ASoC: Intel: update stream only on stream IPC msgs
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123 if (pmd_trans_huge(*pmd))
124 goto out;
125
126 ptep = pte_offset_map(pmd, addr);
127
128 /*
129 * Peek to check is_swap_pte() before taking ptlock? No, we
130 * can race mremap's move_ptes(), which skips anon_vma lock.
131 */
132
133 ptl = pte_lockptr(mm, pmd);
134 }
135
136 spin_lock(ptl);
137 pte = *ptep;
138 if (!is_swap_pte(pte))
139 goto unlock;
140
141 entry = pte_to_swp_entry(pte);
142
143 if (!is_migration_entry(entry) ||
144 migration_entry_to_page(entry) != old)
145 goto unlock;
146
147 get_page(new);
148 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
149 if (pte_swp_soft_dirty(*ptep))
150 pte = pte_mksoft_dirty(pte);
151 if (is_write_migration_entry(entry))
152 pte = pte_mkwrite(pte);
153 #ifdef CONFIG_HUGETLB_PAGE
154 if (PageHuge(new)) {
155 pte = pte_mkhuge(pte);
156 pte = arch_make_huge_pte(pte, vma, new, 0);
157 }
158 #endif
159 flush_dcache_page(new);
160 set_pte_at(mm, addr, ptep, pte);
161
162 if (PageHuge(new)) {
163 if (PageAnon(new))
164 hugepage_add_anon_rmap(new, vma, addr);
165 else
166 page_dup_rmap(new);
167 } else if (PageAnon(new))
168 page_add_anon_rmap(new, vma, addr);
169 else
170 page_add_file_rmap(new);
171
172 /* No need to invalidate - it was non-present before */
173 update_mmu_cache(vma, addr, ptep);
174 unlock:
175 pte_unmap_unlock(ptep, ptl);
176 out:
177 return SWAP_AGAIN;
178 }
179
180 /*
181 * Congratulations to trinity for discovering this bug.
182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
184 * replace the specified range by file ptes throughout (maybe populated after).
185 * If page migration finds a page within that range, while it's still located
186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
188 * But if the migrating page is in a part of the vma outside the range to be
189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
190 * deal with it. Fortunately, this part of the vma is of course still linear,
191 * so we just need to use linear location on the nonlinear list.
192 */
193 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
194 struct address_space *mapping, void *arg)
195 {
196 struct vm_area_struct *vma;
197 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
198 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
199 unsigned long addr;
200
201 list_for_each_entry(vma,
202 &mapping->i_mmap_nonlinear, shared.nonlinear) {
203
204 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
205 if (addr >= vma->vm_start && addr < vma->vm_end)
206 remove_migration_pte(page, vma, addr, arg);
207 }
208 return SWAP_AGAIN;
209 }
210
211 /*
212 * Get rid of all migration entries and replace them by
213 * references to the indicated page.
214 */
215 static void remove_migration_ptes(struct page *old, struct page *new)
216 {
217 struct rmap_walk_control rwc = {
218 .rmap_one = remove_migration_pte,
219 .arg = old,
220 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
221 };
222
223 rmap_walk(new, &rwc);
224 }
225
226 /*
227 * Something used the pte of a page under migration. We need to
228 * get to the page and wait until migration is finished.
229 * When we return from this function the fault will be retried.
230 */
231 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
232 spinlock_t *ptl)
233 {
234 pte_t pte;
235 swp_entry_t entry;
236 struct page *page;
237
238 spin_lock(ptl);
239 pte = *ptep;
240 if (!is_swap_pte(pte))
241 goto out;
242
243 entry = pte_to_swp_entry(pte);
244 if (!is_migration_entry(entry))
245 goto out;
246
247 page = migration_entry_to_page(entry);
248
249 /*
250 * Once radix-tree replacement of page migration started, page_count
251 * *must* be zero. And, we don't want to call wait_on_page_locked()
252 * against a page without get_page().
253 * So, we use get_page_unless_zero(), here. Even failed, page fault
254 * will occur again.
255 */
256 if (!get_page_unless_zero(page))
257 goto out;
258 pte_unmap_unlock(ptep, ptl);
259 wait_on_page_locked(page);
260 put_page(page);
261 return;
262 out:
263 pte_unmap_unlock(ptep, ptl);
264 }
265
266 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
267 unsigned long address)
268 {
269 spinlock_t *ptl = pte_lockptr(mm, pmd);
270 pte_t *ptep = pte_offset_map(pmd, address);
271 __migration_entry_wait(mm, ptep, ptl);
272 }
273
274 void migration_entry_wait_huge(struct vm_area_struct *vma,
275 struct mm_struct *mm, pte_t *pte)
276 {
277 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
278 __migration_entry_wait(mm, pte, ptl);
279 }
280
281 #ifdef CONFIG_BLOCK
282 /* Returns true if all buffers are successfully locked */
283 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
284 enum migrate_mode mode)
285 {
286 struct buffer_head *bh = head;
287
288 /* Simple case, sync compaction */
289 if (mode != MIGRATE_ASYNC) {
290 do {
291 get_bh(bh);
292 lock_buffer(bh);
293 bh = bh->b_this_page;
294
295 } while (bh != head);
296
297 return true;
298 }
299
300 /* async case, we cannot block on lock_buffer so use trylock_buffer */
301 do {
302 get_bh(bh);
303 if (!trylock_buffer(bh)) {
304 /*
305 * We failed to lock the buffer and cannot stall in
306 * async migration. Release the taken locks
307 */
308 struct buffer_head *failed_bh = bh;
309 put_bh(failed_bh);
310 bh = head;
311 while (bh != failed_bh) {
312 unlock_buffer(bh);
313 put_bh(bh);
314 bh = bh->b_this_page;
315 }
316 return false;
317 }
318
319 bh = bh->b_this_page;
320 } while (bh != head);
321 return true;
322 }
323 #else
324 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
325 enum migrate_mode mode)
326 {
327 return true;
328 }
329 #endif /* CONFIG_BLOCK */
330
331 /*
332 * Replace the page in the mapping.
333 *
334 * The number of remaining references must be:
335 * 1 for anonymous pages without a mapping
336 * 2 for pages with a mapping
337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
338 */
339 int migrate_page_move_mapping(struct address_space *mapping,
340 struct page *newpage, struct page *page,
341 struct buffer_head *head, enum migrate_mode mode,
342 int extra_count)
343 {
344 int expected_count = 1 + extra_count;
345 void **pslot;
346
347 if (!mapping) {
348 /* Anonymous page without mapping */
349 if (page_count(page) != expected_count)
350 return -EAGAIN;
351 return MIGRATEPAGE_SUCCESS;
352 }
353
354 spin_lock_irq(&mapping->tree_lock);
355
356 pslot = radix_tree_lookup_slot(&mapping->page_tree,
357 page_index(page));
358
359 expected_count += 1 + page_has_private(page);
360 if (page_count(page) != expected_count ||
361 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
362 spin_unlock_irq(&mapping->tree_lock);
363 return -EAGAIN;
364 }
365
366 if (!page_freeze_refs(page, expected_count)) {
367 spin_unlock_irq(&mapping->tree_lock);
368 return -EAGAIN;
369 }
370
371 /*
372 * In the async migration case of moving a page with buffers, lock the
373 * buffers using trylock before the mapping is moved. If the mapping
374 * was moved, we later failed to lock the buffers and could not move
375 * the mapping back due to an elevated page count, we would have to
376 * block waiting on other references to be dropped.
377 */
378 if (mode == MIGRATE_ASYNC && head &&
379 !buffer_migrate_lock_buffers(head, mode)) {
380 page_unfreeze_refs(page, expected_count);
381 spin_unlock_irq(&mapping->tree_lock);
382 return -EAGAIN;
383 }
384
385 /*
386 * Now we know that no one else is looking at the page.
387 */
388 get_page(newpage); /* add cache reference */
389 if (PageSwapCache(page)) {
390 SetPageSwapCache(newpage);
391 set_page_private(newpage, page_private(page));
392 }
393
394 radix_tree_replace_slot(pslot, newpage);
395
396 /*
397 * Drop cache reference from old page by unfreezing
398 * to one less reference.
399 * We know this isn't the last reference.
400 */
401 page_unfreeze_refs(page, expected_count - 1);
402
403 /*
404 * If moved to a different zone then also account
405 * the page for that zone. Other VM counters will be
406 * taken care of when we establish references to the
407 * new page and drop references to the old page.
408 *
409 * Note that anonymous pages are accounted for
410 * via NR_FILE_PAGES and NR_ANON_PAGES if they
411 * are mapped to swap space.
412 */
413 __dec_zone_page_state(page, NR_FILE_PAGES);
414 __inc_zone_page_state(newpage, NR_FILE_PAGES);
415 if (!PageSwapCache(page) && PageSwapBacked(page)) {
416 __dec_zone_page_state(page, NR_SHMEM);
417 __inc_zone_page_state(newpage, NR_SHMEM);
418 }
419 spin_unlock_irq(&mapping->tree_lock);
420
421 return MIGRATEPAGE_SUCCESS;
422 }
423
424 /*
425 * The expected number of remaining references is the same as that
426 * of migrate_page_move_mapping().
427 */
428 int migrate_huge_page_move_mapping(struct address_space *mapping,
429 struct page *newpage, struct page *page)
430 {
431 int expected_count;
432 void **pslot;
433
434 if (!mapping) {
435 if (page_count(page) != 1)
436 return -EAGAIN;
437 return MIGRATEPAGE_SUCCESS;
438 }
439
440 spin_lock_irq(&mapping->tree_lock);
441
442 pslot = radix_tree_lookup_slot(&mapping->page_tree,
443 page_index(page));
444
445 expected_count = 2 + page_has_private(page);
446 if (page_count(page) != expected_count ||
447 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
448 spin_unlock_irq(&mapping->tree_lock);
449 return -EAGAIN;
450 }
451
452 if (!page_freeze_refs(page, expected_count)) {
453 spin_unlock_irq(&mapping->tree_lock);
454 return -EAGAIN;
455 }
456
457 get_page(newpage);
458
459 radix_tree_replace_slot(pslot, newpage);
460
461 page_unfreeze_refs(page, expected_count - 1);
462
463 spin_unlock_irq(&mapping->tree_lock);
464 return MIGRATEPAGE_SUCCESS;
465 }
466
467 /*
468 * Gigantic pages are so large that we do not guarantee that page++ pointer
469 * arithmetic will work across the entire page. We need something more
470 * specialized.
471 */
472 static void __copy_gigantic_page(struct page *dst, struct page *src,
473 int nr_pages)
474 {
475 int i;
476 struct page *dst_base = dst;
477 struct page *src_base = src;
478
479 for (i = 0; i < nr_pages; ) {
480 cond_resched();
481 copy_highpage(dst, src);
482
483 i++;
484 dst = mem_map_next(dst, dst_base, i);
485 src = mem_map_next(src, src_base, i);
486 }
487 }
488
489 static void copy_huge_page(struct page *dst, struct page *src)
490 {
491 int i;
492 int nr_pages;
493
494 if (PageHuge(src)) {
495 /* hugetlbfs page */
496 struct hstate *h = page_hstate(src);
497 nr_pages = pages_per_huge_page(h);
498
499 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
500 __copy_gigantic_page(dst, src, nr_pages);
501 return;
502 }
503 } else {
504 /* thp page */
505 BUG_ON(!PageTransHuge(src));
506 nr_pages = hpage_nr_pages(src);
507 }
508
509 for (i = 0; i < nr_pages; i++) {
510 cond_resched();
511 copy_highpage(dst + i, src + i);
512 }
513 }
514
515 /*
516 * Copy the page to its new location
517 */
518 void migrate_page_copy(struct page *newpage, struct page *page)
519 {
520 int cpupid;
521
522 if (PageHuge(page) || PageTransHuge(page))
523 copy_huge_page(newpage, page);
524 else
525 copy_highpage(newpage, page);
526
527 if (PageError(page))
528 SetPageError(newpage);
529 if (PageReferenced(page))
530 SetPageReferenced(newpage);
531 if (PageUptodate(page))
532 SetPageUptodate(newpage);
533 if (TestClearPageActive(page)) {
534 VM_BUG_ON_PAGE(PageUnevictable(page), page);
535 SetPageActive(newpage);
536 } else if (TestClearPageUnevictable(page))
537 SetPageUnevictable(newpage);
538 if (PageChecked(page))
539 SetPageChecked(newpage);
540 if (PageMappedToDisk(page))
541 SetPageMappedToDisk(newpage);
542
543 if (PageDirty(page)) {
544 clear_page_dirty_for_io(page);
545 /*
546 * Want to mark the page and the radix tree as dirty, and
547 * redo the accounting that clear_page_dirty_for_io undid,
548 * but we can't use set_page_dirty because that function
549 * is actually a signal that all of the page has become dirty.
550 * Whereas only part of our page may be dirty.
551 */
552 if (PageSwapBacked(page))
553 SetPageDirty(newpage);
554 else
555 __set_page_dirty_nobuffers(newpage);
556 }
557
558 /*
559 * Copy NUMA information to the new page, to prevent over-eager
560 * future migrations of this same page.
561 */
562 cpupid = page_cpupid_xchg_last(page, -1);
563 page_cpupid_xchg_last(newpage, cpupid);
564
565 mlock_migrate_page(newpage, page);
566 ksm_migrate_page(newpage, page);
567 /*
568 * Please do not reorder this without considering how mm/ksm.c's
569 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
570 */
571 ClearPageSwapCache(page);
572 ClearPagePrivate(page);
573 set_page_private(page, 0);
574
575 /*
576 * If any waiters have accumulated on the new page then
577 * wake them up.
578 */
579 if (PageWriteback(newpage))
580 end_page_writeback(newpage);
581 }
582
583 /************************************************************
584 * Migration functions
585 ***********************************************************/
586
587 /*
588 * Common logic to directly migrate a single page suitable for
589 * pages that do not use PagePrivate/PagePrivate2.
590 *
591 * Pages are locked upon entry and exit.
592 */
593 int migrate_page(struct address_space *mapping,
594 struct page *newpage, struct page *page,
595 enum migrate_mode mode)
596 {
597 int rc;
598
599 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
600
601 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
602
603 if (rc != MIGRATEPAGE_SUCCESS)
604 return rc;
605
606 migrate_page_copy(newpage, page);
607 return MIGRATEPAGE_SUCCESS;
608 }
609 EXPORT_SYMBOL(migrate_page);
610
611 #ifdef CONFIG_BLOCK
612 /*
613 * Migration function for pages with buffers. This function can only be used
614 * if the underlying filesystem guarantees that no other references to "page"
615 * exist.
616 */
617 int buffer_migrate_page(struct address_space *mapping,
618 struct page *newpage, struct page *page, enum migrate_mode mode)
619 {
620 struct buffer_head *bh, *head;
621 int rc;
622
623 if (!page_has_buffers(page))
624 return migrate_page(mapping, newpage, page, mode);
625
626 head = page_buffers(page);
627
628 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
629
630 if (rc != MIGRATEPAGE_SUCCESS)
631 return rc;
632
633 /*
634 * In the async case, migrate_page_move_mapping locked the buffers
635 * with an IRQ-safe spinlock held. In the sync case, the buffers
636 * need to be locked now
637 */
638 if (mode != MIGRATE_ASYNC)
639 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
640
641 ClearPagePrivate(page);
642 set_page_private(newpage, page_private(page));
643 set_page_private(page, 0);
644 put_page(page);
645 get_page(newpage);
646
647 bh = head;
648 do {
649 set_bh_page(bh, newpage, bh_offset(bh));
650 bh = bh->b_this_page;
651
652 } while (bh != head);
653
654 SetPagePrivate(newpage);
655
656 migrate_page_copy(newpage, page);
657
658 bh = head;
659 do {
660 unlock_buffer(bh);
661 put_bh(bh);
662 bh = bh->b_this_page;
663
664 } while (bh != head);
665
666 return MIGRATEPAGE_SUCCESS;
667 }
668 EXPORT_SYMBOL(buffer_migrate_page);
669 #endif
670
671 /*
672 * Writeback a page to clean the dirty state
673 */
674 static int writeout(struct address_space *mapping, struct page *page)
675 {
676 struct writeback_control wbc = {
677 .sync_mode = WB_SYNC_NONE,
678 .nr_to_write = 1,
679 .range_start = 0,
680 .range_end = LLONG_MAX,
681 .for_reclaim = 1
682 };
683 int rc;
684
685 if (!mapping->a_ops->writepage)
686 /* No write method for the address space */
687 return -EINVAL;
688
689 if (!clear_page_dirty_for_io(page))
690 /* Someone else already triggered a write */
691 return -EAGAIN;
692
693 /*
694 * A dirty page may imply that the underlying filesystem has
695 * the page on some queue. So the page must be clean for
696 * migration. Writeout may mean we loose the lock and the
697 * page state is no longer what we checked for earlier.
698 * At this point we know that the migration attempt cannot
699 * be successful.
700 */
701 remove_migration_ptes(page, page);
702
703 rc = mapping->a_ops->writepage(page, &wbc);
704
705 if (rc != AOP_WRITEPAGE_ACTIVATE)
706 /* unlocked. Relock */
707 lock_page(page);
708
709 return (rc < 0) ? -EIO : -EAGAIN;
710 }
711
712 /*
713 * Default handling if a filesystem does not provide a migration function.
714 */
715 static int fallback_migrate_page(struct address_space *mapping,
716 struct page *newpage, struct page *page, enum migrate_mode mode)
717 {
718 if (PageDirty(page)) {
719 /* Only writeback pages in full synchronous migration */
720 if (mode != MIGRATE_SYNC)
721 return -EBUSY;
722 return writeout(mapping, page);
723 }
724
725 /*
726 * Buffers may be managed in a filesystem specific way.
727 * We must have no buffers or drop them.
728 */
729 if (page_has_private(page) &&
730 !try_to_release_page(page, GFP_KERNEL))
731 return -EAGAIN;
732
733 return migrate_page(mapping, newpage, page, mode);
734 }
735
736 /*
737 * Move a page to a newly allocated page
738 * The page is locked and all ptes have been successfully removed.
739 *
740 * The new page will have replaced the old page if this function
741 * is successful.
742 *
743 * Return value:
744 * < 0 - error code
745 * MIGRATEPAGE_SUCCESS - success
746 */
747 static int move_to_new_page(struct page *newpage, struct page *page,
748 int remap_swapcache, enum migrate_mode mode)
749 {
750 struct address_space *mapping;
751 int rc;
752
753 /*
754 * Block others from accessing the page when we get around to
755 * establishing additional references. We are the only one
756 * holding a reference to the new page at this point.
757 */
758 if (!trylock_page(newpage))
759 BUG();
760
761 /* Prepare mapping for the new page.*/
762 newpage->index = page->index;
763 newpage->mapping = page->mapping;
764 if (PageSwapBacked(page))
765 SetPageSwapBacked(newpage);
766
767 mapping = page_mapping(page);
768 if (!mapping)
769 rc = migrate_page(mapping, newpage, page, mode);
770 else if (mapping->a_ops->migratepage)
771 /*
772 * Most pages have a mapping and most filesystems provide a
773 * migratepage callback. Anonymous pages are part of swap
774 * space which also has its own migratepage callback. This
775 * is the most common path for page migration.
776 */
777 rc = mapping->a_ops->migratepage(mapping,
778 newpage, page, mode);
779 else
780 rc = fallback_migrate_page(mapping, newpage, page, mode);
781
782 if (rc != MIGRATEPAGE_SUCCESS) {
783 newpage->mapping = NULL;
784 } else {
785 if (remap_swapcache)
786 remove_migration_ptes(page, newpage);
787 page->mapping = NULL;
788 }
789
790 unlock_page(newpage);
791
792 return rc;
793 }
794
795 static int __unmap_and_move(struct page *page, struct page *newpage,
796 int force, enum migrate_mode mode)
797 {
798 int rc = -EAGAIN;
799 int remap_swapcache = 1;
800 struct mem_cgroup *mem;
801 struct anon_vma *anon_vma = NULL;
802
803 if (!trylock_page(page)) {
804 if (!force || mode == MIGRATE_ASYNC)
805 goto out;
806
807 /*
808 * It's not safe for direct compaction to call lock_page.
809 * For example, during page readahead pages are added locked
810 * to the LRU. Later, when the IO completes the pages are
811 * marked uptodate and unlocked. However, the queueing
812 * could be merging multiple pages for one bio (e.g.
813 * mpage_readpages). If an allocation happens for the
814 * second or third page, the process can end up locking
815 * the same page twice and deadlocking. Rather than
816 * trying to be clever about what pages can be locked,
817 * avoid the use of lock_page for direct compaction
818 * altogether.
819 */
820 if (current->flags & PF_MEMALLOC)
821 goto out;
822
823 lock_page(page);
824 }
825
826 /* charge against new page */
827 mem_cgroup_prepare_migration(page, newpage, &mem);
828
829 if (PageWriteback(page)) {
830 /*
831 * Only in the case of a full synchronous migration is it
832 * necessary to wait for PageWriteback. In the async case,
833 * the retry loop is too short and in the sync-light case,
834 * the overhead of stalling is too much
835 */
836 if (mode != MIGRATE_SYNC) {
837 rc = -EBUSY;
838 goto uncharge;
839 }
840 if (!force)
841 goto uncharge;
842 wait_on_page_writeback(page);
843 }
844 /*
845 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
846 * we cannot notice that anon_vma is freed while we migrates a page.
847 * This get_anon_vma() delays freeing anon_vma pointer until the end
848 * of migration. File cache pages are no problem because of page_lock()
849 * File Caches may use write_page() or lock_page() in migration, then,
850 * just care Anon page here.
851 */
852 if (PageAnon(page) && !PageKsm(page)) {
853 /*
854 * Only page_lock_anon_vma_read() understands the subtleties of
855 * getting a hold on an anon_vma from outside one of its mms.
856 */
857 anon_vma = page_get_anon_vma(page);
858 if (anon_vma) {
859 /*
860 * Anon page
861 */
862 } else if (PageSwapCache(page)) {
863 /*
864 * We cannot be sure that the anon_vma of an unmapped
865 * swapcache page is safe to use because we don't
866 * know in advance if the VMA that this page belonged
867 * to still exists. If the VMA and others sharing the
868 * data have been freed, then the anon_vma could
869 * already be invalid.
870 *
871 * To avoid this possibility, swapcache pages get
872 * migrated but are not remapped when migration
873 * completes
874 */
875 remap_swapcache = 0;
876 } else {
877 goto uncharge;
878 }
879 }
880
881 if (unlikely(balloon_page_movable(page))) {
882 /*
883 * A ballooned page does not need any special attention from
884 * physical to virtual reverse mapping procedures.
885 * Skip any attempt to unmap PTEs or to remap swap cache,
886 * in order to avoid burning cycles at rmap level, and perform
887 * the page migration right away (proteced by page lock).
888 */
889 rc = balloon_page_migrate(newpage, page, mode);
890 goto uncharge;
891 }
892
893 /*
894 * Corner case handling:
895 * 1. When a new swap-cache page is read into, it is added to the LRU
896 * and treated as swapcache but it has no rmap yet.
897 * Calling try_to_unmap() against a page->mapping==NULL page will
898 * trigger a BUG. So handle it here.
899 * 2. An orphaned page (see truncate_complete_page) might have
900 * fs-private metadata. The page can be picked up due to memory
901 * offlining. Everywhere else except page reclaim, the page is
902 * invisible to the vm, so the page can not be migrated. So try to
903 * free the metadata, so the page can be freed.
904 */
905 if (!page->mapping) {
906 VM_BUG_ON_PAGE(PageAnon(page), page);
907 if (page_has_private(page)) {
908 try_to_free_buffers(page);
909 goto uncharge;
910 }
911 goto skip_unmap;
912 }
913
914 /* Establish migration ptes or remove ptes */
915 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
916
917 skip_unmap:
918 if (!page_mapped(page))
919 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
920
921 if (rc && remap_swapcache)
922 remove_migration_ptes(page, page);
923
924 /* Drop an anon_vma reference if we took one */
925 if (anon_vma)
926 put_anon_vma(anon_vma);
927
928 uncharge:
929 mem_cgroup_end_migration(mem, page, newpage,
930 (rc == MIGRATEPAGE_SUCCESS ||
931 rc == MIGRATEPAGE_BALLOON_SUCCESS));
932 unlock_page(page);
933 out:
934 return rc;
935 }
936
937 /*
938 * Obtain the lock on page, remove all ptes and migrate the page
939 * to the newly allocated page in newpage.
940 */
941 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
942 unsigned long private, struct page *page, int force,
943 enum migrate_mode mode)
944 {
945 int rc = 0;
946 int *result = NULL;
947 struct page *newpage = get_new_page(page, private, &result);
948
949 if (!newpage)
950 return -ENOMEM;
951
952 if (page_count(page) == 1) {
953 /* page was freed from under us. So we are done. */
954 goto out;
955 }
956
957 if (unlikely(PageTransHuge(page)))
958 if (unlikely(split_huge_page(page)))
959 goto out;
960
961 rc = __unmap_and_move(page, newpage, force, mode);
962
963 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
964 /*
965 * A ballooned page has been migrated already.
966 * Now, it's the time to wrap-up counters,
967 * handle the page back to Buddy and return.
968 */
969 dec_zone_page_state(page, NR_ISOLATED_ANON +
970 page_is_file_cache(page));
971 balloon_page_free(page);
972 return MIGRATEPAGE_SUCCESS;
973 }
974 out:
975 if (rc != -EAGAIN) {
976 /*
977 * A page that has been migrated has all references
978 * removed and will be freed. A page that has not been
979 * migrated will have kepts its references and be
980 * restored.
981 */
982 list_del(&page->lru);
983 dec_zone_page_state(page, NR_ISOLATED_ANON +
984 page_is_file_cache(page));
985 putback_lru_page(page);
986 }
987
988 /*
989 * If migration was not successful and there's a freeing callback, use
990 * it. Otherwise, putback_lru_page() will drop the reference grabbed
991 * during isolation.
992 */
993 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
994 put_new_page(newpage, private);
995 else
996 putback_lru_page(newpage);
997
998 if (result) {
999 if (rc)
1000 *result = rc;
1001 else
1002 *result = page_to_nid(newpage);
1003 }
1004 return rc;
1005 }
1006
1007 /*
1008 * Counterpart of unmap_and_move_page() for hugepage migration.
1009 *
1010 * This function doesn't wait the completion of hugepage I/O
1011 * because there is no race between I/O and migration for hugepage.
1012 * Note that currently hugepage I/O occurs only in direct I/O
1013 * where no lock is held and PG_writeback is irrelevant,
1014 * and writeback status of all subpages are counted in the reference
1015 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1016 * under direct I/O, the reference of the head page is 512 and a bit more.)
1017 * This means that when we try to migrate hugepage whose subpages are
1018 * doing direct I/O, some references remain after try_to_unmap() and
1019 * hugepage migration fails without data corruption.
1020 *
1021 * There is also no race when direct I/O is issued on the page under migration,
1022 * because then pte is replaced with migration swap entry and direct I/O code
1023 * will wait in the page fault for migration to complete.
1024 */
1025 static int unmap_and_move_huge_page(new_page_t get_new_page,
1026 free_page_t put_new_page, unsigned long private,
1027 struct page *hpage, int force,
1028 enum migrate_mode mode)
1029 {
1030 int rc = 0;
1031 int *result = NULL;
1032 struct page *new_hpage;
1033 struct anon_vma *anon_vma = NULL;
1034
1035 /*
1036 * Movability of hugepages depends on architectures and hugepage size.
1037 * This check is necessary because some callers of hugepage migration
1038 * like soft offline and memory hotremove don't walk through page
1039 * tables or check whether the hugepage is pmd-based or not before
1040 * kicking migration.
1041 */
1042 if (!hugepage_migration_supported(page_hstate(hpage))) {
1043 putback_active_hugepage(hpage);
1044 return -ENOSYS;
1045 }
1046
1047 new_hpage = get_new_page(hpage, private, &result);
1048 if (!new_hpage)
1049 return -ENOMEM;
1050
1051 rc = -EAGAIN;
1052
1053 if (!trylock_page(hpage)) {
1054 if (!force || mode != MIGRATE_SYNC)
1055 goto out;
1056 lock_page(hpage);
1057 }
1058
1059 if (PageAnon(hpage))
1060 anon_vma = page_get_anon_vma(hpage);
1061
1062 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1063
1064 if (!page_mapped(hpage))
1065 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1066
1067 if (rc != MIGRATEPAGE_SUCCESS)
1068 remove_migration_ptes(hpage, hpage);
1069
1070 if (anon_vma)
1071 put_anon_vma(anon_vma);
1072
1073 if (rc == MIGRATEPAGE_SUCCESS)
1074 hugetlb_cgroup_migrate(hpage, new_hpage);
1075
1076 unlock_page(hpage);
1077 out:
1078 if (rc != -EAGAIN)
1079 putback_active_hugepage(hpage);
1080
1081 /*
1082 * If migration was not successful and there's a freeing callback, use
1083 * it. Otherwise, put_page() will drop the reference grabbed during
1084 * isolation.
1085 */
1086 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1087 put_new_page(new_hpage, private);
1088 else
1089 put_page(new_hpage);
1090
1091 if (result) {
1092 if (rc)
1093 *result = rc;
1094 else
1095 *result = page_to_nid(new_hpage);
1096 }
1097 return rc;
1098 }
1099
1100 /*
1101 * migrate_pages - migrate the pages specified in a list, to the free pages
1102 * supplied as the target for the page migration
1103 *
1104 * @from: The list of pages to be migrated.
1105 * @get_new_page: The function used to allocate free pages to be used
1106 * as the target of the page migration.
1107 * @put_new_page: The function used to free target pages if migration
1108 * fails, or NULL if no special handling is necessary.
1109 * @private: Private data to be passed on to get_new_page()
1110 * @mode: The migration mode that specifies the constraints for
1111 * page migration, if any.
1112 * @reason: The reason for page migration.
1113 *
1114 * The function returns after 10 attempts or if no pages are movable any more
1115 * because the list has become empty or no retryable pages exist any more.
1116 * The caller should call putback_lru_pages() to return pages to the LRU
1117 * or free list only if ret != 0.
1118 *
1119 * Returns the number of pages that were not migrated, or an error code.
1120 */
1121 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1122 free_page_t put_new_page, unsigned long private,
1123 enum migrate_mode mode, int reason)
1124 {
1125 int retry = 1;
1126 int nr_failed = 0;
1127 int nr_succeeded = 0;
1128 int pass = 0;
1129 struct page *page;
1130 struct page *page2;
1131 int swapwrite = current->flags & PF_SWAPWRITE;
1132 int rc;
1133
1134 if (!swapwrite)
1135 current->flags |= PF_SWAPWRITE;
1136
1137 for(pass = 0; pass < 10 && retry; pass++) {
1138 retry = 0;
1139
1140 list_for_each_entry_safe(page, page2, from, lru) {
1141 cond_resched();
1142
1143 if (PageHuge(page))
1144 rc = unmap_and_move_huge_page(get_new_page,
1145 put_new_page, private, page,
1146 pass > 2, mode);
1147 else
1148 rc = unmap_and_move(get_new_page, put_new_page,
1149 private, page, pass > 2, mode);
1150
1151 switch(rc) {
1152 case -ENOMEM:
1153 goto out;
1154 case -EAGAIN:
1155 retry++;
1156 break;
1157 case MIGRATEPAGE_SUCCESS:
1158 nr_succeeded++;
1159 break;
1160 default:
1161 /*
1162 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1163 * unlike -EAGAIN case, the failed page is
1164 * removed from migration page list and not
1165 * retried in the next outer loop.
1166 */
1167 nr_failed++;
1168 break;
1169 }
1170 }
1171 }
1172 rc = nr_failed + retry;
1173 out:
1174 if (nr_succeeded)
1175 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1176 if (nr_failed)
1177 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1178 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1179
1180 if (!swapwrite)
1181 current->flags &= ~PF_SWAPWRITE;
1182
1183 return rc;
1184 }
1185
1186 #ifdef CONFIG_NUMA
1187 /*
1188 * Move a list of individual pages
1189 */
1190 struct page_to_node {
1191 unsigned long addr;
1192 struct page *page;
1193 int node;
1194 int status;
1195 };
1196
1197 static struct page *new_page_node(struct page *p, unsigned long private,
1198 int **result)
1199 {
1200 struct page_to_node *pm = (struct page_to_node *)private;
1201
1202 while (pm->node != MAX_NUMNODES && pm->page != p)
1203 pm++;
1204
1205 if (pm->node == MAX_NUMNODES)
1206 return NULL;
1207
1208 *result = &pm->status;
1209
1210 if (PageHuge(p))
1211 return alloc_huge_page_node(page_hstate(compound_head(p)),
1212 pm->node);
1213 else
1214 return alloc_pages_exact_node(pm->node,
1215 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1216 }
1217
1218 /*
1219 * Move a set of pages as indicated in the pm array. The addr
1220 * field must be set to the virtual address of the page to be moved
1221 * and the node number must contain a valid target node.
1222 * The pm array ends with node = MAX_NUMNODES.
1223 */
1224 static int do_move_page_to_node_array(struct mm_struct *mm,
1225 struct page_to_node *pm,
1226 int migrate_all)
1227 {
1228 int err;
1229 struct page_to_node *pp;
1230 LIST_HEAD(pagelist);
1231
1232 down_read(&mm->mmap_sem);
1233
1234 /*
1235 * Build a list of pages to migrate
1236 */
1237 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1238 struct vm_area_struct *vma;
1239 struct page *page;
1240
1241 err = -EFAULT;
1242 vma = find_vma(mm, pp->addr);
1243 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1244 goto set_status;
1245
1246 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1247
1248 err = PTR_ERR(page);
1249 if (IS_ERR(page))
1250 goto set_status;
1251
1252 err = -ENOENT;
1253 if (!page)
1254 goto set_status;
1255
1256 /* Use PageReserved to check for zero page */
1257 if (PageReserved(page))
1258 goto put_and_set;
1259
1260 pp->page = page;
1261 err = page_to_nid(page);
1262
1263 if (err == pp->node)
1264 /*
1265 * Node already in the right place
1266 */
1267 goto put_and_set;
1268
1269 err = -EACCES;
1270 if (page_mapcount(page) > 1 &&
1271 !migrate_all)
1272 goto put_and_set;
1273
1274 if (PageHuge(page)) {
1275 isolate_huge_page(page, &pagelist);
1276 goto put_and_set;
1277 }
1278
1279 err = isolate_lru_page(page);
1280 if (!err) {
1281 list_add_tail(&page->lru, &pagelist);
1282 inc_zone_page_state(page, NR_ISOLATED_ANON +
1283 page_is_file_cache(page));
1284 }
1285 put_and_set:
1286 /*
1287 * Either remove the duplicate refcount from
1288 * isolate_lru_page() or drop the page ref if it was
1289 * not isolated.
1290 */
1291 put_page(page);
1292 set_status:
1293 pp->status = err;
1294 }
1295
1296 err = 0;
1297 if (!list_empty(&pagelist)) {
1298 err = migrate_pages(&pagelist, new_page_node, NULL,
1299 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1300 if (err)
1301 putback_movable_pages(&pagelist);
1302 }
1303
1304 up_read(&mm->mmap_sem);
1305 return err;
1306 }
1307
1308 /*
1309 * Migrate an array of page address onto an array of nodes and fill
1310 * the corresponding array of status.
1311 */
1312 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1313 unsigned long nr_pages,
1314 const void __user * __user *pages,
1315 const int __user *nodes,
1316 int __user *status, int flags)
1317 {
1318 struct page_to_node *pm;
1319 unsigned long chunk_nr_pages;
1320 unsigned long chunk_start;
1321 int err;
1322
1323 err = -ENOMEM;
1324 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1325 if (!pm)
1326 goto out;
1327
1328 migrate_prep();
1329
1330 /*
1331 * Store a chunk of page_to_node array in a page,
1332 * but keep the last one as a marker
1333 */
1334 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1335
1336 for (chunk_start = 0;
1337 chunk_start < nr_pages;
1338 chunk_start += chunk_nr_pages) {
1339 int j;
1340
1341 if (chunk_start + chunk_nr_pages > nr_pages)
1342 chunk_nr_pages = nr_pages - chunk_start;
1343
1344 /* fill the chunk pm with addrs and nodes from user-space */
1345 for (j = 0; j < chunk_nr_pages; j++) {
1346 const void __user *p;
1347 int node;
1348
1349 err = -EFAULT;
1350 if (get_user(p, pages + j + chunk_start))
1351 goto out_pm;
1352 pm[j].addr = (unsigned long) p;
1353
1354 if (get_user(node, nodes + j + chunk_start))
1355 goto out_pm;
1356
1357 err = -ENODEV;
1358 if (node < 0 || node >= MAX_NUMNODES)
1359 goto out_pm;
1360
1361 if (!node_state(node, N_MEMORY))
1362 goto out_pm;
1363
1364 err = -EACCES;
1365 if (!node_isset(node, task_nodes))
1366 goto out_pm;
1367
1368 pm[j].node = node;
1369 }
1370
1371 /* End marker for this chunk */
1372 pm[chunk_nr_pages].node = MAX_NUMNODES;
1373
1374 /* Migrate this chunk */
1375 err = do_move_page_to_node_array(mm, pm,
1376 flags & MPOL_MF_MOVE_ALL);
1377 if (err < 0)
1378 goto out_pm;
1379
1380 /* Return status information */
1381 for (j = 0; j < chunk_nr_pages; j++)
1382 if (put_user(pm[j].status, status + j + chunk_start)) {
1383 err = -EFAULT;
1384 goto out_pm;
1385 }
1386 }
1387 err = 0;
1388
1389 out_pm:
1390 free_page((unsigned long)pm);
1391 out:
1392 return err;
1393 }
1394
1395 /*
1396 * Determine the nodes of an array of pages and store it in an array of status.
1397 */
1398 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1399 const void __user **pages, int *status)
1400 {
1401 unsigned long i;
1402
1403 down_read(&mm->mmap_sem);
1404
1405 for (i = 0; i < nr_pages; i++) {
1406 unsigned long addr = (unsigned long)(*pages);
1407 struct vm_area_struct *vma;
1408 struct page *page;
1409 int err = -EFAULT;
1410
1411 vma = find_vma(mm, addr);
1412 if (!vma || addr < vma->vm_start)
1413 goto set_status;
1414
1415 page = follow_page(vma, addr, 0);
1416
1417 err = PTR_ERR(page);
1418 if (IS_ERR(page))
1419 goto set_status;
1420
1421 err = -ENOENT;
1422 /* Use PageReserved to check for zero page */
1423 if (!page || PageReserved(page))
1424 goto set_status;
1425
1426 err = page_to_nid(page);
1427 set_status:
1428 *status = err;
1429
1430 pages++;
1431 status++;
1432 }
1433
1434 up_read(&mm->mmap_sem);
1435 }
1436
1437 /*
1438 * Determine the nodes of a user array of pages and store it in
1439 * a user array of status.
1440 */
1441 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1442 const void __user * __user *pages,
1443 int __user *status)
1444 {
1445 #define DO_PAGES_STAT_CHUNK_NR 16
1446 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1447 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1448
1449 while (nr_pages) {
1450 unsigned long chunk_nr;
1451
1452 chunk_nr = nr_pages;
1453 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1454 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1455
1456 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1457 break;
1458
1459 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1460
1461 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1462 break;
1463
1464 pages += chunk_nr;
1465 status += chunk_nr;
1466 nr_pages -= chunk_nr;
1467 }
1468 return nr_pages ? -EFAULT : 0;
1469 }
1470
1471 /*
1472 * Move a list of pages in the address space of the currently executing
1473 * process.
1474 */
1475 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1476 const void __user * __user *, pages,
1477 const int __user *, nodes,
1478 int __user *, status, int, flags)
1479 {
1480 const struct cred *cred = current_cred(), *tcred;
1481 struct task_struct *task;
1482 struct mm_struct *mm;
1483 int err;
1484 nodemask_t task_nodes;
1485
1486 /* Check flags */
1487 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1488 return -EINVAL;
1489
1490 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1491 return -EPERM;
1492
1493 /* Find the mm_struct */
1494 rcu_read_lock();
1495 task = pid ? find_task_by_vpid(pid) : current;
1496 if (!task) {
1497 rcu_read_unlock();
1498 return -ESRCH;
1499 }
1500 get_task_struct(task);
1501
1502 /*
1503 * Check if this process has the right to modify the specified
1504 * process. The right exists if the process has administrative
1505 * capabilities, superuser privileges or the same
1506 * userid as the target process.
1507 */
1508 tcred = __task_cred(task);
1509 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1510 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1511 !capable(CAP_SYS_NICE)) {
1512 rcu_read_unlock();
1513 err = -EPERM;
1514 goto out;
1515 }
1516 rcu_read_unlock();
1517
1518 err = security_task_movememory(task);
1519 if (err)
1520 goto out;
1521
1522 task_nodes = cpuset_mems_allowed(task);
1523 mm = get_task_mm(task);
1524 put_task_struct(task);
1525
1526 if (!mm)
1527 return -EINVAL;
1528
1529 if (nodes)
1530 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1531 nodes, status, flags);
1532 else
1533 err = do_pages_stat(mm, nr_pages, pages, status);
1534
1535 mmput(mm);
1536 return err;
1537
1538 out:
1539 put_task_struct(task);
1540 return err;
1541 }
1542
1543 /*
1544 * Call migration functions in the vma_ops that may prepare
1545 * memory in a vm for migration. migration functions may perform
1546 * the migration for vmas that do not have an underlying page struct.
1547 */
1548 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1549 const nodemask_t *from, unsigned long flags)
1550 {
1551 struct vm_area_struct *vma;
1552 int err = 0;
1553
1554 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1555 if (vma->vm_ops && vma->vm_ops->migrate) {
1556 err = vma->vm_ops->migrate(vma, to, from, flags);
1557 if (err)
1558 break;
1559 }
1560 }
1561 return err;
1562 }
1563
1564 #ifdef CONFIG_NUMA_BALANCING
1565 /*
1566 * Returns true if this is a safe migration target node for misplaced NUMA
1567 * pages. Currently it only checks the watermarks which crude
1568 */
1569 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1570 unsigned long nr_migrate_pages)
1571 {
1572 int z;
1573 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1574 struct zone *zone = pgdat->node_zones + z;
1575
1576 if (!populated_zone(zone))
1577 continue;
1578
1579 if (!zone_reclaimable(zone))
1580 continue;
1581
1582 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1583 if (!zone_watermark_ok(zone, 0,
1584 high_wmark_pages(zone) +
1585 nr_migrate_pages,
1586 0, 0))
1587 continue;
1588 return true;
1589 }
1590 return false;
1591 }
1592
1593 static struct page *alloc_misplaced_dst_page(struct page *page,
1594 unsigned long data,
1595 int **result)
1596 {
1597 int nid = (int) data;
1598 struct page *newpage;
1599
1600 newpage = alloc_pages_exact_node(nid,
1601 (GFP_HIGHUSER_MOVABLE |
1602 __GFP_THISNODE | __GFP_NOMEMALLOC |
1603 __GFP_NORETRY | __GFP_NOWARN) &
1604 ~GFP_IOFS, 0);
1605
1606 return newpage;
1607 }
1608
1609 /*
1610 * page migration rate limiting control.
1611 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1612 * window of time. Default here says do not migrate more than 1280M per second.
1613 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1614 * as it is faults that reset the window, pte updates will happen unconditionally
1615 * if there has not been a fault since @pteupdate_interval_millisecs after the
1616 * throttle window closed.
1617 */
1618 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1619 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1620 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1621
1622 /* Returns true if NUMA migration is currently rate limited */
1623 bool migrate_ratelimited(int node)
1624 {
1625 pg_data_t *pgdat = NODE_DATA(node);
1626
1627 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1628 msecs_to_jiffies(pteupdate_interval_millisecs)))
1629 return false;
1630
1631 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1632 return false;
1633
1634 return true;
1635 }
1636
1637 /* Returns true if the node is migrate rate-limited after the update */
1638 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1639 unsigned long nr_pages)
1640 {
1641 /*
1642 * Rate-limit the amount of data that is being migrated to a node.
1643 * Optimal placement is no good if the memory bus is saturated and
1644 * all the time is being spent migrating!
1645 */
1646 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1647 spin_lock(&pgdat->numabalancing_migrate_lock);
1648 pgdat->numabalancing_migrate_nr_pages = 0;
1649 pgdat->numabalancing_migrate_next_window = jiffies +
1650 msecs_to_jiffies(migrate_interval_millisecs);
1651 spin_unlock(&pgdat->numabalancing_migrate_lock);
1652 }
1653 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1654 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1655 nr_pages);
1656 return true;
1657 }
1658
1659 /*
1660 * This is an unlocked non-atomic update so errors are possible.
1661 * The consequences are failing to migrate when we potentiall should
1662 * have which is not severe enough to warrant locking. If it is ever
1663 * a problem, it can be converted to a per-cpu counter.
1664 */
1665 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1666 return false;
1667 }
1668
1669 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1670 {
1671 int page_lru;
1672
1673 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1674
1675 /* Avoid migrating to a node that is nearly full */
1676 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1677 return 0;
1678
1679 if (isolate_lru_page(page))
1680 return 0;
1681
1682 /*
1683 * migrate_misplaced_transhuge_page() skips page migration's usual
1684 * check on page_count(), so we must do it here, now that the page
1685 * has been isolated: a GUP pin, or any other pin, prevents migration.
1686 * The expected page count is 3: 1 for page's mapcount and 1 for the
1687 * caller's pin and 1 for the reference taken by isolate_lru_page().
1688 */
1689 if (PageTransHuge(page) && page_count(page) != 3) {
1690 putback_lru_page(page);
1691 return 0;
1692 }
1693
1694 page_lru = page_is_file_cache(page);
1695 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1696 hpage_nr_pages(page));
1697
1698 /*
1699 * Isolating the page has taken another reference, so the
1700 * caller's reference can be safely dropped without the page
1701 * disappearing underneath us during migration.
1702 */
1703 put_page(page);
1704 return 1;
1705 }
1706
1707 bool pmd_trans_migrating(pmd_t pmd)
1708 {
1709 struct page *page = pmd_page(pmd);
1710 return PageLocked(page);
1711 }
1712
1713 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1714 {
1715 struct page *page = pmd_page(*pmd);
1716 wait_on_page_locked(page);
1717 }
1718
1719 /*
1720 * Attempt to migrate a misplaced page to the specified destination
1721 * node. Caller is expected to have an elevated reference count on
1722 * the page that will be dropped by this function before returning.
1723 */
1724 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1725 int node)
1726 {
1727 pg_data_t *pgdat = NODE_DATA(node);
1728 int isolated;
1729 int nr_remaining;
1730 LIST_HEAD(migratepages);
1731
1732 /*
1733 * Don't migrate file pages that are mapped in multiple processes
1734 * with execute permissions as they are probably shared libraries.
1735 */
1736 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1737 (vma->vm_flags & VM_EXEC))
1738 goto out;
1739
1740 /*
1741 * Rate-limit the amount of data that is being migrated to a node.
1742 * Optimal placement is no good if the memory bus is saturated and
1743 * all the time is being spent migrating!
1744 */
1745 if (numamigrate_update_ratelimit(pgdat, 1))
1746 goto out;
1747
1748 isolated = numamigrate_isolate_page(pgdat, page);
1749 if (!isolated)
1750 goto out;
1751
1752 list_add(&page->lru, &migratepages);
1753 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1754 NULL, node, MIGRATE_ASYNC,
1755 MR_NUMA_MISPLACED);
1756 if (nr_remaining) {
1757 if (!list_empty(&migratepages)) {
1758 list_del(&page->lru);
1759 dec_zone_page_state(page, NR_ISOLATED_ANON +
1760 page_is_file_cache(page));
1761 putback_lru_page(page);
1762 }
1763 isolated = 0;
1764 } else
1765 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1766 BUG_ON(!list_empty(&migratepages));
1767 return isolated;
1768
1769 out:
1770 put_page(page);
1771 return 0;
1772 }
1773 #endif /* CONFIG_NUMA_BALANCING */
1774
1775 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1776 /*
1777 * Migrates a THP to a given target node. page must be locked and is unlocked
1778 * before returning.
1779 */
1780 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1781 struct vm_area_struct *vma,
1782 pmd_t *pmd, pmd_t entry,
1783 unsigned long address,
1784 struct page *page, int node)
1785 {
1786 spinlock_t *ptl;
1787 pg_data_t *pgdat = NODE_DATA(node);
1788 int isolated = 0;
1789 struct page *new_page = NULL;
1790 struct mem_cgroup *memcg = NULL;
1791 int page_lru = page_is_file_cache(page);
1792 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1793 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1794 pmd_t orig_entry;
1795
1796 /*
1797 * Rate-limit the amount of data that is being migrated to a node.
1798 * Optimal placement is no good if the memory bus is saturated and
1799 * all the time is being spent migrating!
1800 */
1801 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1802 goto out_dropref;
1803
1804 new_page = alloc_pages_node(node,
1805 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1806 HPAGE_PMD_ORDER);
1807 if (!new_page)
1808 goto out_fail;
1809
1810 isolated = numamigrate_isolate_page(pgdat, page);
1811 if (!isolated) {
1812 put_page(new_page);
1813 goto out_fail;
1814 }
1815
1816 if (mm_tlb_flush_pending(mm))
1817 flush_tlb_range(vma, mmun_start, mmun_end);
1818
1819 /* Prepare a page as a migration target */
1820 __set_page_locked(new_page);
1821 SetPageSwapBacked(new_page);
1822
1823 /* anon mapping, we can simply copy page->mapping to the new page: */
1824 new_page->mapping = page->mapping;
1825 new_page->index = page->index;
1826 migrate_page_copy(new_page, page);
1827 WARN_ON(PageLRU(new_page));
1828
1829 /* Recheck the target PMD */
1830 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1831 ptl = pmd_lock(mm, pmd);
1832 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1833 fail_putback:
1834 spin_unlock(ptl);
1835 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1836
1837 /* Reverse changes made by migrate_page_copy() */
1838 if (TestClearPageActive(new_page))
1839 SetPageActive(page);
1840 if (TestClearPageUnevictable(new_page))
1841 SetPageUnevictable(page);
1842 mlock_migrate_page(page, new_page);
1843
1844 unlock_page(new_page);
1845 put_page(new_page); /* Free it */
1846
1847 /* Retake the callers reference and putback on LRU */
1848 get_page(page);
1849 putback_lru_page(page);
1850 mod_zone_page_state(page_zone(page),
1851 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1852
1853 goto out_unlock;
1854 }
1855
1856 /*
1857 * Traditional migration needs to prepare the memcg charge
1858 * transaction early to prevent the old page from being
1859 * uncharged when installing migration entries. Here we can
1860 * save the potential rollback and start the charge transfer
1861 * only when migration is already known to end successfully.
1862 */
1863 mem_cgroup_prepare_migration(page, new_page, &memcg);
1864
1865 orig_entry = *pmd;
1866 entry = mk_pmd(new_page, vma->vm_page_prot);
1867 entry = pmd_mkhuge(entry);
1868 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1869
1870 /*
1871 * Clear the old entry under pagetable lock and establish the new PTE.
1872 * Any parallel GUP will either observe the old page blocking on the
1873 * page lock, block on the page table lock or observe the new page.
1874 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1875 * guarantee the copy is visible before the pagetable update.
1876 */
1877 flush_cache_range(vma, mmun_start, mmun_end);
1878 page_add_anon_rmap(new_page, vma, mmun_start);
1879 pmdp_clear_flush(vma, mmun_start, pmd);
1880 set_pmd_at(mm, mmun_start, pmd, entry);
1881 flush_tlb_range(vma, mmun_start, mmun_end);
1882 update_mmu_cache_pmd(vma, address, &entry);
1883
1884 if (page_count(page) != 2) {
1885 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1886 flush_tlb_range(vma, mmun_start, mmun_end);
1887 update_mmu_cache_pmd(vma, address, &entry);
1888 page_remove_rmap(new_page);
1889 goto fail_putback;
1890 }
1891
1892 page_remove_rmap(page);
1893
1894 /*
1895 * Finish the charge transaction under the page table lock to
1896 * prevent split_huge_page() from dividing up the charge
1897 * before it's fully transferred to the new page.
1898 */
1899 mem_cgroup_end_migration(memcg, page, new_page, true);
1900 spin_unlock(ptl);
1901 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1902
1903 /* Take an "isolate" reference and put new page on the LRU. */
1904 get_page(new_page);
1905 putback_lru_page(new_page);
1906
1907 unlock_page(new_page);
1908 unlock_page(page);
1909 put_page(page); /* Drop the rmap reference */
1910 put_page(page); /* Drop the LRU isolation reference */
1911
1912 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1913 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1914
1915 mod_zone_page_state(page_zone(page),
1916 NR_ISOLATED_ANON + page_lru,
1917 -HPAGE_PMD_NR);
1918 return isolated;
1919
1920 out_fail:
1921 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1922 out_dropref:
1923 ptl = pmd_lock(mm, pmd);
1924 if (pmd_same(*pmd, entry)) {
1925 entry = pmd_mknonnuma(entry);
1926 set_pmd_at(mm, mmun_start, pmd, entry);
1927 update_mmu_cache_pmd(vma, address, &entry);
1928 }
1929 spin_unlock(ptl);
1930
1931 out_unlock:
1932 unlock_page(page);
1933 put_page(page);
1934 return 0;
1935 }
1936 #endif /* CONFIG_NUMA_BALANCING */
1937
1938 #endif /* CONFIG_NUMA */
This page took 0.06958 seconds and 5 git commands to generate.