mempolicy: add MPOL_F_STATIC_NODES flag
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 could replace all the switch()es with a mempolicy_ops structure.
67 */
68
69 #include <linux/mempolicy.h>
70 #include <linux/mm.h>
71 #include <linux/highmem.h>
72 #include <linux/hugetlb.h>
73 #include <linux/kernel.h>
74 #include <linux/sched.h>
75 #include <linux/nodemask.h>
76 #include <linux/cpuset.h>
77 #include <linux/gfp.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/module.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/rmap.h>
90 #include <linux/security.h>
91 #include <linux/syscalls.h>
92
93 #include <asm/tlbflush.h>
94 #include <asm/uaccess.h>
95
96 /* Internal flags */
97 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
98 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
99 #define MPOL_MF_STATS (MPOL_MF_INTERNAL << 2) /* Gather statistics */
100
101 static struct kmem_cache *policy_cache;
102 static struct kmem_cache *sn_cache;
103
104 /* Highest zone. An specific allocation for a zone below that is not
105 policied. */
106 enum zone_type policy_zone = 0;
107
108 struct mempolicy default_policy = {
109 .refcnt = ATOMIC_INIT(1), /* never free it */
110 .policy = MPOL_DEFAULT,
111 };
112
113 static void mpol_rebind_policy(struct mempolicy *pol,
114 const nodemask_t *newmask);
115
116 /* Check that the nodemask contains at least one populated zone */
117 static int is_valid_nodemask(nodemask_t *nodemask)
118 {
119 int nd, k;
120
121 /* Check that there is something useful in this mask */
122 k = policy_zone;
123
124 for_each_node_mask(nd, *nodemask) {
125 struct zone *z;
126
127 for (k = 0; k <= policy_zone; k++) {
128 z = &NODE_DATA(nd)->node_zones[k];
129 if (z->present_pages > 0)
130 return 1;
131 }
132 }
133
134 return 0;
135 }
136
137 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
138 {
139 return pol->flags & MPOL_F_STATIC_NODES;
140 }
141
142 /* Create a new policy */
143 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
144 nodemask_t *nodes)
145 {
146 struct mempolicy *policy;
147 nodemask_t cpuset_context_nmask;
148
149 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
150 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
151
152 if (mode == MPOL_DEFAULT)
153 return (nodes && nodes_weight(*nodes)) ? ERR_PTR(-EINVAL) :
154 NULL;
155 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
156 if (!policy)
157 return ERR_PTR(-ENOMEM);
158 atomic_set(&policy->refcnt, 1);
159 cpuset_update_task_memory_state();
160 nodes_and(cpuset_context_nmask, *nodes, cpuset_current_mems_allowed);
161 switch (mode) {
162 case MPOL_INTERLEAVE:
163 if (nodes_empty(*nodes) || nodes_empty(cpuset_context_nmask))
164 goto free;
165 policy->v.nodes = cpuset_context_nmask;
166 break;
167 case MPOL_PREFERRED:
168 policy->v.preferred_node = first_node(cpuset_context_nmask);
169 if (policy->v.preferred_node >= MAX_NUMNODES)
170 goto free;
171 break;
172 case MPOL_BIND:
173 if (!is_valid_nodemask(&cpuset_context_nmask))
174 goto free;
175 policy->v.nodes = cpuset_context_nmask;
176 break;
177 default:
178 BUG();
179 }
180 policy->policy = mode;
181 policy->flags = flags;
182 if (mpol_store_user_nodemask(policy))
183 policy->w.user_nodemask = *nodes;
184 else
185 policy->w.cpuset_mems_allowed = cpuset_mems_allowed(current);
186 return policy;
187
188 free:
189 kmem_cache_free(policy_cache, policy);
190 return ERR_PTR(-EINVAL);
191 }
192
193 static void gather_stats(struct page *, void *, int pte_dirty);
194 static void migrate_page_add(struct page *page, struct list_head *pagelist,
195 unsigned long flags);
196
197 /* Scan through pages checking if pages follow certain conditions. */
198 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
199 unsigned long addr, unsigned long end,
200 const nodemask_t *nodes, unsigned long flags,
201 void *private)
202 {
203 pte_t *orig_pte;
204 pte_t *pte;
205 spinlock_t *ptl;
206
207 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
208 do {
209 struct page *page;
210 int nid;
211
212 if (!pte_present(*pte))
213 continue;
214 page = vm_normal_page(vma, addr, *pte);
215 if (!page)
216 continue;
217 /*
218 * The check for PageReserved here is important to avoid
219 * handling zero pages and other pages that may have been
220 * marked special by the system.
221 *
222 * If the PageReserved would not be checked here then f.e.
223 * the location of the zero page could have an influence
224 * on MPOL_MF_STRICT, zero pages would be counted for
225 * the per node stats, and there would be useless attempts
226 * to put zero pages on the migration list.
227 */
228 if (PageReserved(page))
229 continue;
230 nid = page_to_nid(page);
231 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
232 continue;
233
234 if (flags & MPOL_MF_STATS)
235 gather_stats(page, private, pte_dirty(*pte));
236 else if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
237 migrate_page_add(page, private, flags);
238 else
239 break;
240 } while (pte++, addr += PAGE_SIZE, addr != end);
241 pte_unmap_unlock(orig_pte, ptl);
242 return addr != end;
243 }
244
245 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
246 unsigned long addr, unsigned long end,
247 const nodemask_t *nodes, unsigned long flags,
248 void *private)
249 {
250 pmd_t *pmd;
251 unsigned long next;
252
253 pmd = pmd_offset(pud, addr);
254 do {
255 next = pmd_addr_end(addr, end);
256 if (pmd_none_or_clear_bad(pmd))
257 continue;
258 if (check_pte_range(vma, pmd, addr, next, nodes,
259 flags, private))
260 return -EIO;
261 } while (pmd++, addr = next, addr != end);
262 return 0;
263 }
264
265 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
266 unsigned long addr, unsigned long end,
267 const nodemask_t *nodes, unsigned long flags,
268 void *private)
269 {
270 pud_t *pud;
271 unsigned long next;
272
273 pud = pud_offset(pgd, addr);
274 do {
275 next = pud_addr_end(addr, end);
276 if (pud_none_or_clear_bad(pud))
277 continue;
278 if (check_pmd_range(vma, pud, addr, next, nodes,
279 flags, private))
280 return -EIO;
281 } while (pud++, addr = next, addr != end);
282 return 0;
283 }
284
285 static inline int check_pgd_range(struct vm_area_struct *vma,
286 unsigned long addr, unsigned long end,
287 const nodemask_t *nodes, unsigned long flags,
288 void *private)
289 {
290 pgd_t *pgd;
291 unsigned long next;
292
293 pgd = pgd_offset(vma->vm_mm, addr);
294 do {
295 next = pgd_addr_end(addr, end);
296 if (pgd_none_or_clear_bad(pgd))
297 continue;
298 if (check_pud_range(vma, pgd, addr, next, nodes,
299 flags, private))
300 return -EIO;
301 } while (pgd++, addr = next, addr != end);
302 return 0;
303 }
304
305 /*
306 * Check if all pages in a range are on a set of nodes.
307 * If pagelist != NULL then isolate pages from the LRU and
308 * put them on the pagelist.
309 */
310 static struct vm_area_struct *
311 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
312 const nodemask_t *nodes, unsigned long flags, void *private)
313 {
314 int err;
315 struct vm_area_struct *first, *vma, *prev;
316
317 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
318
319 err = migrate_prep();
320 if (err)
321 return ERR_PTR(err);
322 }
323
324 first = find_vma(mm, start);
325 if (!first)
326 return ERR_PTR(-EFAULT);
327 prev = NULL;
328 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
329 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
330 if (!vma->vm_next && vma->vm_end < end)
331 return ERR_PTR(-EFAULT);
332 if (prev && prev->vm_end < vma->vm_start)
333 return ERR_PTR(-EFAULT);
334 }
335 if (!is_vm_hugetlb_page(vma) &&
336 ((flags & MPOL_MF_STRICT) ||
337 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
338 vma_migratable(vma)))) {
339 unsigned long endvma = vma->vm_end;
340
341 if (endvma > end)
342 endvma = end;
343 if (vma->vm_start > start)
344 start = vma->vm_start;
345 err = check_pgd_range(vma, start, endvma, nodes,
346 flags, private);
347 if (err) {
348 first = ERR_PTR(err);
349 break;
350 }
351 }
352 prev = vma;
353 }
354 return first;
355 }
356
357 /* Apply policy to a single VMA */
358 static int policy_vma(struct vm_area_struct *vma, struct mempolicy *new)
359 {
360 int err = 0;
361 struct mempolicy *old = vma->vm_policy;
362
363 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
364 vma->vm_start, vma->vm_end, vma->vm_pgoff,
365 vma->vm_ops, vma->vm_file,
366 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
367
368 if (vma->vm_ops && vma->vm_ops->set_policy)
369 err = vma->vm_ops->set_policy(vma, new);
370 if (!err) {
371 mpol_get(new);
372 vma->vm_policy = new;
373 mpol_free(old);
374 }
375 return err;
376 }
377
378 /* Step 2: apply policy to a range and do splits. */
379 static int mbind_range(struct vm_area_struct *vma, unsigned long start,
380 unsigned long end, struct mempolicy *new)
381 {
382 struct vm_area_struct *next;
383 int err;
384
385 err = 0;
386 for (; vma && vma->vm_start < end; vma = next) {
387 next = vma->vm_next;
388 if (vma->vm_start < start)
389 err = split_vma(vma->vm_mm, vma, start, 1);
390 if (!err && vma->vm_end > end)
391 err = split_vma(vma->vm_mm, vma, end, 0);
392 if (!err)
393 err = policy_vma(vma, new);
394 if (err)
395 break;
396 }
397 return err;
398 }
399
400 /*
401 * Update task->flags PF_MEMPOLICY bit: set iff non-default
402 * mempolicy. Allows more rapid checking of this (combined perhaps
403 * with other PF_* flag bits) on memory allocation hot code paths.
404 *
405 * If called from outside this file, the task 'p' should -only- be
406 * a newly forked child not yet visible on the task list, because
407 * manipulating the task flags of a visible task is not safe.
408 *
409 * The above limitation is why this routine has the funny name
410 * mpol_fix_fork_child_flag().
411 *
412 * It is also safe to call this with a task pointer of current,
413 * which the static wrapper mpol_set_task_struct_flag() does,
414 * for use within this file.
415 */
416
417 void mpol_fix_fork_child_flag(struct task_struct *p)
418 {
419 if (p->mempolicy)
420 p->flags |= PF_MEMPOLICY;
421 else
422 p->flags &= ~PF_MEMPOLICY;
423 }
424
425 static void mpol_set_task_struct_flag(void)
426 {
427 mpol_fix_fork_child_flag(current);
428 }
429
430 /* Set the process memory policy */
431 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
432 nodemask_t *nodes)
433 {
434 struct mempolicy *new;
435
436 new = mpol_new(mode, flags, nodes);
437 if (IS_ERR(new))
438 return PTR_ERR(new);
439 mpol_free(current->mempolicy);
440 current->mempolicy = new;
441 mpol_set_task_struct_flag();
442 if (new && new->policy == MPOL_INTERLEAVE &&
443 nodes_weight(new->v.nodes))
444 current->il_next = first_node(new->v.nodes);
445 return 0;
446 }
447
448 /* Fill a zone bitmap for a policy */
449 static void get_zonemask(struct mempolicy *p, nodemask_t *nodes)
450 {
451 nodes_clear(*nodes);
452 switch (p->policy) {
453 case MPOL_DEFAULT:
454 break;
455 case MPOL_BIND:
456 /* Fall through */
457 case MPOL_INTERLEAVE:
458 *nodes = p->v.nodes;
459 break;
460 case MPOL_PREFERRED:
461 /* or use current node instead of memory_map? */
462 if (p->v.preferred_node < 0)
463 *nodes = node_states[N_HIGH_MEMORY];
464 else
465 node_set(p->v.preferred_node, *nodes);
466 break;
467 default:
468 BUG();
469 }
470 }
471
472 static int lookup_node(struct mm_struct *mm, unsigned long addr)
473 {
474 struct page *p;
475 int err;
476
477 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
478 if (err >= 0) {
479 err = page_to_nid(p);
480 put_page(p);
481 }
482 return err;
483 }
484
485 /* Retrieve NUMA policy */
486 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
487 unsigned long addr, unsigned long flags)
488 {
489 int err;
490 struct mm_struct *mm = current->mm;
491 struct vm_area_struct *vma = NULL;
492 struct mempolicy *pol = current->mempolicy;
493
494 cpuset_update_task_memory_state();
495 if (flags &
496 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
497 return -EINVAL;
498
499 if (flags & MPOL_F_MEMS_ALLOWED) {
500 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
501 return -EINVAL;
502 *policy = 0; /* just so it's initialized */
503 *nmask = cpuset_current_mems_allowed;
504 return 0;
505 }
506
507 if (flags & MPOL_F_ADDR) {
508 down_read(&mm->mmap_sem);
509 vma = find_vma_intersection(mm, addr, addr+1);
510 if (!vma) {
511 up_read(&mm->mmap_sem);
512 return -EFAULT;
513 }
514 if (vma->vm_ops && vma->vm_ops->get_policy)
515 pol = vma->vm_ops->get_policy(vma, addr);
516 else
517 pol = vma->vm_policy;
518 } else if (addr)
519 return -EINVAL;
520
521 if (!pol)
522 pol = &default_policy;
523
524 if (flags & MPOL_F_NODE) {
525 if (flags & MPOL_F_ADDR) {
526 err = lookup_node(mm, addr);
527 if (err < 0)
528 goto out;
529 *policy = err;
530 } else if (pol == current->mempolicy &&
531 pol->policy == MPOL_INTERLEAVE) {
532 *policy = current->il_next;
533 } else {
534 err = -EINVAL;
535 goto out;
536 }
537 } else
538 *policy = pol->policy | pol->flags;
539
540 if (vma) {
541 up_read(&current->mm->mmap_sem);
542 vma = NULL;
543 }
544
545 err = 0;
546 if (nmask)
547 get_zonemask(pol, nmask);
548
549 out:
550 if (vma)
551 up_read(&current->mm->mmap_sem);
552 return err;
553 }
554
555 #ifdef CONFIG_MIGRATION
556 /*
557 * page migration
558 */
559 static void migrate_page_add(struct page *page, struct list_head *pagelist,
560 unsigned long flags)
561 {
562 /*
563 * Avoid migrating a page that is shared with others.
564 */
565 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1)
566 isolate_lru_page(page, pagelist);
567 }
568
569 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
570 {
571 return alloc_pages_node(node, GFP_HIGHUSER_MOVABLE, 0);
572 }
573
574 /*
575 * Migrate pages from one node to a target node.
576 * Returns error or the number of pages not migrated.
577 */
578 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
579 int flags)
580 {
581 nodemask_t nmask;
582 LIST_HEAD(pagelist);
583 int err = 0;
584
585 nodes_clear(nmask);
586 node_set(source, nmask);
587
588 check_range(mm, mm->mmap->vm_start, TASK_SIZE, &nmask,
589 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
590
591 if (!list_empty(&pagelist))
592 err = migrate_pages(&pagelist, new_node_page, dest);
593
594 return err;
595 }
596
597 /*
598 * Move pages between the two nodesets so as to preserve the physical
599 * layout as much as possible.
600 *
601 * Returns the number of page that could not be moved.
602 */
603 int do_migrate_pages(struct mm_struct *mm,
604 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
605 {
606 LIST_HEAD(pagelist);
607 int busy = 0;
608 int err = 0;
609 nodemask_t tmp;
610
611 down_read(&mm->mmap_sem);
612
613 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
614 if (err)
615 goto out;
616
617 /*
618 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
619 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
620 * bit in 'tmp', and return that <source, dest> pair for migration.
621 * The pair of nodemasks 'to' and 'from' define the map.
622 *
623 * If no pair of bits is found that way, fallback to picking some
624 * pair of 'source' and 'dest' bits that are not the same. If the
625 * 'source' and 'dest' bits are the same, this represents a node
626 * that will be migrating to itself, so no pages need move.
627 *
628 * If no bits are left in 'tmp', or if all remaining bits left
629 * in 'tmp' correspond to the same bit in 'to', return false
630 * (nothing left to migrate).
631 *
632 * This lets us pick a pair of nodes to migrate between, such that
633 * if possible the dest node is not already occupied by some other
634 * source node, minimizing the risk of overloading the memory on a
635 * node that would happen if we migrated incoming memory to a node
636 * before migrating outgoing memory source that same node.
637 *
638 * A single scan of tmp is sufficient. As we go, we remember the
639 * most recent <s, d> pair that moved (s != d). If we find a pair
640 * that not only moved, but what's better, moved to an empty slot
641 * (d is not set in tmp), then we break out then, with that pair.
642 * Otherwise when we finish scannng from_tmp, we at least have the
643 * most recent <s, d> pair that moved. If we get all the way through
644 * the scan of tmp without finding any node that moved, much less
645 * moved to an empty node, then there is nothing left worth migrating.
646 */
647
648 tmp = *from_nodes;
649 while (!nodes_empty(tmp)) {
650 int s,d;
651 int source = -1;
652 int dest = 0;
653
654 for_each_node_mask(s, tmp) {
655 d = node_remap(s, *from_nodes, *to_nodes);
656 if (s == d)
657 continue;
658
659 source = s; /* Node moved. Memorize */
660 dest = d;
661
662 /* dest not in remaining from nodes? */
663 if (!node_isset(dest, tmp))
664 break;
665 }
666 if (source == -1)
667 break;
668
669 node_clear(source, tmp);
670 err = migrate_to_node(mm, source, dest, flags);
671 if (err > 0)
672 busy += err;
673 if (err < 0)
674 break;
675 }
676 out:
677 up_read(&mm->mmap_sem);
678 if (err < 0)
679 return err;
680 return busy;
681
682 }
683
684 /*
685 * Allocate a new page for page migration based on vma policy.
686 * Start assuming that page is mapped by vma pointed to by @private.
687 * Search forward from there, if not. N.B., this assumes that the
688 * list of pages handed to migrate_pages()--which is how we get here--
689 * is in virtual address order.
690 */
691 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
692 {
693 struct vm_area_struct *vma = (struct vm_area_struct *)private;
694 unsigned long uninitialized_var(address);
695
696 while (vma) {
697 address = page_address_in_vma(page, vma);
698 if (address != -EFAULT)
699 break;
700 vma = vma->vm_next;
701 }
702
703 /*
704 * if !vma, alloc_page_vma() will use task or system default policy
705 */
706 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
707 }
708 #else
709
710 static void migrate_page_add(struct page *page, struct list_head *pagelist,
711 unsigned long flags)
712 {
713 }
714
715 int do_migrate_pages(struct mm_struct *mm,
716 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
717 {
718 return -ENOSYS;
719 }
720
721 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
722 {
723 return NULL;
724 }
725 #endif
726
727 static long do_mbind(unsigned long start, unsigned long len,
728 unsigned short mode, unsigned short mode_flags,
729 nodemask_t *nmask, unsigned long flags)
730 {
731 struct vm_area_struct *vma;
732 struct mm_struct *mm = current->mm;
733 struct mempolicy *new;
734 unsigned long end;
735 int err;
736 LIST_HEAD(pagelist);
737
738 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
739 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
740 return -EINVAL;
741 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
742 return -EPERM;
743
744 if (start & ~PAGE_MASK)
745 return -EINVAL;
746
747 if (mode == MPOL_DEFAULT)
748 flags &= ~MPOL_MF_STRICT;
749
750 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
751 end = start + len;
752
753 if (end < start)
754 return -EINVAL;
755 if (end == start)
756 return 0;
757
758 new = mpol_new(mode, mode_flags, nmask);
759 if (IS_ERR(new))
760 return PTR_ERR(new);
761
762 /*
763 * If we are using the default policy then operation
764 * on discontinuous address spaces is okay after all
765 */
766 if (!new)
767 flags |= MPOL_MF_DISCONTIG_OK;
768
769 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
770 start, start + len, mode, mode_flags,
771 nmask ? nodes_addr(*nmask)[0] : -1);
772
773 down_write(&mm->mmap_sem);
774 vma = check_range(mm, start, end, nmask,
775 flags | MPOL_MF_INVERT, &pagelist);
776
777 err = PTR_ERR(vma);
778 if (!IS_ERR(vma)) {
779 int nr_failed = 0;
780
781 err = mbind_range(vma, start, end, new);
782
783 if (!list_empty(&pagelist))
784 nr_failed = migrate_pages(&pagelist, new_vma_page,
785 (unsigned long)vma);
786
787 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
788 err = -EIO;
789 }
790
791 up_write(&mm->mmap_sem);
792 mpol_free(new);
793 return err;
794 }
795
796 /*
797 * User space interface with variable sized bitmaps for nodelists.
798 */
799
800 /* Copy a node mask from user space. */
801 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
802 unsigned long maxnode)
803 {
804 unsigned long k;
805 unsigned long nlongs;
806 unsigned long endmask;
807
808 --maxnode;
809 nodes_clear(*nodes);
810 if (maxnode == 0 || !nmask)
811 return 0;
812 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
813 return -EINVAL;
814
815 nlongs = BITS_TO_LONGS(maxnode);
816 if ((maxnode % BITS_PER_LONG) == 0)
817 endmask = ~0UL;
818 else
819 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
820
821 /* When the user specified more nodes than supported just check
822 if the non supported part is all zero. */
823 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
824 if (nlongs > PAGE_SIZE/sizeof(long))
825 return -EINVAL;
826 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
827 unsigned long t;
828 if (get_user(t, nmask + k))
829 return -EFAULT;
830 if (k == nlongs - 1) {
831 if (t & endmask)
832 return -EINVAL;
833 } else if (t)
834 return -EINVAL;
835 }
836 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
837 endmask = ~0UL;
838 }
839
840 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
841 return -EFAULT;
842 nodes_addr(*nodes)[nlongs-1] &= endmask;
843 return 0;
844 }
845
846 /* Copy a kernel node mask to user space */
847 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
848 nodemask_t *nodes)
849 {
850 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
851 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
852
853 if (copy > nbytes) {
854 if (copy > PAGE_SIZE)
855 return -EINVAL;
856 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
857 return -EFAULT;
858 copy = nbytes;
859 }
860 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
861 }
862
863 asmlinkage long sys_mbind(unsigned long start, unsigned long len,
864 unsigned long mode,
865 unsigned long __user *nmask, unsigned long maxnode,
866 unsigned flags)
867 {
868 nodemask_t nodes;
869 int err;
870 unsigned short mode_flags;
871
872 mode_flags = mode & MPOL_MODE_FLAGS;
873 mode &= ~MPOL_MODE_FLAGS;
874 if (mode >= MPOL_MAX)
875 return -EINVAL;
876 err = get_nodes(&nodes, nmask, maxnode);
877 if (err)
878 return err;
879 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
880 }
881
882 /* Set the process memory policy */
883 asmlinkage long sys_set_mempolicy(int mode, unsigned long __user *nmask,
884 unsigned long maxnode)
885 {
886 int err;
887 nodemask_t nodes;
888 unsigned short flags;
889
890 flags = mode & MPOL_MODE_FLAGS;
891 mode &= ~MPOL_MODE_FLAGS;
892 if ((unsigned int)mode >= MPOL_MAX)
893 return -EINVAL;
894 err = get_nodes(&nodes, nmask, maxnode);
895 if (err)
896 return err;
897 return do_set_mempolicy(mode, flags, &nodes);
898 }
899
900 asmlinkage long sys_migrate_pages(pid_t pid, unsigned long maxnode,
901 const unsigned long __user *old_nodes,
902 const unsigned long __user *new_nodes)
903 {
904 struct mm_struct *mm;
905 struct task_struct *task;
906 nodemask_t old;
907 nodemask_t new;
908 nodemask_t task_nodes;
909 int err;
910
911 err = get_nodes(&old, old_nodes, maxnode);
912 if (err)
913 return err;
914
915 err = get_nodes(&new, new_nodes, maxnode);
916 if (err)
917 return err;
918
919 /* Find the mm_struct */
920 read_lock(&tasklist_lock);
921 task = pid ? find_task_by_vpid(pid) : current;
922 if (!task) {
923 read_unlock(&tasklist_lock);
924 return -ESRCH;
925 }
926 mm = get_task_mm(task);
927 read_unlock(&tasklist_lock);
928
929 if (!mm)
930 return -EINVAL;
931
932 /*
933 * Check if this process has the right to modify the specified
934 * process. The right exists if the process has administrative
935 * capabilities, superuser privileges or the same
936 * userid as the target process.
937 */
938 if ((current->euid != task->suid) && (current->euid != task->uid) &&
939 (current->uid != task->suid) && (current->uid != task->uid) &&
940 !capable(CAP_SYS_NICE)) {
941 err = -EPERM;
942 goto out;
943 }
944
945 task_nodes = cpuset_mems_allowed(task);
946 /* Is the user allowed to access the target nodes? */
947 if (!nodes_subset(new, task_nodes) && !capable(CAP_SYS_NICE)) {
948 err = -EPERM;
949 goto out;
950 }
951
952 if (!nodes_subset(new, node_states[N_HIGH_MEMORY])) {
953 err = -EINVAL;
954 goto out;
955 }
956
957 err = security_task_movememory(task);
958 if (err)
959 goto out;
960
961 err = do_migrate_pages(mm, &old, &new,
962 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
963 out:
964 mmput(mm);
965 return err;
966 }
967
968
969 /* Retrieve NUMA policy */
970 asmlinkage long sys_get_mempolicy(int __user *policy,
971 unsigned long __user *nmask,
972 unsigned long maxnode,
973 unsigned long addr, unsigned long flags)
974 {
975 int err;
976 int uninitialized_var(pval);
977 nodemask_t nodes;
978
979 if (nmask != NULL && maxnode < MAX_NUMNODES)
980 return -EINVAL;
981
982 err = do_get_mempolicy(&pval, &nodes, addr, flags);
983
984 if (err)
985 return err;
986
987 if (policy && put_user(pval, policy))
988 return -EFAULT;
989
990 if (nmask)
991 err = copy_nodes_to_user(nmask, maxnode, &nodes);
992
993 return err;
994 }
995
996 #ifdef CONFIG_COMPAT
997
998 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
999 compat_ulong_t __user *nmask,
1000 compat_ulong_t maxnode,
1001 compat_ulong_t addr, compat_ulong_t flags)
1002 {
1003 long err;
1004 unsigned long __user *nm = NULL;
1005 unsigned long nr_bits, alloc_size;
1006 DECLARE_BITMAP(bm, MAX_NUMNODES);
1007
1008 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1009 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1010
1011 if (nmask)
1012 nm = compat_alloc_user_space(alloc_size);
1013
1014 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1015
1016 if (!err && nmask) {
1017 err = copy_from_user(bm, nm, alloc_size);
1018 /* ensure entire bitmap is zeroed */
1019 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1020 err |= compat_put_bitmap(nmask, bm, nr_bits);
1021 }
1022
1023 return err;
1024 }
1025
1026 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1027 compat_ulong_t maxnode)
1028 {
1029 long err = 0;
1030 unsigned long __user *nm = NULL;
1031 unsigned long nr_bits, alloc_size;
1032 DECLARE_BITMAP(bm, MAX_NUMNODES);
1033
1034 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1035 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1036
1037 if (nmask) {
1038 err = compat_get_bitmap(bm, nmask, nr_bits);
1039 nm = compat_alloc_user_space(alloc_size);
1040 err |= copy_to_user(nm, bm, alloc_size);
1041 }
1042
1043 if (err)
1044 return -EFAULT;
1045
1046 return sys_set_mempolicy(mode, nm, nr_bits+1);
1047 }
1048
1049 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1050 compat_ulong_t mode, compat_ulong_t __user *nmask,
1051 compat_ulong_t maxnode, compat_ulong_t flags)
1052 {
1053 long err = 0;
1054 unsigned long __user *nm = NULL;
1055 unsigned long nr_bits, alloc_size;
1056 nodemask_t bm;
1057
1058 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1059 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1060
1061 if (nmask) {
1062 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1063 nm = compat_alloc_user_space(alloc_size);
1064 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1065 }
1066
1067 if (err)
1068 return -EFAULT;
1069
1070 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1071 }
1072
1073 #endif
1074
1075 /*
1076 * get_vma_policy(@task, @vma, @addr)
1077 * @task - task for fallback if vma policy == default
1078 * @vma - virtual memory area whose policy is sought
1079 * @addr - address in @vma for shared policy lookup
1080 *
1081 * Returns effective policy for a VMA at specified address.
1082 * Falls back to @task or system default policy, as necessary.
1083 * Returned policy has extra reference count if shared, vma,
1084 * or some other task's policy [show_numa_maps() can pass
1085 * @task != current]. It is the caller's responsibility to
1086 * free the reference in these cases.
1087 */
1088 static struct mempolicy * get_vma_policy(struct task_struct *task,
1089 struct vm_area_struct *vma, unsigned long addr)
1090 {
1091 struct mempolicy *pol = task->mempolicy;
1092 int shared_pol = 0;
1093
1094 if (vma) {
1095 if (vma->vm_ops && vma->vm_ops->get_policy) {
1096 pol = vma->vm_ops->get_policy(vma, addr);
1097 shared_pol = 1; /* if pol non-NULL, add ref below */
1098 } else if (vma->vm_policy &&
1099 vma->vm_policy->policy != MPOL_DEFAULT)
1100 pol = vma->vm_policy;
1101 }
1102 if (!pol)
1103 pol = &default_policy;
1104 else if (!shared_pol && pol != current->mempolicy)
1105 mpol_get(pol); /* vma or other task's policy */
1106 return pol;
1107 }
1108
1109 /* Return a nodemask representing a mempolicy */
1110 static nodemask_t *nodemask_policy(gfp_t gfp, struct mempolicy *policy)
1111 {
1112 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1113 if (unlikely(policy->policy == MPOL_BIND) &&
1114 gfp_zone(gfp) >= policy_zone &&
1115 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1116 return &policy->v.nodes;
1117
1118 return NULL;
1119 }
1120
1121 /* Return a zonelist representing a mempolicy */
1122 static struct zonelist *zonelist_policy(gfp_t gfp, struct mempolicy *policy)
1123 {
1124 int nd;
1125
1126 switch (policy->policy) {
1127 case MPOL_PREFERRED:
1128 nd = policy->v.preferred_node;
1129 if (nd < 0)
1130 nd = numa_node_id();
1131 break;
1132 case MPOL_BIND:
1133 /*
1134 * Normally, MPOL_BIND allocations node-local are node-local
1135 * within the allowed nodemask. However, if __GFP_THISNODE is
1136 * set and the current node is part of the mask, we use the
1137 * the zonelist for the first node in the mask instead.
1138 */
1139 nd = numa_node_id();
1140 if (unlikely(gfp & __GFP_THISNODE) &&
1141 unlikely(!node_isset(nd, policy->v.nodes)))
1142 nd = first_node(policy->v.nodes);
1143 break;
1144 case MPOL_INTERLEAVE: /* should not happen */
1145 case MPOL_DEFAULT:
1146 nd = numa_node_id();
1147 break;
1148 default:
1149 nd = 0;
1150 BUG();
1151 }
1152 return node_zonelist(nd, gfp);
1153 }
1154
1155 /* Do dynamic interleaving for a process */
1156 static unsigned interleave_nodes(struct mempolicy *policy)
1157 {
1158 unsigned nid, next;
1159 struct task_struct *me = current;
1160
1161 nid = me->il_next;
1162 next = next_node(nid, policy->v.nodes);
1163 if (next >= MAX_NUMNODES)
1164 next = first_node(policy->v.nodes);
1165 if (next < MAX_NUMNODES)
1166 me->il_next = next;
1167 return nid;
1168 }
1169
1170 /*
1171 * Depending on the memory policy provide a node from which to allocate the
1172 * next slab entry.
1173 */
1174 unsigned slab_node(struct mempolicy *policy)
1175 {
1176 unsigned short pol = policy ? policy->policy : MPOL_DEFAULT;
1177
1178 switch (pol) {
1179 case MPOL_INTERLEAVE:
1180 return interleave_nodes(policy);
1181
1182 case MPOL_BIND: {
1183 /*
1184 * Follow bind policy behavior and start allocation at the
1185 * first node.
1186 */
1187 struct zonelist *zonelist;
1188 struct zone *zone;
1189 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1190 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1191 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1192 &policy->v.nodes,
1193 &zone);
1194 return zone->node;
1195 }
1196
1197 case MPOL_PREFERRED:
1198 if (policy->v.preferred_node >= 0)
1199 return policy->v.preferred_node;
1200 /* Fall through */
1201
1202 default:
1203 return numa_node_id();
1204 }
1205 }
1206
1207 /* Do static interleaving for a VMA with known offset. */
1208 static unsigned offset_il_node(struct mempolicy *pol,
1209 struct vm_area_struct *vma, unsigned long off)
1210 {
1211 unsigned nnodes = nodes_weight(pol->v.nodes);
1212 unsigned target;
1213 int c;
1214 int nid = -1;
1215
1216 if (!nnodes)
1217 return numa_node_id();
1218 target = (unsigned int)off % nnodes;
1219 c = 0;
1220 do {
1221 nid = next_node(nid, pol->v.nodes);
1222 c++;
1223 } while (c <= target);
1224 return nid;
1225 }
1226
1227 /* Determine a node number for interleave */
1228 static inline unsigned interleave_nid(struct mempolicy *pol,
1229 struct vm_area_struct *vma, unsigned long addr, int shift)
1230 {
1231 if (vma) {
1232 unsigned long off;
1233
1234 /*
1235 * for small pages, there is no difference between
1236 * shift and PAGE_SHIFT, so the bit-shift is safe.
1237 * for huge pages, since vm_pgoff is in units of small
1238 * pages, we need to shift off the always 0 bits to get
1239 * a useful offset.
1240 */
1241 BUG_ON(shift < PAGE_SHIFT);
1242 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1243 off += (addr - vma->vm_start) >> shift;
1244 return offset_il_node(pol, vma, off);
1245 } else
1246 return interleave_nodes(pol);
1247 }
1248
1249 #ifdef CONFIG_HUGETLBFS
1250 /*
1251 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1252 * @vma = virtual memory area whose policy is sought
1253 * @addr = address in @vma for shared policy lookup and interleave policy
1254 * @gfp_flags = for requested zone
1255 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1256 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1257 *
1258 * Returns a zonelist suitable for a huge page allocation.
1259 * If the effective policy is 'BIND, returns pointer to local node's zonelist,
1260 * and a pointer to the mempolicy's @nodemask for filtering the zonelist.
1261 * If it is also a policy for which get_vma_policy() returns an extra
1262 * reference, we must hold that reference until after the allocation.
1263 * In that case, return policy via @mpol so hugetlb allocation can drop
1264 * the reference. For non-'BIND referenced policies, we can/do drop the
1265 * reference here, so the caller doesn't need to know about the special case
1266 * for default and current task policy.
1267 */
1268 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1269 gfp_t gfp_flags, struct mempolicy **mpol,
1270 nodemask_t **nodemask)
1271 {
1272 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1273 struct zonelist *zl;
1274
1275 *mpol = NULL; /* probably no unref needed */
1276 *nodemask = NULL; /* assume !MPOL_BIND */
1277 if (pol->policy == MPOL_BIND) {
1278 *nodemask = &pol->v.nodes;
1279 } else if (pol->policy == MPOL_INTERLEAVE) {
1280 unsigned nid;
1281
1282 nid = interleave_nid(pol, vma, addr, HPAGE_SHIFT);
1283 if (unlikely(pol != &default_policy &&
1284 pol != current->mempolicy))
1285 __mpol_free(pol); /* finished with pol */
1286 return node_zonelist(nid, gfp_flags);
1287 }
1288
1289 zl = zonelist_policy(GFP_HIGHUSER, pol);
1290 if (unlikely(pol != &default_policy && pol != current->mempolicy)) {
1291 if (pol->policy != MPOL_BIND)
1292 __mpol_free(pol); /* finished with pol */
1293 else
1294 *mpol = pol; /* unref needed after allocation */
1295 }
1296 return zl;
1297 }
1298 #endif
1299
1300 /* Allocate a page in interleaved policy.
1301 Own path because it needs to do special accounting. */
1302 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1303 unsigned nid)
1304 {
1305 struct zonelist *zl;
1306 struct page *page;
1307
1308 zl = node_zonelist(nid, gfp);
1309 page = __alloc_pages(gfp, order, zl);
1310 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1311 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1312 return page;
1313 }
1314
1315 /**
1316 * alloc_page_vma - Allocate a page for a VMA.
1317 *
1318 * @gfp:
1319 * %GFP_USER user allocation.
1320 * %GFP_KERNEL kernel allocations,
1321 * %GFP_HIGHMEM highmem/user allocations,
1322 * %GFP_FS allocation should not call back into a file system.
1323 * %GFP_ATOMIC don't sleep.
1324 *
1325 * @vma: Pointer to VMA or NULL if not available.
1326 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1327 *
1328 * This function allocates a page from the kernel page pool and applies
1329 * a NUMA policy associated with the VMA or the current process.
1330 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1331 * mm_struct of the VMA to prevent it from going away. Should be used for
1332 * all allocations for pages that will be mapped into
1333 * user space. Returns NULL when no page can be allocated.
1334 *
1335 * Should be called with the mm_sem of the vma hold.
1336 */
1337 struct page *
1338 alloc_page_vma(gfp_t gfp, struct vm_area_struct *vma, unsigned long addr)
1339 {
1340 struct mempolicy *pol = get_vma_policy(current, vma, addr);
1341 struct zonelist *zl;
1342
1343 cpuset_update_task_memory_state();
1344
1345 if (unlikely(pol->policy == MPOL_INTERLEAVE)) {
1346 unsigned nid;
1347
1348 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT);
1349 if (unlikely(pol != &default_policy &&
1350 pol != current->mempolicy))
1351 __mpol_free(pol); /* finished with pol */
1352 return alloc_page_interleave(gfp, 0, nid);
1353 }
1354 zl = zonelist_policy(gfp, pol);
1355 if (pol != &default_policy && pol != current->mempolicy) {
1356 /*
1357 * slow path: ref counted policy -- shared or vma
1358 */
1359 struct page *page = __alloc_pages_nodemask(gfp, 0,
1360 zl, nodemask_policy(gfp, pol));
1361 __mpol_free(pol);
1362 return page;
1363 }
1364 /*
1365 * fast path: default or task policy
1366 */
1367 return __alloc_pages_nodemask(gfp, 0, zl, nodemask_policy(gfp, pol));
1368 }
1369
1370 /**
1371 * alloc_pages_current - Allocate pages.
1372 *
1373 * @gfp:
1374 * %GFP_USER user allocation,
1375 * %GFP_KERNEL kernel allocation,
1376 * %GFP_HIGHMEM highmem allocation,
1377 * %GFP_FS don't call back into a file system.
1378 * %GFP_ATOMIC don't sleep.
1379 * @order: Power of two of allocation size in pages. 0 is a single page.
1380 *
1381 * Allocate a page from the kernel page pool. When not in
1382 * interrupt context and apply the current process NUMA policy.
1383 * Returns NULL when no page can be allocated.
1384 *
1385 * Don't call cpuset_update_task_memory_state() unless
1386 * 1) it's ok to take cpuset_sem (can WAIT), and
1387 * 2) allocating for current task (not interrupt).
1388 */
1389 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1390 {
1391 struct mempolicy *pol = current->mempolicy;
1392
1393 if ((gfp & __GFP_WAIT) && !in_interrupt())
1394 cpuset_update_task_memory_state();
1395 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1396 pol = &default_policy;
1397 if (pol->policy == MPOL_INTERLEAVE)
1398 return alloc_page_interleave(gfp, order, interleave_nodes(pol));
1399 return __alloc_pages_nodemask(gfp, order,
1400 zonelist_policy(gfp, pol), nodemask_policy(gfp, pol));
1401 }
1402 EXPORT_SYMBOL(alloc_pages_current);
1403
1404 /*
1405 * If mpol_copy() sees current->cpuset == cpuset_being_rebound, then it
1406 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1407 * with the mems_allowed returned by cpuset_mems_allowed(). This
1408 * keeps mempolicies cpuset relative after its cpuset moves. See
1409 * further kernel/cpuset.c update_nodemask().
1410 */
1411
1412 /* Slow path of a mempolicy copy */
1413 struct mempolicy *__mpol_copy(struct mempolicy *old)
1414 {
1415 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1416
1417 if (!new)
1418 return ERR_PTR(-ENOMEM);
1419 if (current_cpuset_is_being_rebound()) {
1420 nodemask_t mems = cpuset_mems_allowed(current);
1421 mpol_rebind_policy(old, &mems);
1422 }
1423 *new = *old;
1424 atomic_set(&new->refcnt, 1);
1425 return new;
1426 }
1427
1428 static int mpol_match_intent(const struct mempolicy *a,
1429 const struct mempolicy *b)
1430 {
1431 if (a->flags != b->flags)
1432 return 0;
1433 if (!mpol_store_user_nodemask(a))
1434 return 1;
1435 return nodes_equal(a->w.user_nodemask, b->w.user_nodemask);
1436 }
1437
1438 /* Slow path of a mempolicy comparison */
1439 int __mpol_equal(struct mempolicy *a, struct mempolicy *b)
1440 {
1441 if (!a || !b)
1442 return 0;
1443 if (a->policy != b->policy)
1444 return 0;
1445 if (a->policy != MPOL_DEFAULT && !mpol_match_intent(a, b))
1446 return 0;
1447 switch (a->policy) {
1448 case MPOL_DEFAULT:
1449 return 1;
1450 case MPOL_BIND:
1451 /* Fall through */
1452 case MPOL_INTERLEAVE:
1453 return nodes_equal(a->v.nodes, b->v.nodes);
1454 case MPOL_PREFERRED:
1455 return a->v.preferred_node == b->v.preferred_node;
1456 default:
1457 BUG();
1458 return 0;
1459 }
1460 }
1461
1462 /* Slow path of a mpol destructor. */
1463 void __mpol_free(struct mempolicy *p)
1464 {
1465 if (!atomic_dec_and_test(&p->refcnt))
1466 return;
1467 p->policy = MPOL_DEFAULT;
1468 kmem_cache_free(policy_cache, p);
1469 }
1470
1471 /*
1472 * Shared memory backing store policy support.
1473 *
1474 * Remember policies even when nobody has shared memory mapped.
1475 * The policies are kept in Red-Black tree linked from the inode.
1476 * They are protected by the sp->lock spinlock, which should be held
1477 * for any accesses to the tree.
1478 */
1479
1480 /* lookup first element intersecting start-end */
1481 /* Caller holds sp->lock */
1482 static struct sp_node *
1483 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
1484 {
1485 struct rb_node *n = sp->root.rb_node;
1486
1487 while (n) {
1488 struct sp_node *p = rb_entry(n, struct sp_node, nd);
1489
1490 if (start >= p->end)
1491 n = n->rb_right;
1492 else if (end <= p->start)
1493 n = n->rb_left;
1494 else
1495 break;
1496 }
1497 if (!n)
1498 return NULL;
1499 for (;;) {
1500 struct sp_node *w = NULL;
1501 struct rb_node *prev = rb_prev(n);
1502 if (!prev)
1503 break;
1504 w = rb_entry(prev, struct sp_node, nd);
1505 if (w->end <= start)
1506 break;
1507 n = prev;
1508 }
1509 return rb_entry(n, struct sp_node, nd);
1510 }
1511
1512 /* Insert a new shared policy into the list. */
1513 /* Caller holds sp->lock */
1514 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
1515 {
1516 struct rb_node **p = &sp->root.rb_node;
1517 struct rb_node *parent = NULL;
1518 struct sp_node *nd;
1519
1520 while (*p) {
1521 parent = *p;
1522 nd = rb_entry(parent, struct sp_node, nd);
1523 if (new->start < nd->start)
1524 p = &(*p)->rb_left;
1525 else if (new->end > nd->end)
1526 p = &(*p)->rb_right;
1527 else
1528 BUG();
1529 }
1530 rb_link_node(&new->nd, parent, p);
1531 rb_insert_color(&new->nd, &sp->root);
1532 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
1533 new->policy ? new->policy->policy : 0);
1534 }
1535
1536 /* Find shared policy intersecting idx */
1537 struct mempolicy *
1538 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
1539 {
1540 struct mempolicy *pol = NULL;
1541 struct sp_node *sn;
1542
1543 if (!sp->root.rb_node)
1544 return NULL;
1545 spin_lock(&sp->lock);
1546 sn = sp_lookup(sp, idx, idx+1);
1547 if (sn) {
1548 mpol_get(sn->policy);
1549 pol = sn->policy;
1550 }
1551 spin_unlock(&sp->lock);
1552 return pol;
1553 }
1554
1555 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
1556 {
1557 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
1558 rb_erase(&n->nd, &sp->root);
1559 mpol_free(n->policy);
1560 kmem_cache_free(sn_cache, n);
1561 }
1562
1563 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
1564 struct mempolicy *pol)
1565 {
1566 struct sp_node *n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
1567
1568 if (!n)
1569 return NULL;
1570 n->start = start;
1571 n->end = end;
1572 mpol_get(pol);
1573 n->policy = pol;
1574 return n;
1575 }
1576
1577 /* Replace a policy range. */
1578 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
1579 unsigned long end, struct sp_node *new)
1580 {
1581 struct sp_node *n, *new2 = NULL;
1582
1583 restart:
1584 spin_lock(&sp->lock);
1585 n = sp_lookup(sp, start, end);
1586 /* Take care of old policies in the same range. */
1587 while (n && n->start < end) {
1588 struct rb_node *next = rb_next(&n->nd);
1589 if (n->start >= start) {
1590 if (n->end <= end)
1591 sp_delete(sp, n);
1592 else
1593 n->start = end;
1594 } else {
1595 /* Old policy spanning whole new range. */
1596 if (n->end > end) {
1597 if (!new2) {
1598 spin_unlock(&sp->lock);
1599 new2 = sp_alloc(end, n->end, n->policy);
1600 if (!new2)
1601 return -ENOMEM;
1602 goto restart;
1603 }
1604 n->end = start;
1605 sp_insert(sp, new2);
1606 new2 = NULL;
1607 break;
1608 } else
1609 n->end = start;
1610 }
1611 if (!next)
1612 break;
1613 n = rb_entry(next, struct sp_node, nd);
1614 }
1615 if (new)
1616 sp_insert(sp, new);
1617 spin_unlock(&sp->lock);
1618 if (new2) {
1619 mpol_free(new2->policy);
1620 kmem_cache_free(sn_cache, new2);
1621 }
1622 return 0;
1623 }
1624
1625 void mpol_shared_policy_init(struct shared_policy *info, unsigned short policy,
1626 unsigned short flags, nodemask_t *policy_nodes)
1627 {
1628 info->root = RB_ROOT;
1629 spin_lock_init(&info->lock);
1630
1631 if (policy != MPOL_DEFAULT) {
1632 struct mempolicy *newpol;
1633
1634 /* Falls back to MPOL_DEFAULT on any error */
1635 newpol = mpol_new(policy, flags, policy_nodes);
1636 if (!IS_ERR(newpol)) {
1637 /* Create pseudo-vma that contains just the policy */
1638 struct vm_area_struct pvma;
1639
1640 memset(&pvma, 0, sizeof(struct vm_area_struct));
1641 /* Policy covers entire file */
1642 pvma.vm_end = TASK_SIZE;
1643 mpol_set_shared_policy(info, &pvma, newpol);
1644 mpol_free(newpol);
1645 }
1646 }
1647 }
1648
1649 int mpol_set_shared_policy(struct shared_policy *info,
1650 struct vm_area_struct *vma, struct mempolicy *npol)
1651 {
1652 int err;
1653 struct sp_node *new = NULL;
1654 unsigned long sz = vma_pages(vma);
1655
1656 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
1657 vma->vm_pgoff,
1658 sz, npol ? npol->policy : -1,
1659 npol ? npol->flags : -1,
1660 npol ? nodes_addr(npol->v.nodes)[0] : -1);
1661
1662 if (npol) {
1663 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
1664 if (!new)
1665 return -ENOMEM;
1666 }
1667 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
1668 if (err && new)
1669 kmem_cache_free(sn_cache, new);
1670 return err;
1671 }
1672
1673 /* Free a backing policy store on inode delete. */
1674 void mpol_free_shared_policy(struct shared_policy *p)
1675 {
1676 struct sp_node *n;
1677 struct rb_node *next;
1678
1679 if (!p->root.rb_node)
1680 return;
1681 spin_lock(&p->lock);
1682 next = rb_first(&p->root);
1683 while (next) {
1684 n = rb_entry(next, struct sp_node, nd);
1685 next = rb_next(&n->nd);
1686 rb_erase(&n->nd, &p->root);
1687 mpol_free(n->policy);
1688 kmem_cache_free(sn_cache, n);
1689 }
1690 spin_unlock(&p->lock);
1691 }
1692
1693 /* assumes fs == KERNEL_DS */
1694 void __init numa_policy_init(void)
1695 {
1696 nodemask_t interleave_nodes;
1697 unsigned long largest = 0;
1698 int nid, prefer = 0;
1699
1700 policy_cache = kmem_cache_create("numa_policy",
1701 sizeof(struct mempolicy),
1702 0, SLAB_PANIC, NULL);
1703
1704 sn_cache = kmem_cache_create("shared_policy_node",
1705 sizeof(struct sp_node),
1706 0, SLAB_PANIC, NULL);
1707
1708 /*
1709 * Set interleaving policy for system init. Interleaving is only
1710 * enabled across suitably sized nodes (default is >= 16MB), or
1711 * fall back to the largest node if they're all smaller.
1712 */
1713 nodes_clear(interleave_nodes);
1714 for_each_node_state(nid, N_HIGH_MEMORY) {
1715 unsigned long total_pages = node_present_pages(nid);
1716
1717 /* Preserve the largest node */
1718 if (largest < total_pages) {
1719 largest = total_pages;
1720 prefer = nid;
1721 }
1722
1723 /* Interleave this node? */
1724 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
1725 node_set(nid, interleave_nodes);
1726 }
1727
1728 /* All too small, use the largest */
1729 if (unlikely(nodes_empty(interleave_nodes)))
1730 node_set(prefer, interleave_nodes);
1731
1732 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
1733 printk("numa_policy_init: interleaving failed\n");
1734 }
1735
1736 /* Reset policy of current process to default */
1737 void numa_default_policy(void)
1738 {
1739 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
1740 }
1741
1742 /* Migrate a policy to a different set of nodes */
1743 static void mpol_rebind_policy(struct mempolicy *pol,
1744 const nodemask_t *newmask)
1745 {
1746 nodemask_t tmp;
1747 int static_nodes;
1748
1749 if (!pol)
1750 return;
1751 static_nodes = pol->flags & MPOL_F_STATIC_NODES;
1752 if (!mpol_store_user_nodemask(pol) &&
1753 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
1754 return;
1755
1756 switch (pol->policy) {
1757 case MPOL_DEFAULT:
1758 break;
1759 case MPOL_BIND:
1760 /* Fall through */
1761 case MPOL_INTERLEAVE:
1762 if (static_nodes)
1763 nodes_and(tmp, pol->w.user_nodemask, *newmask);
1764 else {
1765 nodes_remap(tmp, pol->v.nodes,
1766 pol->w.cpuset_mems_allowed, *newmask);
1767 pol->w.cpuset_mems_allowed = *newmask;
1768 }
1769 pol->v.nodes = tmp;
1770 if (!node_isset(current->il_next, tmp)) {
1771 current->il_next = next_node(current->il_next, tmp);
1772 if (current->il_next >= MAX_NUMNODES)
1773 current->il_next = first_node(tmp);
1774 if (current->il_next >= MAX_NUMNODES)
1775 current->il_next = numa_node_id();
1776 }
1777 break;
1778 case MPOL_PREFERRED:
1779 if (static_nodes) {
1780 int node = first_node(pol->w.user_nodemask);
1781
1782 if (node_isset(node, *newmask))
1783 pol->v.preferred_node = node;
1784 else
1785 pol->v.preferred_node = -1;
1786 } else {
1787 pol->v.preferred_node = node_remap(pol->v.preferred_node,
1788 pol->w.cpuset_mems_allowed, *newmask);
1789 pol->w.cpuset_mems_allowed = *newmask;
1790 }
1791 break;
1792 default:
1793 BUG();
1794 break;
1795 }
1796 }
1797
1798 /*
1799 * Wrapper for mpol_rebind_policy() that just requires task
1800 * pointer, and updates task mempolicy.
1801 */
1802
1803 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new)
1804 {
1805 mpol_rebind_policy(tsk->mempolicy, new);
1806 }
1807
1808 /*
1809 * Rebind each vma in mm to new nodemask.
1810 *
1811 * Call holding a reference to mm. Takes mm->mmap_sem during call.
1812 */
1813
1814 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
1815 {
1816 struct vm_area_struct *vma;
1817
1818 down_write(&mm->mmap_sem);
1819 for (vma = mm->mmap; vma; vma = vma->vm_next)
1820 mpol_rebind_policy(vma->vm_policy, new);
1821 up_write(&mm->mmap_sem);
1822 }
1823
1824 /*
1825 * Display pages allocated per node and memory policy via /proc.
1826 */
1827
1828 static const char * const policy_types[] =
1829 { "default", "prefer", "bind", "interleave" };
1830
1831 /*
1832 * Convert a mempolicy into a string.
1833 * Returns the number of characters in buffer (if positive)
1834 * or an error (negative)
1835 */
1836 static inline int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
1837 {
1838 char *p = buffer;
1839 int l;
1840 nodemask_t nodes;
1841 unsigned short mode = pol ? pol->policy : MPOL_DEFAULT;
1842 unsigned short flags = pol ? pol->flags : 0;
1843
1844 switch (mode) {
1845 case MPOL_DEFAULT:
1846 nodes_clear(nodes);
1847 break;
1848
1849 case MPOL_PREFERRED:
1850 nodes_clear(nodes);
1851 node_set(pol->v.preferred_node, nodes);
1852 break;
1853
1854 case MPOL_BIND:
1855 /* Fall through */
1856 case MPOL_INTERLEAVE:
1857 nodes = pol->v.nodes;
1858 break;
1859
1860 default:
1861 BUG();
1862 return -EFAULT;
1863 }
1864
1865 l = strlen(policy_types[mode]);
1866 if (buffer + maxlen < p + l + 1)
1867 return -ENOSPC;
1868
1869 strcpy(p, policy_types[mode]);
1870 p += l;
1871
1872 if (flags) {
1873 int need_bar = 0;
1874
1875 if (buffer + maxlen < p + 2)
1876 return -ENOSPC;
1877 *p++ = '=';
1878
1879 if (flags & MPOL_F_STATIC_NODES)
1880 p += sprintf(p, "%sstatic", need_bar++ ? "|" : "");
1881 }
1882
1883 if (!nodes_empty(nodes)) {
1884 if (buffer + maxlen < p + 2)
1885 return -ENOSPC;
1886 *p++ = '=';
1887 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
1888 }
1889 return p - buffer;
1890 }
1891
1892 struct numa_maps {
1893 unsigned long pages;
1894 unsigned long anon;
1895 unsigned long active;
1896 unsigned long writeback;
1897 unsigned long mapcount_max;
1898 unsigned long dirty;
1899 unsigned long swapcache;
1900 unsigned long node[MAX_NUMNODES];
1901 };
1902
1903 static void gather_stats(struct page *page, void *private, int pte_dirty)
1904 {
1905 struct numa_maps *md = private;
1906 int count = page_mapcount(page);
1907
1908 md->pages++;
1909 if (pte_dirty || PageDirty(page))
1910 md->dirty++;
1911
1912 if (PageSwapCache(page))
1913 md->swapcache++;
1914
1915 if (PageActive(page))
1916 md->active++;
1917
1918 if (PageWriteback(page))
1919 md->writeback++;
1920
1921 if (PageAnon(page))
1922 md->anon++;
1923
1924 if (count > md->mapcount_max)
1925 md->mapcount_max = count;
1926
1927 md->node[page_to_nid(page)]++;
1928 }
1929
1930 #ifdef CONFIG_HUGETLB_PAGE
1931 static void check_huge_range(struct vm_area_struct *vma,
1932 unsigned long start, unsigned long end,
1933 struct numa_maps *md)
1934 {
1935 unsigned long addr;
1936 struct page *page;
1937
1938 for (addr = start; addr < end; addr += HPAGE_SIZE) {
1939 pte_t *ptep = huge_pte_offset(vma->vm_mm, addr & HPAGE_MASK);
1940 pte_t pte;
1941
1942 if (!ptep)
1943 continue;
1944
1945 pte = *ptep;
1946 if (pte_none(pte))
1947 continue;
1948
1949 page = pte_page(pte);
1950 if (!page)
1951 continue;
1952
1953 gather_stats(page, md, pte_dirty(*ptep));
1954 }
1955 }
1956 #else
1957 static inline void check_huge_range(struct vm_area_struct *vma,
1958 unsigned long start, unsigned long end,
1959 struct numa_maps *md)
1960 {
1961 }
1962 #endif
1963
1964 int show_numa_map(struct seq_file *m, void *v)
1965 {
1966 struct proc_maps_private *priv = m->private;
1967 struct vm_area_struct *vma = v;
1968 struct numa_maps *md;
1969 struct file *file = vma->vm_file;
1970 struct mm_struct *mm = vma->vm_mm;
1971 struct mempolicy *pol;
1972 int n;
1973 char buffer[50];
1974
1975 if (!mm)
1976 return 0;
1977
1978 md = kzalloc(sizeof(struct numa_maps), GFP_KERNEL);
1979 if (!md)
1980 return 0;
1981
1982 pol = get_vma_policy(priv->task, vma, vma->vm_start);
1983 mpol_to_str(buffer, sizeof(buffer), pol);
1984 /*
1985 * unref shared or other task's mempolicy
1986 */
1987 if (pol != &default_policy && pol != current->mempolicy)
1988 __mpol_free(pol);
1989
1990 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1991
1992 if (file) {
1993 seq_printf(m, " file=");
1994 seq_path(m, &file->f_path, "\n\t= ");
1995 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1996 seq_printf(m, " heap");
1997 } else if (vma->vm_start <= mm->start_stack &&
1998 vma->vm_end >= mm->start_stack) {
1999 seq_printf(m, " stack");
2000 }
2001
2002 if (is_vm_hugetlb_page(vma)) {
2003 check_huge_range(vma, vma->vm_start, vma->vm_end, md);
2004 seq_printf(m, " huge");
2005 } else {
2006 check_pgd_range(vma, vma->vm_start, vma->vm_end,
2007 &node_states[N_HIGH_MEMORY], MPOL_MF_STATS, md);
2008 }
2009
2010 if (!md->pages)
2011 goto out;
2012
2013 if (md->anon)
2014 seq_printf(m," anon=%lu",md->anon);
2015
2016 if (md->dirty)
2017 seq_printf(m," dirty=%lu",md->dirty);
2018
2019 if (md->pages != md->anon && md->pages != md->dirty)
2020 seq_printf(m, " mapped=%lu", md->pages);
2021
2022 if (md->mapcount_max > 1)
2023 seq_printf(m, " mapmax=%lu", md->mapcount_max);
2024
2025 if (md->swapcache)
2026 seq_printf(m," swapcache=%lu", md->swapcache);
2027
2028 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
2029 seq_printf(m," active=%lu", md->active);
2030
2031 if (md->writeback)
2032 seq_printf(m," writeback=%lu", md->writeback);
2033
2034 for_each_node_state(n, N_HIGH_MEMORY)
2035 if (md->node[n])
2036 seq_printf(m, " N%d=%lu", n, md->node[n]);
2037 out:
2038 seq_putc(m, '\n');
2039 kfree(md);
2040
2041 if (m->count < m->size)
2042 m->version = (vma != priv->tail_vma) ? vma->vm_start : 0;
2043 return 0;
2044 }
This page took 0.072471 seconds and 6 git commands to generate.