mm: migration: share the anon_vma ref counts between KSM and page migration
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/gfp.h>
36
37 #include "internal.h"
38
39 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40
41 /*
42 * migrate_prep() needs to be called before we start compiling a list of pages
43 * to be migrated using isolate_lru_page().
44 */
45 int migrate_prep(void)
46 {
47 /*
48 * Clear the LRU lists so pages can be isolated.
49 * Note that pages may be moved off the LRU after we have
50 * drained them. Those pages will fail to migrate like other
51 * pages that may be busy.
52 */
53 lru_add_drain_all();
54
55 return 0;
56 }
57
58 /*
59 * Add isolated pages on the list back to the LRU under page lock
60 * to avoid leaking evictable pages back onto unevictable list.
61 */
62 void putback_lru_pages(struct list_head *l)
63 {
64 struct page *page;
65 struct page *page2;
66
67 list_for_each_entry_safe(page, page2, l, lru) {
68 list_del(&page->lru);
69 dec_zone_page_state(page, NR_ISOLATED_ANON +
70 page_is_file_cache(page));
71 putback_lru_page(page);
72 }
73 }
74
75 /*
76 * Restore a potential migration pte to a working pte entry
77 */
78 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
79 unsigned long addr, void *old)
80 {
81 struct mm_struct *mm = vma->vm_mm;
82 swp_entry_t entry;
83 pgd_t *pgd;
84 pud_t *pud;
85 pmd_t *pmd;
86 pte_t *ptep, pte;
87 spinlock_t *ptl;
88
89 pgd = pgd_offset(mm, addr);
90 if (!pgd_present(*pgd))
91 goto out;
92
93 pud = pud_offset(pgd, addr);
94 if (!pud_present(*pud))
95 goto out;
96
97 pmd = pmd_offset(pud, addr);
98 if (!pmd_present(*pmd))
99 goto out;
100
101 ptep = pte_offset_map(pmd, addr);
102
103 if (!is_swap_pte(*ptep)) {
104 pte_unmap(ptep);
105 goto out;
106 }
107
108 ptl = pte_lockptr(mm, pmd);
109 spin_lock(ptl);
110 pte = *ptep;
111 if (!is_swap_pte(pte))
112 goto unlock;
113
114 entry = pte_to_swp_entry(pte);
115
116 if (!is_migration_entry(entry) ||
117 migration_entry_to_page(entry) != old)
118 goto unlock;
119
120 get_page(new);
121 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
122 if (is_write_migration_entry(entry))
123 pte = pte_mkwrite(pte);
124 flush_cache_page(vma, addr, pte_pfn(pte));
125 set_pte_at(mm, addr, ptep, pte);
126
127 if (PageAnon(new))
128 page_add_anon_rmap(new, vma, addr);
129 else
130 page_add_file_rmap(new);
131
132 /* No need to invalidate - it was non-present before */
133 update_mmu_cache(vma, addr, ptep);
134 unlock:
135 pte_unmap_unlock(ptep, ptl);
136 out:
137 return SWAP_AGAIN;
138 }
139
140 /*
141 * Get rid of all migration entries and replace them by
142 * references to the indicated page.
143 */
144 static void remove_migration_ptes(struct page *old, struct page *new)
145 {
146 rmap_walk(new, remove_migration_pte, old);
147 }
148
149 /*
150 * Something used the pte of a page under migration. We need to
151 * get to the page and wait until migration is finished.
152 * When we return from this function the fault will be retried.
153 *
154 * This function is called from do_swap_page().
155 */
156 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
157 unsigned long address)
158 {
159 pte_t *ptep, pte;
160 spinlock_t *ptl;
161 swp_entry_t entry;
162 struct page *page;
163
164 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
165 pte = *ptep;
166 if (!is_swap_pte(pte))
167 goto out;
168
169 entry = pte_to_swp_entry(pte);
170 if (!is_migration_entry(entry))
171 goto out;
172
173 page = migration_entry_to_page(entry);
174
175 /*
176 * Once radix-tree replacement of page migration started, page_count
177 * *must* be zero. And, we don't want to call wait_on_page_locked()
178 * against a page without get_page().
179 * So, we use get_page_unless_zero(), here. Even failed, page fault
180 * will occur again.
181 */
182 if (!get_page_unless_zero(page))
183 goto out;
184 pte_unmap_unlock(ptep, ptl);
185 wait_on_page_locked(page);
186 put_page(page);
187 return;
188 out:
189 pte_unmap_unlock(ptep, ptl);
190 }
191
192 /*
193 * Replace the page in the mapping.
194 *
195 * The number of remaining references must be:
196 * 1 for anonymous pages without a mapping
197 * 2 for pages with a mapping
198 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
199 */
200 static int migrate_page_move_mapping(struct address_space *mapping,
201 struct page *newpage, struct page *page)
202 {
203 int expected_count;
204 void **pslot;
205
206 if (!mapping) {
207 /* Anonymous page without mapping */
208 if (page_count(page) != 1)
209 return -EAGAIN;
210 return 0;
211 }
212
213 spin_lock_irq(&mapping->tree_lock);
214
215 pslot = radix_tree_lookup_slot(&mapping->page_tree,
216 page_index(page));
217
218 expected_count = 2 + page_has_private(page);
219 if (page_count(page) != expected_count ||
220 (struct page *)radix_tree_deref_slot(pslot) != page) {
221 spin_unlock_irq(&mapping->tree_lock);
222 return -EAGAIN;
223 }
224
225 if (!page_freeze_refs(page, expected_count)) {
226 spin_unlock_irq(&mapping->tree_lock);
227 return -EAGAIN;
228 }
229
230 /*
231 * Now we know that no one else is looking at the page.
232 */
233 get_page(newpage); /* add cache reference */
234 if (PageSwapCache(page)) {
235 SetPageSwapCache(newpage);
236 set_page_private(newpage, page_private(page));
237 }
238
239 radix_tree_replace_slot(pslot, newpage);
240
241 page_unfreeze_refs(page, expected_count);
242 /*
243 * Drop cache reference from old page.
244 * We know this isn't the last reference.
245 */
246 __put_page(page);
247
248 /*
249 * If moved to a different zone then also account
250 * the page for that zone. Other VM counters will be
251 * taken care of when we establish references to the
252 * new page and drop references to the old page.
253 *
254 * Note that anonymous pages are accounted for
255 * via NR_FILE_PAGES and NR_ANON_PAGES if they
256 * are mapped to swap space.
257 */
258 __dec_zone_page_state(page, NR_FILE_PAGES);
259 __inc_zone_page_state(newpage, NR_FILE_PAGES);
260 if (PageSwapBacked(page)) {
261 __dec_zone_page_state(page, NR_SHMEM);
262 __inc_zone_page_state(newpage, NR_SHMEM);
263 }
264 spin_unlock_irq(&mapping->tree_lock);
265
266 return 0;
267 }
268
269 /*
270 * Copy the page to its new location
271 */
272 static void migrate_page_copy(struct page *newpage, struct page *page)
273 {
274 copy_highpage(newpage, page);
275
276 if (PageError(page))
277 SetPageError(newpage);
278 if (PageReferenced(page))
279 SetPageReferenced(newpage);
280 if (PageUptodate(page))
281 SetPageUptodate(newpage);
282 if (TestClearPageActive(page)) {
283 VM_BUG_ON(PageUnevictable(page));
284 SetPageActive(newpage);
285 } else if (TestClearPageUnevictable(page))
286 SetPageUnevictable(newpage);
287 if (PageChecked(page))
288 SetPageChecked(newpage);
289 if (PageMappedToDisk(page))
290 SetPageMappedToDisk(newpage);
291
292 if (PageDirty(page)) {
293 clear_page_dirty_for_io(page);
294 /*
295 * Want to mark the page and the radix tree as dirty, and
296 * redo the accounting that clear_page_dirty_for_io undid,
297 * but we can't use set_page_dirty because that function
298 * is actually a signal that all of the page has become dirty.
299 * Wheras only part of our page may be dirty.
300 */
301 __set_page_dirty_nobuffers(newpage);
302 }
303
304 mlock_migrate_page(newpage, page);
305 ksm_migrate_page(newpage, page);
306
307 ClearPageSwapCache(page);
308 ClearPagePrivate(page);
309 set_page_private(page, 0);
310 page->mapping = NULL;
311
312 /*
313 * If any waiters have accumulated on the new page then
314 * wake them up.
315 */
316 if (PageWriteback(newpage))
317 end_page_writeback(newpage);
318 }
319
320 /************************************************************
321 * Migration functions
322 ***********************************************************/
323
324 /* Always fail migration. Used for mappings that are not movable */
325 int fail_migrate_page(struct address_space *mapping,
326 struct page *newpage, struct page *page)
327 {
328 return -EIO;
329 }
330 EXPORT_SYMBOL(fail_migrate_page);
331
332 /*
333 * Common logic to directly migrate a single page suitable for
334 * pages that do not use PagePrivate/PagePrivate2.
335 *
336 * Pages are locked upon entry and exit.
337 */
338 int migrate_page(struct address_space *mapping,
339 struct page *newpage, struct page *page)
340 {
341 int rc;
342
343 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
344
345 rc = migrate_page_move_mapping(mapping, newpage, page);
346
347 if (rc)
348 return rc;
349
350 migrate_page_copy(newpage, page);
351 return 0;
352 }
353 EXPORT_SYMBOL(migrate_page);
354
355 #ifdef CONFIG_BLOCK
356 /*
357 * Migration function for pages with buffers. This function can only be used
358 * if the underlying filesystem guarantees that no other references to "page"
359 * exist.
360 */
361 int buffer_migrate_page(struct address_space *mapping,
362 struct page *newpage, struct page *page)
363 {
364 struct buffer_head *bh, *head;
365 int rc;
366
367 if (!page_has_buffers(page))
368 return migrate_page(mapping, newpage, page);
369
370 head = page_buffers(page);
371
372 rc = migrate_page_move_mapping(mapping, newpage, page);
373
374 if (rc)
375 return rc;
376
377 bh = head;
378 do {
379 get_bh(bh);
380 lock_buffer(bh);
381 bh = bh->b_this_page;
382
383 } while (bh != head);
384
385 ClearPagePrivate(page);
386 set_page_private(newpage, page_private(page));
387 set_page_private(page, 0);
388 put_page(page);
389 get_page(newpage);
390
391 bh = head;
392 do {
393 set_bh_page(bh, newpage, bh_offset(bh));
394 bh = bh->b_this_page;
395
396 } while (bh != head);
397
398 SetPagePrivate(newpage);
399
400 migrate_page_copy(newpage, page);
401
402 bh = head;
403 do {
404 unlock_buffer(bh);
405 put_bh(bh);
406 bh = bh->b_this_page;
407
408 } while (bh != head);
409
410 return 0;
411 }
412 EXPORT_SYMBOL(buffer_migrate_page);
413 #endif
414
415 /*
416 * Writeback a page to clean the dirty state
417 */
418 static int writeout(struct address_space *mapping, struct page *page)
419 {
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = 1,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .nonblocking = 1,
426 .for_reclaim = 1
427 };
428 int rc;
429
430 if (!mapping->a_ops->writepage)
431 /* No write method for the address space */
432 return -EINVAL;
433
434 if (!clear_page_dirty_for_io(page))
435 /* Someone else already triggered a write */
436 return -EAGAIN;
437
438 /*
439 * A dirty page may imply that the underlying filesystem has
440 * the page on some queue. So the page must be clean for
441 * migration. Writeout may mean we loose the lock and the
442 * page state is no longer what we checked for earlier.
443 * At this point we know that the migration attempt cannot
444 * be successful.
445 */
446 remove_migration_ptes(page, page);
447
448 rc = mapping->a_ops->writepage(page, &wbc);
449
450 if (rc != AOP_WRITEPAGE_ACTIVATE)
451 /* unlocked. Relock */
452 lock_page(page);
453
454 return (rc < 0) ? -EIO : -EAGAIN;
455 }
456
457 /*
458 * Default handling if a filesystem does not provide a migration function.
459 */
460 static int fallback_migrate_page(struct address_space *mapping,
461 struct page *newpage, struct page *page)
462 {
463 if (PageDirty(page))
464 return writeout(mapping, page);
465
466 /*
467 * Buffers may be managed in a filesystem specific way.
468 * We must have no buffers or drop them.
469 */
470 if (page_has_private(page) &&
471 !try_to_release_page(page, GFP_KERNEL))
472 return -EAGAIN;
473
474 return migrate_page(mapping, newpage, page);
475 }
476
477 /*
478 * Move a page to a newly allocated page
479 * The page is locked and all ptes have been successfully removed.
480 *
481 * The new page will have replaced the old page if this function
482 * is successful.
483 *
484 * Return value:
485 * < 0 - error code
486 * == 0 - success
487 */
488 static int move_to_new_page(struct page *newpage, struct page *page)
489 {
490 struct address_space *mapping;
491 int rc;
492
493 /*
494 * Block others from accessing the page when we get around to
495 * establishing additional references. We are the only one
496 * holding a reference to the new page at this point.
497 */
498 if (!trylock_page(newpage))
499 BUG();
500
501 /* Prepare mapping for the new page.*/
502 newpage->index = page->index;
503 newpage->mapping = page->mapping;
504 if (PageSwapBacked(page))
505 SetPageSwapBacked(newpage);
506
507 mapping = page_mapping(page);
508 if (!mapping)
509 rc = migrate_page(mapping, newpage, page);
510 else if (mapping->a_ops->migratepage)
511 /*
512 * Most pages have a mapping and most filesystems
513 * should provide a migration function. Anonymous
514 * pages are part of swap space which also has its
515 * own migration function. This is the most common
516 * path for page migration.
517 */
518 rc = mapping->a_ops->migratepage(mapping,
519 newpage, page);
520 else
521 rc = fallback_migrate_page(mapping, newpage, page);
522
523 if (!rc)
524 remove_migration_ptes(page, newpage);
525 else
526 newpage->mapping = NULL;
527
528 unlock_page(newpage);
529
530 return rc;
531 }
532
533 /*
534 * Obtain the lock on page, remove all ptes and migrate the page
535 * to the newly allocated page in newpage.
536 */
537 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
538 struct page *page, int force, int offlining)
539 {
540 int rc = 0;
541 int *result = NULL;
542 struct page *newpage = get_new_page(page, private, &result);
543 int rcu_locked = 0;
544 int charge = 0;
545 struct mem_cgroup *mem = NULL;
546 struct anon_vma *anon_vma = NULL;
547
548 if (!newpage)
549 return -ENOMEM;
550
551 if (page_count(page) == 1) {
552 /* page was freed from under us. So we are done. */
553 goto move_newpage;
554 }
555
556 /* prepare cgroup just returns 0 or -ENOMEM */
557 rc = -EAGAIN;
558
559 if (!trylock_page(page)) {
560 if (!force)
561 goto move_newpage;
562 lock_page(page);
563 }
564
565 /*
566 * Only memory hotplug's offline_pages() caller has locked out KSM,
567 * and can safely migrate a KSM page. The other cases have skipped
568 * PageKsm along with PageReserved - but it is only now when we have
569 * the page lock that we can be certain it will not go KSM beneath us
570 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
571 * its pagecount raised, but only here do we take the page lock which
572 * serializes that).
573 */
574 if (PageKsm(page) && !offlining) {
575 rc = -EBUSY;
576 goto unlock;
577 }
578
579 /* charge against new page */
580 charge = mem_cgroup_prepare_migration(page, &mem);
581 if (charge == -ENOMEM) {
582 rc = -ENOMEM;
583 goto unlock;
584 }
585 BUG_ON(charge);
586
587 if (PageWriteback(page)) {
588 if (!force)
589 goto uncharge;
590 wait_on_page_writeback(page);
591 }
592 /*
593 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
594 * we cannot notice that anon_vma is freed while we migrates a page.
595 * This rcu_read_lock() delays freeing anon_vma pointer until the end
596 * of migration. File cache pages are no problem because of page_lock()
597 * File Caches may use write_page() or lock_page() in migration, then,
598 * just care Anon page here.
599 */
600 if (PageAnon(page)) {
601 rcu_read_lock();
602 rcu_locked = 1;
603 anon_vma = page_anon_vma(page);
604 atomic_inc(&anon_vma->external_refcount);
605 }
606
607 /*
608 * Corner case handling:
609 * 1. When a new swap-cache page is read into, it is added to the LRU
610 * and treated as swapcache but it has no rmap yet.
611 * Calling try_to_unmap() against a page->mapping==NULL page will
612 * trigger a BUG. So handle it here.
613 * 2. An orphaned page (see truncate_complete_page) might have
614 * fs-private metadata. The page can be picked up due to memory
615 * offlining. Everywhere else except page reclaim, the page is
616 * invisible to the vm, so the page can not be migrated. So try to
617 * free the metadata, so the page can be freed.
618 */
619 if (!page->mapping) {
620 if (!PageAnon(page) && page_has_private(page)) {
621 /*
622 * Go direct to try_to_free_buffers() here because
623 * a) that's what try_to_release_page() would do anyway
624 * b) we may be under rcu_read_lock() here, so we can't
625 * use GFP_KERNEL which is what try_to_release_page()
626 * needs to be effective.
627 */
628 try_to_free_buffers(page);
629 goto rcu_unlock;
630 }
631 goto skip_unmap;
632 }
633
634 /* Establish migration ptes or remove ptes */
635 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
636
637 skip_unmap:
638 if (!page_mapped(page))
639 rc = move_to_new_page(newpage, page);
640
641 if (rc)
642 remove_migration_ptes(page, page);
643 rcu_unlock:
644
645 /* Drop an anon_vma reference if we took one */
646 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
647 int empty = list_empty(&anon_vma->head);
648 spin_unlock(&anon_vma->lock);
649 if (empty)
650 anon_vma_free(anon_vma);
651 }
652
653 if (rcu_locked)
654 rcu_read_unlock();
655 uncharge:
656 if (!charge)
657 mem_cgroup_end_migration(mem, page, newpage);
658 unlock:
659 unlock_page(page);
660
661 if (rc != -EAGAIN) {
662 /*
663 * A page that has been migrated has all references
664 * removed and will be freed. A page that has not been
665 * migrated will have kepts its references and be
666 * restored.
667 */
668 list_del(&page->lru);
669 dec_zone_page_state(page, NR_ISOLATED_ANON +
670 page_is_file_cache(page));
671 putback_lru_page(page);
672 }
673
674 move_newpage:
675
676 /*
677 * Move the new page to the LRU. If migration was not successful
678 * then this will free the page.
679 */
680 putback_lru_page(newpage);
681
682 if (result) {
683 if (rc)
684 *result = rc;
685 else
686 *result = page_to_nid(newpage);
687 }
688 return rc;
689 }
690
691 /*
692 * migrate_pages
693 *
694 * The function takes one list of pages to migrate and a function
695 * that determines from the page to be migrated and the private data
696 * the target of the move and allocates the page.
697 *
698 * The function returns after 10 attempts or if no pages
699 * are movable anymore because to has become empty
700 * or no retryable pages exist anymore. All pages will be
701 * returned to the LRU or freed.
702 *
703 * Return: Number of pages not migrated or error code.
704 */
705 int migrate_pages(struct list_head *from,
706 new_page_t get_new_page, unsigned long private, int offlining)
707 {
708 int retry = 1;
709 int nr_failed = 0;
710 int pass = 0;
711 struct page *page;
712 struct page *page2;
713 int swapwrite = current->flags & PF_SWAPWRITE;
714 int rc;
715
716 if (!swapwrite)
717 current->flags |= PF_SWAPWRITE;
718
719 for(pass = 0; pass < 10 && retry; pass++) {
720 retry = 0;
721
722 list_for_each_entry_safe(page, page2, from, lru) {
723 cond_resched();
724
725 rc = unmap_and_move(get_new_page, private,
726 page, pass > 2, offlining);
727
728 switch(rc) {
729 case -ENOMEM:
730 goto out;
731 case -EAGAIN:
732 retry++;
733 break;
734 case 0:
735 break;
736 default:
737 /* Permanent failure */
738 nr_failed++;
739 break;
740 }
741 }
742 }
743 rc = 0;
744 out:
745 if (!swapwrite)
746 current->flags &= ~PF_SWAPWRITE;
747
748 putback_lru_pages(from);
749
750 if (rc)
751 return rc;
752
753 return nr_failed + retry;
754 }
755
756 #ifdef CONFIG_NUMA
757 /*
758 * Move a list of individual pages
759 */
760 struct page_to_node {
761 unsigned long addr;
762 struct page *page;
763 int node;
764 int status;
765 };
766
767 static struct page *new_page_node(struct page *p, unsigned long private,
768 int **result)
769 {
770 struct page_to_node *pm = (struct page_to_node *)private;
771
772 while (pm->node != MAX_NUMNODES && pm->page != p)
773 pm++;
774
775 if (pm->node == MAX_NUMNODES)
776 return NULL;
777
778 *result = &pm->status;
779
780 return alloc_pages_exact_node(pm->node,
781 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
782 }
783
784 /*
785 * Move a set of pages as indicated in the pm array. The addr
786 * field must be set to the virtual address of the page to be moved
787 * and the node number must contain a valid target node.
788 * The pm array ends with node = MAX_NUMNODES.
789 */
790 static int do_move_page_to_node_array(struct mm_struct *mm,
791 struct page_to_node *pm,
792 int migrate_all)
793 {
794 int err;
795 struct page_to_node *pp;
796 LIST_HEAD(pagelist);
797
798 down_read(&mm->mmap_sem);
799
800 /*
801 * Build a list of pages to migrate
802 */
803 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
804 struct vm_area_struct *vma;
805 struct page *page;
806
807 err = -EFAULT;
808 vma = find_vma(mm, pp->addr);
809 if (!vma || !vma_migratable(vma))
810 goto set_status;
811
812 page = follow_page(vma, pp->addr, FOLL_GET);
813
814 err = PTR_ERR(page);
815 if (IS_ERR(page))
816 goto set_status;
817
818 err = -ENOENT;
819 if (!page)
820 goto set_status;
821
822 /* Use PageReserved to check for zero page */
823 if (PageReserved(page) || PageKsm(page))
824 goto put_and_set;
825
826 pp->page = page;
827 err = page_to_nid(page);
828
829 if (err == pp->node)
830 /*
831 * Node already in the right place
832 */
833 goto put_and_set;
834
835 err = -EACCES;
836 if (page_mapcount(page) > 1 &&
837 !migrate_all)
838 goto put_and_set;
839
840 err = isolate_lru_page(page);
841 if (!err) {
842 list_add_tail(&page->lru, &pagelist);
843 inc_zone_page_state(page, NR_ISOLATED_ANON +
844 page_is_file_cache(page));
845 }
846 put_and_set:
847 /*
848 * Either remove the duplicate refcount from
849 * isolate_lru_page() or drop the page ref if it was
850 * not isolated.
851 */
852 put_page(page);
853 set_status:
854 pp->status = err;
855 }
856
857 err = 0;
858 if (!list_empty(&pagelist))
859 err = migrate_pages(&pagelist, new_page_node,
860 (unsigned long)pm, 0);
861
862 up_read(&mm->mmap_sem);
863 return err;
864 }
865
866 /*
867 * Migrate an array of page address onto an array of nodes and fill
868 * the corresponding array of status.
869 */
870 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
871 unsigned long nr_pages,
872 const void __user * __user *pages,
873 const int __user *nodes,
874 int __user *status, int flags)
875 {
876 struct page_to_node *pm;
877 nodemask_t task_nodes;
878 unsigned long chunk_nr_pages;
879 unsigned long chunk_start;
880 int err;
881
882 task_nodes = cpuset_mems_allowed(task);
883
884 err = -ENOMEM;
885 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
886 if (!pm)
887 goto out;
888
889 migrate_prep();
890
891 /*
892 * Store a chunk of page_to_node array in a page,
893 * but keep the last one as a marker
894 */
895 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
896
897 for (chunk_start = 0;
898 chunk_start < nr_pages;
899 chunk_start += chunk_nr_pages) {
900 int j;
901
902 if (chunk_start + chunk_nr_pages > nr_pages)
903 chunk_nr_pages = nr_pages - chunk_start;
904
905 /* fill the chunk pm with addrs and nodes from user-space */
906 for (j = 0; j < chunk_nr_pages; j++) {
907 const void __user *p;
908 int node;
909
910 err = -EFAULT;
911 if (get_user(p, pages + j + chunk_start))
912 goto out_pm;
913 pm[j].addr = (unsigned long) p;
914
915 if (get_user(node, nodes + j + chunk_start))
916 goto out_pm;
917
918 err = -ENODEV;
919 if (node < 0 || node >= MAX_NUMNODES)
920 goto out_pm;
921
922 if (!node_state(node, N_HIGH_MEMORY))
923 goto out_pm;
924
925 err = -EACCES;
926 if (!node_isset(node, task_nodes))
927 goto out_pm;
928
929 pm[j].node = node;
930 }
931
932 /* End marker for this chunk */
933 pm[chunk_nr_pages].node = MAX_NUMNODES;
934
935 /* Migrate this chunk */
936 err = do_move_page_to_node_array(mm, pm,
937 flags & MPOL_MF_MOVE_ALL);
938 if (err < 0)
939 goto out_pm;
940
941 /* Return status information */
942 for (j = 0; j < chunk_nr_pages; j++)
943 if (put_user(pm[j].status, status + j + chunk_start)) {
944 err = -EFAULT;
945 goto out_pm;
946 }
947 }
948 err = 0;
949
950 out_pm:
951 free_page((unsigned long)pm);
952 out:
953 return err;
954 }
955
956 /*
957 * Determine the nodes of an array of pages and store it in an array of status.
958 */
959 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
960 const void __user **pages, int *status)
961 {
962 unsigned long i;
963
964 down_read(&mm->mmap_sem);
965
966 for (i = 0; i < nr_pages; i++) {
967 unsigned long addr = (unsigned long)(*pages);
968 struct vm_area_struct *vma;
969 struct page *page;
970 int err = -EFAULT;
971
972 vma = find_vma(mm, addr);
973 if (!vma)
974 goto set_status;
975
976 page = follow_page(vma, addr, 0);
977
978 err = PTR_ERR(page);
979 if (IS_ERR(page))
980 goto set_status;
981
982 err = -ENOENT;
983 /* Use PageReserved to check for zero page */
984 if (!page || PageReserved(page) || PageKsm(page))
985 goto set_status;
986
987 err = page_to_nid(page);
988 set_status:
989 *status = err;
990
991 pages++;
992 status++;
993 }
994
995 up_read(&mm->mmap_sem);
996 }
997
998 /*
999 * Determine the nodes of a user array of pages and store it in
1000 * a user array of status.
1001 */
1002 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1003 const void __user * __user *pages,
1004 int __user *status)
1005 {
1006 #define DO_PAGES_STAT_CHUNK_NR 16
1007 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1008 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1009
1010 while (nr_pages) {
1011 unsigned long chunk_nr;
1012
1013 chunk_nr = nr_pages;
1014 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1015 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1016
1017 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1018 break;
1019
1020 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1021
1022 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1023 break;
1024
1025 pages += chunk_nr;
1026 status += chunk_nr;
1027 nr_pages -= chunk_nr;
1028 }
1029 return nr_pages ? -EFAULT : 0;
1030 }
1031
1032 /*
1033 * Move a list of pages in the address space of the currently executing
1034 * process.
1035 */
1036 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1037 const void __user * __user *, pages,
1038 const int __user *, nodes,
1039 int __user *, status, int, flags)
1040 {
1041 const struct cred *cred = current_cred(), *tcred;
1042 struct task_struct *task;
1043 struct mm_struct *mm;
1044 int err;
1045
1046 /* Check flags */
1047 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1048 return -EINVAL;
1049
1050 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1051 return -EPERM;
1052
1053 /* Find the mm_struct */
1054 read_lock(&tasklist_lock);
1055 task = pid ? find_task_by_vpid(pid) : current;
1056 if (!task) {
1057 read_unlock(&tasklist_lock);
1058 return -ESRCH;
1059 }
1060 mm = get_task_mm(task);
1061 read_unlock(&tasklist_lock);
1062
1063 if (!mm)
1064 return -EINVAL;
1065
1066 /*
1067 * Check if this process has the right to modify the specified
1068 * process. The right exists if the process has administrative
1069 * capabilities, superuser privileges or the same
1070 * userid as the target process.
1071 */
1072 rcu_read_lock();
1073 tcred = __task_cred(task);
1074 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1075 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1076 !capable(CAP_SYS_NICE)) {
1077 rcu_read_unlock();
1078 err = -EPERM;
1079 goto out;
1080 }
1081 rcu_read_unlock();
1082
1083 err = security_task_movememory(task);
1084 if (err)
1085 goto out;
1086
1087 if (nodes) {
1088 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1089 flags);
1090 } else {
1091 err = do_pages_stat(mm, nr_pages, pages, status);
1092 }
1093
1094 out:
1095 mmput(mm);
1096 return err;
1097 }
1098
1099 /*
1100 * Call migration functions in the vma_ops that may prepare
1101 * memory in a vm for migration. migration functions may perform
1102 * the migration for vmas that do not have an underlying page struct.
1103 */
1104 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1105 const nodemask_t *from, unsigned long flags)
1106 {
1107 struct vm_area_struct *vma;
1108 int err = 0;
1109
1110 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1111 if (vma->vm_ops && vma->vm_ops->migrate) {
1112 err = vma->vm_ops->migrate(vma, to, from, flags);
1113 if (err)
1114 break;
1115 }
1116 }
1117 return err;
1118 }
1119 #endif
This page took 0.055502 seconds and 5 git commands to generate.