mm/oom_kill: remove the wrong fatal_signal_pending() check in oom_kill_process()
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/page_idle.h>
41
42 #include <asm/tlbflush.h>
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/migrate.h>
46
47 #include "internal.h"
48
49 /*
50 * migrate_prep() needs to be called before we start compiling a list of pages
51 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
52 * undesirable, use migrate_prep_local()
53 */
54 int migrate_prep(void)
55 {
56 /*
57 * Clear the LRU lists so pages can be isolated.
58 * Note that pages may be moved off the LRU after we have
59 * drained them. Those pages will fail to migrate like other
60 * pages that may be busy.
61 */
62 lru_add_drain_all();
63
64 return 0;
65 }
66
67 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
68 int migrate_prep_local(void)
69 {
70 lru_add_drain();
71
72 return 0;
73 }
74
75 /*
76 * Put previously isolated pages back onto the appropriate lists
77 * from where they were once taken off for compaction/migration.
78 *
79 * This function shall be used whenever the isolated pageset has been
80 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
81 * and isolate_huge_page().
82 */
83 void putback_movable_pages(struct list_head *l)
84 {
85 struct page *page;
86 struct page *page2;
87
88 list_for_each_entry_safe(page, page2, l, lru) {
89 if (unlikely(PageHuge(page))) {
90 putback_active_hugepage(page);
91 continue;
92 }
93 list_del(&page->lru);
94 dec_zone_page_state(page, NR_ISOLATED_ANON +
95 page_is_file_cache(page));
96 if (unlikely(isolated_balloon_page(page)))
97 balloon_page_putback(page);
98 else
99 putback_lru_page(page);
100 }
101 }
102
103 /*
104 * Restore a potential migration pte to a working pte entry
105 */
106 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
107 unsigned long addr, void *old)
108 {
109 struct mm_struct *mm = vma->vm_mm;
110 swp_entry_t entry;
111 pmd_t *pmd;
112 pte_t *ptep, pte;
113 spinlock_t *ptl;
114
115 if (unlikely(PageHuge(new))) {
116 ptep = huge_pte_offset(mm, addr);
117 if (!ptep)
118 goto out;
119 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
120 } else {
121 pmd = mm_find_pmd(mm, addr);
122 if (!pmd)
123 goto out;
124
125 ptep = pte_offset_map(pmd, addr);
126
127 /*
128 * Peek to check is_swap_pte() before taking ptlock? No, we
129 * can race mremap's move_ptes(), which skips anon_vma lock.
130 */
131
132 ptl = pte_lockptr(mm, pmd);
133 }
134
135 spin_lock(ptl);
136 pte = *ptep;
137 if (!is_swap_pte(pte))
138 goto unlock;
139
140 entry = pte_to_swp_entry(pte);
141
142 if (!is_migration_entry(entry) ||
143 migration_entry_to_page(entry) != old)
144 goto unlock;
145
146 get_page(new);
147 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
148 if (pte_swp_soft_dirty(*ptep))
149 pte = pte_mksoft_dirty(pte);
150
151 /* Recheck VMA as permissions can change since migration started */
152 if (is_write_migration_entry(entry))
153 pte = maybe_mkwrite(pte, vma);
154
155 #ifdef CONFIG_HUGETLB_PAGE
156 if (PageHuge(new)) {
157 pte = pte_mkhuge(pte);
158 pte = arch_make_huge_pte(pte, vma, new, 0);
159 }
160 #endif
161 flush_dcache_page(new);
162 set_pte_at(mm, addr, ptep, pte);
163
164 if (PageHuge(new)) {
165 if (PageAnon(new))
166 hugepage_add_anon_rmap(new, vma, addr);
167 else
168 page_dup_rmap(new);
169 } else if (PageAnon(new))
170 page_add_anon_rmap(new, vma, addr);
171 else
172 page_add_file_rmap(new);
173
174 /* No need to invalidate - it was non-present before */
175 update_mmu_cache(vma, addr, ptep);
176 unlock:
177 pte_unmap_unlock(ptep, ptl);
178 out:
179 return SWAP_AGAIN;
180 }
181
182 /*
183 * Get rid of all migration entries and replace them by
184 * references to the indicated page.
185 */
186 static void remove_migration_ptes(struct page *old, struct page *new)
187 {
188 struct rmap_walk_control rwc = {
189 .rmap_one = remove_migration_pte,
190 .arg = old,
191 };
192
193 rmap_walk(new, &rwc);
194 }
195
196 /*
197 * Something used the pte of a page under migration. We need to
198 * get to the page and wait until migration is finished.
199 * When we return from this function the fault will be retried.
200 */
201 void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
202 spinlock_t *ptl)
203 {
204 pte_t pte;
205 swp_entry_t entry;
206 struct page *page;
207
208 spin_lock(ptl);
209 pte = *ptep;
210 if (!is_swap_pte(pte))
211 goto out;
212
213 entry = pte_to_swp_entry(pte);
214 if (!is_migration_entry(entry))
215 goto out;
216
217 page = migration_entry_to_page(entry);
218
219 /*
220 * Once radix-tree replacement of page migration started, page_count
221 * *must* be zero. And, we don't want to call wait_on_page_locked()
222 * against a page without get_page().
223 * So, we use get_page_unless_zero(), here. Even failed, page fault
224 * will occur again.
225 */
226 if (!get_page_unless_zero(page))
227 goto out;
228 pte_unmap_unlock(ptep, ptl);
229 wait_on_page_locked(page);
230 put_page(page);
231 return;
232 out:
233 pte_unmap_unlock(ptep, ptl);
234 }
235
236 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
237 unsigned long address)
238 {
239 spinlock_t *ptl = pte_lockptr(mm, pmd);
240 pte_t *ptep = pte_offset_map(pmd, address);
241 __migration_entry_wait(mm, ptep, ptl);
242 }
243
244 void migration_entry_wait_huge(struct vm_area_struct *vma,
245 struct mm_struct *mm, pte_t *pte)
246 {
247 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
248 __migration_entry_wait(mm, pte, ptl);
249 }
250
251 #ifdef CONFIG_BLOCK
252 /* Returns true if all buffers are successfully locked */
253 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
254 enum migrate_mode mode)
255 {
256 struct buffer_head *bh = head;
257
258 /* Simple case, sync compaction */
259 if (mode != MIGRATE_ASYNC) {
260 do {
261 get_bh(bh);
262 lock_buffer(bh);
263 bh = bh->b_this_page;
264
265 } while (bh != head);
266
267 return true;
268 }
269
270 /* async case, we cannot block on lock_buffer so use trylock_buffer */
271 do {
272 get_bh(bh);
273 if (!trylock_buffer(bh)) {
274 /*
275 * We failed to lock the buffer and cannot stall in
276 * async migration. Release the taken locks
277 */
278 struct buffer_head *failed_bh = bh;
279 put_bh(failed_bh);
280 bh = head;
281 while (bh != failed_bh) {
282 unlock_buffer(bh);
283 put_bh(bh);
284 bh = bh->b_this_page;
285 }
286 return false;
287 }
288
289 bh = bh->b_this_page;
290 } while (bh != head);
291 return true;
292 }
293 #else
294 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
295 enum migrate_mode mode)
296 {
297 return true;
298 }
299 #endif /* CONFIG_BLOCK */
300
301 /*
302 * Replace the page in the mapping.
303 *
304 * The number of remaining references must be:
305 * 1 for anonymous pages without a mapping
306 * 2 for pages with a mapping
307 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
308 */
309 int migrate_page_move_mapping(struct address_space *mapping,
310 struct page *newpage, struct page *page,
311 struct buffer_head *head, enum migrate_mode mode,
312 int extra_count)
313 {
314 int expected_count = 1 + extra_count;
315 void **pslot;
316
317 if (!mapping) {
318 /* Anonymous page without mapping */
319 if (page_count(page) != expected_count)
320 return -EAGAIN;
321 return MIGRATEPAGE_SUCCESS;
322 }
323
324 spin_lock_irq(&mapping->tree_lock);
325
326 pslot = radix_tree_lookup_slot(&mapping->page_tree,
327 page_index(page));
328
329 expected_count += 1 + page_has_private(page);
330 if (page_count(page) != expected_count ||
331 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
332 spin_unlock_irq(&mapping->tree_lock);
333 return -EAGAIN;
334 }
335
336 if (!page_freeze_refs(page, expected_count)) {
337 spin_unlock_irq(&mapping->tree_lock);
338 return -EAGAIN;
339 }
340
341 /*
342 * In the async migration case of moving a page with buffers, lock the
343 * buffers using trylock before the mapping is moved. If the mapping
344 * was moved, we later failed to lock the buffers and could not move
345 * the mapping back due to an elevated page count, we would have to
346 * block waiting on other references to be dropped.
347 */
348 if (mode == MIGRATE_ASYNC && head &&
349 !buffer_migrate_lock_buffers(head, mode)) {
350 page_unfreeze_refs(page, expected_count);
351 spin_unlock_irq(&mapping->tree_lock);
352 return -EAGAIN;
353 }
354
355 /*
356 * Now we know that no one else is looking at the page.
357 */
358 get_page(newpage); /* add cache reference */
359 if (PageSwapCache(page)) {
360 SetPageSwapCache(newpage);
361 set_page_private(newpage, page_private(page));
362 }
363
364 radix_tree_replace_slot(pslot, newpage);
365
366 /*
367 * Drop cache reference from old page by unfreezing
368 * to one less reference.
369 * We know this isn't the last reference.
370 */
371 page_unfreeze_refs(page, expected_count - 1);
372
373 /*
374 * If moved to a different zone then also account
375 * the page for that zone. Other VM counters will be
376 * taken care of when we establish references to the
377 * new page and drop references to the old page.
378 *
379 * Note that anonymous pages are accounted for
380 * via NR_FILE_PAGES and NR_ANON_PAGES if they
381 * are mapped to swap space.
382 */
383 __dec_zone_page_state(page, NR_FILE_PAGES);
384 __inc_zone_page_state(newpage, NR_FILE_PAGES);
385 if (!PageSwapCache(page) && PageSwapBacked(page)) {
386 __dec_zone_page_state(page, NR_SHMEM);
387 __inc_zone_page_state(newpage, NR_SHMEM);
388 }
389 spin_unlock_irq(&mapping->tree_lock);
390
391 return MIGRATEPAGE_SUCCESS;
392 }
393
394 /*
395 * The expected number of remaining references is the same as that
396 * of migrate_page_move_mapping().
397 */
398 int migrate_huge_page_move_mapping(struct address_space *mapping,
399 struct page *newpage, struct page *page)
400 {
401 int expected_count;
402 void **pslot;
403
404 if (!mapping) {
405 if (page_count(page) != 1)
406 return -EAGAIN;
407 return MIGRATEPAGE_SUCCESS;
408 }
409
410 spin_lock_irq(&mapping->tree_lock);
411
412 pslot = radix_tree_lookup_slot(&mapping->page_tree,
413 page_index(page));
414
415 expected_count = 2 + page_has_private(page);
416 if (page_count(page) != expected_count ||
417 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
418 spin_unlock_irq(&mapping->tree_lock);
419 return -EAGAIN;
420 }
421
422 if (!page_freeze_refs(page, expected_count)) {
423 spin_unlock_irq(&mapping->tree_lock);
424 return -EAGAIN;
425 }
426
427 get_page(newpage);
428
429 radix_tree_replace_slot(pslot, newpage);
430
431 page_unfreeze_refs(page, expected_count - 1);
432
433 spin_unlock_irq(&mapping->tree_lock);
434 return MIGRATEPAGE_SUCCESS;
435 }
436
437 /*
438 * Gigantic pages are so large that we do not guarantee that page++ pointer
439 * arithmetic will work across the entire page. We need something more
440 * specialized.
441 */
442 static void __copy_gigantic_page(struct page *dst, struct page *src,
443 int nr_pages)
444 {
445 int i;
446 struct page *dst_base = dst;
447 struct page *src_base = src;
448
449 for (i = 0; i < nr_pages; ) {
450 cond_resched();
451 copy_highpage(dst, src);
452
453 i++;
454 dst = mem_map_next(dst, dst_base, i);
455 src = mem_map_next(src, src_base, i);
456 }
457 }
458
459 static void copy_huge_page(struct page *dst, struct page *src)
460 {
461 int i;
462 int nr_pages;
463
464 if (PageHuge(src)) {
465 /* hugetlbfs page */
466 struct hstate *h = page_hstate(src);
467 nr_pages = pages_per_huge_page(h);
468
469 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
470 __copy_gigantic_page(dst, src, nr_pages);
471 return;
472 }
473 } else {
474 /* thp page */
475 BUG_ON(!PageTransHuge(src));
476 nr_pages = hpage_nr_pages(src);
477 }
478
479 for (i = 0; i < nr_pages; i++) {
480 cond_resched();
481 copy_highpage(dst + i, src + i);
482 }
483 }
484
485 /*
486 * Copy the page to its new location
487 */
488 void migrate_page_copy(struct page *newpage, struct page *page)
489 {
490 int cpupid;
491
492 if (PageHuge(page) || PageTransHuge(page))
493 copy_huge_page(newpage, page);
494 else
495 copy_highpage(newpage, page);
496
497 if (PageError(page))
498 SetPageError(newpage);
499 if (PageReferenced(page))
500 SetPageReferenced(newpage);
501 if (PageUptodate(page))
502 SetPageUptodate(newpage);
503 if (TestClearPageActive(page)) {
504 VM_BUG_ON_PAGE(PageUnevictable(page), page);
505 SetPageActive(newpage);
506 } else if (TestClearPageUnevictable(page))
507 SetPageUnevictable(newpage);
508 if (PageChecked(page))
509 SetPageChecked(newpage);
510 if (PageMappedToDisk(page))
511 SetPageMappedToDisk(newpage);
512
513 if (PageDirty(page)) {
514 clear_page_dirty_for_io(page);
515 /*
516 * Want to mark the page and the radix tree as dirty, and
517 * redo the accounting that clear_page_dirty_for_io undid,
518 * but we can't use set_page_dirty because that function
519 * is actually a signal that all of the page has become dirty.
520 * Whereas only part of our page may be dirty.
521 */
522 if (PageSwapBacked(page))
523 SetPageDirty(newpage);
524 else
525 __set_page_dirty_nobuffers(newpage);
526 }
527
528 if (page_is_young(page))
529 set_page_young(newpage);
530 if (page_is_idle(page))
531 set_page_idle(newpage);
532
533 /*
534 * Copy NUMA information to the new page, to prevent over-eager
535 * future migrations of this same page.
536 */
537 cpupid = page_cpupid_xchg_last(page, -1);
538 page_cpupid_xchg_last(newpage, cpupid);
539
540 mlock_migrate_page(newpage, page);
541 ksm_migrate_page(newpage, page);
542 /*
543 * Please do not reorder this without considering how mm/ksm.c's
544 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
545 */
546 if (PageSwapCache(page))
547 ClearPageSwapCache(page);
548 ClearPagePrivate(page);
549 set_page_private(page, 0);
550
551 /*
552 * If any waiters have accumulated on the new page then
553 * wake them up.
554 */
555 if (PageWriteback(newpage))
556 end_page_writeback(newpage);
557 }
558
559 /************************************************************
560 * Migration functions
561 ***********************************************************/
562
563 /*
564 * Common logic to directly migrate a single page suitable for
565 * pages that do not use PagePrivate/PagePrivate2.
566 *
567 * Pages are locked upon entry and exit.
568 */
569 int migrate_page(struct address_space *mapping,
570 struct page *newpage, struct page *page,
571 enum migrate_mode mode)
572 {
573 int rc;
574
575 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
576
577 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
578
579 if (rc != MIGRATEPAGE_SUCCESS)
580 return rc;
581
582 migrate_page_copy(newpage, page);
583 return MIGRATEPAGE_SUCCESS;
584 }
585 EXPORT_SYMBOL(migrate_page);
586
587 #ifdef CONFIG_BLOCK
588 /*
589 * Migration function for pages with buffers. This function can only be used
590 * if the underlying filesystem guarantees that no other references to "page"
591 * exist.
592 */
593 int buffer_migrate_page(struct address_space *mapping,
594 struct page *newpage, struct page *page, enum migrate_mode mode)
595 {
596 struct buffer_head *bh, *head;
597 int rc;
598
599 if (!page_has_buffers(page))
600 return migrate_page(mapping, newpage, page, mode);
601
602 head = page_buffers(page);
603
604 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
605
606 if (rc != MIGRATEPAGE_SUCCESS)
607 return rc;
608
609 /*
610 * In the async case, migrate_page_move_mapping locked the buffers
611 * with an IRQ-safe spinlock held. In the sync case, the buffers
612 * need to be locked now
613 */
614 if (mode != MIGRATE_ASYNC)
615 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
616
617 ClearPagePrivate(page);
618 set_page_private(newpage, page_private(page));
619 set_page_private(page, 0);
620 put_page(page);
621 get_page(newpage);
622
623 bh = head;
624 do {
625 set_bh_page(bh, newpage, bh_offset(bh));
626 bh = bh->b_this_page;
627
628 } while (bh != head);
629
630 SetPagePrivate(newpage);
631
632 migrate_page_copy(newpage, page);
633
634 bh = head;
635 do {
636 unlock_buffer(bh);
637 put_bh(bh);
638 bh = bh->b_this_page;
639
640 } while (bh != head);
641
642 return MIGRATEPAGE_SUCCESS;
643 }
644 EXPORT_SYMBOL(buffer_migrate_page);
645 #endif
646
647 /*
648 * Writeback a page to clean the dirty state
649 */
650 static int writeout(struct address_space *mapping, struct page *page)
651 {
652 struct writeback_control wbc = {
653 .sync_mode = WB_SYNC_NONE,
654 .nr_to_write = 1,
655 .range_start = 0,
656 .range_end = LLONG_MAX,
657 .for_reclaim = 1
658 };
659 int rc;
660
661 if (!mapping->a_ops->writepage)
662 /* No write method for the address space */
663 return -EINVAL;
664
665 if (!clear_page_dirty_for_io(page))
666 /* Someone else already triggered a write */
667 return -EAGAIN;
668
669 /*
670 * A dirty page may imply that the underlying filesystem has
671 * the page on some queue. So the page must be clean for
672 * migration. Writeout may mean we loose the lock and the
673 * page state is no longer what we checked for earlier.
674 * At this point we know that the migration attempt cannot
675 * be successful.
676 */
677 remove_migration_ptes(page, page);
678
679 rc = mapping->a_ops->writepage(page, &wbc);
680
681 if (rc != AOP_WRITEPAGE_ACTIVATE)
682 /* unlocked. Relock */
683 lock_page(page);
684
685 return (rc < 0) ? -EIO : -EAGAIN;
686 }
687
688 /*
689 * Default handling if a filesystem does not provide a migration function.
690 */
691 static int fallback_migrate_page(struct address_space *mapping,
692 struct page *newpage, struct page *page, enum migrate_mode mode)
693 {
694 if (PageDirty(page)) {
695 /* Only writeback pages in full synchronous migration */
696 if (mode != MIGRATE_SYNC)
697 return -EBUSY;
698 return writeout(mapping, page);
699 }
700
701 /*
702 * Buffers may be managed in a filesystem specific way.
703 * We must have no buffers or drop them.
704 */
705 if (page_has_private(page) &&
706 !try_to_release_page(page, GFP_KERNEL))
707 return -EAGAIN;
708
709 return migrate_page(mapping, newpage, page, mode);
710 }
711
712 /*
713 * Move a page to a newly allocated page
714 * The page is locked and all ptes have been successfully removed.
715 *
716 * The new page will have replaced the old page if this function
717 * is successful.
718 *
719 * Return value:
720 * < 0 - error code
721 * MIGRATEPAGE_SUCCESS - success
722 */
723 static int move_to_new_page(struct page *newpage, struct page *page,
724 int page_was_mapped, enum migrate_mode mode)
725 {
726 struct address_space *mapping;
727 int rc;
728
729 /*
730 * Block others from accessing the page when we get around to
731 * establishing additional references. We are the only one
732 * holding a reference to the new page at this point.
733 */
734 if (!trylock_page(newpage))
735 BUG();
736
737 /* Prepare mapping for the new page.*/
738 newpage->index = page->index;
739 newpage->mapping = page->mapping;
740 if (PageSwapBacked(page))
741 SetPageSwapBacked(newpage);
742
743 /*
744 * Indirectly called below, migrate_page_copy() copies PG_dirty and thus
745 * needs newpage's memcg set to transfer memcg dirty page accounting.
746 * So perform memcg migration in two steps:
747 * 1. set newpage->mem_cgroup (here)
748 * 2. clear page->mem_cgroup (below)
749 */
750 set_page_memcg(newpage, page_memcg(page));
751
752 mapping = page_mapping(page);
753 if (!mapping)
754 rc = migrate_page(mapping, newpage, page, mode);
755 else if (mapping->a_ops->migratepage)
756 /*
757 * Most pages have a mapping and most filesystems provide a
758 * migratepage callback. Anonymous pages are part of swap
759 * space which also has its own migratepage callback. This
760 * is the most common path for page migration.
761 */
762 rc = mapping->a_ops->migratepage(mapping,
763 newpage, page, mode);
764 else
765 rc = fallback_migrate_page(mapping, newpage, page, mode);
766
767 if (rc != MIGRATEPAGE_SUCCESS) {
768 set_page_memcg(newpage, NULL);
769 newpage->mapping = NULL;
770 } else {
771 set_page_memcg(page, NULL);
772 if (page_was_mapped)
773 remove_migration_ptes(page, newpage);
774 page->mapping = NULL;
775 }
776
777 unlock_page(newpage);
778
779 return rc;
780 }
781
782 static int __unmap_and_move(struct page *page, struct page *newpage,
783 int force, enum migrate_mode mode)
784 {
785 int rc = -EAGAIN;
786 int page_was_mapped = 0;
787 struct anon_vma *anon_vma = NULL;
788
789 if (!trylock_page(page)) {
790 if (!force || mode == MIGRATE_ASYNC)
791 goto out;
792
793 /*
794 * It's not safe for direct compaction to call lock_page.
795 * For example, during page readahead pages are added locked
796 * to the LRU. Later, when the IO completes the pages are
797 * marked uptodate and unlocked. However, the queueing
798 * could be merging multiple pages for one bio (e.g.
799 * mpage_readpages). If an allocation happens for the
800 * second or third page, the process can end up locking
801 * the same page twice and deadlocking. Rather than
802 * trying to be clever about what pages can be locked,
803 * avoid the use of lock_page for direct compaction
804 * altogether.
805 */
806 if (current->flags & PF_MEMALLOC)
807 goto out;
808
809 lock_page(page);
810 }
811
812 if (PageWriteback(page)) {
813 /*
814 * Only in the case of a full synchronous migration is it
815 * necessary to wait for PageWriteback. In the async case,
816 * the retry loop is too short and in the sync-light case,
817 * the overhead of stalling is too much
818 */
819 if (mode != MIGRATE_SYNC) {
820 rc = -EBUSY;
821 goto out_unlock;
822 }
823 if (!force)
824 goto out_unlock;
825 wait_on_page_writeback(page);
826 }
827 /*
828 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
829 * we cannot notice that anon_vma is freed while we migrates a page.
830 * This get_anon_vma() delays freeing anon_vma pointer until the end
831 * of migration. File cache pages are no problem because of page_lock()
832 * File Caches may use write_page() or lock_page() in migration, then,
833 * just care Anon page here.
834 */
835 if (PageAnon(page) && !PageKsm(page)) {
836 /*
837 * Only page_lock_anon_vma_read() understands the subtleties of
838 * getting a hold on an anon_vma from outside one of its mms.
839 */
840 anon_vma = page_get_anon_vma(page);
841 if (anon_vma) {
842 /*
843 * Anon page
844 */
845 } else if (PageSwapCache(page)) {
846 /*
847 * We cannot be sure that the anon_vma of an unmapped
848 * swapcache page is safe to use because we don't
849 * know in advance if the VMA that this page belonged
850 * to still exists. If the VMA and others sharing the
851 * data have been freed, then the anon_vma could
852 * already be invalid.
853 *
854 * To avoid this possibility, swapcache pages get
855 * migrated but are not remapped when migration
856 * completes
857 */
858 } else {
859 goto out_unlock;
860 }
861 }
862
863 if (unlikely(isolated_balloon_page(page))) {
864 /*
865 * A ballooned page does not need any special attention from
866 * physical to virtual reverse mapping procedures.
867 * Skip any attempt to unmap PTEs or to remap swap cache,
868 * in order to avoid burning cycles at rmap level, and perform
869 * the page migration right away (proteced by page lock).
870 */
871 rc = balloon_page_migrate(newpage, page, mode);
872 goto out_unlock;
873 }
874
875 /*
876 * Corner case handling:
877 * 1. When a new swap-cache page is read into, it is added to the LRU
878 * and treated as swapcache but it has no rmap yet.
879 * Calling try_to_unmap() against a page->mapping==NULL page will
880 * trigger a BUG. So handle it here.
881 * 2. An orphaned page (see truncate_complete_page) might have
882 * fs-private metadata. The page can be picked up due to memory
883 * offlining. Everywhere else except page reclaim, the page is
884 * invisible to the vm, so the page can not be migrated. So try to
885 * free the metadata, so the page can be freed.
886 */
887 if (!page->mapping) {
888 VM_BUG_ON_PAGE(PageAnon(page), page);
889 if (page_has_private(page)) {
890 try_to_free_buffers(page);
891 goto out_unlock;
892 }
893 goto skip_unmap;
894 }
895
896 /* Establish migration ptes or remove ptes */
897 if (page_mapped(page)) {
898 try_to_unmap(page,
899 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
900 page_was_mapped = 1;
901 }
902
903 skip_unmap:
904 if (!page_mapped(page))
905 rc = move_to_new_page(newpage, page, page_was_mapped, mode);
906
907 if (rc && page_was_mapped)
908 remove_migration_ptes(page, page);
909
910 /* Drop an anon_vma reference if we took one */
911 if (anon_vma)
912 put_anon_vma(anon_vma);
913
914 out_unlock:
915 unlock_page(page);
916 out:
917 return rc;
918 }
919
920 /*
921 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
922 * around it.
923 */
924 #if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
925 #define ICE_noinline noinline
926 #else
927 #define ICE_noinline
928 #endif
929
930 /*
931 * Obtain the lock on page, remove all ptes and migrate the page
932 * to the newly allocated page in newpage.
933 */
934 static ICE_noinline int unmap_and_move(new_page_t get_new_page,
935 free_page_t put_new_page,
936 unsigned long private, struct page *page,
937 int force, enum migrate_mode mode,
938 enum migrate_reason reason)
939 {
940 int rc = 0;
941 int *result = NULL;
942 struct page *newpage = get_new_page(page, private, &result);
943
944 if (!newpage)
945 return -ENOMEM;
946
947 if (page_count(page) == 1) {
948 /* page was freed from under us. So we are done. */
949 goto out;
950 }
951
952 if (unlikely(PageTransHuge(page)))
953 if (unlikely(split_huge_page(page)))
954 goto out;
955
956 rc = __unmap_and_move(page, newpage, force, mode);
957
958 out:
959 if (rc != -EAGAIN) {
960 /*
961 * A page that has been migrated has all references
962 * removed and will be freed. A page that has not been
963 * migrated will have kepts its references and be
964 * restored.
965 */
966 list_del(&page->lru);
967 dec_zone_page_state(page, NR_ISOLATED_ANON +
968 page_is_file_cache(page));
969 /* Soft-offlined page shouldn't go through lru cache list */
970 if (reason == MR_MEMORY_FAILURE) {
971 put_page(page);
972 if (!test_set_page_hwpoison(page))
973 num_poisoned_pages_inc();
974 } else
975 putback_lru_page(page);
976 }
977
978 /*
979 * If migration was not successful and there's a freeing callback, use
980 * it. Otherwise, putback_lru_page() will drop the reference grabbed
981 * during isolation.
982 */
983 if (rc != MIGRATEPAGE_SUCCESS && put_new_page) {
984 ClearPageSwapBacked(newpage);
985 put_new_page(newpage, private);
986 } else if (unlikely(__is_movable_balloon_page(newpage))) {
987 /* drop our reference, page already in the balloon */
988 put_page(newpage);
989 } else
990 putback_lru_page(newpage);
991
992 if (result) {
993 if (rc)
994 *result = rc;
995 else
996 *result = page_to_nid(newpage);
997 }
998 return rc;
999 }
1000
1001 /*
1002 * Counterpart of unmap_and_move_page() for hugepage migration.
1003 *
1004 * This function doesn't wait the completion of hugepage I/O
1005 * because there is no race between I/O and migration for hugepage.
1006 * Note that currently hugepage I/O occurs only in direct I/O
1007 * where no lock is held and PG_writeback is irrelevant,
1008 * and writeback status of all subpages are counted in the reference
1009 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1010 * under direct I/O, the reference of the head page is 512 and a bit more.)
1011 * This means that when we try to migrate hugepage whose subpages are
1012 * doing direct I/O, some references remain after try_to_unmap() and
1013 * hugepage migration fails without data corruption.
1014 *
1015 * There is also no race when direct I/O is issued on the page under migration,
1016 * because then pte is replaced with migration swap entry and direct I/O code
1017 * will wait in the page fault for migration to complete.
1018 */
1019 static int unmap_and_move_huge_page(new_page_t get_new_page,
1020 free_page_t put_new_page, unsigned long private,
1021 struct page *hpage, int force,
1022 enum migrate_mode mode)
1023 {
1024 int rc = 0;
1025 int *result = NULL;
1026 int page_was_mapped = 0;
1027 struct page *new_hpage;
1028 struct anon_vma *anon_vma = NULL;
1029
1030 /*
1031 * Movability of hugepages depends on architectures and hugepage size.
1032 * This check is necessary because some callers of hugepage migration
1033 * like soft offline and memory hotremove don't walk through page
1034 * tables or check whether the hugepage is pmd-based or not before
1035 * kicking migration.
1036 */
1037 if (!hugepage_migration_supported(page_hstate(hpage))) {
1038 putback_active_hugepage(hpage);
1039 return -ENOSYS;
1040 }
1041
1042 new_hpage = get_new_page(hpage, private, &result);
1043 if (!new_hpage)
1044 return -ENOMEM;
1045
1046 rc = -EAGAIN;
1047
1048 if (!trylock_page(hpage)) {
1049 if (!force || mode != MIGRATE_SYNC)
1050 goto out;
1051 lock_page(hpage);
1052 }
1053
1054 if (PageAnon(hpage))
1055 anon_vma = page_get_anon_vma(hpage);
1056
1057 if (page_mapped(hpage)) {
1058 try_to_unmap(hpage,
1059 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1060 page_was_mapped = 1;
1061 }
1062
1063 if (!page_mapped(hpage))
1064 rc = move_to_new_page(new_hpage, hpage, page_was_mapped, mode);
1065
1066 if (rc != MIGRATEPAGE_SUCCESS && page_was_mapped)
1067 remove_migration_ptes(hpage, hpage);
1068
1069 if (anon_vma)
1070 put_anon_vma(anon_vma);
1071
1072 if (rc == MIGRATEPAGE_SUCCESS)
1073 hugetlb_cgroup_migrate(hpage, new_hpage);
1074
1075 unlock_page(hpage);
1076 out:
1077 if (rc != -EAGAIN)
1078 putback_active_hugepage(hpage);
1079
1080 /*
1081 * If migration was not successful and there's a freeing callback, use
1082 * it. Otherwise, put_page() will drop the reference grabbed during
1083 * isolation.
1084 */
1085 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1086 put_new_page(new_hpage, private);
1087 else
1088 putback_active_hugepage(new_hpage);
1089
1090 if (result) {
1091 if (rc)
1092 *result = rc;
1093 else
1094 *result = page_to_nid(new_hpage);
1095 }
1096 return rc;
1097 }
1098
1099 /*
1100 * migrate_pages - migrate the pages specified in a list, to the free pages
1101 * supplied as the target for the page migration
1102 *
1103 * @from: The list of pages to be migrated.
1104 * @get_new_page: The function used to allocate free pages to be used
1105 * as the target of the page migration.
1106 * @put_new_page: The function used to free target pages if migration
1107 * fails, or NULL if no special handling is necessary.
1108 * @private: Private data to be passed on to get_new_page()
1109 * @mode: The migration mode that specifies the constraints for
1110 * page migration, if any.
1111 * @reason: The reason for page migration.
1112 *
1113 * The function returns after 10 attempts or if no pages are movable any more
1114 * because the list has become empty or no retryable pages exist any more.
1115 * The caller should call putback_lru_pages() to return pages to the LRU
1116 * or free list only if ret != 0.
1117 *
1118 * Returns the number of pages that were not migrated, or an error code.
1119 */
1120 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1121 free_page_t put_new_page, unsigned long private,
1122 enum migrate_mode mode, int reason)
1123 {
1124 int retry = 1;
1125 int nr_failed = 0;
1126 int nr_succeeded = 0;
1127 int pass = 0;
1128 struct page *page;
1129 struct page *page2;
1130 int swapwrite = current->flags & PF_SWAPWRITE;
1131 int rc;
1132
1133 if (!swapwrite)
1134 current->flags |= PF_SWAPWRITE;
1135
1136 for(pass = 0; pass < 10 && retry; pass++) {
1137 retry = 0;
1138
1139 list_for_each_entry_safe(page, page2, from, lru) {
1140 cond_resched();
1141
1142 if (PageHuge(page))
1143 rc = unmap_and_move_huge_page(get_new_page,
1144 put_new_page, private, page,
1145 pass > 2, mode);
1146 else
1147 rc = unmap_and_move(get_new_page, put_new_page,
1148 private, page, pass > 2, mode,
1149 reason);
1150
1151 switch(rc) {
1152 case -ENOMEM:
1153 goto out;
1154 case -EAGAIN:
1155 retry++;
1156 break;
1157 case MIGRATEPAGE_SUCCESS:
1158 nr_succeeded++;
1159 break;
1160 default:
1161 /*
1162 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1163 * unlike -EAGAIN case, the failed page is
1164 * removed from migration page list and not
1165 * retried in the next outer loop.
1166 */
1167 nr_failed++;
1168 break;
1169 }
1170 }
1171 }
1172 nr_failed += retry;
1173 rc = nr_failed;
1174 out:
1175 if (nr_succeeded)
1176 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1177 if (nr_failed)
1178 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1179 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1180
1181 if (!swapwrite)
1182 current->flags &= ~PF_SWAPWRITE;
1183
1184 return rc;
1185 }
1186
1187 #ifdef CONFIG_NUMA
1188 /*
1189 * Move a list of individual pages
1190 */
1191 struct page_to_node {
1192 unsigned long addr;
1193 struct page *page;
1194 int node;
1195 int status;
1196 };
1197
1198 static struct page *new_page_node(struct page *p, unsigned long private,
1199 int **result)
1200 {
1201 struct page_to_node *pm = (struct page_to_node *)private;
1202
1203 while (pm->node != MAX_NUMNODES && pm->page != p)
1204 pm++;
1205
1206 if (pm->node == MAX_NUMNODES)
1207 return NULL;
1208
1209 *result = &pm->status;
1210
1211 if (PageHuge(p))
1212 return alloc_huge_page_node(page_hstate(compound_head(p)),
1213 pm->node);
1214 else
1215 return __alloc_pages_node(pm->node,
1216 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1217 }
1218
1219 /*
1220 * Move a set of pages as indicated in the pm array. The addr
1221 * field must be set to the virtual address of the page to be moved
1222 * and the node number must contain a valid target node.
1223 * The pm array ends with node = MAX_NUMNODES.
1224 */
1225 static int do_move_page_to_node_array(struct mm_struct *mm,
1226 struct page_to_node *pm,
1227 int migrate_all)
1228 {
1229 int err;
1230 struct page_to_node *pp;
1231 LIST_HEAD(pagelist);
1232
1233 down_read(&mm->mmap_sem);
1234
1235 /*
1236 * Build a list of pages to migrate
1237 */
1238 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1239 struct vm_area_struct *vma;
1240 struct page *page;
1241
1242 err = -EFAULT;
1243 vma = find_vma(mm, pp->addr);
1244 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1245 goto set_status;
1246
1247 /* FOLL_DUMP to ignore special (like zero) pages */
1248 page = follow_page(vma, pp->addr,
1249 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1250
1251 err = PTR_ERR(page);
1252 if (IS_ERR(page))
1253 goto set_status;
1254
1255 err = -ENOENT;
1256 if (!page)
1257 goto set_status;
1258
1259 pp->page = page;
1260 err = page_to_nid(page);
1261
1262 if (err == pp->node)
1263 /*
1264 * Node already in the right place
1265 */
1266 goto put_and_set;
1267
1268 err = -EACCES;
1269 if (page_mapcount(page) > 1 &&
1270 !migrate_all)
1271 goto put_and_set;
1272
1273 if (PageHuge(page)) {
1274 if (PageHead(page))
1275 isolate_huge_page(page, &pagelist);
1276 goto put_and_set;
1277 }
1278
1279 err = isolate_lru_page(page);
1280 if (!err) {
1281 list_add_tail(&page->lru, &pagelist);
1282 inc_zone_page_state(page, NR_ISOLATED_ANON +
1283 page_is_file_cache(page));
1284 }
1285 put_and_set:
1286 /*
1287 * Either remove the duplicate refcount from
1288 * isolate_lru_page() or drop the page ref if it was
1289 * not isolated.
1290 */
1291 put_page(page);
1292 set_status:
1293 pp->status = err;
1294 }
1295
1296 err = 0;
1297 if (!list_empty(&pagelist)) {
1298 err = migrate_pages(&pagelist, new_page_node, NULL,
1299 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1300 if (err)
1301 putback_movable_pages(&pagelist);
1302 }
1303
1304 up_read(&mm->mmap_sem);
1305 return err;
1306 }
1307
1308 /*
1309 * Migrate an array of page address onto an array of nodes and fill
1310 * the corresponding array of status.
1311 */
1312 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1313 unsigned long nr_pages,
1314 const void __user * __user *pages,
1315 const int __user *nodes,
1316 int __user *status, int flags)
1317 {
1318 struct page_to_node *pm;
1319 unsigned long chunk_nr_pages;
1320 unsigned long chunk_start;
1321 int err;
1322
1323 err = -ENOMEM;
1324 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1325 if (!pm)
1326 goto out;
1327
1328 migrate_prep();
1329
1330 /*
1331 * Store a chunk of page_to_node array in a page,
1332 * but keep the last one as a marker
1333 */
1334 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1335
1336 for (chunk_start = 0;
1337 chunk_start < nr_pages;
1338 chunk_start += chunk_nr_pages) {
1339 int j;
1340
1341 if (chunk_start + chunk_nr_pages > nr_pages)
1342 chunk_nr_pages = nr_pages - chunk_start;
1343
1344 /* fill the chunk pm with addrs and nodes from user-space */
1345 for (j = 0; j < chunk_nr_pages; j++) {
1346 const void __user *p;
1347 int node;
1348
1349 err = -EFAULT;
1350 if (get_user(p, pages + j + chunk_start))
1351 goto out_pm;
1352 pm[j].addr = (unsigned long) p;
1353
1354 if (get_user(node, nodes + j + chunk_start))
1355 goto out_pm;
1356
1357 err = -ENODEV;
1358 if (node < 0 || node >= MAX_NUMNODES)
1359 goto out_pm;
1360
1361 if (!node_state(node, N_MEMORY))
1362 goto out_pm;
1363
1364 err = -EACCES;
1365 if (!node_isset(node, task_nodes))
1366 goto out_pm;
1367
1368 pm[j].node = node;
1369 }
1370
1371 /* End marker for this chunk */
1372 pm[chunk_nr_pages].node = MAX_NUMNODES;
1373
1374 /* Migrate this chunk */
1375 err = do_move_page_to_node_array(mm, pm,
1376 flags & MPOL_MF_MOVE_ALL);
1377 if (err < 0)
1378 goto out_pm;
1379
1380 /* Return status information */
1381 for (j = 0; j < chunk_nr_pages; j++)
1382 if (put_user(pm[j].status, status + j + chunk_start)) {
1383 err = -EFAULT;
1384 goto out_pm;
1385 }
1386 }
1387 err = 0;
1388
1389 out_pm:
1390 free_page((unsigned long)pm);
1391 out:
1392 return err;
1393 }
1394
1395 /*
1396 * Determine the nodes of an array of pages and store it in an array of status.
1397 */
1398 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1399 const void __user **pages, int *status)
1400 {
1401 unsigned long i;
1402
1403 down_read(&mm->mmap_sem);
1404
1405 for (i = 0; i < nr_pages; i++) {
1406 unsigned long addr = (unsigned long)(*pages);
1407 struct vm_area_struct *vma;
1408 struct page *page;
1409 int err = -EFAULT;
1410
1411 vma = find_vma(mm, addr);
1412 if (!vma || addr < vma->vm_start)
1413 goto set_status;
1414
1415 /* FOLL_DUMP to ignore special (like zero) pages */
1416 page = follow_page(vma, addr, FOLL_DUMP);
1417
1418 err = PTR_ERR(page);
1419 if (IS_ERR(page))
1420 goto set_status;
1421
1422 err = page ? page_to_nid(page) : -ENOENT;
1423 set_status:
1424 *status = err;
1425
1426 pages++;
1427 status++;
1428 }
1429
1430 up_read(&mm->mmap_sem);
1431 }
1432
1433 /*
1434 * Determine the nodes of a user array of pages and store it in
1435 * a user array of status.
1436 */
1437 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1438 const void __user * __user *pages,
1439 int __user *status)
1440 {
1441 #define DO_PAGES_STAT_CHUNK_NR 16
1442 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1443 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1444
1445 while (nr_pages) {
1446 unsigned long chunk_nr;
1447
1448 chunk_nr = nr_pages;
1449 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1450 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1451
1452 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1453 break;
1454
1455 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1456
1457 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1458 break;
1459
1460 pages += chunk_nr;
1461 status += chunk_nr;
1462 nr_pages -= chunk_nr;
1463 }
1464 return nr_pages ? -EFAULT : 0;
1465 }
1466
1467 /*
1468 * Move a list of pages in the address space of the currently executing
1469 * process.
1470 */
1471 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1472 const void __user * __user *, pages,
1473 const int __user *, nodes,
1474 int __user *, status, int, flags)
1475 {
1476 const struct cred *cred = current_cred(), *tcred;
1477 struct task_struct *task;
1478 struct mm_struct *mm;
1479 int err;
1480 nodemask_t task_nodes;
1481
1482 /* Check flags */
1483 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1484 return -EINVAL;
1485
1486 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1487 return -EPERM;
1488
1489 /* Find the mm_struct */
1490 rcu_read_lock();
1491 task = pid ? find_task_by_vpid(pid) : current;
1492 if (!task) {
1493 rcu_read_unlock();
1494 return -ESRCH;
1495 }
1496 get_task_struct(task);
1497
1498 /*
1499 * Check if this process has the right to modify the specified
1500 * process. The right exists if the process has administrative
1501 * capabilities, superuser privileges or the same
1502 * userid as the target process.
1503 */
1504 tcred = __task_cred(task);
1505 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1506 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1507 !capable(CAP_SYS_NICE)) {
1508 rcu_read_unlock();
1509 err = -EPERM;
1510 goto out;
1511 }
1512 rcu_read_unlock();
1513
1514 err = security_task_movememory(task);
1515 if (err)
1516 goto out;
1517
1518 task_nodes = cpuset_mems_allowed(task);
1519 mm = get_task_mm(task);
1520 put_task_struct(task);
1521
1522 if (!mm)
1523 return -EINVAL;
1524
1525 if (nodes)
1526 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1527 nodes, status, flags);
1528 else
1529 err = do_pages_stat(mm, nr_pages, pages, status);
1530
1531 mmput(mm);
1532 return err;
1533
1534 out:
1535 put_task_struct(task);
1536 return err;
1537 }
1538
1539 #ifdef CONFIG_NUMA_BALANCING
1540 /*
1541 * Returns true if this is a safe migration target node for misplaced NUMA
1542 * pages. Currently it only checks the watermarks which crude
1543 */
1544 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1545 unsigned long nr_migrate_pages)
1546 {
1547 int z;
1548 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1549 struct zone *zone = pgdat->node_zones + z;
1550
1551 if (!populated_zone(zone))
1552 continue;
1553
1554 if (!zone_reclaimable(zone))
1555 continue;
1556
1557 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1558 if (!zone_watermark_ok(zone, 0,
1559 high_wmark_pages(zone) +
1560 nr_migrate_pages,
1561 0, 0))
1562 continue;
1563 return true;
1564 }
1565 return false;
1566 }
1567
1568 static struct page *alloc_misplaced_dst_page(struct page *page,
1569 unsigned long data,
1570 int **result)
1571 {
1572 int nid = (int) data;
1573 struct page *newpage;
1574
1575 newpage = __alloc_pages_node(nid,
1576 (GFP_HIGHUSER_MOVABLE |
1577 __GFP_THISNODE | __GFP_NOMEMALLOC |
1578 __GFP_NORETRY | __GFP_NOWARN) &
1579 ~GFP_IOFS, 0);
1580
1581 return newpage;
1582 }
1583
1584 /*
1585 * page migration rate limiting control.
1586 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1587 * window of time. Default here says do not migrate more than 1280M per second.
1588 */
1589 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1590 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1591
1592 /* Returns true if the node is migrate rate-limited after the update */
1593 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1594 unsigned long nr_pages)
1595 {
1596 /*
1597 * Rate-limit the amount of data that is being migrated to a node.
1598 * Optimal placement is no good if the memory bus is saturated and
1599 * all the time is being spent migrating!
1600 */
1601 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1602 spin_lock(&pgdat->numabalancing_migrate_lock);
1603 pgdat->numabalancing_migrate_nr_pages = 0;
1604 pgdat->numabalancing_migrate_next_window = jiffies +
1605 msecs_to_jiffies(migrate_interval_millisecs);
1606 spin_unlock(&pgdat->numabalancing_migrate_lock);
1607 }
1608 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1609 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1610 nr_pages);
1611 return true;
1612 }
1613
1614 /*
1615 * This is an unlocked non-atomic update so errors are possible.
1616 * The consequences are failing to migrate when we potentiall should
1617 * have which is not severe enough to warrant locking. If it is ever
1618 * a problem, it can be converted to a per-cpu counter.
1619 */
1620 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1621 return false;
1622 }
1623
1624 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1625 {
1626 int page_lru;
1627
1628 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1629
1630 /* Avoid migrating to a node that is nearly full */
1631 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1632 return 0;
1633
1634 if (isolate_lru_page(page))
1635 return 0;
1636
1637 /*
1638 * migrate_misplaced_transhuge_page() skips page migration's usual
1639 * check on page_count(), so we must do it here, now that the page
1640 * has been isolated: a GUP pin, or any other pin, prevents migration.
1641 * The expected page count is 3: 1 for page's mapcount and 1 for the
1642 * caller's pin and 1 for the reference taken by isolate_lru_page().
1643 */
1644 if (PageTransHuge(page) && page_count(page) != 3) {
1645 putback_lru_page(page);
1646 return 0;
1647 }
1648
1649 page_lru = page_is_file_cache(page);
1650 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1651 hpage_nr_pages(page));
1652
1653 /*
1654 * Isolating the page has taken another reference, so the
1655 * caller's reference can be safely dropped without the page
1656 * disappearing underneath us during migration.
1657 */
1658 put_page(page);
1659 return 1;
1660 }
1661
1662 bool pmd_trans_migrating(pmd_t pmd)
1663 {
1664 struct page *page = pmd_page(pmd);
1665 return PageLocked(page);
1666 }
1667
1668 /*
1669 * Attempt to migrate a misplaced page to the specified destination
1670 * node. Caller is expected to have an elevated reference count on
1671 * the page that will be dropped by this function before returning.
1672 */
1673 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1674 int node)
1675 {
1676 pg_data_t *pgdat = NODE_DATA(node);
1677 int isolated;
1678 int nr_remaining;
1679 LIST_HEAD(migratepages);
1680
1681 /*
1682 * Don't migrate file pages that are mapped in multiple processes
1683 * with execute permissions as they are probably shared libraries.
1684 */
1685 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1686 (vma->vm_flags & VM_EXEC))
1687 goto out;
1688
1689 /*
1690 * Rate-limit the amount of data that is being migrated to a node.
1691 * Optimal placement is no good if the memory bus is saturated and
1692 * all the time is being spent migrating!
1693 */
1694 if (numamigrate_update_ratelimit(pgdat, 1))
1695 goto out;
1696
1697 isolated = numamigrate_isolate_page(pgdat, page);
1698 if (!isolated)
1699 goto out;
1700
1701 list_add(&page->lru, &migratepages);
1702 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1703 NULL, node, MIGRATE_ASYNC,
1704 MR_NUMA_MISPLACED);
1705 if (nr_remaining) {
1706 if (!list_empty(&migratepages)) {
1707 list_del(&page->lru);
1708 dec_zone_page_state(page, NR_ISOLATED_ANON +
1709 page_is_file_cache(page));
1710 putback_lru_page(page);
1711 }
1712 isolated = 0;
1713 } else
1714 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1715 BUG_ON(!list_empty(&migratepages));
1716 return isolated;
1717
1718 out:
1719 put_page(page);
1720 return 0;
1721 }
1722 #endif /* CONFIG_NUMA_BALANCING */
1723
1724 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1725 /*
1726 * Migrates a THP to a given target node. page must be locked and is unlocked
1727 * before returning.
1728 */
1729 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1730 struct vm_area_struct *vma,
1731 pmd_t *pmd, pmd_t entry,
1732 unsigned long address,
1733 struct page *page, int node)
1734 {
1735 spinlock_t *ptl;
1736 pg_data_t *pgdat = NODE_DATA(node);
1737 int isolated = 0;
1738 struct page *new_page = NULL;
1739 int page_lru = page_is_file_cache(page);
1740 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1741 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1742 pmd_t orig_entry;
1743
1744 /*
1745 * Rate-limit the amount of data that is being migrated to a node.
1746 * Optimal placement is no good if the memory bus is saturated and
1747 * all the time is being spent migrating!
1748 */
1749 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1750 goto out_dropref;
1751
1752 new_page = alloc_pages_node(node,
1753 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1754 HPAGE_PMD_ORDER);
1755 if (!new_page)
1756 goto out_fail;
1757
1758 isolated = numamigrate_isolate_page(pgdat, page);
1759 if (!isolated) {
1760 put_page(new_page);
1761 goto out_fail;
1762 }
1763
1764 if (mm_tlb_flush_pending(mm))
1765 flush_tlb_range(vma, mmun_start, mmun_end);
1766
1767 /* Prepare a page as a migration target */
1768 __set_page_locked(new_page);
1769 SetPageSwapBacked(new_page);
1770
1771 /* anon mapping, we can simply copy page->mapping to the new page: */
1772 new_page->mapping = page->mapping;
1773 new_page->index = page->index;
1774 migrate_page_copy(new_page, page);
1775 WARN_ON(PageLRU(new_page));
1776
1777 /* Recheck the target PMD */
1778 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1779 ptl = pmd_lock(mm, pmd);
1780 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1781 fail_putback:
1782 spin_unlock(ptl);
1783 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1784
1785 /* Reverse changes made by migrate_page_copy() */
1786 if (TestClearPageActive(new_page))
1787 SetPageActive(page);
1788 if (TestClearPageUnevictable(new_page))
1789 SetPageUnevictable(page);
1790 mlock_migrate_page(page, new_page);
1791
1792 unlock_page(new_page);
1793 put_page(new_page); /* Free it */
1794
1795 /* Retake the callers reference and putback on LRU */
1796 get_page(page);
1797 putback_lru_page(page);
1798 mod_zone_page_state(page_zone(page),
1799 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1800
1801 goto out_unlock;
1802 }
1803
1804 orig_entry = *pmd;
1805 entry = mk_pmd(new_page, vma->vm_page_prot);
1806 entry = pmd_mkhuge(entry);
1807 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1808
1809 /*
1810 * Clear the old entry under pagetable lock and establish the new PTE.
1811 * Any parallel GUP will either observe the old page blocking on the
1812 * page lock, block on the page table lock or observe the new page.
1813 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1814 * guarantee the copy is visible before the pagetable update.
1815 */
1816 flush_cache_range(vma, mmun_start, mmun_end);
1817 page_add_anon_rmap(new_page, vma, mmun_start);
1818 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
1819 set_pmd_at(mm, mmun_start, pmd, entry);
1820 flush_tlb_range(vma, mmun_start, mmun_end);
1821 update_mmu_cache_pmd(vma, address, &entry);
1822
1823 if (page_count(page) != 2) {
1824 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1825 flush_tlb_range(vma, mmun_start, mmun_end);
1826 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1827 update_mmu_cache_pmd(vma, address, &entry);
1828 page_remove_rmap(new_page);
1829 goto fail_putback;
1830 }
1831
1832 mem_cgroup_migrate(page, new_page, false);
1833
1834 page_remove_rmap(page);
1835
1836 spin_unlock(ptl);
1837 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1838
1839 /* Take an "isolate" reference and put new page on the LRU. */
1840 get_page(new_page);
1841 putback_lru_page(new_page);
1842
1843 unlock_page(new_page);
1844 unlock_page(page);
1845 put_page(page); /* Drop the rmap reference */
1846 put_page(page); /* Drop the LRU isolation reference */
1847
1848 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1849 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1850
1851 mod_zone_page_state(page_zone(page),
1852 NR_ISOLATED_ANON + page_lru,
1853 -HPAGE_PMD_NR);
1854 return isolated;
1855
1856 out_fail:
1857 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1858 out_dropref:
1859 ptl = pmd_lock(mm, pmd);
1860 if (pmd_same(*pmd, entry)) {
1861 entry = pmd_modify(entry, vma->vm_page_prot);
1862 set_pmd_at(mm, mmun_start, pmd, entry);
1863 update_mmu_cache_pmd(vma, address, &entry);
1864 }
1865 spin_unlock(ptl);
1866
1867 out_unlock:
1868 unlock_page(page);
1869 put_page(page);
1870 return 0;
1871 }
1872 #endif /* CONFIG_NUMA_BALANCING */
1873
1874 #endif /* CONFIG_NUMA */
This page took 0.085681 seconds and 5 git commands to generate.