRATCH(scratch);
2237
2238 if (!scratch)
2239 goto put_mpol;
2240 /* contextualize the tmpfs mount point mempolicy */
2241 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2242 if (IS_ERR(new))
2243 goto free_scratch; /* no valid nodemask intersection */
2244
2245 task_lock(current);
2246 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2247 task_unlock(current);
2248 if (ret)
2249 goto put_new;
2250
2251 /* Create pseudo-vma that contains just the policy */
2252 memset(&pvma, 0, sizeof(struct vm_area_struct));
2253 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2254 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2255
2256 put_new:
2257 mpol_put(new); /* drop initial ref */
2258 free_scratch:
2259 NODEMASK_SCRATCH_FREE(scratch);
2260 put_mpol:
2261 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2262 }
2263 }
2264
2265 int mpol_set_shared_policy(struct shared_policy *info,
2266 struct vm_area_struct *vma, struct mempolicy *npol)
2267 {
2268 int err;
2269 struct sp_node *new = NULL;
2270 unsigned long sz = vma_pages(vma);
2271
2272 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2273 vma->vm_pgoff,
2274 sz, npol ? npol->mode : -1,
2275 npol ? npol->flags : -1,
2276 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2277
2278 if (npol) {
2279 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2280 if (!new)
2281 return -ENOMEM;
2282 }
2283 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2284 if (err && new)
2285 kmem_cache_free(sn_cache, new);
2286 return err;
2287 }
2288
2289 /* Free a backing policy store on inode delete. */
2290 void mpol_free_shared_policy(struct shared_policy *p)
2291 {
2292 struct sp_node *n;
2293 struct rb_node *next;
2294
2295 if (!p->root.rb_node)
2296 return;
2297 spin_lock(&p->lock);
2298 next = rb_first(&p->root);
2299 while (next) {
2300 n = rb_entry(next, struct sp_node, nd);
2301 next = rb_next(&n->nd);
2302 rb_erase(&n->nd, &p->root);
2303 mpol_put(n->policy);
2304 kmem_cache_free(sn_cache, n);
2305 }
2306 spin_unlock(&p->lock);
2307 }
2308
2309 /* assumes fs == KERNEL_DS */
2310 void __init numa_policy_init(void)
2311 {
2312 nodemask_t interleave_nodes;
2313 unsigned long largest = 0;
2314 int nid, prefer = 0;
2315
2316 policy_cache = kmem_cache_create("numa_policy",
2317 sizeof(struct mempolicy),
2318 0, SLAB_PANIC, NULL);
2319
2320 sn_cache = kmem_cache_create("shared_policy_node",
2321 sizeof(struct sp_node),
2322 0, SLAB_PANIC, NULL);
2323
2324 /*
2325 * Set interleaving policy for system init. Interleaving is only
2326 * enabled across suitably sized nodes (default is >= 16MB), or
2327 * fall back to the largest node if they're all smaller.
2328 */
2329 nodes_clear(interleave_nodes);
2330 for_each_node_state(nid, N_HIGH_MEMORY) {
2331 unsigned long total_pages = node_present_pages(nid);
2332
2333 /* Preserve the largest node */
2334 if (largest < total_pages) {
2335 largest = total_pages;
2336 prefer = nid;
2337 }
2338
2339 /* Interleave this node? */
2340 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2341 node_set(nid, interleave_nodes);
2342 }
2343
2344 /* All too small, use the largest */
2345 if (unlikely(nodes_empty(interleave_nodes)))
2346 node_set(prefer, interleave_nodes);
2347
2348 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2349 printk("numa_policy_init: interleaving failed\n");
2350 }
2351
2352 /* Reset policy of current process to default */
2353 void numa_default_policy(void)
2354 {
2355 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2356 }
2357
2358 /*
2359 * Parse and format mempolicy from/to strings
2360 */
2361
2362 /*
2363 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2364 * Used only for mpol_parse_str() and mpol_to_str()
2365 */
2366 #define MPOL_LOCAL MPOL_MAX
2367 static const char * const policy_modes[] =
2368 {
2369 [MPOL_DEFAULT] = "default",
2370 [MPOL_PREFERRED] = "prefer",
2371 [MPOL_BIND] = "bind",
2372 [MPOL_INTERLEAVE] = "interleave",
2373 [MPOL_LOCAL] = "local"
2374 };
2375
2376
2377 #ifdef CONFIG_TMPFS
2378 /**
2379 * mpol_parse_str - parse string to mempolicy
2380 * @str: string containing mempolicy to parse
2381 * @mpol: pointer to struct mempolicy pointer, returned on success.
2382 * @no_context: flag whether to "contextualize" the mempolicy
2383 *
2384 * Format of input:
2385 * <mode>[=<flags>][:<nodelist>]
2386 *
2387 * if @no_context is true, save the input nodemask in w.user_nodemask in
2388 * the returned mempolicy. This will be used to "clone" the mempolicy in
2389 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2390 * mount option. Note that if 'static' or 'relative' mode flags were
2391 * specified, the input nodemask will already have been saved. Saving
2392 * it again is redundant, but safe.
2393 *
2394 * On success, returns 0, else 1
2395 */
2396 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2397 {
2398 struct mempolicy *new = NULL;
2399 unsigned short mode;
2400 unsigned short uninitialized_var(mode_flags);
2401 nodemask_t nodes;
2402 char *nodelist = strchr(str, ':');
2403 char *flags = strchr(str, '=');
2404 int err = 1;
2405
2406 if (nodelist) {
2407 /* NUL-terminate mode or flags string */
2408 *nodelist++ = '\0';
2409 if (nodelist_parse(nodelist, nodes))
2410 goto out;
2411 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2412 goto out;
2413 } else
2414 nodes_clear(nodes);
2415
2416 if (flags)
2417 *flags++ = '\0'; /* terminate mode string */
2418
2419 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2420 if (!strcmp(str, policy_modes[mode])) {
2421 break;
2422 }
2423 }
2424 if (mode > MPOL_LOCAL)
2425 goto out;
2426
2427 switch (mode) {
2428 case MPOL_PREFERRED:
2429 /*
2430 * Insist on a nodelist of one node only
2431 */
2432 if (nodelist) {
2433 char *rest = nodelist;
2434 while (isdigit(*rest))
2435 rest++;
2436 if (*rest)
2437 goto out;
2438 }
2439 break;
2440 case MPOL_INTERLEAVE:
2441 /*
2442 * Default to online nodes with memory if no nodelist
2443 */
2444 if (!nodelist)
2445 nodes = node_states[N_HIGH_MEMORY];
2446 break;
2447 case MPOL_LOCAL:
2448 /*
2449 * Don't allow a nodelist; mpol_new() checks flags
2450 */
2451 if (nodelist)
2452 goto out;
2453 mode = MPOL_PREFERRED;
2454 break;
2455 case MPOL_DEFAULT:
2456 /*
2457 * Insist on a empty nodelist
2458 */
2459 if (!nodelist)
2460 err = 0;
2461 goto out;
2462 case MPOL_BIND:
2463 /*
2464 * Insist on a nodelist
2465 */
2466 if (!nodelist)
2467 goto out;
2468 }
2469
2470 mode_flags = 0;
2471 if (flags) {
2472 /*
2473 * Currently, we only support two mutually exclusive
2474 * mode flags.
2475 */
2476 if (!strcmp(flags, "static"))
2477 mode_flags |= MPOL_F_STATIC_NODES;
2478 else if (!strcmp(flags, "relative"))
2479 mode_flags |= MPOL_F_RELATIVE_NODES;
2480 else
2481 goto out;
2482 }
2483
2484 new = mpol_new(mode, mode_flags, &nodes);
2485 if (IS_ERR(new))
2486 goto out;
2487
2488 if (no_context) {
2489 /* save for contextualization */
2490 new->w.user_nodemask = nodes;
2491 } else {
2492 int ret;
2493 NODEMASK_SCRATCH(scratch);
2494 if (scratch) {
2495 task_lock(current);
2496 ret = mpol_set_nodemask(new, &nodes, scratch);
2497 task_unlock(current);
2498 } else
2499 ret = -ENOMEM;
2500 NODEMASK_SCRATCH_FREE(scratch);
2501 if (ret) {
2502 mpol_put(new);
2503 goto out;
2504 }
2505 }
2506 err = 0;
2507
2508 out:
2509 /* Restore string for error message */
2510 if (nodelist)
2511 *--nodelist = ':';
2512 if (flags)
2513 *--flags = '=';
2514 if (!err)
2515 *mpol = new;
2516 return err;
2517 }
2518 #endif /* CONFIG_TMPFS */
2519
2520 /**
2521 * mpol_to_str - format a mempolicy structure for printing
2522 * @buffer: to contain formatted mempolicy string
2523 * @maxlen: length of @buffer
2524 * @pol: pointer to mempolicy to be formatted
2525 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2526 *
2527 * Convert a mempolicy into a string.
2528 * Returns the number of characters in buffer (if positive)
2529 * or an error (negative)
2530 */
2531 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2532 {
2533 char *p = buffer;
2534 int l;
2535 nodemask_t nodes;
2536 unsigned short mode;
2537 unsigned short flags = pol ? pol->flags : 0;
2538
2539 /*
2540 * Sanity check: room for longest mode, flag and some nodes
2541 */
2542 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2543
2544 if (!pol || pol == &default_policy)
2545 mode = MPOL_DEFAULT;
2546 else
2547 mode = pol->mode;
2548
2549 switch (mode) {
2550 case MPOL_DEFAULT:
2551 nodes_clear(nodes);
2552 break;
2553
2554 case MPOL_PREFERRED:
2555 nodes_clear(nodes);
2556 if (flags & MPOL_F_LOCAL)
2557 mode = MPOL_LOCAL; /* pseudo-policy */
2558 else
2559 node_set(pol->v.preferred_node, nodes);
2560 break;
2561
2562 case MPOL_BIND:
2563 /* Fall through */
2564 case MPOL_INTERLEAVE:
2565 if (no_context)
2566 nodes = pol->w.user_nodemask;
2567 else
2568 nodes = pol->v.nodes;
2569 break;
2570
2571 default:
2572 return -EINVAL;
2573 }
2574
2575 l = strlen(policy_modes[mode]);
2576 if (buffer + maxlen < p + l + 1)
2577 return -ENOSPC;
2578
2579 strcpy(p, policy_modes[mode]);
2580 p += l;
2581
2582 if (flags & MPOL_MODE_FLAGS) {
2583 if (buffer + maxlen < p + 2)
2584 return -ENOSPC;
2585 *p++ = '=';
2586
2587 /*
2588 * Currently, the only defined flags are mutually exclusive
2589 */
2590 if (flags & MPOL_F_STATIC_NODES)
2591 p += snprintf(p, buffer + maxlen - p, "static");
2592 else if (flags & MPOL_F_RELATIVE_NODES)
2593 p += snprintf(p, buffer + maxlen - p, "relative");
2594 }
2595
2596 if (!nodes_empty(nodes)) {
2597 if (buffer + maxlen < p + 2)
2598 return -ENOSPC;
2599 *p++ = ':';
2600 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2601 }
2602 return p - buffer;
2603 }
This page took 0.080615 seconds and 6 git commands to generate.