migrate: add hugepage migration code to migrate_pages()
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126
127 if (!pol) {
128 int node = numa_node_id();
129
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
132 /*
133 * preferred_node_policy is not initialised early in
134 * boot
135 */
136 if (!pol->mode)
137 pol = NULL;
138 }
139 }
140
141 return pol;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 return pol->flags & MPOL_MODE_FLAGS;
173 }
174
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
177 {
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
181 }
182
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
189 }
190
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
200 }
201
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
208 }
209
210 /*
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
215 *
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
218 */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 int ret;
223
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
230
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
239
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
245 }
246
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283 }
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
296
297 return policy;
298 }
299
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
306 }
307
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
310 {
311 }
312
313 /*
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
321 {
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 /*
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
332 */
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
342 }
343
344 if (nodes_empty(tmp))
345 tmp = *nodes;
346
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
353
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
360 }
361 }
362
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
366 {
367 nodemask_t tmp;
368
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
371
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
385 }
386 }
387
388 /*
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
390 *
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
398 *
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
403 */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
406 {
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
412
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
415
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
418
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
425
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428
429 /*
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
432 *
433 * Called with task's alloc_lock held.
434 */
435
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
438 {
439 mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441
442 /*
443 * Rebind each vma in mm to new nodemask.
444 *
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
446 */
447
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 struct vm_area_struct *vma;
451
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
456 }
457
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
461 },
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
465 },
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
469 },
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
473 },
474 };
475
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
478
479 /* Scan through pages checking if pages follow certain conditions. */
480 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
481 unsigned long addr, unsigned long end,
482 const nodemask_t *nodes, unsigned long flags,
483 void *private)
484 {
485 pte_t *orig_pte;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
490 do {
491 struct page *page;
492 int nid;
493
494 if (!pte_present(*pte))
495 continue;
496 page = vm_normal_page(vma, addr, *pte);
497 if (!page)
498 continue;
499 /*
500 * vm_normal_page() filters out zero pages, but there might
501 * still be PageReserved pages to skip, perhaps in a VDSO.
502 */
503 if (PageReserved(page))
504 continue;
505 nid = page_to_nid(page);
506 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
507 continue;
508
509 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
510 migrate_page_add(page, private, flags);
511 else
512 break;
513 } while (pte++, addr += PAGE_SIZE, addr != end);
514 pte_unmap_unlock(orig_pte, ptl);
515 return addr != end;
516 }
517
518 static void check_hugetlb_pmd_range(struct vm_area_struct *vma, pmd_t *pmd,
519 const nodemask_t *nodes, unsigned long flags,
520 void *private)
521 {
522 #ifdef CONFIG_HUGETLB_PAGE
523 int nid;
524 struct page *page;
525
526 spin_lock(&vma->vm_mm->page_table_lock);
527 page = pte_page(huge_ptep_get((pte_t *)pmd));
528 nid = page_to_nid(page);
529 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
530 goto unlock;
531 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
532 if (flags & (MPOL_MF_MOVE_ALL) ||
533 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
534 isolate_huge_page(page, private);
535 unlock:
536 spin_unlock(&vma->vm_mm->page_table_lock);
537 #else
538 BUG();
539 #endif
540 }
541
542 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
543 unsigned long addr, unsigned long end,
544 const nodemask_t *nodes, unsigned long flags,
545 void *private)
546 {
547 pmd_t *pmd;
548 unsigned long next;
549
550 pmd = pmd_offset(pud, addr);
551 do {
552 next = pmd_addr_end(addr, end);
553 if (!pmd_present(*pmd))
554 continue;
555 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
556 check_hugetlb_pmd_range(vma, pmd, nodes,
557 flags, private);
558 continue;
559 }
560 split_huge_page_pmd(vma, addr, pmd);
561 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
562 continue;
563 if (check_pte_range(vma, pmd, addr, next, nodes,
564 flags, private))
565 return -EIO;
566 } while (pmd++, addr = next, addr != end);
567 return 0;
568 }
569
570 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
571 unsigned long addr, unsigned long end,
572 const nodemask_t *nodes, unsigned long flags,
573 void *private)
574 {
575 pud_t *pud;
576 unsigned long next;
577
578 pud = pud_offset(pgd, addr);
579 do {
580 next = pud_addr_end(addr, end);
581 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
582 continue;
583 if (pud_none_or_clear_bad(pud))
584 continue;
585 if (check_pmd_range(vma, pud, addr, next, nodes,
586 flags, private))
587 return -EIO;
588 } while (pud++, addr = next, addr != end);
589 return 0;
590 }
591
592 static inline int check_pgd_range(struct vm_area_struct *vma,
593 unsigned long addr, unsigned long end,
594 const nodemask_t *nodes, unsigned long flags,
595 void *private)
596 {
597 pgd_t *pgd;
598 unsigned long next;
599
600 pgd = pgd_offset(vma->vm_mm, addr);
601 do {
602 next = pgd_addr_end(addr, end);
603 if (pgd_none_or_clear_bad(pgd))
604 continue;
605 if (check_pud_range(vma, pgd, addr, next, nodes,
606 flags, private))
607 return -EIO;
608 } while (pgd++, addr = next, addr != end);
609 return 0;
610 }
611
612 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
613 /*
614 * This is used to mark a range of virtual addresses to be inaccessible.
615 * These are later cleared by a NUMA hinting fault. Depending on these
616 * faults, pages may be migrated for better NUMA placement.
617 *
618 * This is assuming that NUMA faults are handled using PROT_NONE. If
619 * an architecture makes a different choice, it will need further
620 * changes to the core.
621 */
622 unsigned long change_prot_numa(struct vm_area_struct *vma,
623 unsigned long addr, unsigned long end)
624 {
625 int nr_updated;
626 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
627
628 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
629 if (nr_updated)
630 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
631
632 return nr_updated;
633 }
634 #else
635 static unsigned long change_prot_numa(struct vm_area_struct *vma,
636 unsigned long addr, unsigned long end)
637 {
638 return 0;
639 }
640 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
641
642 /*
643 * Check if all pages in a range are on a set of nodes.
644 * If pagelist != NULL then isolate pages from the LRU and
645 * put them on the pagelist.
646 */
647 static struct vm_area_struct *
648 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
649 const nodemask_t *nodes, unsigned long flags, void *private)
650 {
651 int err;
652 struct vm_area_struct *first, *vma, *prev;
653
654
655 first = find_vma(mm, start);
656 if (!first)
657 return ERR_PTR(-EFAULT);
658 prev = NULL;
659 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
660 unsigned long endvma = vma->vm_end;
661
662 if (endvma > end)
663 endvma = end;
664 if (vma->vm_start > start)
665 start = vma->vm_start;
666
667 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
668 if (!vma->vm_next && vma->vm_end < end)
669 return ERR_PTR(-EFAULT);
670 if (prev && prev->vm_end < vma->vm_start)
671 return ERR_PTR(-EFAULT);
672 }
673
674 if (flags & MPOL_MF_LAZY) {
675 change_prot_numa(vma, start, endvma);
676 goto next;
677 }
678
679 if ((flags & MPOL_MF_STRICT) ||
680 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
681 vma_migratable(vma))) {
682
683 err = check_pgd_range(vma, start, endvma, nodes,
684 flags, private);
685 if (err) {
686 first = ERR_PTR(err);
687 break;
688 }
689 }
690 next:
691 prev = vma;
692 }
693 return first;
694 }
695
696 /*
697 * Apply policy to a single VMA
698 * This must be called with the mmap_sem held for writing.
699 */
700 static int vma_replace_policy(struct vm_area_struct *vma,
701 struct mempolicy *pol)
702 {
703 int err;
704 struct mempolicy *old;
705 struct mempolicy *new;
706
707 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
708 vma->vm_start, vma->vm_end, vma->vm_pgoff,
709 vma->vm_ops, vma->vm_file,
710 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
711
712 new = mpol_dup(pol);
713 if (IS_ERR(new))
714 return PTR_ERR(new);
715
716 if (vma->vm_ops && vma->vm_ops->set_policy) {
717 err = vma->vm_ops->set_policy(vma, new);
718 if (err)
719 goto err_out;
720 }
721
722 old = vma->vm_policy;
723 vma->vm_policy = new; /* protected by mmap_sem */
724 mpol_put(old);
725
726 return 0;
727 err_out:
728 mpol_put(new);
729 return err;
730 }
731
732 /* Step 2: apply policy to a range and do splits. */
733 static int mbind_range(struct mm_struct *mm, unsigned long start,
734 unsigned long end, struct mempolicy *new_pol)
735 {
736 struct vm_area_struct *next;
737 struct vm_area_struct *prev;
738 struct vm_area_struct *vma;
739 int err = 0;
740 pgoff_t pgoff;
741 unsigned long vmstart;
742 unsigned long vmend;
743
744 vma = find_vma(mm, start);
745 if (!vma || vma->vm_start > start)
746 return -EFAULT;
747
748 prev = vma->vm_prev;
749 if (start > vma->vm_start)
750 prev = vma;
751
752 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
753 next = vma->vm_next;
754 vmstart = max(start, vma->vm_start);
755 vmend = min(end, vma->vm_end);
756
757 if (mpol_equal(vma_policy(vma), new_pol))
758 continue;
759
760 pgoff = vma->vm_pgoff +
761 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
762 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
763 vma->anon_vma, vma->vm_file, pgoff,
764 new_pol);
765 if (prev) {
766 vma = prev;
767 next = vma->vm_next;
768 if (mpol_equal(vma_policy(vma), new_pol))
769 continue;
770 /* vma_merge() joined vma && vma->next, case 8 */
771 goto replace;
772 }
773 if (vma->vm_start != vmstart) {
774 err = split_vma(vma->vm_mm, vma, vmstart, 1);
775 if (err)
776 goto out;
777 }
778 if (vma->vm_end != vmend) {
779 err = split_vma(vma->vm_mm, vma, vmend, 0);
780 if (err)
781 goto out;
782 }
783 replace:
784 err = vma_replace_policy(vma, new_pol);
785 if (err)
786 goto out;
787 }
788
789 out:
790 return err;
791 }
792
793 /*
794 * Update task->flags PF_MEMPOLICY bit: set iff non-default
795 * mempolicy. Allows more rapid checking of this (combined perhaps
796 * with other PF_* flag bits) on memory allocation hot code paths.
797 *
798 * If called from outside this file, the task 'p' should -only- be
799 * a newly forked child not yet visible on the task list, because
800 * manipulating the task flags of a visible task is not safe.
801 *
802 * The above limitation is why this routine has the funny name
803 * mpol_fix_fork_child_flag().
804 *
805 * It is also safe to call this with a task pointer of current,
806 * which the static wrapper mpol_set_task_struct_flag() does,
807 * for use within this file.
808 */
809
810 void mpol_fix_fork_child_flag(struct task_struct *p)
811 {
812 if (p->mempolicy)
813 p->flags |= PF_MEMPOLICY;
814 else
815 p->flags &= ~PF_MEMPOLICY;
816 }
817
818 static void mpol_set_task_struct_flag(void)
819 {
820 mpol_fix_fork_child_flag(current);
821 }
822
823 /* Set the process memory policy */
824 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
825 nodemask_t *nodes)
826 {
827 struct mempolicy *new, *old;
828 struct mm_struct *mm = current->mm;
829 NODEMASK_SCRATCH(scratch);
830 int ret;
831
832 if (!scratch)
833 return -ENOMEM;
834
835 new = mpol_new(mode, flags, nodes);
836 if (IS_ERR(new)) {
837 ret = PTR_ERR(new);
838 goto out;
839 }
840 /*
841 * prevent changing our mempolicy while show_numa_maps()
842 * is using it.
843 * Note: do_set_mempolicy() can be called at init time
844 * with no 'mm'.
845 */
846 if (mm)
847 down_write(&mm->mmap_sem);
848 task_lock(current);
849 ret = mpol_set_nodemask(new, nodes, scratch);
850 if (ret) {
851 task_unlock(current);
852 if (mm)
853 up_write(&mm->mmap_sem);
854 mpol_put(new);
855 goto out;
856 }
857 old = current->mempolicy;
858 current->mempolicy = new;
859 mpol_set_task_struct_flag();
860 if (new && new->mode == MPOL_INTERLEAVE &&
861 nodes_weight(new->v.nodes))
862 current->il_next = first_node(new->v.nodes);
863 task_unlock(current);
864 if (mm)
865 up_write(&mm->mmap_sem);
866
867 mpol_put(old);
868 ret = 0;
869 out:
870 NODEMASK_SCRATCH_FREE(scratch);
871 return ret;
872 }
873
874 /*
875 * Return nodemask for policy for get_mempolicy() query
876 *
877 * Called with task's alloc_lock held
878 */
879 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
880 {
881 nodes_clear(*nodes);
882 if (p == &default_policy)
883 return;
884
885 switch (p->mode) {
886 case MPOL_BIND:
887 /* Fall through */
888 case MPOL_INTERLEAVE:
889 *nodes = p->v.nodes;
890 break;
891 case MPOL_PREFERRED:
892 if (!(p->flags & MPOL_F_LOCAL))
893 node_set(p->v.preferred_node, *nodes);
894 /* else return empty node mask for local allocation */
895 break;
896 default:
897 BUG();
898 }
899 }
900
901 static int lookup_node(struct mm_struct *mm, unsigned long addr)
902 {
903 struct page *p;
904 int err;
905
906 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
907 if (err >= 0) {
908 err = page_to_nid(p);
909 put_page(p);
910 }
911 return err;
912 }
913
914 /* Retrieve NUMA policy */
915 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
916 unsigned long addr, unsigned long flags)
917 {
918 int err;
919 struct mm_struct *mm = current->mm;
920 struct vm_area_struct *vma = NULL;
921 struct mempolicy *pol = current->mempolicy;
922
923 if (flags &
924 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
925 return -EINVAL;
926
927 if (flags & MPOL_F_MEMS_ALLOWED) {
928 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
929 return -EINVAL;
930 *policy = 0; /* just so it's initialized */
931 task_lock(current);
932 *nmask = cpuset_current_mems_allowed;
933 task_unlock(current);
934 return 0;
935 }
936
937 if (flags & MPOL_F_ADDR) {
938 /*
939 * Do NOT fall back to task policy if the
940 * vma/shared policy at addr is NULL. We
941 * want to return MPOL_DEFAULT in this case.
942 */
943 down_read(&mm->mmap_sem);
944 vma = find_vma_intersection(mm, addr, addr+1);
945 if (!vma) {
946 up_read(&mm->mmap_sem);
947 return -EFAULT;
948 }
949 if (vma->vm_ops && vma->vm_ops->get_policy)
950 pol = vma->vm_ops->get_policy(vma, addr);
951 else
952 pol = vma->vm_policy;
953 } else if (addr)
954 return -EINVAL;
955
956 if (!pol)
957 pol = &default_policy; /* indicates default behavior */
958
959 if (flags & MPOL_F_NODE) {
960 if (flags & MPOL_F_ADDR) {
961 err = lookup_node(mm, addr);
962 if (err < 0)
963 goto out;
964 *policy = err;
965 } else if (pol == current->mempolicy &&
966 pol->mode == MPOL_INTERLEAVE) {
967 *policy = current->il_next;
968 } else {
969 err = -EINVAL;
970 goto out;
971 }
972 } else {
973 *policy = pol == &default_policy ? MPOL_DEFAULT :
974 pol->mode;
975 /*
976 * Internal mempolicy flags must be masked off before exposing
977 * the policy to userspace.
978 */
979 *policy |= (pol->flags & MPOL_MODE_FLAGS);
980 }
981
982 if (vma) {
983 up_read(&current->mm->mmap_sem);
984 vma = NULL;
985 }
986
987 err = 0;
988 if (nmask) {
989 if (mpol_store_user_nodemask(pol)) {
990 *nmask = pol->w.user_nodemask;
991 } else {
992 task_lock(current);
993 get_policy_nodemask(pol, nmask);
994 task_unlock(current);
995 }
996 }
997
998 out:
999 mpol_cond_put(pol);
1000 if (vma)
1001 up_read(&current->mm->mmap_sem);
1002 return err;
1003 }
1004
1005 #ifdef CONFIG_MIGRATION
1006 /*
1007 * page migration
1008 */
1009 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1010 unsigned long flags)
1011 {
1012 /*
1013 * Avoid migrating a page that is shared with others.
1014 */
1015 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
1016 if (!isolate_lru_page(page)) {
1017 list_add_tail(&page->lru, pagelist);
1018 inc_zone_page_state(page, NR_ISOLATED_ANON +
1019 page_is_file_cache(page));
1020 }
1021 }
1022 }
1023
1024 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1025 {
1026 if (PageHuge(page))
1027 return alloc_huge_page_node(page_hstate(compound_head(page)),
1028 node);
1029 else
1030 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1031 }
1032
1033 /*
1034 * Migrate pages from one node to a target node.
1035 * Returns error or the number of pages not migrated.
1036 */
1037 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1038 int flags)
1039 {
1040 nodemask_t nmask;
1041 LIST_HEAD(pagelist);
1042 int err = 0;
1043
1044 nodes_clear(nmask);
1045 node_set(source, nmask);
1046
1047 /*
1048 * This does not "check" the range but isolates all pages that
1049 * need migration. Between passing in the full user address
1050 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1051 */
1052 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1053 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1054 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1055
1056 if (!list_empty(&pagelist)) {
1057 err = migrate_pages(&pagelist, new_node_page, dest,
1058 MIGRATE_SYNC, MR_SYSCALL);
1059 if (err)
1060 putback_movable_pages(&pagelist);
1061 }
1062
1063 return err;
1064 }
1065
1066 /*
1067 * Move pages between the two nodesets so as to preserve the physical
1068 * layout as much as possible.
1069 *
1070 * Returns the number of page that could not be moved.
1071 */
1072 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1073 const nodemask_t *to, int flags)
1074 {
1075 int busy = 0;
1076 int err;
1077 nodemask_t tmp;
1078
1079 err = migrate_prep();
1080 if (err)
1081 return err;
1082
1083 down_read(&mm->mmap_sem);
1084
1085 err = migrate_vmas(mm, from, to, flags);
1086 if (err)
1087 goto out;
1088
1089 /*
1090 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1091 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1092 * bit in 'tmp', and return that <source, dest> pair for migration.
1093 * The pair of nodemasks 'to' and 'from' define the map.
1094 *
1095 * If no pair of bits is found that way, fallback to picking some
1096 * pair of 'source' and 'dest' bits that are not the same. If the
1097 * 'source' and 'dest' bits are the same, this represents a node
1098 * that will be migrating to itself, so no pages need move.
1099 *
1100 * If no bits are left in 'tmp', or if all remaining bits left
1101 * in 'tmp' correspond to the same bit in 'to', return false
1102 * (nothing left to migrate).
1103 *
1104 * This lets us pick a pair of nodes to migrate between, such that
1105 * if possible the dest node is not already occupied by some other
1106 * source node, minimizing the risk of overloading the memory on a
1107 * node that would happen if we migrated incoming memory to a node
1108 * before migrating outgoing memory source that same node.
1109 *
1110 * A single scan of tmp is sufficient. As we go, we remember the
1111 * most recent <s, d> pair that moved (s != d). If we find a pair
1112 * that not only moved, but what's better, moved to an empty slot
1113 * (d is not set in tmp), then we break out then, with that pair.
1114 * Otherwise when we finish scanning from_tmp, we at least have the
1115 * most recent <s, d> pair that moved. If we get all the way through
1116 * the scan of tmp without finding any node that moved, much less
1117 * moved to an empty node, then there is nothing left worth migrating.
1118 */
1119
1120 tmp = *from;
1121 while (!nodes_empty(tmp)) {
1122 int s,d;
1123 int source = -1;
1124 int dest = 0;
1125
1126 for_each_node_mask(s, tmp) {
1127
1128 /*
1129 * do_migrate_pages() tries to maintain the relative
1130 * node relationship of the pages established between
1131 * threads and memory areas.
1132 *
1133 * However if the number of source nodes is not equal to
1134 * the number of destination nodes we can not preserve
1135 * this node relative relationship. In that case, skip
1136 * copying memory from a node that is in the destination
1137 * mask.
1138 *
1139 * Example: [2,3,4] -> [3,4,5] moves everything.
1140 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1141 */
1142
1143 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1144 (node_isset(s, *to)))
1145 continue;
1146
1147 d = node_remap(s, *from, *to);
1148 if (s == d)
1149 continue;
1150
1151 source = s; /* Node moved. Memorize */
1152 dest = d;
1153
1154 /* dest not in remaining from nodes? */
1155 if (!node_isset(dest, tmp))
1156 break;
1157 }
1158 if (source == -1)
1159 break;
1160
1161 node_clear(source, tmp);
1162 err = migrate_to_node(mm, source, dest, flags);
1163 if (err > 0)
1164 busy += err;
1165 if (err < 0)
1166 break;
1167 }
1168 out:
1169 up_read(&mm->mmap_sem);
1170 if (err < 0)
1171 return err;
1172 return busy;
1173
1174 }
1175
1176 /*
1177 * Allocate a new page for page migration based on vma policy.
1178 * Start assuming that page is mapped by vma pointed to by @private.
1179 * Search forward from there, if not. N.B., this assumes that the
1180 * list of pages handed to migrate_pages()--which is how we get here--
1181 * is in virtual address order.
1182 */
1183 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1184 {
1185 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1186 unsigned long uninitialized_var(address);
1187
1188 while (vma) {
1189 address = page_address_in_vma(page, vma);
1190 if (address != -EFAULT)
1191 break;
1192 vma = vma->vm_next;
1193 }
1194
1195 /*
1196 * if !vma, alloc_page_vma() will use task or system default policy
1197 */
1198 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1199 }
1200 #else
1201
1202 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1203 unsigned long flags)
1204 {
1205 }
1206
1207 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1208 const nodemask_t *to, int flags)
1209 {
1210 return -ENOSYS;
1211 }
1212
1213 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1214 {
1215 return NULL;
1216 }
1217 #endif
1218
1219 static long do_mbind(unsigned long start, unsigned long len,
1220 unsigned short mode, unsigned short mode_flags,
1221 nodemask_t *nmask, unsigned long flags)
1222 {
1223 struct vm_area_struct *vma;
1224 struct mm_struct *mm = current->mm;
1225 struct mempolicy *new;
1226 unsigned long end;
1227 int err;
1228 LIST_HEAD(pagelist);
1229
1230 if (flags & ~(unsigned long)MPOL_MF_VALID)
1231 return -EINVAL;
1232 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1233 return -EPERM;
1234
1235 if (start & ~PAGE_MASK)
1236 return -EINVAL;
1237
1238 if (mode == MPOL_DEFAULT)
1239 flags &= ~MPOL_MF_STRICT;
1240
1241 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1242 end = start + len;
1243
1244 if (end < start)
1245 return -EINVAL;
1246 if (end == start)
1247 return 0;
1248
1249 new = mpol_new(mode, mode_flags, nmask);
1250 if (IS_ERR(new))
1251 return PTR_ERR(new);
1252
1253 if (flags & MPOL_MF_LAZY)
1254 new->flags |= MPOL_F_MOF;
1255
1256 /*
1257 * If we are using the default policy then operation
1258 * on discontinuous address spaces is okay after all
1259 */
1260 if (!new)
1261 flags |= MPOL_MF_DISCONTIG_OK;
1262
1263 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1264 start, start + len, mode, mode_flags,
1265 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1266
1267 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1268
1269 err = migrate_prep();
1270 if (err)
1271 goto mpol_out;
1272 }
1273 {
1274 NODEMASK_SCRATCH(scratch);
1275 if (scratch) {
1276 down_write(&mm->mmap_sem);
1277 task_lock(current);
1278 err = mpol_set_nodemask(new, nmask, scratch);
1279 task_unlock(current);
1280 if (err)
1281 up_write(&mm->mmap_sem);
1282 } else
1283 err = -ENOMEM;
1284 NODEMASK_SCRATCH_FREE(scratch);
1285 }
1286 if (err)
1287 goto mpol_out;
1288
1289 vma = check_range(mm, start, end, nmask,
1290 flags | MPOL_MF_INVERT, &pagelist);
1291
1292 err = PTR_ERR(vma); /* maybe ... */
1293 if (!IS_ERR(vma))
1294 err = mbind_range(mm, start, end, new);
1295
1296 if (!err) {
1297 int nr_failed = 0;
1298
1299 if (!list_empty(&pagelist)) {
1300 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1301 nr_failed = migrate_pages(&pagelist, new_vma_page,
1302 (unsigned long)vma,
1303 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1304 if (nr_failed)
1305 putback_lru_pages(&pagelist);
1306 }
1307
1308 if (nr_failed && (flags & MPOL_MF_STRICT))
1309 err = -EIO;
1310 } else
1311 putback_lru_pages(&pagelist);
1312
1313 up_write(&mm->mmap_sem);
1314 mpol_out:
1315 mpol_put(new);
1316 return err;
1317 }
1318
1319 /*
1320 * User space interface with variable sized bitmaps for nodelists.
1321 */
1322
1323 /* Copy a node mask from user space. */
1324 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1325 unsigned long maxnode)
1326 {
1327 unsigned long k;
1328 unsigned long nlongs;
1329 unsigned long endmask;
1330
1331 --maxnode;
1332 nodes_clear(*nodes);
1333 if (maxnode == 0 || !nmask)
1334 return 0;
1335 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1336 return -EINVAL;
1337
1338 nlongs = BITS_TO_LONGS(maxnode);
1339 if ((maxnode % BITS_PER_LONG) == 0)
1340 endmask = ~0UL;
1341 else
1342 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1343
1344 /* When the user specified more nodes than supported just check
1345 if the non supported part is all zero. */
1346 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1347 if (nlongs > PAGE_SIZE/sizeof(long))
1348 return -EINVAL;
1349 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1350 unsigned long t;
1351 if (get_user(t, nmask + k))
1352 return -EFAULT;
1353 if (k == nlongs - 1) {
1354 if (t & endmask)
1355 return -EINVAL;
1356 } else if (t)
1357 return -EINVAL;
1358 }
1359 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1360 endmask = ~0UL;
1361 }
1362
1363 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1364 return -EFAULT;
1365 nodes_addr(*nodes)[nlongs-1] &= endmask;
1366 return 0;
1367 }
1368
1369 /* Copy a kernel node mask to user space */
1370 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1371 nodemask_t *nodes)
1372 {
1373 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1374 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1375
1376 if (copy > nbytes) {
1377 if (copy > PAGE_SIZE)
1378 return -EINVAL;
1379 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1380 return -EFAULT;
1381 copy = nbytes;
1382 }
1383 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1384 }
1385
1386 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1387 unsigned long, mode, unsigned long __user *, nmask,
1388 unsigned long, maxnode, unsigned, flags)
1389 {
1390 nodemask_t nodes;
1391 int err;
1392 unsigned short mode_flags;
1393
1394 mode_flags = mode & MPOL_MODE_FLAGS;
1395 mode &= ~MPOL_MODE_FLAGS;
1396 if (mode >= MPOL_MAX)
1397 return -EINVAL;
1398 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1399 (mode_flags & MPOL_F_RELATIVE_NODES))
1400 return -EINVAL;
1401 err = get_nodes(&nodes, nmask, maxnode);
1402 if (err)
1403 return err;
1404 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1405 }
1406
1407 /* Set the process memory policy */
1408 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1409 unsigned long, maxnode)
1410 {
1411 int err;
1412 nodemask_t nodes;
1413 unsigned short flags;
1414
1415 flags = mode & MPOL_MODE_FLAGS;
1416 mode &= ~MPOL_MODE_FLAGS;
1417 if ((unsigned int)mode >= MPOL_MAX)
1418 return -EINVAL;
1419 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1420 return -EINVAL;
1421 err = get_nodes(&nodes, nmask, maxnode);
1422 if (err)
1423 return err;
1424 return do_set_mempolicy(mode, flags, &nodes);
1425 }
1426
1427 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1428 const unsigned long __user *, old_nodes,
1429 const unsigned long __user *, new_nodes)
1430 {
1431 const struct cred *cred = current_cred(), *tcred;
1432 struct mm_struct *mm = NULL;
1433 struct task_struct *task;
1434 nodemask_t task_nodes;
1435 int err;
1436 nodemask_t *old;
1437 nodemask_t *new;
1438 NODEMASK_SCRATCH(scratch);
1439
1440 if (!scratch)
1441 return -ENOMEM;
1442
1443 old = &scratch->mask1;
1444 new = &scratch->mask2;
1445
1446 err = get_nodes(old, old_nodes, maxnode);
1447 if (err)
1448 goto out;
1449
1450 err = get_nodes(new, new_nodes, maxnode);
1451 if (err)
1452 goto out;
1453
1454 /* Find the mm_struct */
1455 rcu_read_lock();
1456 task = pid ? find_task_by_vpid(pid) : current;
1457 if (!task) {
1458 rcu_read_unlock();
1459 err = -ESRCH;
1460 goto out;
1461 }
1462 get_task_struct(task);
1463
1464 err = -EINVAL;
1465
1466 /*
1467 * Check if this process has the right to modify the specified
1468 * process. The right exists if the process has administrative
1469 * capabilities, superuser privileges or the same
1470 * userid as the target process.
1471 */
1472 tcred = __task_cred(task);
1473 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1474 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1475 !capable(CAP_SYS_NICE)) {
1476 rcu_read_unlock();
1477 err = -EPERM;
1478 goto out_put;
1479 }
1480 rcu_read_unlock();
1481
1482 task_nodes = cpuset_mems_allowed(task);
1483 /* Is the user allowed to access the target nodes? */
1484 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1485 err = -EPERM;
1486 goto out_put;
1487 }
1488
1489 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1490 err = -EINVAL;
1491 goto out_put;
1492 }
1493
1494 err = security_task_movememory(task);
1495 if (err)
1496 goto out_put;
1497
1498 mm = get_task_mm(task);
1499 put_task_struct(task);
1500
1501 if (!mm) {
1502 err = -EINVAL;
1503 goto out;
1504 }
1505
1506 err = do_migrate_pages(mm, old, new,
1507 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1508
1509 mmput(mm);
1510 out:
1511 NODEMASK_SCRATCH_FREE(scratch);
1512
1513 return err;
1514
1515 out_put:
1516 put_task_struct(task);
1517 goto out;
1518
1519 }
1520
1521
1522 /* Retrieve NUMA policy */
1523 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1524 unsigned long __user *, nmask, unsigned long, maxnode,
1525 unsigned long, addr, unsigned long, flags)
1526 {
1527 int err;
1528 int uninitialized_var(pval);
1529 nodemask_t nodes;
1530
1531 if (nmask != NULL && maxnode < MAX_NUMNODES)
1532 return -EINVAL;
1533
1534 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1535
1536 if (err)
1537 return err;
1538
1539 if (policy && put_user(pval, policy))
1540 return -EFAULT;
1541
1542 if (nmask)
1543 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1544
1545 return err;
1546 }
1547
1548 #ifdef CONFIG_COMPAT
1549
1550 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1551 compat_ulong_t __user *nmask,
1552 compat_ulong_t maxnode,
1553 compat_ulong_t addr, compat_ulong_t flags)
1554 {
1555 long err;
1556 unsigned long __user *nm = NULL;
1557 unsigned long nr_bits, alloc_size;
1558 DECLARE_BITMAP(bm, MAX_NUMNODES);
1559
1560 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1561 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1562
1563 if (nmask)
1564 nm = compat_alloc_user_space(alloc_size);
1565
1566 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1567
1568 if (!err && nmask) {
1569 unsigned long copy_size;
1570 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1571 err = copy_from_user(bm, nm, copy_size);
1572 /* ensure entire bitmap is zeroed */
1573 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1574 err |= compat_put_bitmap(nmask, bm, nr_bits);
1575 }
1576
1577 return err;
1578 }
1579
1580 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1581 compat_ulong_t maxnode)
1582 {
1583 long err = 0;
1584 unsigned long __user *nm = NULL;
1585 unsigned long nr_bits, alloc_size;
1586 DECLARE_BITMAP(bm, MAX_NUMNODES);
1587
1588 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1589 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1590
1591 if (nmask) {
1592 err = compat_get_bitmap(bm, nmask, nr_bits);
1593 nm = compat_alloc_user_space(alloc_size);
1594 err |= copy_to_user(nm, bm, alloc_size);
1595 }
1596
1597 if (err)
1598 return -EFAULT;
1599
1600 return sys_set_mempolicy(mode, nm, nr_bits+1);
1601 }
1602
1603 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1604 compat_ulong_t mode, compat_ulong_t __user *nmask,
1605 compat_ulong_t maxnode, compat_ulong_t flags)
1606 {
1607 long err = 0;
1608 unsigned long __user *nm = NULL;
1609 unsigned long nr_bits, alloc_size;
1610 nodemask_t bm;
1611
1612 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1613 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1614
1615 if (nmask) {
1616 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1617 nm = compat_alloc_user_space(alloc_size);
1618 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1619 }
1620
1621 if (err)
1622 return -EFAULT;
1623
1624 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1625 }
1626
1627 #endif
1628
1629 /*
1630 * get_vma_policy(@task, @vma, @addr)
1631 * @task - task for fallback if vma policy == default
1632 * @vma - virtual memory area whose policy is sought
1633 * @addr - address in @vma for shared policy lookup
1634 *
1635 * Returns effective policy for a VMA at specified address.
1636 * Falls back to @task or system default policy, as necessary.
1637 * Current or other task's task mempolicy and non-shared vma policies must be
1638 * protected by task_lock(task) by the caller.
1639 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1640 * count--added by the get_policy() vm_op, as appropriate--to protect against
1641 * freeing by another task. It is the caller's responsibility to free the
1642 * extra reference for shared policies.
1643 */
1644 struct mempolicy *get_vma_policy(struct task_struct *task,
1645 struct vm_area_struct *vma, unsigned long addr)
1646 {
1647 struct mempolicy *pol = get_task_policy(task);
1648
1649 if (vma) {
1650 if (vma->vm_ops && vma->vm_ops->get_policy) {
1651 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1652 addr);
1653 if (vpol)
1654 pol = vpol;
1655 } else if (vma->vm_policy) {
1656 pol = vma->vm_policy;
1657
1658 /*
1659 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1660 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1661 * count on these policies which will be dropped by
1662 * mpol_cond_put() later
1663 */
1664 if (mpol_needs_cond_ref(pol))
1665 mpol_get(pol);
1666 }
1667 }
1668 if (!pol)
1669 pol = &default_policy;
1670 return pol;
1671 }
1672
1673 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1674 {
1675 enum zone_type dynamic_policy_zone = policy_zone;
1676
1677 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1678
1679 /*
1680 * if policy->v.nodes has movable memory only,
1681 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1682 *
1683 * policy->v.nodes is intersect with node_states[N_MEMORY].
1684 * so if the following test faile, it implies
1685 * policy->v.nodes has movable memory only.
1686 */
1687 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1688 dynamic_policy_zone = ZONE_MOVABLE;
1689
1690 return zone >= dynamic_policy_zone;
1691 }
1692
1693 /*
1694 * Return a nodemask representing a mempolicy for filtering nodes for
1695 * page allocation
1696 */
1697 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1698 {
1699 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1700 if (unlikely(policy->mode == MPOL_BIND) &&
1701 apply_policy_zone(policy, gfp_zone(gfp)) &&
1702 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1703 return &policy->v.nodes;
1704
1705 return NULL;
1706 }
1707
1708 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1709 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1710 int nd)
1711 {
1712 switch (policy->mode) {
1713 case MPOL_PREFERRED:
1714 if (!(policy->flags & MPOL_F_LOCAL))
1715 nd = policy->v.preferred_node;
1716 break;
1717 case MPOL_BIND:
1718 /*
1719 * Normally, MPOL_BIND allocations are node-local within the
1720 * allowed nodemask. However, if __GFP_THISNODE is set and the
1721 * current node isn't part of the mask, we use the zonelist for
1722 * the first node in the mask instead.
1723 */
1724 if (unlikely(gfp & __GFP_THISNODE) &&
1725 unlikely(!node_isset(nd, policy->v.nodes)))
1726 nd = first_node(policy->v.nodes);
1727 break;
1728 default:
1729 BUG();
1730 }
1731 return node_zonelist(nd, gfp);
1732 }
1733
1734 /* Do dynamic interleaving for a process */
1735 static unsigned interleave_nodes(struct mempolicy *policy)
1736 {
1737 unsigned nid, next;
1738 struct task_struct *me = current;
1739
1740 nid = me->il_next;
1741 next = next_node(nid, policy->v.nodes);
1742 if (next >= MAX_NUMNODES)
1743 next = first_node(policy->v.nodes);
1744 if (next < MAX_NUMNODES)
1745 me->il_next = next;
1746 return nid;
1747 }
1748
1749 /*
1750 * Depending on the memory policy provide a node from which to allocate the
1751 * next slab entry.
1752 * @policy must be protected by freeing by the caller. If @policy is
1753 * the current task's mempolicy, this protection is implicit, as only the
1754 * task can change it's policy. The system default policy requires no
1755 * such protection.
1756 */
1757 unsigned slab_node(void)
1758 {
1759 struct mempolicy *policy;
1760
1761 if (in_interrupt())
1762 return numa_node_id();
1763
1764 policy = current->mempolicy;
1765 if (!policy || policy->flags & MPOL_F_LOCAL)
1766 return numa_node_id();
1767
1768 switch (policy->mode) {
1769 case MPOL_PREFERRED:
1770 /*
1771 * handled MPOL_F_LOCAL above
1772 */
1773 return policy->v.preferred_node;
1774
1775 case MPOL_INTERLEAVE:
1776 return interleave_nodes(policy);
1777
1778 case MPOL_BIND: {
1779 /*
1780 * Follow bind policy behavior and start allocation at the
1781 * first node.
1782 */
1783 struct zonelist *zonelist;
1784 struct zone *zone;
1785 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1786 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1787 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1788 &policy->v.nodes,
1789 &zone);
1790 return zone ? zone->node : numa_node_id();
1791 }
1792
1793 default:
1794 BUG();
1795 }
1796 }
1797
1798 /* Do static interleaving for a VMA with known offset. */
1799 static unsigned offset_il_node(struct mempolicy *pol,
1800 struct vm_area_struct *vma, unsigned long off)
1801 {
1802 unsigned nnodes = nodes_weight(pol->v.nodes);
1803 unsigned target;
1804 int c;
1805 int nid = -1;
1806
1807 if (!nnodes)
1808 return numa_node_id();
1809 target = (unsigned int)off % nnodes;
1810 c = 0;
1811 do {
1812 nid = next_node(nid, pol->v.nodes);
1813 c++;
1814 } while (c <= target);
1815 return nid;
1816 }
1817
1818 /* Determine a node number for interleave */
1819 static inline unsigned interleave_nid(struct mempolicy *pol,
1820 struct vm_area_struct *vma, unsigned long addr, int shift)
1821 {
1822 if (vma) {
1823 unsigned long off;
1824
1825 /*
1826 * for small pages, there is no difference between
1827 * shift and PAGE_SHIFT, so the bit-shift is safe.
1828 * for huge pages, since vm_pgoff is in units of small
1829 * pages, we need to shift off the always 0 bits to get
1830 * a useful offset.
1831 */
1832 BUG_ON(shift < PAGE_SHIFT);
1833 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1834 off += (addr - vma->vm_start) >> shift;
1835 return offset_il_node(pol, vma, off);
1836 } else
1837 return interleave_nodes(pol);
1838 }
1839
1840 /*
1841 * Return the bit number of a random bit set in the nodemask.
1842 * (returns -1 if nodemask is empty)
1843 */
1844 int node_random(const nodemask_t *maskp)
1845 {
1846 int w, bit = -1;
1847
1848 w = nodes_weight(*maskp);
1849 if (w)
1850 bit = bitmap_ord_to_pos(maskp->bits,
1851 get_random_int() % w, MAX_NUMNODES);
1852 return bit;
1853 }
1854
1855 #ifdef CONFIG_HUGETLBFS
1856 /*
1857 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1858 * @vma = virtual memory area whose policy is sought
1859 * @addr = address in @vma for shared policy lookup and interleave policy
1860 * @gfp_flags = for requested zone
1861 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1862 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1863 *
1864 * Returns a zonelist suitable for a huge page allocation and a pointer
1865 * to the struct mempolicy for conditional unref after allocation.
1866 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1867 * @nodemask for filtering the zonelist.
1868 *
1869 * Must be protected by get_mems_allowed()
1870 */
1871 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1872 gfp_t gfp_flags, struct mempolicy **mpol,
1873 nodemask_t **nodemask)
1874 {
1875 struct zonelist *zl;
1876
1877 *mpol = get_vma_policy(current, vma, addr);
1878 *nodemask = NULL; /* assume !MPOL_BIND */
1879
1880 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1881 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1882 huge_page_shift(hstate_vma(vma))), gfp_flags);
1883 } else {
1884 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1885 if ((*mpol)->mode == MPOL_BIND)
1886 *nodemask = &(*mpol)->v.nodes;
1887 }
1888 return zl;
1889 }
1890
1891 /*
1892 * init_nodemask_of_mempolicy
1893 *
1894 * If the current task's mempolicy is "default" [NULL], return 'false'
1895 * to indicate default policy. Otherwise, extract the policy nodemask
1896 * for 'bind' or 'interleave' policy into the argument nodemask, or
1897 * initialize the argument nodemask to contain the single node for
1898 * 'preferred' or 'local' policy and return 'true' to indicate presence
1899 * of non-default mempolicy.
1900 *
1901 * We don't bother with reference counting the mempolicy [mpol_get/put]
1902 * because the current task is examining it's own mempolicy and a task's
1903 * mempolicy is only ever changed by the task itself.
1904 *
1905 * N.B., it is the caller's responsibility to free a returned nodemask.
1906 */
1907 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1908 {
1909 struct mempolicy *mempolicy;
1910 int nid;
1911
1912 if (!(mask && current->mempolicy))
1913 return false;
1914
1915 task_lock(current);
1916 mempolicy = current->mempolicy;
1917 switch (mempolicy->mode) {
1918 case MPOL_PREFERRED:
1919 if (mempolicy->flags & MPOL_F_LOCAL)
1920 nid = numa_node_id();
1921 else
1922 nid = mempolicy->v.preferred_node;
1923 init_nodemask_of_node(mask, nid);
1924 break;
1925
1926 case MPOL_BIND:
1927 /* Fall through */
1928 case MPOL_INTERLEAVE:
1929 *mask = mempolicy->v.nodes;
1930 break;
1931
1932 default:
1933 BUG();
1934 }
1935 task_unlock(current);
1936
1937 return true;
1938 }
1939 #endif
1940
1941 /*
1942 * mempolicy_nodemask_intersects
1943 *
1944 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1945 * policy. Otherwise, check for intersection between mask and the policy
1946 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1947 * policy, always return true since it may allocate elsewhere on fallback.
1948 *
1949 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1950 */
1951 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1952 const nodemask_t *mask)
1953 {
1954 struct mempolicy *mempolicy;
1955 bool ret = true;
1956
1957 if (!mask)
1958 return ret;
1959 task_lock(tsk);
1960 mempolicy = tsk->mempolicy;
1961 if (!mempolicy)
1962 goto out;
1963
1964 switch (mempolicy->mode) {
1965 case MPOL_PREFERRED:
1966 /*
1967 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1968 * allocate from, they may fallback to other nodes when oom.
1969 * Thus, it's possible for tsk to have allocated memory from
1970 * nodes in mask.
1971 */
1972 break;
1973 case MPOL_BIND:
1974 case MPOL_INTERLEAVE:
1975 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1976 break;
1977 default:
1978 BUG();
1979 }
1980 out:
1981 task_unlock(tsk);
1982 return ret;
1983 }
1984
1985 /* Allocate a page in interleaved policy.
1986 Own path because it needs to do special accounting. */
1987 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1988 unsigned nid)
1989 {
1990 struct zonelist *zl;
1991 struct page *page;
1992
1993 zl = node_zonelist(nid, gfp);
1994 page = __alloc_pages(gfp, order, zl);
1995 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1996 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1997 return page;
1998 }
1999
2000 /**
2001 * alloc_pages_vma - Allocate a page for a VMA.
2002 *
2003 * @gfp:
2004 * %GFP_USER user allocation.
2005 * %GFP_KERNEL kernel allocations,
2006 * %GFP_HIGHMEM highmem/user allocations,
2007 * %GFP_FS allocation should not call back into a file system.
2008 * %GFP_ATOMIC don't sleep.
2009 *
2010 * @order:Order of the GFP allocation.
2011 * @vma: Pointer to VMA or NULL if not available.
2012 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2013 *
2014 * This function allocates a page from the kernel page pool and applies
2015 * a NUMA policy associated with the VMA or the current process.
2016 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2017 * mm_struct of the VMA to prevent it from going away. Should be used for
2018 * all allocations for pages that will be mapped into
2019 * user space. Returns NULL when no page can be allocated.
2020 *
2021 * Should be called with the mm_sem of the vma hold.
2022 */
2023 struct page *
2024 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2025 unsigned long addr, int node)
2026 {
2027 struct mempolicy *pol;
2028 struct page *page;
2029 unsigned int cpuset_mems_cookie;
2030
2031 retry_cpuset:
2032 pol = get_vma_policy(current, vma, addr);
2033 cpuset_mems_cookie = get_mems_allowed();
2034
2035 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2036 unsigned nid;
2037
2038 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2039 mpol_cond_put(pol);
2040 page = alloc_page_interleave(gfp, order, nid);
2041 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2042 goto retry_cpuset;
2043
2044 return page;
2045 }
2046 page = __alloc_pages_nodemask(gfp, order,
2047 policy_zonelist(gfp, pol, node),
2048 policy_nodemask(gfp, pol));
2049 if (unlikely(mpol_needs_cond_ref(pol)))
2050 __mpol_put(pol);
2051 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2052 goto retry_cpuset;
2053 return page;
2054 }
2055
2056 /**
2057 * alloc_pages_current - Allocate pages.
2058 *
2059 * @gfp:
2060 * %GFP_USER user allocation,
2061 * %GFP_KERNEL kernel allocation,
2062 * %GFP_HIGHMEM highmem allocation,
2063 * %GFP_FS don't call back into a file system.
2064 * %GFP_ATOMIC don't sleep.
2065 * @order: Power of two of allocation size in pages. 0 is a single page.
2066 *
2067 * Allocate a page from the kernel page pool. When not in
2068 * interrupt context and apply the current process NUMA policy.
2069 * Returns NULL when no page can be allocated.
2070 *
2071 * Don't call cpuset_update_task_memory_state() unless
2072 * 1) it's ok to take cpuset_sem (can WAIT), and
2073 * 2) allocating for current task (not interrupt).
2074 */
2075 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2076 {
2077 struct mempolicy *pol = get_task_policy(current);
2078 struct page *page;
2079 unsigned int cpuset_mems_cookie;
2080
2081 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2082 pol = &default_policy;
2083
2084 retry_cpuset:
2085 cpuset_mems_cookie = get_mems_allowed();
2086
2087 /*
2088 * No reference counting needed for current->mempolicy
2089 * nor system default_policy
2090 */
2091 if (pol->mode == MPOL_INTERLEAVE)
2092 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2093 else
2094 page = __alloc_pages_nodemask(gfp, order,
2095 policy_zonelist(gfp, pol, numa_node_id()),
2096 policy_nodemask(gfp, pol));
2097
2098 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2099 goto retry_cpuset;
2100
2101 return page;
2102 }
2103 EXPORT_SYMBOL(alloc_pages_current);
2104
2105 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2106 {
2107 struct mempolicy *pol = mpol_dup(vma_policy(src));
2108
2109 if (IS_ERR(pol))
2110 return PTR_ERR(pol);
2111 dst->vm_policy = pol;
2112 return 0;
2113 }
2114
2115 /*
2116 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2117 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2118 * with the mems_allowed returned by cpuset_mems_allowed(). This
2119 * keeps mempolicies cpuset relative after its cpuset moves. See
2120 * further kernel/cpuset.c update_nodemask().
2121 *
2122 * current's mempolicy may be rebinded by the other task(the task that changes
2123 * cpuset's mems), so we needn't do rebind work for current task.
2124 */
2125
2126 /* Slow path of a mempolicy duplicate */
2127 struct mempolicy *__mpol_dup(struct mempolicy *old)
2128 {
2129 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2130
2131 if (!new)
2132 return ERR_PTR(-ENOMEM);
2133
2134 /* task's mempolicy is protected by alloc_lock */
2135 if (old == current->mempolicy) {
2136 task_lock(current);
2137 *new = *old;
2138 task_unlock(current);
2139 } else
2140 *new = *old;
2141
2142 rcu_read_lock();
2143 if (current_cpuset_is_being_rebound()) {
2144 nodemask_t mems = cpuset_mems_allowed(current);
2145 if (new->flags & MPOL_F_REBINDING)
2146 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2147 else
2148 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2149 }
2150 rcu_read_unlock();
2151 atomic_set(&new->refcnt, 1);
2152 return new;
2153 }
2154
2155 /* Slow path of a mempolicy comparison */
2156 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2157 {
2158 if (!a || !b)
2159 return false;
2160 if (a->mode != b->mode)
2161 return false;
2162 if (a->flags != b->flags)
2163 return false;
2164 if (mpol_store_user_nodemask(a))
2165 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2166 return false;
2167
2168 switch (a->mode) {
2169 case MPOL_BIND:
2170 /* Fall through */
2171 case MPOL_INTERLEAVE:
2172 return !!nodes_equal(a->v.nodes, b->v.nodes);
2173 case MPOL_PREFERRED:
2174 return a->v.preferred_node == b->v.preferred_node;
2175 default:
2176 BUG();
2177 return false;
2178 }
2179 }
2180
2181 /*
2182 * Shared memory backing store policy support.
2183 *
2184 * Remember policies even when nobody has shared memory mapped.
2185 * The policies are kept in Red-Black tree linked from the inode.
2186 * They are protected by the sp->lock spinlock, which should be held
2187 * for any accesses to the tree.
2188 */
2189
2190 /* lookup first element intersecting start-end */
2191 /* Caller holds sp->lock */
2192 static struct sp_node *
2193 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2194 {
2195 struct rb_node *n = sp->root.rb_node;
2196
2197 while (n) {
2198 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2199
2200 if (start >= p->end)
2201 n = n->rb_right;
2202 else if (end <= p->start)
2203 n = n->rb_left;
2204 else
2205 break;
2206 }
2207 if (!n)
2208 return NULL;
2209 for (;;) {
2210 struct sp_node *w = NULL;
2211 struct rb_node *prev = rb_prev(n);
2212 if (!prev)
2213 break;
2214 w = rb_entry(prev, struct sp_node, nd);
2215 if (w->end <= start)
2216 break;
2217 n = prev;
2218 }
2219 return rb_entry(n, struct sp_node, nd);
2220 }
2221
2222 /* Insert a new shared policy into the list. */
2223 /* Caller holds sp->lock */
2224 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2225 {
2226 struct rb_node **p = &sp->root.rb_node;
2227 struct rb_node *parent = NULL;
2228 struct sp_node *nd;
2229
2230 while (*p) {
2231 parent = *p;
2232 nd = rb_entry(parent, struct sp_node, nd);
2233 if (new->start < nd->start)
2234 p = &(*p)->rb_left;
2235 else if (new->end > nd->end)
2236 p = &(*p)->rb_right;
2237 else
2238 BUG();
2239 }
2240 rb_link_node(&new->nd, parent, p);
2241 rb_insert_color(&new->nd, &sp->root);
2242 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2243 new->policy ? new->policy->mode : 0);
2244 }
2245
2246 /* Find shared policy intersecting idx */
2247 struct mempolicy *
2248 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2249 {
2250 struct mempolicy *pol = NULL;
2251 struct sp_node *sn;
2252
2253 if (!sp->root.rb_node)
2254 return NULL;
2255 spin_lock(&sp->lock);
2256 sn = sp_lookup(sp, idx, idx+1);
2257 if (sn) {
2258 mpol_get(sn->policy);
2259 pol = sn->policy;
2260 }
2261 spin_unlock(&sp->lock);
2262 return pol;
2263 }
2264
2265 static void sp_free(struct sp_node *n)
2266 {
2267 mpol_put(n->policy);
2268 kmem_cache_free(sn_cache, n);
2269 }
2270
2271 /**
2272 * mpol_misplaced - check whether current page node is valid in policy
2273 *
2274 * @page - page to be checked
2275 * @vma - vm area where page mapped
2276 * @addr - virtual address where page mapped
2277 *
2278 * Lookup current policy node id for vma,addr and "compare to" page's
2279 * node id.
2280 *
2281 * Returns:
2282 * -1 - not misplaced, page is in the right node
2283 * node - node id where the page should be
2284 *
2285 * Policy determination "mimics" alloc_page_vma().
2286 * Called from fault path where we know the vma and faulting address.
2287 */
2288 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2289 {
2290 struct mempolicy *pol;
2291 struct zone *zone;
2292 int curnid = page_to_nid(page);
2293 unsigned long pgoff;
2294 int polnid = -1;
2295 int ret = -1;
2296
2297 BUG_ON(!vma);
2298
2299 pol = get_vma_policy(current, vma, addr);
2300 if (!(pol->flags & MPOL_F_MOF))
2301 goto out;
2302
2303 switch (pol->mode) {
2304 case MPOL_INTERLEAVE:
2305 BUG_ON(addr >= vma->vm_end);
2306 BUG_ON(addr < vma->vm_start);
2307
2308 pgoff = vma->vm_pgoff;
2309 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2310 polnid = offset_il_node(pol, vma, pgoff);
2311 break;
2312
2313 case MPOL_PREFERRED:
2314 if (pol->flags & MPOL_F_LOCAL)
2315 polnid = numa_node_id();
2316 else
2317 polnid = pol->v.preferred_node;
2318 break;
2319
2320 case MPOL_BIND:
2321 /*
2322 * allows binding to multiple nodes.
2323 * use current page if in policy nodemask,
2324 * else select nearest allowed node, if any.
2325 * If no allowed nodes, use current [!misplaced].
2326 */
2327 if (node_isset(curnid, pol->v.nodes))
2328 goto out;
2329 (void)first_zones_zonelist(
2330 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2331 gfp_zone(GFP_HIGHUSER),
2332 &pol->v.nodes, &zone);
2333 polnid = zone->node;
2334 break;
2335
2336 default:
2337 BUG();
2338 }
2339
2340 /* Migrate the page towards the node whose CPU is referencing it */
2341 if (pol->flags & MPOL_F_MORON) {
2342 int last_nid;
2343
2344 polnid = numa_node_id();
2345
2346 /*
2347 * Multi-stage node selection is used in conjunction
2348 * with a periodic migration fault to build a temporal
2349 * task<->page relation. By using a two-stage filter we
2350 * remove short/unlikely relations.
2351 *
2352 * Using P(p) ~ n_p / n_t as per frequentist
2353 * probability, we can equate a task's usage of a
2354 * particular page (n_p) per total usage of this
2355 * page (n_t) (in a given time-span) to a probability.
2356 *
2357 * Our periodic faults will sample this probability and
2358 * getting the same result twice in a row, given these
2359 * samples are fully independent, is then given by
2360 * P(n)^2, provided our sample period is sufficiently
2361 * short compared to the usage pattern.
2362 *
2363 * This quadric squishes small probabilities, making
2364 * it less likely we act on an unlikely task<->page
2365 * relation.
2366 */
2367 last_nid = page_nid_xchg_last(page, polnid);
2368 if (last_nid != polnid)
2369 goto out;
2370 }
2371
2372 if (curnid != polnid)
2373 ret = polnid;
2374 out:
2375 mpol_cond_put(pol);
2376
2377 return ret;
2378 }
2379
2380 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2381 {
2382 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2383 rb_erase(&n->nd, &sp->root);
2384 sp_free(n);
2385 }
2386
2387 static void sp_node_init(struct sp_node *node, unsigned long start,
2388 unsigned long end, struct mempolicy *pol)
2389 {
2390 node->start = start;
2391 node->end = end;
2392 node->policy = pol;
2393 }
2394
2395 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2396 struct mempolicy *pol)
2397 {
2398 struct sp_node *n;
2399 struct mempolicy *newpol;
2400
2401 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2402 if (!n)
2403 return NULL;
2404
2405 newpol = mpol_dup(pol);
2406 if (IS_ERR(newpol)) {
2407 kmem_cache_free(sn_cache, n);
2408 return NULL;
2409 }
2410 newpol->flags |= MPOL_F_SHARED;
2411 sp_node_init(n, start, end, newpol);
2412
2413 return n;
2414 }
2415
2416 /* Replace a policy range. */
2417 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2418 unsigned long end, struct sp_node *new)
2419 {
2420 struct sp_node *n;
2421 struct sp_node *n_new = NULL;
2422 struct mempolicy *mpol_new = NULL;
2423 int ret = 0;
2424
2425 restart:
2426 spin_lock(&sp->lock);
2427 n = sp_lookup(sp, start, end);
2428 /* Take care of old policies in the same range. */
2429 while (n && n->start < end) {
2430 struct rb_node *next = rb_next(&n->nd);
2431 if (n->start >= start) {
2432 if (n->end <= end)
2433 sp_delete(sp, n);
2434 else
2435 n->start = end;
2436 } else {
2437 /* Old policy spanning whole new range. */
2438 if (n->end > end) {
2439 if (!n_new)
2440 goto alloc_new;
2441
2442 *mpol_new = *n->policy;
2443 atomic_set(&mpol_new->refcnt, 1);
2444 sp_node_init(n_new, end, n->end, mpol_new);
2445 n->end = start;
2446 sp_insert(sp, n_new);
2447 n_new = NULL;
2448 mpol_new = NULL;
2449 break;
2450 } else
2451 n->end = start;
2452 }
2453 if (!next)
2454 break;
2455 n = rb_entry(next, struct sp_node, nd);
2456 }
2457 if (new)
2458 sp_insert(sp, new);
2459 spin_unlock(&sp->lock);
2460 ret = 0;
2461
2462 err_out:
2463 if (mpol_new)
2464 mpol_put(mpol_new);
2465 if (n_new)
2466 kmem_cache_free(sn_cache, n_new);
2467
2468 return ret;
2469
2470 alloc_new:
2471 spin_unlock(&sp->lock);
2472 ret = -ENOMEM;
2473 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2474 if (!n_new)
2475 goto err_out;
2476 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2477 if (!mpol_new)
2478 goto err_out;
2479 goto restart;
2480 }
2481
2482 /**
2483 * mpol_shared_policy_init - initialize shared policy for inode
2484 * @sp: pointer to inode shared policy
2485 * @mpol: struct mempolicy to install
2486 *
2487 * Install non-NULL @mpol in inode's shared policy rb-tree.
2488 * On entry, the current task has a reference on a non-NULL @mpol.
2489 * This must be released on exit.
2490 * This is called at get_inode() calls and we can use GFP_KERNEL.
2491 */
2492 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2493 {
2494 int ret;
2495
2496 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2497 spin_lock_init(&sp->lock);
2498
2499 if (mpol) {
2500 struct vm_area_struct pvma;
2501 struct mempolicy *new;
2502 NODEMASK_SCRATCH(scratch);
2503
2504 if (!scratch)
2505 goto put_mpol;
2506 /* contextualize the tmpfs mount point mempolicy */
2507 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2508 if (IS_ERR(new))
2509 goto free_scratch; /* no valid nodemask intersection */
2510
2511 task_lock(current);
2512 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2513 task_unlock(current);
2514 if (ret)
2515 goto put_new;
2516
2517 /* Create pseudo-vma that contains just the policy */
2518 memset(&pvma, 0, sizeof(struct vm_area_struct));
2519 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2520 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2521
2522 put_new:
2523 mpol_put(new); /* drop initial ref */
2524 free_scratch:
2525 NODEMASK_SCRATCH_FREE(scratch);
2526 put_mpol:
2527 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2528 }
2529 }
2530
2531 int mpol_set_shared_policy(struct shared_policy *info,
2532 struct vm_area_struct *vma, struct mempolicy *npol)
2533 {
2534 int err;
2535 struct sp_node *new = NULL;
2536 unsigned long sz = vma_pages(vma);
2537
2538 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2539 vma->vm_pgoff,
2540 sz, npol ? npol->mode : -1,
2541 npol ? npol->flags : -1,
2542 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2543
2544 if (npol) {
2545 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2546 if (!new)
2547 return -ENOMEM;
2548 }
2549 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2550 if (err && new)
2551 sp_free(new);
2552 return err;
2553 }
2554
2555 /* Free a backing policy store on inode delete. */
2556 void mpol_free_shared_policy(struct shared_policy *p)
2557 {
2558 struct sp_node *n;
2559 struct rb_node *next;
2560
2561 if (!p->root.rb_node)
2562 return;
2563 spin_lock(&p->lock);
2564 next = rb_first(&p->root);
2565 while (next) {
2566 n = rb_entry(next, struct sp_node, nd);
2567 next = rb_next(&n->nd);
2568 sp_delete(p, n);
2569 }
2570 spin_unlock(&p->lock);
2571 }
2572
2573 #ifdef CONFIG_NUMA_BALANCING
2574 static bool __initdata numabalancing_override;
2575
2576 static void __init check_numabalancing_enable(void)
2577 {
2578 bool numabalancing_default = false;
2579
2580 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2581 numabalancing_default = true;
2582
2583 if (nr_node_ids > 1 && !numabalancing_override) {
2584 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2585 "Configure with numa_balancing= or sysctl");
2586 set_numabalancing_state(numabalancing_default);
2587 }
2588 }
2589
2590 static int __init setup_numabalancing(char *str)
2591 {
2592 int ret = 0;
2593 if (!str)
2594 goto out;
2595 numabalancing_override = true;
2596
2597 if (!strcmp(str, "enable")) {
2598 set_numabalancing_state(true);
2599 ret = 1;
2600 } else if (!strcmp(str, "disable")) {
2601 set_numabalancing_state(false);
2602 ret = 1;
2603 }
2604 out:
2605 if (!ret)
2606 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2607
2608 return ret;
2609 }
2610 __setup("numa_balancing=", setup_numabalancing);
2611 #else
2612 static inline void __init check_numabalancing_enable(void)
2613 {
2614 }
2615 #endif /* CONFIG_NUMA_BALANCING */
2616
2617 /* assumes fs == KERNEL_DS */
2618 void __init numa_policy_init(void)
2619 {
2620 nodemask_t interleave_nodes;
2621 unsigned long largest = 0;
2622 int nid, prefer = 0;
2623
2624 policy_cache = kmem_cache_create("numa_policy",
2625 sizeof(struct mempolicy),
2626 0, SLAB_PANIC, NULL);
2627
2628 sn_cache = kmem_cache_create("shared_policy_node",
2629 sizeof(struct sp_node),
2630 0, SLAB_PANIC, NULL);
2631
2632 for_each_node(nid) {
2633 preferred_node_policy[nid] = (struct mempolicy) {
2634 .refcnt = ATOMIC_INIT(1),
2635 .mode = MPOL_PREFERRED,
2636 .flags = MPOL_F_MOF | MPOL_F_MORON,
2637 .v = { .preferred_node = nid, },
2638 };
2639 }
2640
2641 /*
2642 * Set interleaving policy for system init. Interleaving is only
2643 * enabled across suitably sized nodes (default is >= 16MB), or
2644 * fall back to the largest node if they're all smaller.
2645 */
2646 nodes_clear(interleave_nodes);
2647 for_each_node_state(nid, N_MEMORY) {
2648 unsigned long total_pages = node_present_pages(nid);
2649
2650 /* Preserve the largest node */
2651 if (largest < total_pages) {
2652 largest = total_pages;
2653 prefer = nid;
2654 }
2655
2656 /* Interleave this node? */
2657 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2658 node_set(nid, interleave_nodes);
2659 }
2660
2661 /* All too small, use the largest */
2662 if (unlikely(nodes_empty(interleave_nodes)))
2663 node_set(prefer, interleave_nodes);
2664
2665 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2666 printk("numa_policy_init: interleaving failed\n");
2667
2668 check_numabalancing_enable();
2669 }
2670
2671 /* Reset policy of current process to default */
2672 void numa_default_policy(void)
2673 {
2674 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2675 }
2676
2677 /*
2678 * Parse and format mempolicy from/to strings
2679 */
2680
2681 /*
2682 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2683 */
2684 static const char * const policy_modes[] =
2685 {
2686 [MPOL_DEFAULT] = "default",
2687 [MPOL_PREFERRED] = "prefer",
2688 [MPOL_BIND] = "bind",
2689 [MPOL_INTERLEAVE] = "interleave",
2690 [MPOL_LOCAL] = "local",
2691 };
2692
2693
2694 #ifdef CONFIG_TMPFS
2695 /**
2696 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2697 * @str: string containing mempolicy to parse
2698 * @mpol: pointer to struct mempolicy pointer, returned on success.
2699 *
2700 * Format of input:
2701 * <mode>[=<flags>][:<nodelist>]
2702 *
2703 * On success, returns 0, else 1
2704 */
2705 int mpol_parse_str(char *str, struct mempolicy **mpol)
2706 {
2707 struct mempolicy *new = NULL;
2708 unsigned short mode;
2709 unsigned short mode_flags;
2710 nodemask_t nodes;
2711 char *nodelist = strchr(str, ':');
2712 char *flags = strchr(str, '=');
2713 int err = 1;
2714
2715 if (nodelist) {
2716 /* NUL-terminate mode or flags string */
2717 *nodelist++ = '\0';
2718 if (nodelist_parse(nodelist, nodes))
2719 goto out;
2720 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2721 goto out;
2722 } else
2723 nodes_clear(nodes);
2724
2725 if (flags)
2726 *flags++ = '\0'; /* terminate mode string */
2727
2728 for (mode = 0; mode < MPOL_MAX; mode++) {
2729 if (!strcmp(str, policy_modes[mode])) {
2730 break;
2731 }
2732 }
2733 if (mode >= MPOL_MAX)
2734 goto out;
2735
2736 switch (mode) {
2737 case MPOL_PREFERRED:
2738 /*
2739 * Insist on a nodelist of one node only
2740 */
2741 if (nodelist) {
2742 char *rest = nodelist;
2743 while (isdigit(*rest))
2744 rest++;
2745 if (*rest)
2746 goto out;
2747 }
2748 break;
2749 case MPOL_INTERLEAVE:
2750 /*
2751 * Default to online nodes with memory if no nodelist
2752 */
2753 if (!nodelist)
2754 nodes = node_states[N_MEMORY];
2755 break;
2756 case MPOL_LOCAL:
2757 /*
2758 * Don't allow a nodelist; mpol_new() checks flags
2759 */
2760 if (nodelist)
2761 goto out;
2762 mode = MPOL_PREFERRED;
2763 break;
2764 case MPOL_DEFAULT:
2765 /*
2766 * Insist on a empty nodelist
2767 */
2768 if (!nodelist)
2769 err = 0;
2770 goto out;
2771 case MPOL_BIND:
2772 /*
2773 * Insist on a nodelist
2774 */
2775 if (!nodelist)
2776 goto out;
2777 }
2778
2779 mode_flags = 0;
2780 if (flags) {
2781 /*
2782 * Currently, we only support two mutually exclusive
2783 * mode flags.
2784 */
2785 if (!strcmp(flags, "static"))
2786 mode_flags |= MPOL_F_STATIC_NODES;
2787 else if (!strcmp(flags, "relative"))
2788 mode_flags |= MPOL_F_RELATIVE_NODES;
2789 else
2790 goto out;
2791 }
2792
2793 new = mpol_new(mode, mode_flags, &nodes);
2794 if (IS_ERR(new))
2795 goto out;
2796
2797 /*
2798 * Save nodes for mpol_to_str() to show the tmpfs mount options
2799 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2800 */
2801 if (mode != MPOL_PREFERRED)
2802 new->v.nodes = nodes;
2803 else if (nodelist)
2804 new->v.preferred_node = first_node(nodes);
2805 else
2806 new->flags |= MPOL_F_LOCAL;
2807
2808 /*
2809 * Save nodes for contextualization: this will be used to "clone"
2810 * the mempolicy in a specific context [cpuset] at a later time.
2811 */
2812 new->w.user_nodemask = nodes;
2813
2814 err = 0;
2815
2816 out:
2817 /* Restore string for error message */
2818 if (nodelist)
2819 *--nodelist = ':';
2820 if (flags)
2821 *--flags = '=';
2822 if (!err)
2823 *mpol = new;
2824 return err;
2825 }
2826 #endif /* CONFIG_TMPFS */
2827
2828 /**
2829 * mpol_to_str - format a mempolicy structure for printing
2830 * @buffer: to contain formatted mempolicy string
2831 * @maxlen: length of @buffer
2832 * @pol: pointer to mempolicy to be formatted
2833 *
2834 * Convert a mempolicy into a string.
2835 * Returns the number of characters in buffer (if positive)
2836 * or an error (negative)
2837 */
2838 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2839 {
2840 char *p = buffer;
2841 int l;
2842 nodemask_t nodes;
2843 unsigned short mode;
2844 unsigned short flags = pol ? pol->flags : 0;
2845
2846 /*
2847 * Sanity check: room for longest mode, flag and some nodes
2848 */
2849 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2850
2851 if (!pol || pol == &default_policy)
2852 mode = MPOL_DEFAULT;
2853 else
2854 mode = pol->mode;
2855
2856 switch (mode) {
2857 case MPOL_DEFAULT:
2858 nodes_clear(nodes);
2859 break;
2860
2861 case MPOL_PREFERRED:
2862 nodes_clear(nodes);
2863 if (flags & MPOL_F_LOCAL)
2864 mode = MPOL_LOCAL;
2865 else
2866 node_set(pol->v.preferred_node, nodes);
2867 break;
2868
2869 case MPOL_BIND:
2870 /* Fall through */
2871 case MPOL_INTERLEAVE:
2872 nodes = pol->v.nodes;
2873 break;
2874
2875 default:
2876 return -EINVAL;
2877 }
2878
2879 l = strlen(policy_modes[mode]);
2880 if (buffer + maxlen < p + l + 1)
2881 return -ENOSPC;
2882
2883 strcpy(p, policy_modes[mode]);
2884 p += l;
2885
2886 if (flags & MPOL_MODE_FLAGS) {
2887 if (buffer + maxlen < p + 2)
2888 return -ENOSPC;
2889 *p++ = '=';
2890
2891 /*
2892 * Currently, the only defined flags are mutually exclusive
2893 */
2894 if (flags & MPOL_F_STATIC_NODES)
2895 p += snprintf(p, buffer + maxlen - p, "static");
2896 else if (flags & MPOL_F_RELATIVE_NODES)
2897 p += snprintf(p, buffer + maxlen - p, "relative");
2898 }
2899
2900 if (!nodes_empty(nodes)) {
2901 if (buffer + maxlen < p + 2)
2902 return -ENOSPC;
2903 *p++ = ':';
2904 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2905 }
2906 return p - buffer;
2907 }
This page took 0.256325 seconds and 6 git commands to generate.