mm: move definition for LRU isolation modes to a header
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/gfp.h>
36
37 #include "internal.h"
38
39 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
40
41 /*
42 * migrate_prep() needs to be called before we start compiling a list of pages
43 * to be migrated using isolate_lru_page().
44 */
45 int migrate_prep(void)
46 {
47 /*
48 * Clear the LRU lists so pages can be isolated.
49 * Note that pages may be moved off the LRU after we have
50 * drained them. Those pages will fail to migrate like other
51 * pages that may be busy.
52 */
53 lru_add_drain_all();
54
55 return 0;
56 }
57
58 /*
59 * Add isolated pages on the list back to the LRU under page lock
60 * to avoid leaking evictable pages back onto unevictable list.
61 */
62 void putback_lru_pages(struct list_head *l)
63 {
64 struct page *page;
65 struct page *page2;
66
67 list_for_each_entry_safe(page, page2, l, lru) {
68 list_del(&page->lru);
69 dec_zone_page_state(page, NR_ISOLATED_ANON +
70 page_is_file_cache(page));
71 putback_lru_page(page);
72 }
73 }
74
75 /*
76 * Restore a potential migration pte to a working pte entry
77 */
78 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
79 unsigned long addr, void *old)
80 {
81 struct mm_struct *mm = vma->vm_mm;
82 swp_entry_t entry;
83 pgd_t *pgd;
84 pud_t *pud;
85 pmd_t *pmd;
86 pte_t *ptep, pte;
87 spinlock_t *ptl;
88
89 pgd = pgd_offset(mm, addr);
90 if (!pgd_present(*pgd))
91 goto out;
92
93 pud = pud_offset(pgd, addr);
94 if (!pud_present(*pud))
95 goto out;
96
97 pmd = pmd_offset(pud, addr);
98 if (!pmd_present(*pmd))
99 goto out;
100
101 ptep = pte_offset_map(pmd, addr);
102
103 if (!is_swap_pte(*ptep)) {
104 pte_unmap(ptep);
105 goto out;
106 }
107
108 ptl = pte_lockptr(mm, pmd);
109 spin_lock(ptl);
110 pte = *ptep;
111 if (!is_swap_pte(pte))
112 goto unlock;
113
114 entry = pte_to_swp_entry(pte);
115
116 if (!is_migration_entry(entry) ||
117 migration_entry_to_page(entry) != old)
118 goto unlock;
119
120 get_page(new);
121 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
122 if (is_write_migration_entry(entry))
123 pte = pte_mkwrite(pte);
124 flush_cache_page(vma, addr, pte_pfn(pte));
125 set_pte_at(mm, addr, ptep, pte);
126
127 if (PageAnon(new))
128 page_add_anon_rmap(new, vma, addr);
129 else
130 page_add_file_rmap(new);
131
132 /* No need to invalidate - it was non-present before */
133 update_mmu_cache(vma, addr, ptep);
134 unlock:
135 pte_unmap_unlock(ptep, ptl);
136 out:
137 return SWAP_AGAIN;
138 }
139
140 /*
141 * Get rid of all migration entries and replace them by
142 * references to the indicated page.
143 */
144 static void remove_migration_ptes(struct page *old, struct page *new)
145 {
146 rmap_walk(new, remove_migration_pte, old);
147 }
148
149 /*
150 * Something used the pte of a page under migration. We need to
151 * get to the page and wait until migration is finished.
152 * When we return from this function the fault will be retried.
153 *
154 * This function is called from do_swap_page().
155 */
156 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
157 unsigned long address)
158 {
159 pte_t *ptep, pte;
160 spinlock_t *ptl;
161 swp_entry_t entry;
162 struct page *page;
163
164 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
165 pte = *ptep;
166 if (!is_swap_pte(pte))
167 goto out;
168
169 entry = pte_to_swp_entry(pte);
170 if (!is_migration_entry(entry))
171 goto out;
172
173 page = migration_entry_to_page(entry);
174
175 /*
176 * Once radix-tree replacement of page migration started, page_count
177 * *must* be zero. And, we don't want to call wait_on_page_locked()
178 * against a page without get_page().
179 * So, we use get_page_unless_zero(), here. Even failed, page fault
180 * will occur again.
181 */
182 if (!get_page_unless_zero(page))
183 goto out;
184 pte_unmap_unlock(ptep, ptl);
185 wait_on_page_locked(page);
186 put_page(page);
187 return;
188 out:
189 pte_unmap_unlock(ptep, ptl);
190 }
191
192 /*
193 * Replace the page in the mapping.
194 *
195 * The number of remaining references must be:
196 * 1 for anonymous pages without a mapping
197 * 2 for pages with a mapping
198 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
199 */
200 static int migrate_page_move_mapping(struct address_space *mapping,
201 struct page *newpage, struct page *page)
202 {
203 int expected_count;
204 void **pslot;
205
206 if (!mapping) {
207 /* Anonymous page without mapping */
208 if (page_count(page) != 1)
209 return -EAGAIN;
210 return 0;
211 }
212
213 spin_lock_irq(&mapping->tree_lock);
214
215 pslot = radix_tree_lookup_slot(&mapping->page_tree,
216 page_index(page));
217
218 expected_count = 2 + page_has_private(page);
219 if (page_count(page) != expected_count ||
220 (struct page *)radix_tree_deref_slot(pslot) != page) {
221 spin_unlock_irq(&mapping->tree_lock);
222 return -EAGAIN;
223 }
224
225 if (!page_freeze_refs(page, expected_count)) {
226 spin_unlock_irq(&mapping->tree_lock);
227 return -EAGAIN;
228 }
229
230 /*
231 * Now we know that no one else is looking at the page.
232 */
233 get_page(newpage); /* add cache reference */
234 if (PageSwapCache(page)) {
235 SetPageSwapCache(newpage);
236 set_page_private(newpage, page_private(page));
237 }
238
239 radix_tree_replace_slot(pslot, newpage);
240
241 page_unfreeze_refs(page, expected_count);
242 /*
243 * Drop cache reference from old page.
244 * We know this isn't the last reference.
245 */
246 __put_page(page);
247
248 /*
249 * If moved to a different zone then also account
250 * the page for that zone. Other VM counters will be
251 * taken care of when we establish references to the
252 * new page and drop references to the old page.
253 *
254 * Note that anonymous pages are accounted for
255 * via NR_FILE_PAGES and NR_ANON_PAGES if they
256 * are mapped to swap space.
257 */
258 __dec_zone_page_state(page, NR_FILE_PAGES);
259 __inc_zone_page_state(newpage, NR_FILE_PAGES);
260 if (PageSwapBacked(page)) {
261 __dec_zone_page_state(page, NR_SHMEM);
262 __inc_zone_page_state(newpage, NR_SHMEM);
263 }
264 spin_unlock_irq(&mapping->tree_lock);
265
266 return 0;
267 }
268
269 /*
270 * Copy the page to its new location
271 */
272 static void migrate_page_copy(struct page *newpage, struct page *page)
273 {
274 copy_highpage(newpage, page);
275
276 if (PageError(page))
277 SetPageError(newpage);
278 if (PageReferenced(page))
279 SetPageReferenced(newpage);
280 if (PageUptodate(page))
281 SetPageUptodate(newpage);
282 if (TestClearPageActive(page)) {
283 VM_BUG_ON(PageUnevictable(page));
284 SetPageActive(newpage);
285 } else if (TestClearPageUnevictable(page))
286 SetPageUnevictable(newpage);
287 if (PageChecked(page))
288 SetPageChecked(newpage);
289 if (PageMappedToDisk(page))
290 SetPageMappedToDisk(newpage);
291
292 if (PageDirty(page)) {
293 clear_page_dirty_for_io(page);
294 /*
295 * Want to mark the page and the radix tree as dirty, and
296 * redo the accounting that clear_page_dirty_for_io undid,
297 * but we can't use set_page_dirty because that function
298 * is actually a signal that all of the page has become dirty.
299 * Wheras only part of our page may be dirty.
300 */
301 __set_page_dirty_nobuffers(newpage);
302 }
303
304 mlock_migrate_page(newpage, page);
305 ksm_migrate_page(newpage, page);
306
307 ClearPageSwapCache(page);
308 ClearPagePrivate(page);
309 set_page_private(page, 0);
310 page->mapping = NULL;
311
312 /*
313 * If any waiters have accumulated on the new page then
314 * wake them up.
315 */
316 if (PageWriteback(newpage))
317 end_page_writeback(newpage);
318 }
319
320 /************************************************************
321 * Migration functions
322 ***********************************************************/
323
324 /* Always fail migration. Used for mappings that are not movable */
325 int fail_migrate_page(struct address_space *mapping,
326 struct page *newpage, struct page *page)
327 {
328 return -EIO;
329 }
330 EXPORT_SYMBOL(fail_migrate_page);
331
332 /*
333 * Common logic to directly migrate a single page suitable for
334 * pages that do not use PagePrivate/PagePrivate2.
335 *
336 * Pages are locked upon entry and exit.
337 */
338 int migrate_page(struct address_space *mapping,
339 struct page *newpage, struct page *page)
340 {
341 int rc;
342
343 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
344
345 rc = migrate_page_move_mapping(mapping, newpage, page);
346
347 if (rc)
348 return rc;
349
350 migrate_page_copy(newpage, page);
351 return 0;
352 }
353 EXPORT_SYMBOL(migrate_page);
354
355 #ifdef CONFIG_BLOCK
356 /*
357 * Migration function for pages with buffers. This function can only be used
358 * if the underlying filesystem guarantees that no other references to "page"
359 * exist.
360 */
361 int buffer_migrate_page(struct address_space *mapping,
362 struct page *newpage, struct page *page)
363 {
364 struct buffer_head *bh, *head;
365 int rc;
366
367 if (!page_has_buffers(page))
368 return migrate_page(mapping, newpage, page);
369
370 head = page_buffers(page);
371
372 rc = migrate_page_move_mapping(mapping, newpage, page);
373
374 if (rc)
375 return rc;
376
377 bh = head;
378 do {
379 get_bh(bh);
380 lock_buffer(bh);
381 bh = bh->b_this_page;
382
383 } while (bh != head);
384
385 ClearPagePrivate(page);
386 set_page_private(newpage, page_private(page));
387 set_page_private(page, 0);
388 put_page(page);
389 get_page(newpage);
390
391 bh = head;
392 do {
393 set_bh_page(bh, newpage, bh_offset(bh));
394 bh = bh->b_this_page;
395
396 } while (bh != head);
397
398 SetPagePrivate(newpage);
399
400 migrate_page_copy(newpage, page);
401
402 bh = head;
403 do {
404 unlock_buffer(bh);
405 put_bh(bh);
406 bh = bh->b_this_page;
407
408 } while (bh != head);
409
410 return 0;
411 }
412 EXPORT_SYMBOL(buffer_migrate_page);
413 #endif
414
415 /*
416 * Writeback a page to clean the dirty state
417 */
418 static int writeout(struct address_space *mapping, struct page *page)
419 {
420 struct writeback_control wbc = {
421 .sync_mode = WB_SYNC_NONE,
422 .nr_to_write = 1,
423 .range_start = 0,
424 .range_end = LLONG_MAX,
425 .nonblocking = 1,
426 .for_reclaim = 1
427 };
428 int rc;
429
430 if (!mapping->a_ops->writepage)
431 /* No write method for the address space */
432 return -EINVAL;
433
434 if (!clear_page_dirty_for_io(page))
435 /* Someone else already triggered a write */
436 return -EAGAIN;
437
438 /*
439 * A dirty page may imply that the underlying filesystem has
440 * the page on some queue. So the page must be clean for
441 * migration. Writeout may mean we loose the lock and the
442 * page state is no longer what we checked for earlier.
443 * At this point we know that the migration attempt cannot
444 * be successful.
445 */
446 remove_migration_ptes(page, page);
447
448 rc = mapping->a_ops->writepage(page, &wbc);
449
450 if (rc != AOP_WRITEPAGE_ACTIVATE)
451 /* unlocked. Relock */
452 lock_page(page);
453
454 return (rc < 0) ? -EIO : -EAGAIN;
455 }
456
457 /*
458 * Default handling if a filesystem does not provide a migration function.
459 */
460 static int fallback_migrate_page(struct address_space *mapping,
461 struct page *newpage, struct page *page)
462 {
463 if (PageDirty(page))
464 return writeout(mapping, page);
465
466 /*
467 * Buffers may be managed in a filesystem specific way.
468 * We must have no buffers or drop them.
469 */
470 if (page_has_private(page) &&
471 !try_to_release_page(page, GFP_KERNEL))
472 return -EAGAIN;
473
474 return migrate_page(mapping, newpage, page);
475 }
476
477 /*
478 * Move a page to a newly allocated page
479 * The page is locked and all ptes have been successfully removed.
480 *
481 * The new page will have replaced the old page if this function
482 * is successful.
483 *
484 * Return value:
485 * < 0 - error code
486 * == 0 - success
487 */
488 static int move_to_new_page(struct page *newpage, struct page *page,
489 int remap_swapcache)
490 {
491 struct address_space *mapping;
492 int rc;
493
494 /*
495 * Block others from accessing the page when we get around to
496 * establishing additional references. We are the only one
497 * holding a reference to the new page at this point.
498 */
499 if (!trylock_page(newpage))
500 BUG();
501
502 /* Prepare mapping for the new page.*/
503 newpage->index = page->index;
504 newpage->mapping = page->mapping;
505 if (PageSwapBacked(page))
506 SetPageSwapBacked(newpage);
507
508 mapping = page_mapping(page);
509 if (!mapping)
510 rc = migrate_page(mapping, newpage, page);
511 else if (mapping->a_ops->migratepage)
512 /*
513 * Most pages have a mapping and most filesystems
514 * should provide a migration function. Anonymous
515 * pages are part of swap space which also has its
516 * own migration function. This is the most common
517 * path for page migration.
518 */
519 rc = mapping->a_ops->migratepage(mapping,
520 newpage, page);
521 else
522 rc = fallback_migrate_page(mapping, newpage, page);
523
524 if (rc) {
525 newpage->mapping = NULL;
526 } else {
527 if (remap_swapcache)
528 remove_migration_ptes(page, newpage);
529 }
530
531 unlock_page(newpage);
532
533 return rc;
534 }
535
536 /*
537 * Obtain the lock on page, remove all ptes and migrate the page
538 * to the newly allocated page in newpage.
539 */
540 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
541 struct page *page, int force, int offlining)
542 {
543 int rc = 0;
544 int *result = NULL;
545 struct page *newpage = get_new_page(page, private, &result);
546 int remap_swapcache = 1;
547 int rcu_locked = 0;
548 int charge = 0;
549 struct mem_cgroup *mem = NULL;
550 struct anon_vma *anon_vma = NULL;
551
552 if (!newpage)
553 return -ENOMEM;
554
555 if (page_count(page) == 1) {
556 /* page was freed from under us. So we are done. */
557 goto move_newpage;
558 }
559
560 /* prepare cgroup just returns 0 or -ENOMEM */
561 rc = -EAGAIN;
562
563 if (!trylock_page(page)) {
564 if (!force)
565 goto move_newpage;
566 lock_page(page);
567 }
568
569 /*
570 * Only memory hotplug's offline_pages() caller has locked out KSM,
571 * and can safely migrate a KSM page. The other cases have skipped
572 * PageKsm along with PageReserved - but it is only now when we have
573 * the page lock that we can be certain it will not go KSM beneath us
574 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
575 * its pagecount raised, but only here do we take the page lock which
576 * serializes that).
577 */
578 if (PageKsm(page) && !offlining) {
579 rc = -EBUSY;
580 goto unlock;
581 }
582
583 /* charge against new page */
584 charge = mem_cgroup_prepare_migration(page, &mem);
585 if (charge == -ENOMEM) {
586 rc = -ENOMEM;
587 goto unlock;
588 }
589 BUG_ON(charge);
590
591 if (PageWriteback(page)) {
592 if (!force)
593 goto uncharge;
594 wait_on_page_writeback(page);
595 }
596 /*
597 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
598 * we cannot notice that anon_vma is freed while we migrates a page.
599 * This rcu_read_lock() delays freeing anon_vma pointer until the end
600 * of migration. File cache pages are no problem because of page_lock()
601 * File Caches may use write_page() or lock_page() in migration, then,
602 * just care Anon page here.
603 */
604 if (PageAnon(page)) {
605 rcu_read_lock();
606 rcu_locked = 1;
607
608 /* Determine how to safely use anon_vma */
609 if (!page_mapped(page)) {
610 if (!PageSwapCache(page))
611 goto rcu_unlock;
612
613 /*
614 * We cannot be sure that the anon_vma of an unmapped
615 * swapcache page is safe to use because we don't
616 * know in advance if the VMA that this page belonged
617 * to still exists. If the VMA and others sharing the
618 * data have been freed, then the anon_vma could
619 * already be invalid.
620 *
621 * To avoid this possibility, swapcache pages get
622 * migrated but are not remapped when migration
623 * completes
624 */
625 remap_swapcache = 0;
626 } else {
627 /*
628 * Take a reference count on the anon_vma if the
629 * page is mapped so that it is guaranteed to
630 * exist when the page is remapped later
631 */
632 anon_vma = page_anon_vma(page);
633 atomic_inc(&anon_vma->external_refcount);
634 }
635 }
636
637 /*
638 * Corner case handling:
639 * 1. When a new swap-cache page is read into, it is added to the LRU
640 * and treated as swapcache but it has no rmap yet.
641 * Calling try_to_unmap() against a page->mapping==NULL page will
642 * trigger a BUG. So handle it here.
643 * 2. An orphaned page (see truncate_complete_page) might have
644 * fs-private metadata. The page can be picked up due to memory
645 * offlining. Everywhere else except page reclaim, the page is
646 * invisible to the vm, so the page can not be migrated. So try to
647 * free the metadata, so the page can be freed.
648 */
649 if (!page->mapping) {
650 if (!PageAnon(page) && page_has_private(page)) {
651 /*
652 * Go direct to try_to_free_buffers() here because
653 * a) that's what try_to_release_page() would do anyway
654 * b) we may be under rcu_read_lock() here, so we can't
655 * use GFP_KERNEL which is what try_to_release_page()
656 * needs to be effective.
657 */
658 try_to_free_buffers(page);
659 goto rcu_unlock;
660 }
661 goto skip_unmap;
662 }
663
664 /* Establish migration ptes or remove ptes */
665 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
666
667 skip_unmap:
668 if (!page_mapped(page))
669 rc = move_to_new_page(newpage, page, remap_swapcache);
670
671 if (rc && remap_swapcache)
672 remove_migration_ptes(page, page);
673 rcu_unlock:
674
675 /* Drop an anon_vma reference if we took one */
676 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount, &anon_vma->lock)) {
677 int empty = list_empty(&anon_vma->head);
678 spin_unlock(&anon_vma->lock);
679 if (empty)
680 anon_vma_free(anon_vma);
681 }
682
683 if (rcu_locked)
684 rcu_read_unlock();
685 uncharge:
686 if (!charge)
687 mem_cgroup_end_migration(mem, page, newpage);
688 unlock:
689 unlock_page(page);
690
691 if (rc != -EAGAIN) {
692 /*
693 * A page that has been migrated has all references
694 * removed and will be freed. A page that has not been
695 * migrated will have kepts its references and be
696 * restored.
697 */
698 list_del(&page->lru);
699 dec_zone_page_state(page, NR_ISOLATED_ANON +
700 page_is_file_cache(page));
701 putback_lru_page(page);
702 }
703
704 move_newpage:
705
706 /*
707 * Move the new page to the LRU. If migration was not successful
708 * then this will free the page.
709 */
710 putback_lru_page(newpage);
711
712 if (result) {
713 if (rc)
714 *result = rc;
715 else
716 *result = page_to_nid(newpage);
717 }
718 return rc;
719 }
720
721 /*
722 * migrate_pages
723 *
724 * The function takes one list of pages to migrate and a function
725 * that determines from the page to be migrated and the private data
726 * the target of the move and allocates the page.
727 *
728 * The function returns after 10 attempts or if no pages
729 * are movable anymore because to has become empty
730 * or no retryable pages exist anymore. All pages will be
731 * returned to the LRU or freed.
732 *
733 * Return: Number of pages not migrated or error code.
734 */
735 int migrate_pages(struct list_head *from,
736 new_page_t get_new_page, unsigned long private, int offlining)
737 {
738 int retry = 1;
739 int nr_failed = 0;
740 int pass = 0;
741 struct page *page;
742 struct page *page2;
743 int swapwrite = current->flags & PF_SWAPWRITE;
744 int rc;
745
746 if (!swapwrite)
747 current->flags |= PF_SWAPWRITE;
748
749 for(pass = 0; pass < 10 && retry; pass++) {
750 retry = 0;
751
752 list_for_each_entry_safe(page, page2, from, lru) {
753 cond_resched();
754
755 rc = unmap_and_move(get_new_page, private,
756 page, pass > 2, offlining);
757
758 switch(rc) {
759 case -ENOMEM:
760 goto out;
761 case -EAGAIN:
762 retry++;
763 break;
764 case 0:
765 break;
766 default:
767 /* Permanent failure */
768 nr_failed++;
769 break;
770 }
771 }
772 }
773 rc = 0;
774 out:
775 if (!swapwrite)
776 current->flags &= ~PF_SWAPWRITE;
777
778 putback_lru_pages(from);
779
780 if (rc)
781 return rc;
782
783 return nr_failed + retry;
784 }
785
786 #ifdef CONFIG_NUMA
787 /*
788 * Move a list of individual pages
789 */
790 struct page_to_node {
791 unsigned long addr;
792 struct page *page;
793 int node;
794 int status;
795 };
796
797 static struct page *new_page_node(struct page *p, unsigned long private,
798 int **result)
799 {
800 struct page_to_node *pm = (struct page_to_node *)private;
801
802 while (pm->node != MAX_NUMNODES && pm->page != p)
803 pm++;
804
805 if (pm->node == MAX_NUMNODES)
806 return NULL;
807
808 *result = &pm->status;
809
810 return alloc_pages_exact_node(pm->node,
811 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
812 }
813
814 /*
815 * Move a set of pages as indicated in the pm array. The addr
816 * field must be set to the virtual address of the page to be moved
817 * and the node number must contain a valid target node.
818 * The pm array ends with node = MAX_NUMNODES.
819 */
820 static int do_move_page_to_node_array(struct mm_struct *mm,
821 struct page_to_node *pm,
822 int migrate_all)
823 {
824 int err;
825 struct page_to_node *pp;
826 LIST_HEAD(pagelist);
827
828 down_read(&mm->mmap_sem);
829
830 /*
831 * Build a list of pages to migrate
832 */
833 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
834 struct vm_area_struct *vma;
835 struct page *page;
836
837 err = -EFAULT;
838 vma = find_vma(mm, pp->addr);
839 if (!vma || !vma_migratable(vma))
840 goto set_status;
841
842 page = follow_page(vma, pp->addr, FOLL_GET);
843
844 err = PTR_ERR(page);
845 if (IS_ERR(page))
846 goto set_status;
847
848 err = -ENOENT;
849 if (!page)
850 goto set_status;
851
852 /* Use PageReserved to check for zero page */
853 if (PageReserved(page) || PageKsm(page))
854 goto put_and_set;
855
856 pp->page = page;
857 err = page_to_nid(page);
858
859 if (err == pp->node)
860 /*
861 * Node already in the right place
862 */
863 goto put_and_set;
864
865 err = -EACCES;
866 if (page_mapcount(page) > 1 &&
867 !migrate_all)
868 goto put_and_set;
869
870 err = isolate_lru_page(page);
871 if (!err) {
872 list_add_tail(&page->lru, &pagelist);
873 inc_zone_page_state(page, NR_ISOLATED_ANON +
874 page_is_file_cache(page));
875 }
876 put_and_set:
877 /*
878 * Either remove the duplicate refcount from
879 * isolate_lru_page() or drop the page ref if it was
880 * not isolated.
881 */
882 put_page(page);
883 set_status:
884 pp->status = err;
885 }
886
887 err = 0;
888 if (!list_empty(&pagelist))
889 err = migrate_pages(&pagelist, new_page_node,
890 (unsigned long)pm, 0);
891
892 up_read(&mm->mmap_sem);
893 return err;
894 }
895
896 /*
897 * Migrate an array of page address onto an array of nodes and fill
898 * the corresponding array of status.
899 */
900 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
901 unsigned long nr_pages,
902 const void __user * __user *pages,
903 const int __user *nodes,
904 int __user *status, int flags)
905 {
906 struct page_to_node *pm;
907 nodemask_t task_nodes;
908 unsigned long chunk_nr_pages;
909 unsigned long chunk_start;
910 int err;
911
912 task_nodes = cpuset_mems_allowed(task);
913
914 err = -ENOMEM;
915 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
916 if (!pm)
917 goto out;
918
919 migrate_prep();
920
921 /*
922 * Store a chunk of page_to_node array in a page,
923 * but keep the last one as a marker
924 */
925 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
926
927 for (chunk_start = 0;
928 chunk_start < nr_pages;
929 chunk_start += chunk_nr_pages) {
930 int j;
931
932 if (chunk_start + chunk_nr_pages > nr_pages)
933 chunk_nr_pages = nr_pages - chunk_start;
934
935 /* fill the chunk pm with addrs and nodes from user-space */
936 for (j = 0; j < chunk_nr_pages; j++) {
937 const void __user *p;
938 int node;
939
940 err = -EFAULT;
941 if (get_user(p, pages + j + chunk_start))
942 goto out_pm;
943 pm[j].addr = (unsigned long) p;
944
945 if (get_user(node, nodes + j + chunk_start))
946 goto out_pm;
947
948 err = -ENODEV;
949 if (node < 0 || node >= MAX_NUMNODES)
950 goto out_pm;
951
952 if (!node_state(node, N_HIGH_MEMORY))
953 goto out_pm;
954
955 err = -EACCES;
956 if (!node_isset(node, task_nodes))
957 goto out_pm;
958
959 pm[j].node = node;
960 }
961
962 /* End marker for this chunk */
963 pm[chunk_nr_pages].node = MAX_NUMNODES;
964
965 /* Migrate this chunk */
966 err = do_move_page_to_node_array(mm, pm,
967 flags & MPOL_MF_MOVE_ALL);
968 if (err < 0)
969 goto out_pm;
970
971 /* Return status information */
972 for (j = 0; j < chunk_nr_pages; j++)
973 if (put_user(pm[j].status, status + j + chunk_start)) {
974 err = -EFAULT;
975 goto out_pm;
976 }
977 }
978 err = 0;
979
980 out_pm:
981 free_page((unsigned long)pm);
982 out:
983 return err;
984 }
985
986 /*
987 * Determine the nodes of an array of pages and store it in an array of status.
988 */
989 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
990 const void __user **pages, int *status)
991 {
992 unsigned long i;
993
994 down_read(&mm->mmap_sem);
995
996 for (i = 0; i < nr_pages; i++) {
997 unsigned long addr = (unsigned long)(*pages);
998 struct vm_area_struct *vma;
999 struct page *page;
1000 int err = -EFAULT;
1001
1002 vma = find_vma(mm, addr);
1003 if (!vma)
1004 goto set_status;
1005
1006 page = follow_page(vma, addr, 0);
1007
1008 err = PTR_ERR(page);
1009 if (IS_ERR(page))
1010 goto set_status;
1011
1012 err = -ENOENT;
1013 /* Use PageReserved to check for zero page */
1014 if (!page || PageReserved(page) || PageKsm(page))
1015 goto set_status;
1016
1017 err = page_to_nid(page);
1018 set_status:
1019 *status = err;
1020
1021 pages++;
1022 status++;
1023 }
1024
1025 up_read(&mm->mmap_sem);
1026 }
1027
1028 /*
1029 * Determine the nodes of a user array of pages and store it in
1030 * a user array of status.
1031 */
1032 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1033 const void __user * __user *pages,
1034 int __user *status)
1035 {
1036 #define DO_PAGES_STAT_CHUNK_NR 16
1037 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1038 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1039
1040 while (nr_pages) {
1041 unsigned long chunk_nr;
1042
1043 chunk_nr = nr_pages;
1044 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1045 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1046
1047 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1048 break;
1049
1050 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1051
1052 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1053 break;
1054
1055 pages += chunk_nr;
1056 status += chunk_nr;
1057 nr_pages -= chunk_nr;
1058 }
1059 return nr_pages ? -EFAULT : 0;
1060 }
1061
1062 /*
1063 * Move a list of pages in the address space of the currently executing
1064 * process.
1065 */
1066 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1067 const void __user * __user *, pages,
1068 const int __user *, nodes,
1069 int __user *, status, int, flags)
1070 {
1071 const struct cred *cred = current_cred(), *tcred;
1072 struct task_struct *task;
1073 struct mm_struct *mm;
1074 int err;
1075
1076 /* Check flags */
1077 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1078 return -EINVAL;
1079
1080 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1081 return -EPERM;
1082
1083 /* Find the mm_struct */
1084 read_lock(&tasklist_lock);
1085 task = pid ? find_task_by_vpid(pid) : current;
1086 if (!task) {
1087 read_unlock(&tasklist_lock);
1088 return -ESRCH;
1089 }
1090 mm = get_task_mm(task);
1091 read_unlock(&tasklist_lock);
1092
1093 if (!mm)
1094 return -EINVAL;
1095
1096 /*
1097 * Check if this process has the right to modify the specified
1098 * process. The right exists if the process has administrative
1099 * capabilities, superuser privileges or the same
1100 * userid as the target process.
1101 */
1102 rcu_read_lock();
1103 tcred = __task_cred(task);
1104 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1105 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1106 !capable(CAP_SYS_NICE)) {
1107 rcu_read_unlock();
1108 err = -EPERM;
1109 goto out;
1110 }
1111 rcu_read_unlock();
1112
1113 err = security_task_movememory(task);
1114 if (err)
1115 goto out;
1116
1117 if (nodes) {
1118 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1119 flags);
1120 } else {
1121 err = do_pages_stat(mm, nr_pages, pages, status);
1122 }
1123
1124 out:
1125 mmput(mm);
1126 return err;
1127 }
1128
1129 /*
1130 * Call migration functions in the vma_ops that may prepare
1131 * memory in a vm for migration. migration functions may perform
1132 * the migration for vmas that do not have an underlying page struct.
1133 */
1134 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1135 const nodemask_t *from, unsigned long flags)
1136 {
1137 struct vm_area_struct *vma;
1138 int err = 0;
1139
1140 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1141 if (vma->vm_ops && vma->vm_ops->migrate) {
1142 err = vma->vm_ops->migrate(vma, to, from, flags);
1143 if (err)
1144 break;
1145 }
1146 }
1147 return err;
1148 }
1149 #endif
This page took 0.063191 seconds and 5 git commands to generate.