Merge tag 'edac_for_3.13' of git://git.kernel.org/pub/scm/linux/kernel/git/bp/bp
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39
40 #include <asm/tlbflush.h>
41
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/migrate.h>
44
45 #include "internal.h"
46
47 /*
48 * migrate_prep() needs to be called before we start compiling a list of pages
49 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
50 * undesirable, use migrate_prep_local()
51 */
52 int migrate_prep(void)
53 {
54 /*
55 * Clear the LRU lists so pages can be isolated.
56 * Note that pages may be moved off the LRU after we have
57 * drained them. Those pages will fail to migrate like other
58 * pages that may be busy.
59 */
60 lru_add_drain_all();
61
62 return 0;
63 }
64
65 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
66 int migrate_prep_local(void)
67 {
68 lru_add_drain();
69
70 return 0;
71 }
72
73 /*
74 * Add isolated pages on the list back to the LRU under page lock
75 * to avoid leaking evictable pages back onto unevictable list.
76 */
77 void putback_lru_pages(struct list_head *l)
78 {
79 struct page *page;
80 struct page *page2;
81
82 list_for_each_entry_safe(page, page2, l, lru) {
83 list_del(&page->lru);
84 dec_zone_page_state(page, NR_ISOLATED_ANON +
85 page_is_file_cache(page));
86 putback_lru_page(page);
87 }
88 }
89
90 /*
91 * Put previously isolated pages back onto the appropriate lists
92 * from where they were once taken off for compaction/migration.
93 *
94 * This function shall be used instead of putback_lru_pages(),
95 * whenever the isolated pageset has been built by isolate_migratepages_range()
96 */
97 void putback_movable_pages(struct list_head *l)
98 {
99 struct page *page;
100 struct page *page2;
101
102 list_for_each_entry_safe(page, page2, l, lru) {
103 if (unlikely(PageHuge(page))) {
104 putback_active_hugepage(page);
105 continue;
106 }
107 list_del(&page->lru);
108 dec_zone_page_state(page, NR_ISOLATED_ANON +
109 page_is_file_cache(page));
110 if (unlikely(isolated_balloon_page(page)))
111 balloon_page_putback(page);
112 else
113 putback_lru_page(page);
114 }
115 }
116
117 /*
118 * Restore a potential migration pte to a working pte entry
119 */
120 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
121 unsigned long addr, void *old)
122 {
123 struct mm_struct *mm = vma->vm_mm;
124 swp_entry_t entry;
125 pmd_t *pmd;
126 pte_t *ptep, pte;
127 spinlock_t *ptl;
128
129 if (unlikely(PageHuge(new))) {
130 ptep = huge_pte_offset(mm, addr);
131 if (!ptep)
132 goto out;
133 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
134 } else {
135 pmd = mm_find_pmd(mm, addr);
136 if (!pmd)
137 goto out;
138 if (pmd_trans_huge(*pmd))
139 goto out;
140
141 ptep = pte_offset_map(pmd, addr);
142
143 /*
144 * Peek to check is_swap_pte() before taking ptlock? No, we
145 * can race mremap's move_ptes(), which skips anon_vma lock.
146 */
147
148 ptl = pte_lockptr(mm, pmd);
149 }
150
151 spin_lock(ptl);
152 pte = *ptep;
153 if (!is_swap_pte(pte))
154 goto unlock;
155
156 entry = pte_to_swp_entry(pte);
157
158 if (!is_migration_entry(entry) ||
159 migration_entry_to_page(entry) != old)
160 goto unlock;
161
162 get_page(new);
163 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
164 if (pte_swp_soft_dirty(*ptep))
165 pte = pte_mksoft_dirty(pte);
166 if (is_write_migration_entry(entry))
167 pte = pte_mkwrite(pte);
168 #ifdef CONFIG_HUGETLB_PAGE
169 if (PageHuge(new)) {
170 pte = pte_mkhuge(pte);
171 pte = arch_make_huge_pte(pte, vma, new, 0);
172 }
173 #endif
174 flush_dcache_page(new);
175 set_pte_at(mm, addr, ptep, pte);
176
177 if (PageHuge(new)) {
178 if (PageAnon(new))
179 hugepage_add_anon_rmap(new, vma, addr);
180 else
181 page_dup_rmap(new);
182 } else if (PageAnon(new))
183 page_add_anon_rmap(new, vma, addr);
184 else
185 page_add_file_rmap(new);
186
187 /* No need to invalidate - it was non-present before */
188 update_mmu_cache(vma, addr, ptep);
189 unlock:
190 pte_unmap_unlock(ptep, ptl);
191 out:
192 return SWAP_AGAIN;
193 }
194
195 /*
196 * Get rid of all migration entries and replace them by
197 * references to the indicated page.
198 */
199 static void remove_migration_ptes(struct page *old, struct page *new)
200 {
201 rmap_walk(new, remove_migration_pte, old);
202 }
203
204 /*
205 * Something used the pte of a page under migration. We need to
206 * get to the page and wait until migration is finished.
207 * When we return from this function the fault will be retried.
208 */
209 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
210 spinlock_t *ptl)
211 {
212 pte_t pte;
213 swp_entry_t entry;
214 struct page *page;
215
216 spin_lock(ptl);
217 pte = *ptep;
218 if (!is_swap_pte(pte))
219 goto out;
220
221 entry = pte_to_swp_entry(pte);
222 if (!is_migration_entry(entry))
223 goto out;
224
225 page = migration_entry_to_page(entry);
226
227 /*
228 * Once radix-tree replacement of page migration started, page_count
229 * *must* be zero. And, we don't want to call wait_on_page_locked()
230 * against a page without get_page().
231 * So, we use get_page_unless_zero(), here. Even failed, page fault
232 * will occur again.
233 */
234 if (!get_page_unless_zero(page))
235 goto out;
236 pte_unmap_unlock(ptep, ptl);
237 wait_on_page_locked(page);
238 put_page(page);
239 return;
240 out:
241 pte_unmap_unlock(ptep, ptl);
242 }
243
244 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
245 unsigned long address)
246 {
247 spinlock_t *ptl = pte_lockptr(mm, pmd);
248 pte_t *ptep = pte_offset_map(pmd, address);
249 __migration_entry_wait(mm, ptep, ptl);
250 }
251
252 void migration_entry_wait_huge(struct vm_area_struct *vma,
253 struct mm_struct *mm, pte_t *pte)
254 {
255 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
256 __migration_entry_wait(mm, pte, ptl);
257 }
258
259 #ifdef CONFIG_BLOCK
260 /* Returns true if all buffers are successfully locked */
261 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
262 enum migrate_mode mode)
263 {
264 struct buffer_head *bh = head;
265
266 /* Simple case, sync compaction */
267 if (mode != MIGRATE_ASYNC) {
268 do {
269 get_bh(bh);
270 lock_buffer(bh);
271 bh = bh->b_this_page;
272
273 } while (bh != head);
274
275 return true;
276 }
277
278 /* async case, we cannot block on lock_buffer so use trylock_buffer */
279 do {
280 get_bh(bh);
281 if (!trylock_buffer(bh)) {
282 /*
283 * We failed to lock the buffer and cannot stall in
284 * async migration. Release the taken locks
285 */
286 struct buffer_head *failed_bh = bh;
287 put_bh(failed_bh);
288 bh = head;
289 while (bh != failed_bh) {
290 unlock_buffer(bh);
291 put_bh(bh);
292 bh = bh->b_this_page;
293 }
294 return false;
295 }
296
297 bh = bh->b_this_page;
298 } while (bh != head);
299 return true;
300 }
301 #else
302 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
303 enum migrate_mode mode)
304 {
305 return true;
306 }
307 #endif /* CONFIG_BLOCK */
308
309 /*
310 * Replace the page in the mapping.
311 *
312 * The number of remaining references must be:
313 * 1 for anonymous pages without a mapping
314 * 2 for pages with a mapping
315 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
316 */
317 int migrate_page_move_mapping(struct address_space *mapping,
318 struct page *newpage, struct page *page,
319 struct buffer_head *head, enum migrate_mode mode)
320 {
321 int expected_count = 0;
322 void **pslot;
323
324 if (!mapping) {
325 /* Anonymous page without mapping */
326 if (page_count(page) != 1)
327 return -EAGAIN;
328 return MIGRATEPAGE_SUCCESS;
329 }
330
331 spin_lock_irq(&mapping->tree_lock);
332
333 pslot = radix_tree_lookup_slot(&mapping->page_tree,
334 page_index(page));
335
336 expected_count = 2 + page_has_private(page);
337 if (page_count(page) != expected_count ||
338 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
339 spin_unlock_irq(&mapping->tree_lock);
340 return -EAGAIN;
341 }
342
343 if (!page_freeze_refs(page, expected_count)) {
344 spin_unlock_irq(&mapping->tree_lock);
345 return -EAGAIN;
346 }
347
348 /*
349 * In the async migration case of moving a page with buffers, lock the
350 * buffers using trylock before the mapping is moved. If the mapping
351 * was moved, we later failed to lock the buffers and could not move
352 * the mapping back due to an elevated page count, we would have to
353 * block waiting on other references to be dropped.
354 */
355 if (mode == MIGRATE_ASYNC && head &&
356 !buffer_migrate_lock_buffers(head, mode)) {
357 page_unfreeze_refs(page, expected_count);
358 spin_unlock_irq(&mapping->tree_lock);
359 return -EAGAIN;
360 }
361
362 /*
363 * Now we know that no one else is looking at the page.
364 */
365 get_page(newpage); /* add cache reference */
366 if (PageSwapCache(page)) {
367 SetPageSwapCache(newpage);
368 set_page_private(newpage, page_private(page));
369 }
370
371 radix_tree_replace_slot(pslot, newpage);
372
373 /*
374 * Drop cache reference from old page by unfreezing
375 * to one less reference.
376 * We know this isn't the last reference.
377 */
378 page_unfreeze_refs(page, expected_count - 1);
379
380 /*
381 * If moved to a different zone then also account
382 * the page for that zone. Other VM counters will be
383 * taken care of when we establish references to the
384 * new page and drop references to the old page.
385 *
386 * Note that anonymous pages are accounted for
387 * via NR_FILE_PAGES and NR_ANON_PAGES if they
388 * are mapped to swap space.
389 */
390 __dec_zone_page_state(page, NR_FILE_PAGES);
391 __inc_zone_page_state(newpage, NR_FILE_PAGES);
392 if (!PageSwapCache(page) && PageSwapBacked(page)) {
393 __dec_zone_page_state(page, NR_SHMEM);
394 __inc_zone_page_state(newpage, NR_SHMEM);
395 }
396 spin_unlock_irq(&mapping->tree_lock);
397
398 return MIGRATEPAGE_SUCCESS;
399 }
400
401 /*
402 * The expected number of remaining references is the same as that
403 * of migrate_page_move_mapping().
404 */
405 int migrate_huge_page_move_mapping(struct address_space *mapping,
406 struct page *newpage, struct page *page)
407 {
408 int expected_count;
409 void **pslot;
410
411 if (!mapping) {
412 if (page_count(page) != 1)
413 return -EAGAIN;
414 return MIGRATEPAGE_SUCCESS;
415 }
416
417 spin_lock_irq(&mapping->tree_lock);
418
419 pslot = radix_tree_lookup_slot(&mapping->page_tree,
420 page_index(page));
421
422 expected_count = 2 + page_has_private(page);
423 if (page_count(page) != expected_count ||
424 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
425 spin_unlock_irq(&mapping->tree_lock);
426 return -EAGAIN;
427 }
428
429 if (!page_freeze_refs(page, expected_count)) {
430 spin_unlock_irq(&mapping->tree_lock);
431 return -EAGAIN;
432 }
433
434 get_page(newpage);
435
436 radix_tree_replace_slot(pslot, newpage);
437
438 page_unfreeze_refs(page, expected_count - 1);
439
440 spin_unlock_irq(&mapping->tree_lock);
441 return MIGRATEPAGE_SUCCESS;
442 }
443
444 /*
445 * Copy the page to its new location
446 */
447 void migrate_page_copy(struct page *newpage, struct page *page)
448 {
449 int cpupid;
450
451 if (PageHuge(page) || PageTransHuge(page))
452 copy_huge_page(newpage, page);
453 else
454 copy_highpage(newpage, page);
455
456 if (PageError(page))
457 SetPageError(newpage);
458 if (PageReferenced(page))
459 SetPageReferenced(newpage);
460 if (PageUptodate(page))
461 SetPageUptodate(newpage);
462 if (TestClearPageActive(page)) {
463 VM_BUG_ON(PageUnevictable(page));
464 SetPageActive(newpage);
465 } else if (TestClearPageUnevictable(page))
466 SetPageUnevictable(newpage);
467 if (PageChecked(page))
468 SetPageChecked(newpage);
469 if (PageMappedToDisk(page))
470 SetPageMappedToDisk(newpage);
471
472 if (PageDirty(page)) {
473 clear_page_dirty_for_io(page);
474 /*
475 * Want to mark the page and the radix tree as dirty, and
476 * redo the accounting that clear_page_dirty_for_io undid,
477 * but we can't use set_page_dirty because that function
478 * is actually a signal that all of the page has become dirty.
479 * Whereas only part of our page may be dirty.
480 */
481 if (PageSwapBacked(page))
482 SetPageDirty(newpage);
483 else
484 __set_page_dirty_nobuffers(newpage);
485 }
486
487 /*
488 * Copy NUMA information to the new page, to prevent over-eager
489 * future migrations of this same page.
490 */
491 cpupid = page_cpupid_xchg_last(page, -1);
492 page_cpupid_xchg_last(newpage, cpupid);
493
494 mlock_migrate_page(newpage, page);
495 ksm_migrate_page(newpage, page);
496 /*
497 * Please do not reorder this without considering how mm/ksm.c's
498 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
499 */
500 ClearPageSwapCache(page);
501 ClearPagePrivate(page);
502 set_page_private(page, 0);
503
504 /*
505 * If any waiters have accumulated on the new page then
506 * wake them up.
507 */
508 if (PageWriteback(newpage))
509 end_page_writeback(newpage);
510 }
511
512 /************************************************************
513 * Migration functions
514 ***********************************************************/
515
516 /* Always fail migration. Used for mappings that are not movable */
517 int fail_migrate_page(struct address_space *mapping,
518 struct page *newpage, struct page *page)
519 {
520 return -EIO;
521 }
522 EXPORT_SYMBOL(fail_migrate_page);
523
524 /*
525 * Common logic to directly migrate a single page suitable for
526 * pages that do not use PagePrivate/PagePrivate2.
527 *
528 * Pages are locked upon entry and exit.
529 */
530 int migrate_page(struct address_space *mapping,
531 struct page *newpage, struct page *page,
532 enum migrate_mode mode)
533 {
534 int rc;
535
536 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
537
538 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode);
539
540 if (rc != MIGRATEPAGE_SUCCESS)
541 return rc;
542
543 migrate_page_copy(newpage, page);
544 return MIGRATEPAGE_SUCCESS;
545 }
546 EXPORT_SYMBOL(migrate_page);
547
548 #ifdef CONFIG_BLOCK
549 /*
550 * Migration function for pages with buffers. This function can only be used
551 * if the underlying filesystem guarantees that no other references to "page"
552 * exist.
553 */
554 int buffer_migrate_page(struct address_space *mapping,
555 struct page *newpage, struct page *page, enum migrate_mode mode)
556 {
557 struct buffer_head *bh, *head;
558 int rc;
559
560 if (!page_has_buffers(page))
561 return migrate_page(mapping, newpage, page, mode);
562
563 head = page_buffers(page);
564
565 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode);
566
567 if (rc != MIGRATEPAGE_SUCCESS)
568 return rc;
569
570 /*
571 * In the async case, migrate_page_move_mapping locked the buffers
572 * with an IRQ-safe spinlock held. In the sync case, the buffers
573 * need to be locked now
574 */
575 if (mode != MIGRATE_ASYNC)
576 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
577
578 ClearPagePrivate(page);
579 set_page_private(newpage, page_private(page));
580 set_page_private(page, 0);
581 put_page(page);
582 get_page(newpage);
583
584 bh = head;
585 do {
586 set_bh_page(bh, newpage, bh_offset(bh));
587 bh = bh->b_this_page;
588
589 } while (bh != head);
590
591 SetPagePrivate(newpage);
592
593 migrate_page_copy(newpage, page);
594
595 bh = head;
596 do {
597 unlock_buffer(bh);
598 put_bh(bh);
599 bh = bh->b_this_page;
600
601 } while (bh != head);
602
603 return MIGRATEPAGE_SUCCESS;
604 }
605 EXPORT_SYMBOL(buffer_migrate_page);
606 #endif
607
608 /*
609 * Writeback a page to clean the dirty state
610 */
611 static int writeout(struct address_space *mapping, struct page *page)
612 {
613 struct writeback_control wbc = {
614 .sync_mode = WB_SYNC_NONE,
615 .nr_to_write = 1,
616 .range_start = 0,
617 .range_end = LLONG_MAX,
618 .for_reclaim = 1
619 };
620 int rc;
621
622 if (!mapping->a_ops->writepage)
623 /* No write method for the address space */
624 return -EINVAL;
625
626 if (!clear_page_dirty_for_io(page))
627 /* Someone else already triggered a write */
628 return -EAGAIN;
629
630 /*
631 * A dirty page may imply that the underlying filesystem has
632 * the page on some queue. So the page must be clean for
633 * migration. Writeout may mean we loose the lock and the
634 * page state is no longer what we checked for earlier.
635 * At this point we know that the migration attempt cannot
636 * be successful.
637 */
638 remove_migration_ptes(page, page);
639
640 rc = mapping->a_ops->writepage(page, &wbc);
641
642 if (rc != AOP_WRITEPAGE_ACTIVATE)
643 /* unlocked. Relock */
644 lock_page(page);
645
646 return (rc < 0) ? -EIO : -EAGAIN;
647 }
648
649 /*
650 * Default handling if a filesystem does not provide a migration function.
651 */
652 static int fallback_migrate_page(struct address_space *mapping,
653 struct page *newpage, struct page *page, enum migrate_mode mode)
654 {
655 if (PageDirty(page)) {
656 /* Only writeback pages in full synchronous migration */
657 if (mode != MIGRATE_SYNC)
658 return -EBUSY;
659 return writeout(mapping, page);
660 }
661
662 /*
663 * Buffers may be managed in a filesystem specific way.
664 * We must have no buffers or drop them.
665 */
666 if (page_has_private(page) &&
667 !try_to_release_page(page, GFP_KERNEL))
668 return -EAGAIN;
669
670 return migrate_page(mapping, newpage, page, mode);
671 }
672
673 /*
674 * Move a page to a newly allocated page
675 * The page is locked and all ptes have been successfully removed.
676 *
677 * The new page will have replaced the old page if this function
678 * is successful.
679 *
680 * Return value:
681 * < 0 - error code
682 * MIGRATEPAGE_SUCCESS - success
683 */
684 static int move_to_new_page(struct page *newpage, struct page *page,
685 int remap_swapcache, enum migrate_mode mode)
686 {
687 struct address_space *mapping;
688 int rc;
689
690 /*
691 * Block others from accessing the page when we get around to
692 * establishing additional references. We are the only one
693 * holding a reference to the new page at this point.
694 */
695 if (!trylock_page(newpage))
696 BUG();
697
698 /* Prepare mapping for the new page.*/
699 newpage->index = page->index;
700 newpage->mapping = page->mapping;
701 if (PageSwapBacked(page))
702 SetPageSwapBacked(newpage);
703
704 mapping = page_mapping(page);
705 if (!mapping)
706 rc = migrate_page(mapping, newpage, page, mode);
707 else if (mapping->a_ops->migratepage)
708 /*
709 * Most pages have a mapping and most filesystems provide a
710 * migratepage callback. Anonymous pages are part of swap
711 * space which also has its own migratepage callback. This
712 * is the most common path for page migration.
713 */
714 rc = mapping->a_ops->migratepage(mapping,
715 newpage, page, mode);
716 else
717 rc = fallback_migrate_page(mapping, newpage, page, mode);
718
719 if (rc != MIGRATEPAGE_SUCCESS) {
720 newpage->mapping = NULL;
721 } else {
722 if (remap_swapcache)
723 remove_migration_ptes(page, newpage);
724 page->mapping = NULL;
725 }
726
727 unlock_page(newpage);
728
729 return rc;
730 }
731
732 static int __unmap_and_move(struct page *page, struct page *newpage,
733 int force, enum migrate_mode mode)
734 {
735 int rc = -EAGAIN;
736 int remap_swapcache = 1;
737 struct mem_cgroup *mem;
738 struct anon_vma *anon_vma = NULL;
739
740 if (!trylock_page(page)) {
741 if (!force || mode == MIGRATE_ASYNC)
742 goto out;
743
744 /*
745 * It's not safe for direct compaction to call lock_page.
746 * For example, during page readahead pages are added locked
747 * to the LRU. Later, when the IO completes the pages are
748 * marked uptodate and unlocked. However, the queueing
749 * could be merging multiple pages for one bio (e.g.
750 * mpage_readpages). If an allocation happens for the
751 * second or third page, the process can end up locking
752 * the same page twice and deadlocking. Rather than
753 * trying to be clever about what pages can be locked,
754 * avoid the use of lock_page for direct compaction
755 * altogether.
756 */
757 if (current->flags & PF_MEMALLOC)
758 goto out;
759
760 lock_page(page);
761 }
762
763 /* charge against new page */
764 mem_cgroup_prepare_migration(page, newpage, &mem);
765
766 if (PageWriteback(page)) {
767 /*
768 * Only in the case of a full synchronous migration is it
769 * necessary to wait for PageWriteback. In the async case,
770 * the retry loop is too short and in the sync-light case,
771 * the overhead of stalling is too much
772 */
773 if (mode != MIGRATE_SYNC) {
774 rc = -EBUSY;
775 goto uncharge;
776 }
777 if (!force)
778 goto uncharge;
779 wait_on_page_writeback(page);
780 }
781 /*
782 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
783 * we cannot notice that anon_vma is freed while we migrates a page.
784 * This get_anon_vma() delays freeing anon_vma pointer until the end
785 * of migration. File cache pages are no problem because of page_lock()
786 * File Caches may use write_page() or lock_page() in migration, then,
787 * just care Anon page here.
788 */
789 if (PageAnon(page) && !PageKsm(page)) {
790 /*
791 * Only page_lock_anon_vma_read() understands the subtleties of
792 * getting a hold on an anon_vma from outside one of its mms.
793 */
794 anon_vma = page_get_anon_vma(page);
795 if (anon_vma) {
796 /*
797 * Anon page
798 */
799 } else if (PageSwapCache(page)) {
800 /*
801 * We cannot be sure that the anon_vma of an unmapped
802 * swapcache page is safe to use because we don't
803 * know in advance if the VMA that this page belonged
804 * to still exists. If the VMA and others sharing the
805 * data have been freed, then the anon_vma could
806 * already be invalid.
807 *
808 * To avoid this possibility, swapcache pages get
809 * migrated but are not remapped when migration
810 * completes
811 */
812 remap_swapcache = 0;
813 } else {
814 goto uncharge;
815 }
816 }
817
818 if (unlikely(balloon_page_movable(page))) {
819 /*
820 * A ballooned page does not need any special attention from
821 * physical to virtual reverse mapping procedures.
822 * Skip any attempt to unmap PTEs or to remap swap cache,
823 * in order to avoid burning cycles at rmap level, and perform
824 * the page migration right away (proteced by page lock).
825 */
826 rc = balloon_page_migrate(newpage, page, mode);
827 goto uncharge;
828 }
829
830 /*
831 * Corner case handling:
832 * 1. When a new swap-cache page is read into, it is added to the LRU
833 * and treated as swapcache but it has no rmap yet.
834 * Calling try_to_unmap() against a page->mapping==NULL page will
835 * trigger a BUG. So handle it here.
836 * 2. An orphaned page (see truncate_complete_page) might have
837 * fs-private metadata. The page can be picked up due to memory
838 * offlining. Everywhere else except page reclaim, the page is
839 * invisible to the vm, so the page can not be migrated. So try to
840 * free the metadata, so the page can be freed.
841 */
842 if (!page->mapping) {
843 VM_BUG_ON(PageAnon(page));
844 if (page_has_private(page)) {
845 try_to_free_buffers(page);
846 goto uncharge;
847 }
848 goto skip_unmap;
849 }
850
851 /* Establish migration ptes or remove ptes */
852 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
853
854 skip_unmap:
855 if (!page_mapped(page))
856 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
857
858 if (rc && remap_swapcache)
859 remove_migration_ptes(page, page);
860
861 /* Drop an anon_vma reference if we took one */
862 if (anon_vma)
863 put_anon_vma(anon_vma);
864
865 uncharge:
866 mem_cgroup_end_migration(mem, page, newpage,
867 (rc == MIGRATEPAGE_SUCCESS ||
868 rc == MIGRATEPAGE_BALLOON_SUCCESS));
869 unlock_page(page);
870 out:
871 return rc;
872 }
873
874 /*
875 * Obtain the lock on page, remove all ptes and migrate the page
876 * to the newly allocated page in newpage.
877 */
878 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
879 struct page *page, int force, enum migrate_mode mode)
880 {
881 int rc = 0;
882 int *result = NULL;
883 struct page *newpage = get_new_page(page, private, &result);
884
885 if (!newpage)
886 return -ENOMEM;
887
888 if (page_count(page) == 1) {
889 /* page was freed from under us. So we are done. */
890 goto out;
891 }
892
893 if (unlikely(PageTransHuge(page)))
894 if (unlikely(split_huge_page(page)))
895 goto out;
896
897 rc = __unmap_and_move(page, newpage, force, mode);
898
899 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
900 /*
901 * A ballooned page has been migrated already.
902 * Now, it's the time to wrap-up counters,
903 * handle the page back to Buddy and return.
904 */
905 dec_zone_page_state(page, NR_ISOLATED_ANON +
906 page_is_file_cache(page));
907 balloon_page_free(page);
908 return MIGRATEPAGE_SUCCESS;
909 }
910 out:
911 if (rc != -EAGAIN) {
912 /*
913 * A page that has been migrated has all references
914 * removed and will be freed. A page that has not been
915 * migrated will have kepts its references and be
916 * restored.
917 */
918 list_del(&page->lru);
919 dec_zone_page_state(page, NR_ISOLATED_ANON +
920 page_is_file_cache(page));
921 putback_lru_page(page);
922 }
923 /*
924 * Move the new page to the LRU. If migration was not successful
925 * then this will free the page.
926 */
927 putback_lru_page(newpage);
928 if (result) {
929 if (rc)
930 *result = rc;
931 else
932 *result = page_to_nid(newpage);
933 }
934 return rc;
935 }
936
937 /*
938 * Counterpart of unmap_and_move_page() for hugepage migration.
939 *
940 * This function doesn't wait the completion of hugepage I/O
941 * because there is no race between I/O and migration for hugepage.
942 * Note that currently hugepage I/O occurs only in direct I/O
943 * where no lock is held and PG_writeback is irrelevant,
944 * and writeback status of all subpages are counted in the reference
945 * count of the head page (i.e. if all subpages of a 2MB hugepage are
946 * under direct I/O, the reference of the head page is 512 and a bit more.)
947 * This means that when we try to migrate hugepage whose subpages are
948 * doing direct I/O, some references remain after try_to_unmap() and
949 * hugepage migration fails without data corruption.
950 *
951 * There is also no race when direct I/O is issued on the page under migration,
952 * because then pte is replaced with migration swap entry and direct I/O code
953 * will wait in the page fault for migration to complete.
954 */
955 static int unmap_and_move_huge_page(new_page_t get_new_page,
956 unsigned long private, struct page *hpage,
957 int force, enum migrate_mode mode)
958 {
959 int rc = 0;
960 int *result = NULL;
961 struct page *new_hpage = get_new_page(hpage, private, &result);
962 struct anon_vma *anon_vma = NULL;
963
964 /*
965 * Movability of hugepages depends on architectures and hugepage size.
966 * This check is necessary because some callers of hugepage migration
967 * like soft offline and memory hotremove don't walk through page
968 * tables or check whether the hugepage is pmd-based or not before
969 * kicking migration.
970 */
971 if (!hugepage_migration_support(page_hstate(hpage)))
972 return -ENOSYS;
973
974 if (!new_hpage)
975 return -ENOMEM;
976
977 rc = -EAGAIN;
978
979 if (!trylock_page(hpage)) {
980 if (!force || mode != MIGRATE_SYNC)
981 goto out;
982 lock_page(hpage);
983 }
984
985 if (PageAnon(hpage))
986 anon_vma = page_get_anon_vma(hpage);
987
988 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
989
990 if (!page_mapped(hpage))
991 rc = move_to_new_page(new_hpage, hpage, 1, mode);
992
993 if (rc)
994 remove_migration_ptes(hpage, hpage);
995
996 if (anon_vma)
997 put_anon_vma(anon_vma);
998
999 if (!rc)
1000 hugetlb_cgroup_migrate(hpage, new_hpage);
1001
1002 unlock_page(hpage);
1003 out:
1004 if (rc != -EAGAIN)
1005 putback_active_hugepage(hpage);
1006 put_page(new_hpage);
1007 if (result) {
1008 if (rc)
1009 *result = rc;
1010 else
1011 *result = page_to_nid(new_hpage);
1012 }
1013 return rc;
1014 }
1015
1016 /*
1017 * migrate_pages - migrate the pages specified in a list, to the free pages
1018 * supplied as the target for the page migration
1019 *
1020 * @from: The list of pages to be migrated.
1021 * @get_new_page: The function used to allocate free pages to be used
1022 * as the target of the page migration.
1023 * @private: Private data to be passed on to get_new_page()
1024 * @mode: The migration mode that specifies the constraints for
1025 * page migration, if any.
1026 * @reason: The reason for page migration.
1027 *
1028 * The function returns after 10 attempts or if no pages are movable any more
1029 * because the list has become empty or no retryable pages exist any more.
1030 * The caller should call putback_lru_pages() to return pages to the LRU
1031 * or free list only if ret != 0.
1032 *
1033 * Returns the number of pages that were not migrated, or an error code.
1034 */
1035 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1036 unsigned long private, enum migrate_mode mode, int reason)
1037 {
1038 int retry = 1;
1039 int nr_failed = 0;
1040 int nr_succeeded = 0;
1041 int pass = 0;
1042 struct page *page;
1043 struct page *page2;
1044 int swapwrite = current->flags & PF_SWAPWRITE;
1045 int rc;
1046
1047 if (!swapwrite)
1048 current->flags |= PF_SWAPWRITE;
1049
1050 for(pass = 0; pass < 10 && retry; pass++) {
1051 retry = 0;
1052
1053 list_for_each_entry_safe(page, page2, from, lru) {
1054 cond_resched();
1055
1056 if (PageHuge(page))
1057 rc = unmap_and_move_huge_page(get_new_page,
1058 private, page, pass > 2, mode);
1059 else
1060 rc = unmap_and_move(get_new_page, private,
1061 page, pass > 2, mode);
1062
1063 switch(rc) {
1064 case -ENOMEM:
1065 goto out;
1066 case -EAGAIN:
1067 retry++;
1068 break;
1069 case MIGRATEPAGE_SUCCESS:
1070 nr_succeeded++;
1071 break;
1072 default:
1073 /* Permanent failure */
1074 nr_failed++;
1075 break;
1076 }
1077 }
1078 }
1079 rc = nr_failed + retry;
1080 out:
1081 if (nr_succeeded)
1082 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1083 if (nr_failed)
1084 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1085 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1086
1087 if (!swapwrite)
1088 current->flags &= ~PF_SWAPWRITE;
1089
1090 return rc;
1091 }
1092
1093 #ifdef CONFIG_NUMA
1094 /*
1095 * Move a list of individual pages
1096 */
1097 struct page_to_node {
1098 unsigned long addr;
1099 struct page *page;
1100 int node;
1101 int status;
1102 };
1103
1104 static struct page *new_page_node(struct page *p, unsigned long private,
1105 int **result)
1106 {
1107 struct page_to_node *pm = (struct page_to_node *)private;
1108
1109 while (pm->node != MAX_NUMNODES && pm->page != p)
1110 pm++;
1111
1112 if (pm->node == MAX_NUMNODES)
1113 return NULL;
1114
1115 *result = &pm->status;
1116
1117 if (PageHuge(p))
1118 return alloc_huge_page_node(page_hstate(compound_head(p)),
1119 pm->node);
1120 else
1121 return alloc_pages_exact_node(pm->node,
1122 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1123 }
1124
1125 /*
1126 * Move a set of pages as indicated in the pm array. The addr
1127 * field must be set to the virtual address of the page to be moved
1128 * and the node number must contain a valid target node.
1129 * The pm array ends with node = MAX_NUMNODES.
1130 */
1131 static int do_move_page_to_node_array(struct mm_struct *mm,
1132 struct page_to_node *pm,
1133 int migrate_all)
1134 {
1135 int err;
1136 struct page_to_node *pp;
1137 LIST_HEAD(pagelist);
1138
1139 down_read(&mm->mmap_sem);
1140
1141 /*
1142 * Build a list of pages to migrate
1143 */
1144 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1145 struct vm_area_struct *vma;
1146 struct page *page;
1147
1148 err = -EFAULT;
1149 vma = find_vma(mm, pp->addr);
1150 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1151 goto set_status;
1152
1153 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1154
1155 err = PTR_ERR(page);
1156 if (IS_ERR(page))
1157 goto set_status;
1158
1159 err = -ENOENT;
1160 if (!page)
1161 goto set_status;
1162
1163 /* Use PageReserved to check for zero page */
1164 if (PageReserved(page))
1165 goto put_and_set;
1166
1167 pp->page = page;
1168 err = page_to_nid(page);
1169
1170 if (err == pp->node)
1171 /*
1172 * Node already in the right place
1173 */
1174 goto put_and_set;
1175
1176 err = -EACCES;
1177 if (page_mapcount(page) > 1 &&
1178 !migrate_all)
1179 goto put_and_set;
1180
1181 if (PageHuge(page)) {
1182 isolate_huge_page(page, &pagelist);
1183 goto put_and_set;
1184 }
1185
1186 err = isolate_lru_page(page);
1187 if (!err) {
1188 list_add_tail(&page->lru, &pagelist);
1189 inc_zone_page_state(page, NR_ISOLATED_ANON +
1190 page_is_file_cache(page));
1191 }
1192 put_and_set:
1193 /*
1194 * Either remove the duplicate refcount from
1195 * isolate_lru_page() or drop the page ref if it was
1196 * not isolated.
1197 */
1198 put_page(page);
1199 set_status:
1200 pp->status = err;
1201 }
1202
1203 err = 0;
1204 if (!list_empty(&pagelist)) {
1205 err = migrate_pages(&pagelist, new_page_node,
1206 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1207 if (err)
1208 putback_movable_pages(&pagelist);
1209 }
1210
1211 up_read(&mm->mmap_sem);
1212 return err;
1213 }
1214
1215 /*
1216 * Migrate an array of page address onto an array of nodes and fill
1217 * the corresponding array of status.
1218 */
1219 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1220 unsigned long nr_pages,
1221 const void __user * __user *pages,
1222 const int __user *nodes,
1223 int __user *status, int flags)
1224 {
1225 struct page_to_node *pm;
1226 unsigned long chunk_nr_pages;
1227 unsigned long chunk_start;
1228 int err;
1229
1230 err = -ENOMEM;
1231 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1232 if (!pm)
1233 goto out;
1234
1235 migrate_prep();
1236
1237 /*
1238 * Store a chunk of page_to_node array in a page,
1239 * but keep the last one as a marker
1240 */
1241 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1242
1243 for (chunk_start = 0;
1244 chunk_start < nr_pages;
1245 chunk_start += chunk_nr_pages) {
1246 int j;
1247
1248 if (chunk_start + chunk_nr_pages > nr_pages)
1249 chunk_nr_pages = nr_pages - chunk_start;
1250
1251 /* fill the chunk pm with addrs and nodes from user-space */
1252 for (j = 0; j < chunk_nr_pages; j++) {
1253 const void __user *p;
1254 int node;
1255
1256 err = -EFAULT;
1257 if (get_user(p, pages + j + chunk_start))
1258 goto out_pm;
1259 pm[j].addr = (unsigned long) p;
1260
1261 if (get_user(node, nodes + j + chunk_start))
1262 goto out_pm;
1263
1264 err = -ENODEV;
1265 if (node < 0 || node >= MAX_NUMNODES)
1266 goto out_pm;
1267
1268 if (!node_state(node, N_MEMORY))
1269 goto out_pm;
1270
1271 err = -EACCES;
1272 if (!node_isset(node, task_nodes))
1273 goto out_pm;
1274
1275 pm[j].node = node;
1276 }
1277
1278 /* End marker for this chunk */
1279 pm[chunk_nr_pages].node = MAX_NUMNODES;
1280
1281 /* Migrate this chunk */
1282 err = do_move_page_to_node_array(mm, pm,
1283 flags & MPOL_MF_MOVE_ALL);
1284 if (err < 0)
1285 goto out_pm;
1286
1287 /* Return status information */
1288 for (j = 0; j < chunk_nr_pages; j++)
1289 if (put_user(pm[j].status, status + j + chunk_start)) {
1290 err = -EFAULT;
1291 goto out_pm;
1292 }
1293 }
1294 err = 0;
1295
1296 out_pm:
1297 free_page((unsigned long)pm);
1298 out:
1299 return err;
1300 }
1301
1302 /*
1303 * Determine the nodes of an array of pages and store it in an array of status.
1304 */
1305 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1306 const void __user **pages, int *status)
1307 {
1308 unsigned long i;
1309
1310 down_read(&mm->mmap_sem);
1311
1312 for (i = 0; i < nr_pages; i++) {
1313 unsigned long addr = (unsigned long)(*pages);
1314 struct vm_area_struct *vma;
1315 struct page *page;
1316 int err = -EFAULT;
1317
1318 vma = find_vma(mm, addr);
1319 if (!vma || addr < vma->vm_start)
1320 goto set_status;
1321
1322 page = follow_page(vma, addr, 0);
1323
1324 err = PTR_ERR(page);
1325 if (IS_ERR(page))
1326 goto set_status;
1327
1328 err = -ENOENT;
1329 /* Use PageReserved to check for zero page */
1330 if (!page || PageReserved(page))
1331 goto set_status;
1332
1333 err = page_to_nid(page);
1334 set_status:
1335 *status = err;
1336
1337 pages++;
1338 status++;
1339 }
1340
1341 up_read(&mm->mmap_sem);
1342 }
1343
1344 /*
1345 * Determine the nodes of a user array of pages and store it in
1346 * a user array of status.
1347 */
1348 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1349 const void __user * __user *pages,
1350 int __user *status)
1351 {
1352 #define DO_PAGES_STAT_CHUNK_NR 16
1353 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1354 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1355
1356 while (nr_pages) {
1357 unsigned long chunk_nr;
1358
1359 chunk_nr = nr_pages;
1360 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1361 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1362
1363 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1364 break;
1365
1366 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1367
1368 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1369 break;
1370
1371 pages += chunk_nr;
1372 status += chunk_nr;
1373 nr_pages -= chunk_nr;
1374 }
1375 return nr_pages ? -EFAULT : 0;
1376 }
1377
1378 /*
1379 * Move a list of pages in the address space of the currently executing
1380 * process.
1381 */
1382 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1383 const void __user * __user *, pages,
1384 const int __user *, nodes,
1385 int __user *, status, int, flags)
1386 {
1387 const struct cred *cred = current_cred(), *tcred;
1388 struct task_struct *task;
1389 struct mm_struct *mm;
1390 int err;
1391 nodemask_t task_nodes;
1392
1393 /* Check flags */
1394 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1395 return -EINVAL;
1396
1397 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1398 return -EPERM;
1399
1400 /* Find the mm_struct */
1401 rcu_read_lock();
1402 task = pid ? find_task_by_vpid(pid) : current;
1403 if (!task) {
1404 rcu_read_unlock();
1405 return -ESRCH;
1406 }
1407 get_task_struct(task);
1408
1409 /*
1410 * Check if this process has the right to modify the specified
1411 * process. The right exists if the process has administrative
1412 * capabilities, superuser privileges or the same
1413 * userid as the target process.
1414 */
1415 tcred = __task_cred(task);
1416 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1417 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1418 !capable(CAP_SYS_NICE)) {
1419 rcu_read_unlock();
1420 err = -EPERM;
1421 goto out;
1422 }
1423 rcu_read_unlock();
1424
1425 err = security_task_movememory(task);
1426 if (err)
1427 goto out;
1428
1429 task_nodes = cpuset_mems_allowed(task);
1430 mm = get_task_mm(task);
1431 put_task_struct(task);
1432
1433 if (!mm)
1434 return -EINVAL;
1435
1436 if (nodes)
1437 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1438 nodes, status, flags);
1439 else
1440 err = do_pages_stat(mm, nr_pages, pages, status);
1441
1442 mmput(mm);
1443 return err;
1444
1445 out:
1446 put_task_struct(task);
1447 return err;
1448 }
1449
1450 /*
1451 * Call migration functions in the vma_ops that may prepare
1452 * memory in a vm for migration. migration functions may perform
1453 * the migration for vmas that do not have an underlying page struct.
1454 */
1455 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1456 const nodemask_t *from, unsigned long flags)
1457 {
1458 struct vm_area_struct *vma;
1459 int err = 0;
1460
1461 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1462 if (vma->vm_ops && vma->vm_ops->migrate) {
1463 err = vma->vm_ops->migrate(vma, to, from, flags);
1464 if (err)
1465 break;
1466 }
1467 }
1468 return err;
1469 }
1470
1471 #ifdef CONFIG_NUMA_BALANCING
1472 /*
1473 * Returns true if this is a safe migration target node for misplaced NUMA
1474 * pages. Currently it only checks the watermarks which crude
1475 */
1476 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1477 unsigned long nr_migrate_pages)
1478 {
1479 int z;
1480 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1481 struct zone *zone = pgdat->node_zones + z;
1482
1483 if (!populated_zone(zone))
1484 continue;
1485
1486 if (!zone_reclaimable(zone))
1487 continue;
1488
1489 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1490 if (!zone_watermark_ok(zone, 0,
1491 high_wmark_pages(zone) +
1492 nr_migrate_pages,
1493 0, 0))
1494 continue;
1495 return true;
1496 }
1497 return false;
1498 }
1499
1500 static struct page *alloc_misplaced_dst_page(struct page *page,
1501 unsigned long data,
1502 int **result)
1503 {
1504 int nid = (int) data;
1505 struct page *newpage;
1506
1507 newpage = alloc_pages_exact_node(nid,
1508 (GFP_HIGHUSER_MOVABLE | GFP_THISNODE |
1509 __GFP_NOMEMALLOC | __GFP_NORETRY |
1510 __GFP_NOWARN) &
1511 ~GFP_IOFS, 0);
1512 if (newpage)
1513 page_cpupid_xchg_last(newpage, page_cpupid_last(page));
1514
1515 return newpage;
1516 }
1517
1518 /*
1519 * page migration rate limiting control.
1520 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1521 * window of time. Default here says do not migrate more than 1280M per second.
1522 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1523 * as it is faults that reset the window, pte updates will happen unconditionally
1524 * if there has not been a fault since @pteupdate_interval_millisecs after the
1525 * throttle window closed.
1526 */
1527 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1528 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1529 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1530
1531 /* Returns true if NUMA migration is currently rate limited */
1532 bool migrate_ratelimited(int node)
1533 {
1534 pg_data_t *pgdat = NODE_DATA(node);
1535
1536 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1537 msecs_to_jiffies(pteupdate_interval_millisecs)))
1538 return false;
1539
1540 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1541 return false;
1542
1543 return true;
1544 }
1545
1546 /* Returns true if the node is migrate rate-limited after the update */
1547 bool numamigrate_update_ratelimit(pg_data_t *pgdat, unsigned long nr_pages)
1548 {
1549 bool rate_limited = false;
1550
1551 /*
1552 * Rate-limit the amount of data that is being migrated to a node.
1553 * Optimal placement is no good if the memory bus is saturated and
1554 * all the time is being spent migrating!
1555 */
1556 spin_lock(&pgdat->numabalancing_migrate_lock);
1557 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1558 pgdat->numabalancing_migrate_nr_pages = 0;
1559 pgdat->numabalancing_migrate_next_window = jiffies +
1560 msecs_to_jiffies(migrate_interval_millisecs);
1561 }
1562 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages)
1563 rate_limited = true;
1564 else
1565 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1566 spin_unlock(&pgdat->numabalancing_migrate_lock);
1567
1568 return rate_limited;
1569 }
1570
1571 int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1572 {
1573 int page_lru;
1574
1575 VM_BUG_ON(compound_order(page) && !PageTransHuge(page));
1576
1577 /* Avoid migrating to a node that is nearly full */
1578 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1579 return 0;
1580
1581 if (isolate_lru_page(page))
1582 return 0;
1583
1584 /*
1585 * migrate_misplaced_transhuge_page() skips page migration's usual
1586 * check on page_count(), so we must do it here, now that the page
1587 * has been isolated: a GUP pin, or any other pin, prevents migration.
1588 * The expected page count is 3: 1 for page's mapcount and 1 for the
1589 * caller's pin and 1 for the reference taken by isolate_lru_page().
1590 */
1591 if (PageTransHuge(page) && page_count(page) != 3) {
1592 putback_lru_page(page);
1593 return 0;
1594 }
1595
1596 page_lru = page_is_file_cache(page);
1597 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1598 hpage_nr_pages(page));
1599
1600 /*
1601 * Isolating the page has taken another reference, so the
1602 * caller's reference can be safely dropped without the page
1603 * disappearing underneath us during migration.
1604 */
1605 put_page(page);
1606 return 1;
1607 }
1608
1609 /*
1610 * Attempt to migrate a misplaced page to the specified destination
1611 * node. Caller is expected to have an elevated reference count on
1612 * the page that will be dropped by this function before returning.
1613 */
1614 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1615 int node)
1616 {
1617 pg_data_t *pgdat = NODE_DATA(node);
1618 int isolated;
1619 int nr_remaining;
1620 LIST_HEAD(migratepages);
1621
1622 /*
1623 * Don't migrate file pages that are mapped in multiple processes
1624 * with execute permissions as they are probably shared libraries.
1625 */
1626 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1627 (vma->vm_flags & VM_EXEC))
1628 goto out;
1629
1630 /*
1631 * Rate-limit the amount of data that is being migrated to a node.
1632 * Optimal placement is no good if the memory bus is saturated and
1633 * all the time is being spent migrating!
1634 */
1635 if (numamigrate_update_ratelimit(pgdat, 1))
1636 goto out;
1637
1638 isolated = numamigrate_isolate_page(pgdat, page);
1639 if (!isolated)
1640 goto out;
1641
1642 list_add(&page->lru, &migratepages);
1643 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1644 node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
1645 if (nr_remaining) {
1646 putback_lru_pages(&migratepages);
1647 isolated = 0;
1648 } else
1649 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1650 BUG_ON(!list_empty(&migratepages));
1651 return isolated;
1652
1653 out:
1654 put_page(page);
1655 return 0;
1656 }
1657 #endif /* CONFIG_NUMA_BALANCING */
1658
1659 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1660 /*
1661 * Migrates a THP to a given target node. page must be locked and is unlocked
1662 * before returning.
1663 */
1664 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1665 struct vm_area_struct *vma,
1666 pmd_t *pmd, pmd_t entry,
1667 unsigned long address,
1668 struct page *page, int node)
1669 {
1670 spinlock_t *ptl;
1671 unsigned long haddr = address & HPAGE_PMD_MASK;
1672 pg_data_t *pgdat = NODE_DATA(node);
1673 int isolated = 0;
1674 struct page *new_page = NULL;
1675 struct mem_cgroup *memcg = NULL;
1676 int page_lru = page_is_file_cache(page);
1677
1678 /*
1679 * Rate-limit the amount of data that is being migrated to a node.
1680 * Optimal placement is no good if the memory bus is saturated and
1681 * all the time is being spent migrating!
1682 */
1683 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1684 goto out_dropref;
1685
1686 new_page = alloc_pages_node(node,
1687 (GFP_TRANSHUGE | GFP_THISNODE) & ~__GFP_WAIT, HPAGE_PMD_ORDER);
1688 if (!new_page)
1689 goto out_fail;
1690
1691 page_cpupid_xchg_last(new_page, page_cpupid_last(page));
1692
1693 isolated = numamigrate_isolate_page(pgdat, page);
1694 if (!isolated) {
1695 put_page(new_page);
1696 goto out_fail;
1697 }
1698
1699 /* Prepare a page as a migration target */
1700 __set_page_locked(new_page);
1701 SetPageSwapBacked(new_page);
1702
1703 /* anon mapping, we can simply copy page->mapping to the new page: */
1704 new_page->mapping = page->mapping;
1705 new_page->index = page->index;
1706 migrate_page_copy(new_page, page);
1707 WARN_ON(PageLRU(new_page));
1708
1709 /* Recheck the target PMD */
1710 ptl = pmd_lock(mm, pmd);
1711 if (unlikely(!pmd_same(*pmd, entry))) {
1712 spin_unlock(ptl);
1713
1714 /* Reverse changes made by migrate_page_copy() */
1715 if (TestClearPageActive(new_page))
1716 SetPageActive(page);
1717 if (TestClearPageUnevictable(new_page))
1718 SetPageUnevictable(page);
1719 mlock_migrate_page(page, new_page);
1720
1721 unlock_page(new_page);
1722 put_page(new_page); /* Free it */
1723
1724 /* Retake the callers reference and putback on LRU */
1725 get_page(page);
1726 putback_lru_page(page);
1727 mod_zone_page_state(page_zone(page),
1728 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1729 goto out_fail;
1730 }
1731
1732 /*
1733 * Traditional migration needs to prepare the memcg charge
1734 * transaction early to prevent the old page from being
1735 * uncharged when installing migration entries. Here we can
1736 * save the potential rollback and start the charge transfer
1737 * only when migration is already known to end successfully.
1738 */
1739 mem_cgroup_prepare_migration(page, new_page, &memcg);
1740
1741 entry = mk_pmd(new_page, vma->vm_page_prot);
1742 entry = pmd_mknonnuma(entry);
1743 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1744 entry = pmd_mkhuge(entry);
1745
1746 pmdp_clear_flush(vma, haddr, pmd);
1747 set_pmd_at(mm, haddr, pmd, entry);
1748 page_add_new_anon_rmap(new_page, vma, haddr);
1749 update_mmu_cache_pmd(vma, address, &entry);
1750 page_remove_rmap(page);
1751 /*
1752 * Finish the charge transaction under the page table lock to
1753 * prevent split_huge_page() from dividing up the charge
1754 * before it's fully transferred to the new page.
1755 */
1756 mem_cgroup_end_migration(memcg, page, new_page, true);
1757 spin_unlock(ptl);
1758
1759 unlock_page(new_page);
1760 unlock_page(page);
1761 put_page(page); /* Drop the rmap reference */
1762 put_page(page); /* Drop the LRU isolation reference */
1763
1764 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1765 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1766
1767 mod_zone_page_state(page_zone(page),
1768 NR_ISOLATED_ANON + page_lru,
1769 -HPAGE_PMD_NR);
1770 return isolated;
1771
1772 out_fail:
1773 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1774 out_dropref:
1775 entry = pmd_mknonnuma(entry);
1776 set_pmd_at(mm, haddr, pmd, entry);
1777 update_mmu_cache_pmd(vma, address, &entry);
1778
1779 unlock_page(page);
1780 put_page(page);
1781 return 0;
1782 }
1783 #endif /* CONFIG_NUMA_BALANCING */
1784
1785 #endif /* CONFIG_NUMA */
This page took 0.069556 seconds and 5 git commands to generate.