mempolicy: write lock mmap_sem while changing task mempolicy
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/gfp.h>
77 #include <linux/slab.h>
78 #include <linux/string.h>
79 #include <linux/module.h>
80 #include <linux/nsproxy.h>
81 #include <linux/interrupt.h>
82 #include <linux/init.h>
83 #include <linux/compat.h>
84 #include <linux/swap.h>
85 #include <linux/seq_file.h>
86 #include <linux/proc_fs.h>
87 #include <linux/migrate.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91
92 #include <asm/tlbflush.h>
93 #include <asm/uaccess.h>
94
95 /* Internal flags */
96 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
97 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
98 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
99
100 static struct kmem_cache *policy_cache;
101 static struct kmem_cache *sn_cache;
102
103 /* Highest zone. An specific allocation for a zone below that is not
104 policied. */
105 enum zone_type policy_zone = 0;
106
107 struct mempolicy default_policy = {
108 .refcnt = ATOMIC_INIT(1), /* never free it */
109 .policy = MPOL_DEFAULT,
110 };
111
112 static const struct mempolicy_operations {
113 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
114 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes);
115 } mpol_ops[MPOL_MAX];
116
117 /* Check that the nodemask contains at least one populated zone */
118 static int is_valid_nodemask(const nodemask_t *nodemask)
119 {
120 int nd, k;
121
122 /* Check that there is something useful in this mask */
123 k = policy_zone;
124
125 for_each_node_mask(nd, *nodemask) {
126 struct zone *z;
127
128 for (k = 0; k <= policy_zone; k++) {
129 z = &NODE_DATA(nd)->node_zones[k];
130 if (z->present_pages > 0)
131 return 1;
132 }
133 }
134
135 return 0;
136 }
137
138 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
139 {
140 return pol->flags & (MPOL_F_STATIC_NODES | MPOL_F_RELATIVE_NODES);
141 }
142
143 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
144 const nodemask_t *rel)
145 {
146 nodemask_t tmp;
147 nodes_fold(tmp, *orig, nodes_weight(*rel));
148 nodes_onto(*ret, tmp, *rel);
149 }
150
151 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
152 {
153 if (nodes_empty(*nodes))
154 return -EINVAL;
155 pol->v.nodes = *nodes;
156 return 0;
157 }
158
159 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
160 {
161 if (!nodes)
162 pol->v.preferred_node = -1; /* local allocation */
163 else if (nodes_empty(*nodes))
164 return -EINVAL; /* no allowed nodes */
165 else
166 pol->v.preferred_node = first_node(*nodes);
167 return 0;
168 }
169
170 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
171 {
172 if (!is_valid_nodemask(nodes))
173 return -EINVAL;
174 pol->v.nodes = *nodes;
175 return 0;
176 }
177
178 /* Create a new policy */
179 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
180 nodemask_t *nodes)
181 {
182 struct mempolicy *policy;
183 nodemask_t cpuset_context_nmask;
184 int ret;
185
186 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
187 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
188
189 if (mode == MPOL_DEFAULT) {
190 if (nodes && !nodes_empty(*nodes))
191 return ERR_PTR(-EINVAL);
192 return NULL;
193 }
194 VM_BUG_ON(!nodes);
195
196 /*
197 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
198 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
199 * All other modes require a valid pointer to a non-empty nodemask.
200 */
201 if (mode == MPOL_PREFERRED) {
202 if (nodes_empty(*nodes)) {
203 if (((flags & MPOL_F_STATIC_NODES) ||
204 (flags & MPOL_F_RELATIVE_NODES)))
205 return ERR_PTR(-EINVAL);
206 nodes = NULL; /* flag local alloc */
207 }
208 } else if (nodes_empty(*nodes))
209 return ERR_PTR(-EINVAL);
210 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
211 if (!policy)
212 return ERR_PTR(-ENOMEM);
213 atomic_set(&policy->refcnt, 1);
214 policy->policy = mode;
215 policy->flags = flags;
216
217 if (nodes) {
218 /*
219 * cpuset related setup doesn't apply to local allocation
220 */
221 cpuset_update_task_memory_state();
222 if (flags & MPOL_F_RELATIVE_NODES)
223 mpol_relative_nodemask(&cpuset_context_nmask, nodes,
224 &cpuset_current_mems_allowed);
225 else
226 nodes_and(cpuset_context_nmask, *nodes,
227 cpuset_current_mems_allowed);
228 if (mpol_store_user_nodemask(policy))
229 policy->w.user_nodemask = *nodes;
230 else
231 policy->w.cpuset_mems_allowed =
232 cpuset_mems_allowed(current);
233 }
234
235 ret = mpol_ops[mode].create(policy,
236 nodes ? &cpuset_context_nmask : NULL);
237 if (ret < 0) {
238 kmem_cache_free(policy_cache, policy);
239 return ERR_PTR(ret);
240 }
241 return policy;
242 }
243
244 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes)
245 {
246 }
247
248 static void mpol_rebind_nodemask(struct mempolicy *pol,
249 const nodemask_t *nodes)
250 {
251 nodemask_t tmp;
252
253 if (pol->flags & MPOL_F_STATIC_NODES)
254 nodes_and(tmp, pol->w.user_nodemask, *nodes);
255 else if (pol->flags & MPOL_F_RELATIVE_NODES)
256 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
257 else {
258 nodes_remap(tmp, pol->v.nodes, pol->w.cpuset_mems_allowed,
259 *nodes);
260 pol->w.cpuset_mems_allowed = *nodes;
261 }
262
263 pol->v.nodes = tmp;
264 if (!node_isset(current->il_next, tmp)) {
265 current->il_next = next_node(current->il_next, tmp);
266 if (current->il_next >= MAX_NUMNODES)
267 current->il_next = first_node(tmp);
268 if (current->il_next >= MAX_NUMNODES)
269 current->il_next = numa_node_id();
270 }
271 }
272
273 static void mpol_rebind_preferred(struct mempolicy *pol,
274 const nodemask_t *nodes)
275 {
276 nodemask_t tmp;
277
278 if (pol->flags & MPOL_F_STATIC_NODES) {
279 int node = first_node(pol->w.user_nodemask);
280
281 if (node_isset(node, *nodes))
282 pol->v.preferred_node = node;
283 else
284 pol->v.preferred_node = -1;
285 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
286 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
287 pol->v.preferred_node = first_node(tmp);
288 } else if (pol->v.preferred_node != -1) {
289 pol->v.preferred_node = node_remap(pol->v.preferred_node,
290 pol->w.cpuset_mems_allowed,
291 *nodes);
292 pol->w.cpuset_mems_allowed = *nodes;
293 }
294 }
295
296 /* Migrate a policy to a different set of nodes */
297 static void mpol_rebind_policy(struct mempolicy *pol,
298 const nodemask_t *newmask)
299 {
300 if (!pol)
301 return;
302 if (!mpol_store_user_nodemask(pol) &&
303 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
304 return;
305 mpol_ops[pol->policy].rebind(pol, newmask);
306 }
307
308 /*
309 * Wrapper for mpol_rebind_policy() that just requires task
310 * pointer, and updates task mempolicy.
311 */
312
313 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
314 {
315 mpol_rebind_policy(tsk->mempolicy, new);
316 }
317
318 /*
319 * Rebind each vma in mm to new nodemask.
320 *
321 * Call holding a reference to mm. Takes mm->mmap_sem during call.
322 */
323
324 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
325 {
326 struct vm_area_struct *vma;
327
328 down_write(&mm->mmap_sem);
329 for (vma = mm->mmap; vma; vma = vma->vm_next)
330 mpol_rebind_policy(vma->vm_policy, new);
331 up_write(&mm->mmap_sem);
332 }
333
334 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
335 [MPOL_DEFAULT] = {
336 .rebind = mpol_rebind_default,
337 },
338 [MPOL_INTERLEAVE] = {
339 .create = mpol_new_interleave,
340 .rebind = mpol_rebind_nodemask,
341 },
342 [MPOL_PREFERRED] = {
343 .create = mpol_new_preferred,
344 .rebind = mpol_rebind_preferred,
345 },
346 [MPOL_BIND] = {
347 .create = mpol_new_bind,
348 .rebind = mpol_rebind_nodemask,
349 },
350 };
351
352 static void gather_stats(struct page *, void *, int pte_dirty);
353 static void migrate_page_add(struct page *page, struct list_head *pagelist,
354 unsigned long flags);
355
356 /* Scan through pages checking if pages follow certain conditions. */
357 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
358 unsigned long addr, unsigned long end,
359 const nodemask_t *nodes, unsigned long flags,
360 void *private)
361 {
362 pte_t *orig_pte;
363 pte_t *pte;
364 spinlock_t *ptl;
365
366 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
367 do {
368 struct page *page;
369 int nid;
370
371 if (!pte_present(*pte))
372 continue;
373 page = vm_normal_page(vma, addr, *pte);
374 if (!page)
375 continue;
376 /*
377 * The check for PageReserved here is important to avoid
378 * handling zero pages and other pages that may have been
379 * marked special by the system.
380 *
381 * If the PageReserved would not be checked here then f.e.
382 * the location of the zero page could have an influence
383 * on MPOL_MF_STRICT, zero pages would be counted for
384 * the per node stats, and there would be useless attempts
385 * to put zero pages on the migration list.
386 */
387 if (PageReserved(page))
388 continue;
389 nid = page_to_nid(page);
390 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
391 continue;
392
393 if (flags & MPOL_MF_STATS)
394 gather_stats(page, private, pte_dirty(*pte));
395 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
396 migrate_page_add(page, private, flags);
397 else
398 break;
399 } while (pte++, addr += PAGE_SIZE, addr != end);
400 pte_unmap_unlock(orig_pte, ptl);
401 return addr != end;
402 }
403
404 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
405 unsigned long addr, unsigned long end,
406 const nodemask_t *nodes, unsigned long flags,
407 void *private)
408 {
409 pmd_t *pmd;
410 unsigned long next;
411
412 pmd = pmd_offset(pud, addr);
413 do {
414 next = pmd_addr_end(addr, end);
415 if (pmd_none_or_clear_bad(pmd))
416 continue;
417 if (check_pte_range(vma, pmd, addr, next, nodes,
418 flags, private))
419 return -EIO;
420 } while (pmd++, addr = next, addr != end);
421 return 0;
422 }
423
424 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
425 unsigned long addr, unsigned long end,
426 const nodemask_t *nodes, unsigned long flags,
427 void *private)
428 {
429 pud_t *pud;
430 unsigned long next;
431
432 pud = pud_offset(pgd, addr);
433 do {
434 next = pud_addr_end(addr, end);
435 if (pud_none_or_clear_bad(pud))
436 continue;
437 if (check_pmd_range(vma, pud, addr, next, nodes,
438 flags, private))
439 return -EIO;
440 } while (pud++, addr = next, addr != end);
441 return 0;
442 }
443
444 static inline int check_pgd_range(struct vm_area_struct *vma,
445 unsigned long addr, unsigned long end,
446 const nodemask_t *nodes, unsigned long flags,
447 void *private)
448 {
449 pgd_t *pgd;
450 unsigned long next;
451
452 pgd = pgd_offset(vma->vm_mm, addr);
453 do {
454 next = pgd_addr_end(addr, end);
455 if (pgd_none_or_clear_bad(pgd))
456 continue;
457 if (check_pud_range(vma, pgd, addr, next, nodes,
458 flags, private))
459 return -EIO;
460 } while (pgd++, addr = next, addr != end);
461 return 0;
462 }
463
464 /*
465 * Check if all pages in a range are on a set of nodes.
466 * If pagelist != NULL then isolate pages from the LRU and
467 * put them on the pagelist.
468 */
469 static struct vm_area_struct *
470 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
471 const nodemask_t *nodes, unsigned long flags, void *private)
472 {
473 int err;
474 struct vm_area_struct *first, *vma, *prev;
475
476 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
477
478 err = migrate_prep();
479 if (err)
480 return ERR_PTR(err);
481 }
482
483 first = find_vma(mm, start);
484 if (!first)
485 return ERR_PTR(-EFAULT);
486 prev = NULL;
487 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
488 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
489 if (!vma->vm_next && vma->vm_end < end)
490 return ERR_PTR(-EFAULT);
491 if (prev && prev->vm_end < vma->vm_start)
492 return ERR_PTR(-EFAULT);
493 }
494 if (!is_vm_hugetlb_page(vma) &&
495 ((flags & MPOL_MF_STRICT) ||
496 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
497 vma_migratable(vma)))) {
498 unsigned long endvma = vma->vm_end;
499
500 if (endvma > end)
501 endvma = end;
502 if (vma->vm_start > start)
503 start = vma->vm_start;
504 err = check_pgd_range(vma, start, endvma, nodes,
505 flags, private);
506 if (err) {
507 first = ERR_PTR(err);
508 break;
509 }
510 }
511 prev = vma;
512 }
513 return first;
514 }
515
516 /* Apply policy to a single VMA */
517 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
518 {
519 int err = 0;
520 struct mempolicy *old = vma->vm_policy;
521
522 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
523 vma->vm_start, vma->vm_end, vma->vm_pgoff,
524 vma->vm_ops, vma->vm_file,
525 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
526
527 if (vma->vm_ops && vma->vm_ops->set_policy)
528 err = vma->vm_ops->set_policy(vma, new);
529 if (!err) {
530 mpol_get(new);
531 vma->vm_policy = new;
532 mpol_put(old);
533 }
534 return err;
535 }
536
537 /* Step 2: apply policy to a range and do splits. */
538 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
539 unsigned long end, struct mempolicy *new)
540 {
541 struct vm_area_struct *next;
542 int err;
543
544 err = 0;
545 for (; vma && vma->vm_start < end; vma = next) {
546 next = vma->vm_next;
547 if (vma->vm_start < start)
548 err = split_vma(vma->vm_mm, vma, start, 1);
549 if (!err && vma->vm_end > end)
550 err = split_vma(vma->vm_mm, vma, end, 0);
551 if (!err)
552 err = policy_vma(vma, new);
553 if (err)
554 break;
555 }
556 return err;
557 }
558
559 /*
560 * Update task->flags PF_MEMPOLICY bit: set iff non-default
561 * mempolicy. Allows more rapid checking of this (combined perhaps
562 * with other PF_* flag bits) on memory allocation hot code paths.
563 *
564 * If called from outside this file, the task 'p' should -only- be
565 * a newly forked child not yet visible on the task list, because
566 * manipulating the task flags of a visible task is not safe.
567 *
568 * The above limitation is why this routine has the funny name
569 * mpol_fix_fork_child_flag().
570 *
571 * It is also safe to call this with a task pointer of current,
572 * which the static wrapper mpol_set_task_struct_flag() does,
573 * for use within this file.
574 */
575
576 void mpol_fix_fork_child_flag(struct task_struct *p)
577 {
578 if (p->mempolicy)
579 p->flags |= PF_MEMPOLICY;
580 else
581 p->flags &= ~PF_MEMPOLICY;
582 }
583
584 static void mpol_set_task_struct_flag(void)
585 {
586 mpol_fix_fork_child_flag(current);
587 }
588
589 /* Set the process memory policy */
590 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
591 nodemask_t *nodes)
592 {
593 struct mempolicy *new;
594 struct mm_struct *mm = current->mm;
595
596 new = mpol_new(mode, flags, nodes);
597 if (IS_ERR(new))
598 return PTR_ERR(new);
599
600 /*
601 * prevent changing our mempolicy while show_numa_maps()
602 * is using it.
603 * Note: do_set_mempolicy() can be called at init time
604 * with no 'mm'.
605 */
606 if (mm)
607 down_write(&mm->mmap_sem);
608 mpol_put(current->mempolicy);
609 current->mempolicy = new;
610 mpol_set_task_struct_flag();
611 if (new && new->policy == MPOL_INTERLEAVE &&
612 nodes_weight(new->v.nodes))
613 current->il_next = first_node(new->v.nodes);
614 if (mm)
615 up_write(&mm->mmap_sem);
616
617 return 0;
618 }
619
620 /* Fill a zone bitmap for a policy */
621 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
622 {
623 nodes_clear(*nodes);
624 switch (p->policy) {
625 case MPOL_DEFAULT:
626 break;
627 case MPOL_BIND:
628 /* Fall through */
629 case MPOL_INTERLEAVE:
630 *nodes = p->v.nodes;
631 break;
632 case MPOL_PREFERRED:
633 /* or use current node instead of memory_map? */
634 if (p->v.preferred_node < 0)
635 *nodes = node_states[N_HIGH_MEMORY];
636 else
637 node_set(p->v.preferred_node, *nodes);
638 break;
639 default:
640 BUG();
641 }
642 }
643
644 static int lookup_node(struct mm_struct *mm, unsigned long addr)
645 {
646 struct page *p;
647 int err;
648
649 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
650 if (err >= 0) {
651 err = page_to_nid(p);
652 put_page(p);
653 }
654 return err;
655 }
656
657 /* Retrieve NUMA policy */
658 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
659 unsigned long addr, unsigned long flags)
660 {
661 int err;
662 struct mm_struct *mm = current->mm;
663 struct vm_area_struct *vma = NULL;
664 struct mempolicy *pol = current->mempolicy;
665
666 cpuset_update_task_memory_state();
667 if (flags &
668 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
669 return -EINVAL;
670
671 if (flags & MPOL_F_MEMS_ALLOWED) {
672 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
673 return -EINVAL;
674 *policy = 0; /* just so it's initialized */
675 *nmask = cpuset_current_mems_allowed;
676 return 0;
677 }
678
679 if (flags & MPOL_F_ADDR) {
680 down_read(&mm->mmap_sem);
681 vma = find_vma_intersection(mm, addr, addr+1);
682 if (!vma) {
683 up_read(&mm->mmap_sem);
684 return -EFAULT;
685 }
686 if (vma->vm_ops && vma->vm_ops->get_policy)
687 pol = vma->vm_ops->get_policy(vma, addr);
688 else
689 pol = vma->vm_policy;
690 } else if (addr)
691 return -EINVAL;
692
693 if (!pol)
694 pol = &default_policy;
695
696 if (flags & MPOL_F_NODE) {
697 if (flags & MPOL_F_ADDR) {
698 err = lookup_node(mm, addr);
699 if (err < 0)
700 goto out;
701 *policy = err;
702 } else if (pol == current->mempolicy &&
703 pol->policy == MPOL_INTERLEAVE) {
704 *policy = current->il_next;
705 } else {
706 err = -EINVAL;
707 goto out;
708 }
709 } else
710 *policy = pol->policy | pol->flags;
711
712 if (vma) {
713 up_read(&current->mm->mmap_sem);
714 vma = NULL;
715 }
716
717 err = 0;
718 if (nmask)
719 get_zonemask(pol, nmask);
720
721 out:
722 if (vma)
723 up_read(&current->mm->mmap_sem);
724 return err;
725 }
726
727 #ifdef CONFIG_MIGRATION
728 /*
729 * page migration
730 */
731 static void migrate_page_add(struct page *page, struct list_head *pagelist,
732 unsigned long flags)
733 {
734 /*
735 * Avoid migrating a page that is shared with others.
736 */
737 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
738 isolate_lru_page(page, pagelist);
739 }
740
741 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
742 {
743 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
744 }
745
746 /*
747 * Migrate pages from one node to a target node.
748 * Returns error or the number of pages not migrated.
749 */
750 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
751 int flags)
752 {
753 nodemask_t nmask;
754 LIST_HEAD(pagelist);
755 int err = 0;
756
757 nodes_clear(nmask);
758 node_set(source, nmask);
759
760 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
761 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
762
763 if (!list_empty(&pagelist))
764 err = migrate_pages(&pagelist, new_node_page, dest);
765
766 return err;
767 }
768
769 /*
770 * Move pages between the two nodesets so as to preserve the physical
771 * layout as much as possible.
772 *
773 * Returns the number of page that could not be moved.
774 */
775 int do_migrate_pages(struct mm_struct *mm,
776 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
777 {
778 LIST_HEAD(pagelist);
779 int busy = 0;
780 int err = 0;
781 nodemask_t tmp;
782
783 down_read(&mm->mmap_sem);
784
785 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
786 if (err)
787 goto out;
788
789 /*
790 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
791 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
792 * bit in 'tmp', and return that <source, dest> pair for migration.
793 * The pair of nodemasks 'to' and 'from' define the map.
794 *
795 * If no pair of bits is found that way, fallback to picking some
796 * pair of 'source' and 'dest' bits that are not the same. If the
797 * 'source' and 'dest' bits are the same, this represents a node
798 * that will be migrating to itself, so no pages need move.
799 *
800 * If no bits are left in 'tmp', or if all remaining bits left
801 * in 'tmp' correspond to the same bit in 'to', return false
802 * (nothing left to migrate).
803 *
804 * This lets us pick a pair of nodes to migrate between, such that
805 * if possible the dest node is not already occupied by some other
806 * source node, minimizing the risk of overloading the memory on a
807 * node that would happen if we migrated incoming memory to a node
808 * before migrating outgoing memory source that same node.
809 *
810 * A single scan of tmp is sufficient. As we go, we remember the
811 * most recent <s, d> pair that moved (s != d). If we find a pair
812 * that not only moved, but what's better, moved to an empty slot
813 * (d is not set in tmp), then we break out then, with that pair.
814 * Otherwise when we finish scannng from_tmp, we at least have the
815 * most recent <s, d> pair that moved. If we get all the way through
816 * the scan of tmp without finding any node that moved, much less
817 * moved to an empty node, then there is nothing left worth migrating.
818 */
819
820 tmp = *from_nodes;
821 while (!nodes_empty(tmp)) {
822 int s,d;
823 int source = -1;
824 int dest = 0;
825
826 for_each_node_mask(s, tmp) {
827 d = node_remap(s, *from_nodes, *to_nodes);
828 if (s == d)
829 continue;
830
831 source = s; /* Node moved. Memorize */
832 dest = d;
833
834 /* dest not in remaining from nodes? */
835 if (!node_isset(dest, tmp))
836 break;
837 }
838 if (source == -1)
839 break;
840
841 node_clear(source, tmp);
842 err = migrate_to_node(mm, source, dest, flags);
843 if (err > 0)
844 busy += err;
845 if (err < 0)
846 break;
847 }
848 out:
849 up_read(&mm->mmap_sem);
850 if (err < 0)
851 return err;
852 return busy;
853
854 }
855
856 /*
857 * Allocate a new page for page migration based on vma policy.
858 * Start assuming that page is mapped by vma pointed to by @private.
859 * Search forward from there, if not. N.B., this assumes that the
860 * list of pages handed to migrate_pages()--which is how we get here--
861 * is in virtual address order.
862 */
863 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
864 {
865 struct vm_area_struct *vma = (struct vm_area_struct *)private;
866 unsigned long uninitialized_var(address);
867
868 while (vma) {
869 address = page_address_in_vma(page, vma);
870 if (address != -EFAULT)
871 break;
872 vma = vma->vm_next;
873 }
874
875 /*
876 * if !vma, alloc_page_vma() will use task or system default policy
877 */
878 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
879 }
880 #else
881
882 static void migrate_page_add(struct page *page, struct list_head *pagelist,
883 unsigned long flags)
884 {
885 }
886
887 int do_migrate_pages(struct mm_struct *mm,
888 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
889 {
890 return -ENOSYS;
891 }
892
893 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
894 {
895 return NULL;
896 }
897 #endif
898
899 static long do_mbind(unsigned long start, unsigned long len,
900 unsigned short mode, unsigned short mode_flags,
901 nodemask_t *nmask, unsigned long flags)
902 {
903 struct vm_area_struct *vma;
904 struct mm_struct *mm = current->mm;
905 struct mempolicy *new;
906 unsigned long end;
907 int err;
908 LIST_HEAD(pagelist);
909
910 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
911 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
912 return -EINVAL;
913 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
914 return -EPERM;
915
916 if (start & ~PAGE_MASK)
917 return -EINVAL;
918
919 if (mode == MPOL_DEFAULT)
920 flags &= ~MPOL_MF_STRICT;
921
922 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
923 end = start + len;
924
925 if (end < start)
926 return -EINVAL;
927 if (end == start)
928 return 0;
929
930 new = mpol_new(mode, mode_flags, nmask);
931 if (IS_ERR(new))
932 return PTR_ERR(new);
933
934 /*
935 * If we are using the default policy then operation
936 * on discontinuous address spaces is okay after all
937 */
938 if (!new)
939 flags |= MPOL_MF_DISCONTIG_OK;
940
941 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
942 start, start + len, mode, mode_flags,
943 nmask ? nodes_addr(*nmask)[0] : -1);
944
945 down_write(&mm->mmap_sem);
946 vma = check_range(mm, start, end, nmask,
947 flags | MPOL_MF_INVERT, &pagelist);
948
949 err = PTR_ERR(vma);
950 if (!IS_ERR(vma)) {
951 int nr_failed = 0;
952
953 err = mbind_range(vma, start, end, new);
954
955 if (!list_empty(&pagelist))
956 nr_failed = migrate_pages(&pagelist, new_vma_page,
957 (unsigned long)vma);
958
959 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
960 err = -EIO;
961 }
962
963 up_write(&mm->mmap_sem);
964 mpol_put(new);
965 return err;
966 }
967
968 /*
969 * User space interface with variable sized bitmaps for nodelists.
970 */
971
972 /* Copy a node mask from user space. */
973 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
974 unsigned long maxnode)
975 {
976 unsigned long k;
977 unsigned long nlongs;
978 unsigned long endmask;
979
980 --maxnode;
981 nodes_clear(*nodes);
982 if (maxnode == 0 || !nmask)
983 return 0;
984 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
985 return -EINVAL;
986
987 nlongs = BITS_TO_LONGS(maxnode);
988 if ((maxnode % BITS_PER_LONG) == 0)
989 endmask = ~0UL;
990 else
991 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
992
993 /* When the user specified more nodes than supported just check
994 if the non supported part is all zero. */
995 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
996 if (nlongs > PAGE_SIZE/sizeof(long))
997 return -EINVAL;
998 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
999 unsigned long t;
1000 if (get_user(t, nmask + k))
1001 return -EFAULT;
1002 if (k == nlongs - 1) {
1003 if (t & endmask)
1004 return -EINVAL;
1005 } else if (t)
1006 return -EINVAL;
1007 }
1008 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1009 endmask = ~0UL;
1010 }
1011
1012 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1013 return -EFAULT;
1014 nodes_addr(*nodes)[nlongs-1] &= endmask;
1015 return 0;
1016 }
1017
1018 /* Copy a kernel node mask to user space */
1019 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1020 nodemask_t *nodes)
1021 {
1022 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1023 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1024
1025 if (copy > nbytes) {
1026 if (copy > PAGE_SIZE)
1027 return -EINVAL;
1028 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1029 return -EFAULT;
1030 copy = nbytes;
1031 }
1032 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1033 }
1034
1035 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
1036 unsigned long mode,
1037 unsigned long __user *nmask, unsigned long maxnode,
1038 unsigned flags)
1039 {
1040 nodemask_t nodes;
1041 int err;
1042 unsigned short mode_flags;
1043
1044 mode_flags = mode & MPOL_MODE_FLAGS;
1045 mode &= ~MPOL_MODE_FLAGS;
1046 if (mode >= MPOL_MAX)
1047 return -EINVAL;
1048 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1049 (mode_flags & MPOL_F_RELATIVE_NODES))
1050 return -EINVAL;
1051 err = get_nodes(&nodes, nmask, maxnode);
1052 if (err)
1053 return err;
1054 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1055 }
1056
1057 /* Set the process memory policy */
1058 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
1059 unsigned long maxnode)
1060 {
1061 int err;
1062 nodemask_t nodes;
1063 unsigned short flags;
1064
1065 flags = mode & MPOL_MODE_FLAGS;
1066 mode &= ~MPOL_MODE_FLAGS;
1067 if ((unsigned int)mode >= MPOL_MAX)
1068 return -EINVAL;
1069 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1070 return -EINVAL;
1071 err = get_nodes(&nodes, nmask, maxnode);
1072 if (err)
1073 return err;
1074 return do_set_mempolicy(mode, flags, &nodes);
1075 }
1076
1077 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
1078 const unsigned long __user *old_nodes,
1079 const unsigned long __user *new_nodes)
1080 {
1081 struct mm_struct *mm;
1082 struct task_struct *task;
1083 nodemask_t old;
1084 nodemask_t new;
1085 nodemask_t task_nodes;
1086 int err;
1087
1088 err = get_nodes(&old, old_nodes, maxnode);
1089 if (err)
1090 return err;
1091
1092 err = get_nodes(&new, new_nodes, maxnode);
1093 if (err)
1094 return err;
1095
1096 /* Find the mm_struct */
1097 read_lock(&tasklist_lock);
1098 task = pid ? find_task_by_vpid(pid) : current;
1099 if (!task) {
1100 read_unlock(&tasklist_lock);
1101 return -ESRCH;
1102 }
1103 mm = get_task_mm(task);
1104 read_unlock(&tasklist_lock);
1105
1106 if (!mm)
1107 return -EINVAL;
1108
1109 /*
1110 * Check if this process has the right to modify the specified
1111 * process. The right exists if the process has administrative
1112 * capabilities, superuser privileges or the same
1113 * userid as the target process.
1114 */
1115 if ((current->euid != task->suid) && (current->euid != task->uid) &&
1116 (current->uid != task->suid) && (current->uid != task->uid) &&
1117 !capable(CAP_SYS_NICE)) {
1118 err = -EPERM;
1119 goto out;
1120 }
1121
1122 task_nodes = cpuset_mems_allowed(task);
1123 /* Is the user allowed to access the target nodes? */
1124 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
1125 err = -EPERM;
1126 goto out;
1127 }
1128
1129 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
1130 err = -EINVAL;
1131 goto out;
1132 }
1133
1134 err = security_task_movememory(task);
1135 if (err)
1136 goto out;
1137
1138 err = do_migrate_pages(mm, &old, &new,
1139 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1140 out:
1141 mmput(mm);
1142 return err;
1143 }
1144
1145
1146 /* Retrieve NUMA policy */
1147 asmlinkage long sys_get_mempolicy(int __user *policy,
1148 unsigned long __user *nmask,
1149 unsigned long maxnode,
1150 unsigned long addr, unsigned long flags)
1151 {
1152 int err;
1153 int uninitialized_var(pval);
1154 nodemask_t nodes;
1155
1156 if (nmask != NULL && maxnode < MAX_NUMNODES)
1157 return -EINVAL;
1158
1159 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1160
1161 if (err)
1162 return err;
1163
1164 if (policy && put_user(pval, policy))
1165 return -EFAULT;
1166
1167 if (nmask)
1168 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1169
1170 return err;
1171 }
1172
1173 #ifdef CONFIG_COMPAT
1174
1175 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1176 compat_ulong_t __user *nmask,
1177 compat_ulong_t maxnode,
1178 compat_ulong_t addr, compat_ulong_t flags)
1179 {
1180 long err;
1181 unsigned long __user *nm = NULL;
1182 unsigned long nr_bits, alloc_size;
1183 DECLARE_BITMAP(bm, MAX_NUMNODES);
1184
1185 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1186 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1187
1188 if (nmask)
1189 nm = compat_alloc_user_space(alloc_size);
1190
1191 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1192
1193 if (!err && nmask) {
1194 err = copy_from_user(bm, nm, alloc_size);
1195 /* ensure entire bitmap is zeroed */
1196 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1197 err |= compat_put_bitmap(nmask, bm, nr_bits);
1198 }
1199
1200 return err;
1201 }
1202
1203 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1204 compat_ulong_t maxnode)
1205 {
1206 long err = 0;
1207 unsigned long __user *nm = NULL;
1208 unsigned long nr_bits, alloc_size;
1209 DECLARE_BITMAP(bm, MAX_NUMNODES);
1210
1211 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1212 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1213
1214 if (nmask) {
1215 err = compat_get_bitmap(bm, nmask, nr_bits);
1216 nm = compat_alloc_user_space(alloc_size);
1217 err |= copy_to_user(nm, bm, alloc_size);
1218 }
1219
1220 if (err)
1221 return -EFAULT;
1222
1223 return sys_set_mempolicy(mode, nm, nr_bits+1);
1224 }
1225
1226 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1227 compat_ulong_t mode, compat_ulong_t __user *nmask,
1228 compat_ulong_t maxnode, compat_ulong_t flags)
1229 {
1230 long err = 0;
1231 unsigned long __user *nm = NULL;
1232 unsigned long nr_bits, alloc_size;
1233 nodemask_t bm;
1234
1235 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1236 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1237
1238 if (nmask) {
1239 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1240 nm = compat_alloc_user_space(alloc_size);
1241 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1242 }
1243
1244 if (err)
1245 return -EFAULT;
1246
1247 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1248 }
1249
1250 #endif
1251
1252 /*
1253 * get_vma_policy(@task, @vma, @addr)
1254 * @task - task for fallback if vma policy == default
1255 * @vma - virtual memory area whose policy is sought
1256 * @addr - address in @vma for shared policy lookup
1257 *
1258 * Returns effective policy for a VMA at specified address.
1259 * Falls back to @task or system default policy, as necessary.
1260 * Returned policy has extra reference count if shared, vma,
1261 * or some other task's policy [show_numa_maps() can pass
1262 * @task != current]. It is the caller's responsibility to
1263 * free the reference in these cases.
1264 */
1265 static struct mempolicy * get_vma_policy(struct task_struct *task,
1266 struct vm_area_struct *vma, unsigned long addr)
1267 {
1268 struct mempolicy *pol = task->mempolicy;
1269 int shared_pol = 0;
1270
1271 if (vma) {
1272 if (vma->vm_ops && vma->vm_ops->get_policy) {
1273 pol = vma->vm_ops->get_policy(vma, addr);
1274 shared_pol = 1; /* if pol non-NULL, add ref below */
1275 } else if (vma->vm_policy &&
1276 vma->vm_policy->policy != MPOL_DEFAULT)
1277 pol = vma->vm_policy;
1278 }
1279 if (!pol)
1280 pol = &default_policy;
1281 else if (!shared_pol && pol != current->mempolicy)
1282 mpol_get(pol); /* vma or other task's policy */
1283 return pol;
1284 }
1285
1286 /* Return a nodemask representing a mempolicy */
1287 static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1288 {
1289 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1290 if (unlikely(policy->policy == MPOL_BIND) &&
1291 gfp_zone(gfp) >= policy_zone &&
1292 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1293 return &policy->v.nodes;
1294
1295 return NULL;
1296 }
1297
1298 /* Return a zonelist representing a mempolicy */
1299 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1300 {
1301 int nd;
1302
1303 switch (policy->policy) {
1304 case MPOL_PREFERRED:
1305 nd = policy->v.preferred_node;
1306 if (nd < 0)
1307 nd = numa_node_id();
1308 break;
1309 case MPOL_BIND:
1310 /*
1311 * Normally, MPOL_BIND allocations node-local are node-local
1312 * within the allowed nodemask. However, if __GFP_THISNODE is
1313 * set and the current node is part of the mask, we use the
1314 * the zonelist for the first node in the mask instead.
1315 */
1316 nd = numa_node_id();
1317 if (unlikely(gfp & __GFP_THISNODE) &&
1318 unlikely(!node_isset(nd, policy->v.nodes)))
1319 nd = first_node(policy->v.nodes);
1320 break;
1321 case MPOL_INTERLEAVE: /* should not happen */
1322 case MPOL_DEFAULT:
1323 nd = numa_node_id();
1324 break;
1325 default:
1326 nd = 0;
1327 BUG();
1328 }
1329 return node_zonelist(nd, gfp);
1330 }
1331
1332 /* Do dynamic interleaving for a process */
1333 static unsigned interleave_nodes(struct mempolicy *policy)
1334 {
1335 unsigned nid, next;
1336 struct task_struct *me = current;
1337
1338 nid = me->il_next;
1339 next = next_node(nid, policy->v.nodes);
1340 if (next >= MAX_NUMNODES)
1341 next = first_node(policy->v.nodes);
1342 if (next < MAX_NUMNODES)
1343 me->il_next = next;
1344 return nid;
1345 }
1346
1347 /*
1348 * Depending on the memory policy provide a node from which to allocate the
1349 * next slab entry.
1350 */
1351 unsigned slab_node(struct mempolicy *policy)
1352 {
1353 unsigned short pol = policy ? policy->policy : MPOL_DEFAULT;
1354
1355 switch (pol) {
1356 case MPOL_INTERLEAVE:
1357 return interleave_nodes(policy);
1358
1359 case MPOL_BIND: {
1360 /*
1361 * Follow bind policy behavior and start allocation at the
1362 * first node.
1363 */
1364 struct zonelist *zonelist;
1365 struct zone *zone;
1366 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1367 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1368 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1369 &policy->v.nodes,
1370 &zone);
1371 return zone->node;
1372 }
1373
1374 case MPOL_PREFERRED:
1375 if (policy->v.preferred_node >= 0)
1376 return policy->v.preferred_node;
1377 /* Fall through */
1378
1379 default:
1380 return numa_node_id();
1381 }
1382 }
1383
1384 /* Do static interleaving for a VMA with known offset. */
1385 static unsigned offset_il_node(struct mempolicy *pol,
1386 struct vm_area_struct *vma, unsigned long off)
1387 {
1388 unsigned nnodes = nodes_weight(pol->v.nodes);
1389 unsigned target;
1390 int c;
1391 int nid = -1;
1392
1393 if (!nnodes)
1394 return numa_node_id();
1395 target = (unsigned int)off % nnodes;
1396 c = 0;
1397 do {
1398 nid = next_node(nid, pol->v.nodes);
1399 c++;
1400 } while (c <= target);
1401 return nid;
1402 }
1403
1404 /* Determine a node number for interleave */
1405 static inline unsigned interleave_nid(struct mempolicy *pol,
1406 struct vm_area_struct *vma, unsigned long addr, int shift)
1407 {
1408 if (vma) {
1409 unsigned long off;
1410
1411 /*
1412 * for small pages, there is no difference between
1413 * shift and PAGE_SHIFT, so the bit-shift is safe.
1414 * for huge pages, since vm_pgoff is in units of small
1415 * pages, we need to shift off the always 0 bits to get
1416 * a useful offset.
1417 */
1418 BUG_ON(shift < PAGE_SHIFT);
1419 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1420 off += (addr - vma->vm_start) >> shift;
1421 return offset_il_node(pol, vma, off);
1422 } else
1423 return interleave_nodes(pol);
1424 }
1425
1426 #ifdef CONFIG_HUGETLBFS
1427 /*
1428 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1429 * @vma = virtual memory area whose policy is sought
1430 * @addr = address in @vma for shared policy lookup and interleave policy
1431 * @gfp_flags = for requested zone
1432 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1433 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1434 *
1435 * Returns a zonelist suitable for a huge page allocation.
1436 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1437 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1438 * If it is also a policy for which get_vma_policy() returns an extra
1439 * reference, we must hold that reference until after the allocation.
1440 * In that case, return policy via @mpol so hugetlb allocation can drop
1441 * the reference. For non-'BIND referenced policies, we can/do drop the
1442 * reference here, so the caller doesn't need to know about the special case
1443 * for default and current task policy.
1444 */
1445 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1446 gfp_t gfp_flags, struct mempolicy **mpol,
1447 nodemask_t **nodemask)
1448 {
1449 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1450 struct zonelist *zl;
1451
1452 *mpol = NULL; /* probably no unref needed */
1453 *nodemask = NULL; /* assume !MPOL_BIND */
1454 if (pol->policy == MPOL_BIND) {
1455 *nodemask = &pol->v.nodes;
1456 } else if (pol->policy == MPOL_INTERLEAVE) {
1457 unsigned nid;
1458
1459 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1460 if (unlikely(pol != &default_policy &&
1461 pol != current->mempolicy))
1462 __mpol_put(pol); /* finished with pol */
1463 return node_zonelist(nid, gfp_flags);
1464 }
1465
1466 zl = zonelist_policy(GFP_HIGHUSER, pol);
1467 if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1468 if (pol->policy != MPOL_BIND)
1469 __mpol_put(pol); /* finished with pol */
1470 else
1471 *mpol = pol; /* unref needed after allocation */
1472 }
1473 return zl;
1474 }
1475 #endif
1476
1477 /* Allocate a page in interleaved policy.
1478 Own path because it needs to do special accounting. */
1479 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1480 unsigned nid)
1481 {
1482 struct zonelist *zl;
1483 struct page *page;
1484
1485 zl = node_zonelist(nid, gfp);
1486 page = __alloc_pages(gfp, order, zl);
1487 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1488 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1489 return page;
1490 }
1491
1492 /**
1493 * alloc_page_vma - Allocate a page for a VMA.
1494 *
1495 * @gfp:
1496 * %GFP_USER user allocation.
1497 * %GFP_KERNEL kernel allocations,
1498 * %GFP_HIGHMEM highmem/user allocations,
1499 * %GFP_FS allocation should not call back into a file system.
1500 * %GFP_ATOMIC don't sleep.
1501 *
1502 * @vma: Pointer to VMA or NULL if not available.
1503 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1504 *
1505 * This function allocates a page from the kernel page pool and applies
1506 * a NUMA policy associated with the VMA or the current process.
1507 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1508 * mm_struct of the VMA to prevent it from going away. Should be used for
1509 * all allocations for pages that will be mapped into
1510 * user space. Returns NULL when no page can be allocated.
1511 *
1512 * Should be called with the mm_sem of the vma hold.
1513 */
1514 struct page *
1515 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1516 {
1517 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1518 struct zonelist *zl;
1519
1520 cpuset_update_task_memory_state();
1521
1522 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1523 unsigned nid;
1524
1525 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1526 if (unlikely(pol != &default_policy &&
1527 pol != current->mempolicy))
1528 __mpol_put(pol); /* finished with pol */
1529 return alloc_page_interleave(gfp, 0, nid);
1530 }
1531 zl = zonelist_policy(gfp, pol);
1532 if (pol != &default_policy && pol != current->mempolicy) {
1533 /*
1534 * slow path: ref counted policy -- shared or vma
1535 */
1536 struct page *page = __alloc_pages_nodemask(gfp, 0,
1537 zl, nodemask_policy(gfp, pol));
1538 __mpol_put(pol);
1539 return page;
1540 }
1541 /*
1542 * fast path: default or task policy
1543 */
1544 return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1545 }
1546
1547 /**
1548 * alloc_pages_current - Allocate pages.
1549 *
1550 * @gfp:
1551 * %GFP_USER user allocation,
1552 * %GFP_KERNEL kernel allocation,
1553 * %GFP_HIGHMEM highmem allocation,
1554 * %GFP_FS don't call back into a file system.
1555 * %GFP_ATOMIC don't sleep.
1556 * @order: Power of two of allocation size in pages. 0 is a single page.
1557 *
1558 * Allocate a page from the kernel page pool. When not in
1559 * interrupt context and apply the current process NUMA policy.
1560 * Returns NULL when no page can be allocated.
1561 *
1562 * Don't call cpuset_update_task_memory_state() unless
1563 * 1) it's ok to take cpuset_sem (can WAIT), and
1564 * 2) allocating for current task (not interrupt).
1565 */
1566 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1567 {
1568 struct mempolicy *pol = current->mempolicy;
1569
1570 if ((gfp & __GFP_WAIT) && !in_interrupt())
1571 cpuset_update_task_memory_state();
1572 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1573 pol = &default_policy;
1574 if (pol->policy == MPOL_INTERLEAVE)
1575 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1576 return __alloc_pages_nodemask(gfp, order,
1577 zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1578 }
1579 EXPORT_SYMBOL(alloc_pages_current);
1580
1581 /*
1582 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1583 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1584 * with the mems_allowed returned by cpuset_mems_allowed(). This
1585 * keeps mempolicies cpuset relative after its cpuset moves. See
1586 * further kernel/cpuset.c update_nodemask().
1587 */
1588
1589 /* Slow path of a mempolicy duplicate */
1590 struct mempolicy *__mpol_dup(struct mempolicy *old)
1591 {
1592 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1593
1594 if (!new)
1595 return ERR_PTR(-ENOMEM);
1596 if (current_cpuset_is_being_rebound()) {
1597 nodemask_t mems = cpuset_mems_allowed(current);
1598 mpol_rebind_policy(old, &mems);
1599 }
1600 *new = *old;
1601 atomic_set(&new->refcnt, 1);
1602 return new;
1603 }
1604
1605 static int mpol_match_intent(const struct mempolicy *a,
1606 const struct mempolicy *b)
1607 {
1608 if (a->flags != b->flags)
1609 return 0;
1610 if (!mpol_store_user_nodemask(a))
1611 return 1;
1612 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1613 }
1614
1615 /* Slow path of a mempolicy comparison */
1616 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1617 {
1618 if (!a || !b)
1619 return 0;
1620 if (a->policy != b->policy)
1621 return 0;
1622 if (a->policy != MPOL_DEFAULT && !mpol_match_intent(a, b))
1623 return 0;
1624 switch (a->policy) {
1625 case MPOL_DEFAULT:
1626 return 1;
1627 case MPOL_BIND:
1628 /* Fall through */
1629 case MPOL_INTERLEAVE:
1630 return nodes_equal(a->v.nodes, b->v.nodes);
1631 case MPOL_PREFERRED:
1632 return a->v.preferred_node == b->v.preferred_node;
1633 default:
1634 BUG();
1635 return 0;
1636 }
1637 }
1638
1639 /* Slow path of a mpol destructor. */
1640 void __mpol_put(struct mempolicy *p)
1641 {
1642 if (!atomic_dec_and_test(&p->refcnt))
1643 return;
1644 p->policy = MPOL_DEFAULT;
1645 kmem_cache_free(policy_cache, p);
1646 }
1647
1648 /*
1649 * Shared memory backing store policy support.
1650 *
1651 * Remember policies even when nobody has shared memory mapped.
1652 * The policies are kept in Red-Black tree linked from the inode.
1653 * They are protected by the sp->lock spinlock, which should be held
1654 * for any accesses to the tree.
1655 */
1656
1657 /* lookup first element intersecting start-end */
1658 /* Caller holds sp->lock */
1659 static struct sp_node *
1660 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1661 {
1662 struct rb_node *n = sp->root.rb_node;
1663
1664 while (n) {
1665 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1666
1667 if (start >= p->end)
1668 n = n->rb_right;
1669 else if (end <= p->start)
1670 n = n->rb_left;
1671 else
1672 break;
1673 }
1674 if (!n)
1675 return NULL;
1676 for (;;) {
1677 struct sp_node *w = NULL;
1678 struct rb_node *prev = rb_prev(n);
1679 if (!prev)
1680 break;
1681 w = rb_entry(prev, struct sp_node, nd);
1682 if (w->end <= start)
1683 break;
1684 n = prev;
1685 }
1686 return rb_entry(n, struct sp_node, nd);
1687 }
1688
1689 /* Insert a new shared policy into the list. */
1690 /* Caller holds sp->lock */
1691 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1692 {
1693 struct rb_node **p = &sp->root.rb_node;
1694 struct rb_node *parent = NULL;
1695 struct sp_node *nd;
1696
1697 while (*p) {
1698 parent = *p;
1699 nd = rb_entry(parent, struct sp_node, nd);
1700 if (new->start < nd->start)
1701 p = &(*p)->rb_left;
1702 else if (new->end > nd->end)
1703 p = &(*p)->rb_right;
1704 else
1705 BUG();
1706 }
1707 rb_link_node(&new->nd, parent, p);
1708 rb_insert_color(&new->nd, &sp->root);
1709 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1710 new->policy ? new->policy->policy : 0);
1711 }
1712
1713 /* Find shared policy intersecting idx */
1714 struct mempolicy *
1715 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1716 {
1717 struct mempolicy *pol = NULL;
1718 struct sp_node *sn;
1719
1720 if (!sp->root.rb_node)
1721 return NULL;
1722 spin_lock(&sp->lock);
1723 sn = sp_lookup(sp, idx, idx+1);
1724 if (sn) {
1725 mpol_get(sn->policy);
1726 pol = sn->policy;
1727 }
1728 spin_unlock(&sp->lock);
1729 return pol;
1730 }
1731
1732 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1733 {
1734 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1735 rb_erase(&n->nd, &sp->root);
1736 mpol_put(n->policy);
1737 kmem_cache_free(sn_cache, n);
1738 }
1739
1740 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1741 struct mempolicy *pol)
1742 {
1743 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1744
1745 if (!n)
1746 return NULL;
1747 n->start = start;
1748 n->end = end;
1749 mpol_get(pol);
1750 n->policy = pol;
1751 return n;
1752 }
1753
1754 /* Replace a policy range. */
1755 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1756 unsigned long end, struct sp_node *new)
1757 {
1758 struct sp_node *n, *new2 = NULL;
1759
1760 restart:
1761 spin_lock(&sp->lock);
1762 n = sp_lookup(sp, start, end);
1763 /* Take care of old policies in the same range. */
1764 while (n && n->start < end) {
1765 struct rb_node *next = rb_next(&n->nd);
1766 if (n->start >= start) {
1767 if (n->end <= end)
1768 sp_delete(sp, n);
1769 else
1770 n->start = end;
1771 } else {
1772 /* Old policy spanning whole new range. */
1773 if (n->end > end) {
1774 if (!new2) {
1775 spin_unlock(&sp->lock);
1776 new2 = sp_alloc(end, n->end, n->policy);
1777 if (!new2)
1778 return -ENOMEM;
1779 goto restart;
1780 }
1781 n->end = start;
1782 sp_insert(sp, new2);
1783 new2 = NULL;
1784 break;
1785 } else
1786 n->end = start;
1787 }
1788 if (!next)
1789 break;
1790 n = rb_entry(next, struct sp_node, nd);
1791 }
1792 if (new)
1793 sp_insert(sp, new);
1794 spin_unlock(&sp->lock);
1795 if (new2) {
1796 mpol_put(new2->policy);
1797 kmem_cache_free(sn_cache, new2);
1798 }
1799 return 0;
1800 }
1801
1802 void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1803 unsigned short flags, nodemask_t *policy_nodes)
1804 {
1805 info->root = RB_ROOT;
1806 spin_lock_init(&info->lock);
1807
1808 if (policy != MPOL_DEFAULT) {
1809 struct mempolicy *newpol;
1810
1811 /* Falls back to MPOL_DEFAULT on any error */
1812 newpol = mpol_new(policy, flags, policy_nodes);
1813 if (!IS_ERR(newpol)) {
1814 /* Create pseudo-vma that contains just the policy */
1815 struct vm_area_struct pvma;
1816
1817 memset(&pvma, 0, sizeof(struct vm_area_struct));
1818 /* Policy covers entire file */
1819 pvma.vm_end = TASK_SIZE;
1820 mpol_set_shared_policy(info, &pvma, newpol);
1821 mpol_put(newpol);
1822 }
1823 }
1824 }
1825
1826 int mpol_set_shared_policy(struct shared_policy *info,
1827 struct vm_area_struct *vma, struct mempolicy *npol)
1828 {
1829 int err;
1830 struct sp_node *new = NULL;
1831 unsigned long sz = vma_pages(vma);
1832
1833 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1834 vma->vm_pgoff,
1835 sz, npol ? npol->policy : -1,
1836 npol ? npol->flags : -1,
1837 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1838
1839 if (npol) {
1840 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1841 if (!new)
1842 return -ENOMEM;
1843 }
1844 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1845 if (err && new)
1846 kmem_cache_free(sn_cache, new);
1847 return err;
1848 }
1849
1850 /* Free a backing policy store on inode delete. */
1851 void mpol_free_shared_policy(struct shared_policy *p)
1852 {
1853 struct sp_node *n;
1854 struct rb_node *next;
1855
1856 if (!p->root.rb_node)
1857 return;
1858 spin_lock(&p->lock);
1859 next = rb_first(&p->root);
1860 while (next) {
1861 n = rb_entry(next, struct sp_node, nd);
1862 next = rb_next(&n->nd);
1863 rb_erase(&n->nd, &p->root);
1864 mpol_put(n->policy);
1865 kmem_cache_free(sn_cache, n);
1866 }
1867 spin_unlock(&p->lock);
1868 }
1869
1870 /* assumes fs == KERNEL_DS */
1871 void __init numa_policy_init(void)
1872 {
1873 nodemask_t interleave_nodes;
1874 unsigned long largest = 0;
1875 int nid, prefer = 0;
1876
1877 policy_cache = kmem_cache_create("numa_policy",
1878 sizeof(struct mempolicy),
1879 0, SLAB_PANIC, NULL);
1880
1881 sn_cache = kmem_cache_create("shared_policy_node",
1882 sizeof(struct sp_node),
1883 0, SLAB_PANIC, NULL);
1884
1885 /*
1886 * Set interleaving policy for system init. Interleaving is only
1887 * enabled across suitably sized nodes (default is >= 16MB), or
1888 * fall back to the largest node if they're all smaller.
1889 */
1890 nodes_clear(interleave_nodes);
1891 for_each_node_state(nid, N_HIGH_MEMORY) {
1892 unsigned long total_pages = node_present_pages(nid);
1893
1894 /* Preserve the largest node */
1895 if (largest < total_pages) {
1896 largest = total_pages;
1897 prefer = nid;
1898 }
1899
1900 /* Interleave this node? */
1901 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1902 node_set(nid, interleave_nodes);
1903 }
1904
1905 /* All too small, use the largest */
1906 if (unlikely(nodes_empty(interleave_nodes)))
1907 node_set(prefer, interleave_nodes);
1908
1909 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1910 printk("numa_policy_init: interleaving failed\n");
1911 }
1912
1913 /* Reset policy of current process to default */
1914 void numa_default_policy(void)
1915 {
1916 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1917 }
1918
1919 /*
1920 * Display pages allocated per node and memory policy via /proc.
1921 */
1922 static const char * const policy_types[] =
1923 { "default", "prefer", "bind", "interleave" };
1924
1925 /*
1926 * Convert a mempolicy into a string.
1927 * Returns the number of characters in buffer (if positive)
1928 * or an error (negative)
1929 */
1930 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1931 {
1932 char *p = buffer;
1933 int l;
1934 nodemask_t nodes;
1935 unsigned short mode = pol ? pol->policy : MPOL_DEFAULT;
1936 unsigned short flags = pol ? pol->flags : 0;
1937
1938 switch (mode) {
1939 case MPOL_DEFAULT:
1940 nodes_clear(nodes);
1941 break;
1942
1943 case MPOL_PREFERRED:
1944 nodes_clear(nodes);
1945 node_set(pol->v.preferred_node, nodes);
1946 break;
1947
1948 case MPOL_BIND:
1949 /* Fall through */
1950 case MPOL_INTERLEAVE:
1951 nodes = pol->v.nodes;
1952 break;
1953
1954 default:
1955 BUG();
1956 return -EFAULT;
1957 }
1958
1959 l = strlen(policy_types[mode]);
1960 if (buffer + maxlen < p + l + 1)
1961 return -ENOSPC;
1962
1963 strcpy(p, policy_types[mode]);
1964 p += l;
1965
1966 if (flags) {
1967 int need_bar = 0;
1968
1969 if (buffer + maxlen < p + 2)
1970 return -ENOSPC;
1971 *p++ = '=';
1972
1973 if (flags & MPOL_F_STATIC_NODES)
1974 p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
1975 if (flags & MPOL_F_RELATIVE_NODES)
1976 p += sprintf(p, "%srelative", need_bar++ ? "|" : "");
1977 }
1978
1979 if (!nodes_empty(nodes)) {
1980 if (buffer + maxlen < p + 2)
1981 return -ENOSPC;
1982 *p++ = '=';
1983 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1984 }
1985 return p - buffer;
1986 }
1987
1988 struct numa_maps {
1989 unsigned long pages;
1990 unsigned long anon;
1991 unsigned long active;
1992 unsigned long writeback;
1993 unsigned long mapcount_max;
1994 unsigned long dirty;
1995 unsigned long swapcache;
1996 unsigned long node[MAX_NUMNODES];
1997 };
1998
1999 static void gather_stats(struct page *page, void *private, int pte_dirty)
2000 {
2001 struct numa_maps *md = private;
2002 int count = page_mapcount(page);
2003
2004 md->pages++;
2005 if (pte_dirty || PageDirty(page))
2006 md->dirty++;
2007
2008 if (PageSwapCache(page))
2009 md->swapcache++;
2010
2011 if (PageActive(page))
2012 md->active++;
2013
2014 if (PageWriteback(page))
2015 md->writeback++;
2016
2017 if (PageAnon(page))
2018 md->anon++;
2019
2020 if (count > md->mapcount_max)
2021 md->mapcount_max = count;
2022
2023 md->node[page_to_nid(page)]++;
2024 }
2025
2026 #ifdef CONFIG_HUGETLB_PAGE
2027 static void check_huge_range(struct vm_area_struct *vma,
2028 unsigned long start, unsigned long end,
2029 struct numa_maps *md)
2030 {
2031 unsigned long addr;
2032 struct page *page;
2033
2034 for (addr = start; addr < end; addr += HPAGE_SIZE) {
2035 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
2036 pte_t pte;
2037
2038 if (!ptep)
2039 continue;
2040
2041 pte = *ptep;
2042 if (pte_none(pte))
2043 continue;
2044
2045 page = pte_page(pte);
2046 if (!page)
2047 continue;
2048
2049 gather_stats(page, md, pte_dirty(*ptep));
2050 }
2051 }
2052 #else
2053 static inline void check_huge_range(struct vm_area_struct *vma,
2054 unsigned long start, unsigned long end,
2055 struct numa_maps *md)
2056 {
2057 }
2058 #endif
2059
2060 int show_numa_map(struct seq_file *m, void *v)
2061 {
2062 struct proc_maps_private *priv = m->private;
2063 struct vm_area_struct *vma = v;
2064 struct numa_maps *md;
2065 struct file *file = vma->vm_file;
2066 struct mm_struct *mm = vma->vm_mm;
2067 struct mempolicy *pol;
2068 int n;
2069 char buffer[50];
2070
2071 if (!mm)
2072 return 0;
2073
2074 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
2075 if (!md)
2076 return 0;
2077
2078 pol = get_vma_policy(priv->task, vma, vma->vm_start);
2079 mpol_to_str(buffer, sizeof(buffer), pol);
2080 /*
2081 * unref shared or other task's mempolicy
2082 */
2083 if (pol != &default_policy && pol != current->mempolicy)
2084 __mpol_put(pol);
2085
2086 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
2087
2088 if (file) {
2089 seq_printf(m, " file=");
2090 seq_path(m, &file->f_path, "\n\t= ");
2091 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
2092 seq_printf(m, " heap");
2093 } else if (vma->vm_start <= mm->start_stack &&
2094 vma->vm_end >= mm->start_stack) {
2095 seq_printf(m, " stack");
2096 }
2097
2098 if (is_vm_hugetlb_page(vma)) {
2099 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2100 seq_printf(m, " huge");
2101 } else {
2102 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2103 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2104 }
2105
2106 if (!md->pages)
2107 goto out;
2108
2109 if (md->anon)
2110 seq_printf(m," anon=%lu",md->anon);
2111
2112 if (md->dirty)
2113 seq_printf(m," dirty=%lu",md->dirty);
2114
2115 if (md->pages != md->anon && md->pages != md->dirty)
2116 seq_printf(m, " mapped=%lu", md->pages);
2117
2118 if (md->mapcount_max > 1)
2119 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2120
2121 if (md->swapcache)
2122 seq_printf(m," swapcache=%lu", md->swapcache);
2123
2124 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2125 seq_printf(m," active=%lu", md->active);
2126
2127 if (md->writeback)
2128 seq_printf(m," writeback=%lu", md->writeback);
2129
2130 for_each_node_state(n, N_HIGH_MEMORY)
2131 if (md->node[n])
2132 seq_printf(m, " N%d=%lu", n, md->node[n]);
2133 out:
2134 seq_putc(m, '\n');
2135 kfree(md);
2136
2137 if (m->count < m->size)
2138 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2139 return 0;
2140 }
This page took 0.130071 seconds and 6 git commands to generate.