Revert "drm/i915: reverse dp link param selection, prefer fast over wide again"
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/hugetlb_cgroup.h>
37 #include <linux/gfp.h>
38 #include <linux/balloon_compaction.h>
39 #include <linux/mmu_notifier.h>
40
41 #include <asm/tlbflush.h>
42
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/migrate.h>
45
46 #include "internal.h"
47
48 /*
49 * migrate_prep() needs to be called before we start compiling a list of pages
50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
51 * undesirable, use migrate_prep_local()
52 */
53 int migrate_prep(void)
54 {
55 /*
56 * Clear the LRU lists so pages can be isolated.
57 * Note that pages may be moved off the LRU after we have
58 * drained them. Those pages will fail to migrate like other
59 * pages that may be busy.
60 */
61 lru_add_drain_all();
62
63 return 0;
64 }
65
66 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
67 int migrate_prep_local(void)
68 {
69 lru_add_drain();
70
71 return 0;
72 }
73
74 /*
75 * Put previously isolated pages back onto the appropriate lists
76 * from where they were once taken off for compaction/migration.
77 *
78 * This function shall be used whenever the isolated pageset has been
79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
80 * and isolate_huge_page().
81 */
82 void putback_movable_pages(struct list_head *l)
83 {
84 struct page *page;
85 struct page *page2;
86
87 list_for_each_entry_safe(page, page2, l, lru) {
88 if (unlikely(PageHuge(page))) {
89 putback_active_hugepage(page);
90 continue;
91 }
92 list_del(&page->lru);
93 dec_zone_page_state(page, NR_ISOLATED_ANON +
94 page_is_file_cache(page));
95 if (unlikely(isolated_balloon_page(page)))
96 balloon_page_putback(page);
97 else
98 putback_lru_page(page);
99 }
100 }
101
102 /*
103 * Restore a potential migration pte to a working pte entry
104 */
105 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
106 unsigned long addr, void *old)
107 {
108 struct mm_struct *mm = vma->vm_mm;
109 swp_entry_t entry;
110 pmd_t *pmd;
111 pte_t *ptep, pte;
112 spinlock_t *ptl;
113
114 if (unlikely(PageHuge(new))) {
115 ptep = huge_pte_offset(mm, addr);
116 if (!ptep)
117 goto out;
118 ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
119 } else {
120 pmd = mm_find_pmd(mm, addr);
121 if (!pmd)
122 goto out;
123
124 ptep = pte_offset_map(pmd, addr);
125
126 /*
127 * Peek to check is_swap_pte() before taking ptlock? No, we
128 * can race mremap's move_ptes(), which skips anon_vma lock.
129 */
130
131 ptl = pte_lockptr(mm, pmd);
132 }
133
134 spin_lock(ptl);
135 pte = *ptep;
136 if (!is_swap_pte(pte))
137 goto unlock;
138
139 entry = pte_to_swp_entry(pte);
140
141 if (!is_migration_entry(entry) ||
142 migration_entry_to_page(entry) != old)
143 goto unlock;
144
145 get_page(new);
146 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
147 if (pte_swp_soft_dirty(*ptep))
148 pte = pte_mksoft_dirty(pte);
149 if (is_write_migration_entry(entry))
150 pte = pte_mkwrite(pte);
151 #ifdef CONFIG_HUGETLB_PAGE
152 if (PageHuge(new)) {
153 pte = pte_mkhuge(pte);
154 pte = arch_make_huge_pte(pte, vma, new, 0);
155 }
156 #endif
157 flush_dcache_page(new);
158 set_pte_at(mm, addr, ptep, pte);
159
160 if (PageHuge(new)) {
161 if (PageAnon(new))
162 hugepage_add_anon_rmap(new, vma, addr);
163 else
164 page_dup_rmap(new);
165 } else if (PageAnon(new))
166 page_add_anon_rmap(new, vma, addr);
167 else
168 page_add_file_rmap(new);
169
170 /* No need to invalidate - it was non-present before */
171 update_mmu_cache(vma, addr, ptep);
172 unlock:
173 pte_unmap_unlock(ptep, ptl);
174 out:
175 return SWAP_AGAIN;
176 }
177
178 /*
179 * Congratulations to trinity for discovering this bug.
180 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
181 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
182 * replace the specified range by file ptes throughout (maybe populated after).
183 * If page migration finds a page within that range, while it's still located
184 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
185 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
186 * But if the migrating page is in a part of the vma outside the range to be
187 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
188 * deal with it. Fortunately, this part of the vma is of course still linear,
189 * so we just need to use linear location on the nonlinear list.
190 */
191 static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
192 struct address_space *mapping, void *arg)
193 {
194 struct vm_area_struct *vma;
195 /* hugetlbfs does not support remap_pages, so no huge pgoff worries */
196 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
197 unsigned long addr;
198
199 list_for_each_entry(vma,
200 &mapping->i_mmap_nonlinear, shared.nonlinear) {
201
202 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
203 if (addr >= vma->vm_start && addr < vma->vm_end)
204 remove_migration_pte(page, vma, addr, arg);
205 }
206 return SWAP_AGAIN;
207 }
208
209 /*
210 * Get rid of all migration entries and replace them by
211 * references to the indicated page.
212 */
213 static void remove_migration_ptes(struct page *old, struct page *new)
214 {
215 struct rmap_walk_control rwc = {
216 .rmap_one = remove_migration_pte,
217 .arg = old,
218 .file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
219 };
220
221 rmap_walk(new, &rwc);
222 }
223
224 /*
225 * Something used the pte of a page under migration. We need to
226 * get to the page and wait until migration is finished.
227 * When we return from this function the fault will be retried.
228 */
229 static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
230 spinlock_t *ptl)
231 {
232 pte_t pte;
233 swp_entry_t entry;
234 struct page *page;
235
236 spin_lock(ptl);
237 pte = *ptep;
238 if (!is_swap_pte(pte))
239 goto out;
240
241 entry = pte_to_swp_entry(pte);
242 if (!is_migration_entry(entry))
243 goto out;
244
245 page = migration_entry_to_page(entry);
246
247 /*
248 * Once radix-tree replacement of page migration started, page_count
249 * *must* be zero. And, we don't want to call wait_on_page_locked()
250 * against a page without get_page().
251 * So, we use get_page_unless_zero(), here. Even failed, page fault
252 * will occur again.
253 */
254 if (!get_page_unless_zero(page))
255 goto out;
256 pte_unmap_unlock(ptep, ptl);
257 wait_on_page_locked(page);
258 put_page(page);
259 return;
260 out:
261 pte_unmap_unlock(ptep, ptl);
262 }
263
264 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
265 unsigned long address)
266 {
267 spinlock_t *ptl = pte_lockptr(mm, pmd);
268 pte_t *ptep = pte_offset_map(pmd, address);
269 __migration_entry_wait(mm, ptep, ptl);
270 }
271
272 void migration_entry_wait_huge(struct vm_area_struct *vma,
273 struct mm_struct *mm, pte_t *pte)
274 {
275 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
276 __migration_entry_wait(mm, pte, ptl);
277 }
278
279 #ifdef CONFIG_BLOCK
280 /* Returns true if all buffers are successfully locked */
281 static bool buffer_migrate_lock_buffers(struct buffer_head *head,
282 enum migrate_mode mode)
283 {
284 struct buffer_head *bh = head;
285
286 /* Simple case, sync compaction */
287 if (mode != MIGRATE_ASYNC) {
288 do {
289 get_bh(bh);
290 lock_buffer(bh);
291 bh = bh->b_this_page;
292
293 } while (bh != head);
294
295 return true;
296 }
297
298 /* async case, we cannot block on lock_buffer so use trylock_buffer */
299 do {
300 get_bh(bh);
301 if (!trylock_buffer(bh)) {
302 /*
303 * We failed to lock the buffer and cannot stall in
304 * async migration. Release the taken locks
305 */
306 struct buffer_head *failed_bh = bh;
307 put_bh(failed_bh);
308 bh = head;
309 while (bh != failed_bh) {
310 unlock_buffer(bh);
311 put_bh(bh);
312 bh = bh->b_this_page;
313 }
314 return false;
315 }
316
317 bh = bh->b_this_page;
318 } while (bh != head);
319 return true;
320 }
321 #else
322 static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
323 enum migrate_mode mode)
324 {
325 return true;
326 }
327 #endif /* CONFIG_BLOCK */
328
329 /*
330 * Replace the page in the mapping.
331 *
332 * The number of remaining references must be:
333 * 1 for anonymous pages without a mapping
334 * 2 for pages with a mapping
335 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
336 */
337 int migrate_page_move_mapping(struct address_space *mapping,
338 struct page *newpage, struct page *page,
339 struct buffer_head *head, enum migrate_mode mode,
340 int extra_count)
341 {
342 int expected_count = 1 + extra_count;
343 void **pslot;
344
345 if (!mapping) {
346 /* Anonymous page without mapping */
347 if (page_count(page) != expected_count)
348 return -EAGAIN;
349 return MIGRATEPAGE_SUCCESS;
350 }
351
352 spin_lock_irq(&mapping->tree_lock);
353
354 pslot = radix_tree_lookup_slot(&mapping->page_tree,
355 page_index(page));
356
357 expected_count += 1 + page_has_private(page);
358 if (page_count(page) != expected_count ||
359 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
360 spin_unlock_irq(&mapping->tree_lock);
361 return -EAGAIN;
362 }
363
364 if (!page_freeze_refs(page, expected_count)) {
365 spin_unlock_irq(&mapping->tree_lock);
366 return -EAGAIN;
367 }
368
369 /*
370 * In the async migration case of moving a page with buffers, lock the
371 * buffers using trylock before the mapping is moved. If the mapping
372 * was moved, we later failed to lock the buffers and could not move
373 * the mapping back due to an elevated page count, we would have to
374 * block waiting on other references to be dropped.
375 */
376 if (mode == MIGRATE_ASYNC && head &&
377 !buffer_migrate_lock_buffers(head, mode)) {
378 page_unfreeze_refs(page, expected_count);
379 spin_unlock_irq(&mapping->tree_lock);
380 return -EAGAIN;
381 }
382
383 /*
384 * Now we know that no one else is looking at the page.
385 */
386 get_page(newpage); /* add cache reference */
387 if (PageSwapCache(page)) {
388 SetPageSwapCache(newpage);
389 set_page_private(newpage, page_private(page));
390 }
391
392 radix_tree_replace_slot(pslot, newpage);
393
394 /*
395 * Drop cache reference from old page by unfreezing
396 * to one less reference.
397 * We know this isn't the last reference.
398 */
399 page_unfreeze_refs(page, expected_count - 1);
400
401 /*
402 * If moved to a different zone then also account
403 * the page for that zone. Other VM counters will be
404 * taken care of when we establish references to the
405 * new page and drop references to the old page.
406 *
407 * Note that anonymous pages are accounted for
408 * via NR_FILE_PAGES and NR_ANON_PAGES if they
409 * are mapped to swap space.
410 */
411 __dec_zone_page_state(page, NR_FILE_PAGES);
412 __inc_zone_page_state(newpage, NR_FILE_PAGES);
413 if (!PageSwapCache(page) && PageSwapBacked(page)) {
414 __dec_zone_page_state(page, NR_SHMEM);
415 __inc_zone_page_state(newpage, NR_SHMEM);
416 }
417 spin_unlock_irq(&mapping->tree_lock);
418
419 return MIGRATEPAGE_SUCCESS;
420 }
421
422 /*
423 * The expected number of remaining references is the same as that
424 * of migrate_page_move_mapping().
425 */
426 int migrate_huge_page_move_mapping(struct address_space *mapping,
427 struct page *newpage, struct page *page)
428 {
429 int expected_count;
430 void **pslot;
431
432 if (!mapping) {
433 if (page_count(page) != 1)
434 return -EAGAIN;
435 return MIGRATEPAGE_SUCCESS;
436 }
437
438 spin_lock_irq(&mapping->tree_lock);
439
440 pslot = radix_tree_lookup_slot(&mapping->page_tree,
441 page_index(page));
442
443 expected_count = 2 + page_has_private(page);
444 if (page_count(page) != expected_count ||
445 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
446 spin_unlock_irq(&mapping->tree_lock);
447 return -EAGAIN;
448 }
449
450 if (!page_freeze_refs(page, expected_count)) {
451 spin_unlock_irq(&mapping->tree_lock);
452 return -EAGAIN;
453 }
454
455 get_page(newpage);
456
457 radix_tree_replace_slot(pslot, newpage);
458
459 page_unfreeze_refs(page, expected_count - 1);
460
461 spin_unlock_irq(&mapping->tree_lock);
462 return MIGRATEPAGE_SUCCESS;
463 }
464
465 /*
466 * Gigantic pages are so large that we do not guarantee that page++ pointer
467 * arithmetic will work across the entire page. We need something more
468 * specialized.
469 */
470 static void __copy_gigantic_page(struct page *dst, struct page *src,
471 int nr_pages)
472 {
473 int i;
474 struct page *dst_base = dst;
475 struct page *src_base = src;
476
477 for (i = 0; i < nr_pages; ) {
478 cond_resched();
479 copy_highpage(dst, src);
480
481 i++;
482 dst = mem_map_next(dst, dst_base, i);
483 src = mem_map_next(src, src_base, i);
484 }
485 }
486
487 static void copy_huge_page(struct page *dst, struct page *src)
488 {
489 int i;
490 int nr_pages;
491
492 if (PageHuge(src)) {
493 /* hugetlbfs page */
494 struct hstate *h = page_hstate(src);
495 nr_pages = pages_per_huge_page(h);
496
497 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
498 __copy_gigantic_page(dst, src, nr_pages);
499 return;
500 }
501 } else {
502 /* thp page */
503 BUG_ON(!PageTransHuge(src));
504 nr_pages = hpage_nr_pages(src);
505 }
506
507 for (i = 0; i < nr_pages; i++) {
508 cond_resched();
509 copy_highpage(dst + i, src + i);
510 }
511 }
512
513 /*
514 * Copy the page to its new location
515 */
516 void migrate_page_copy(struct page *newpage, struct page *page)
517 {
518 int cpupid;
519
520 if (PageHuge(page) || PageTransHuge(page))
521 copy_huge_page(newpage, page);
522 else
523 copy_highpage(newpage, page);
524
525 if (PageError(page))
526 SetPageError(newpage);
527 if (PageReferenced(page))
528 SetPageReferenced(newpage);
529 if (PageUptodate(page))
530 SetPageUptodate(newpage);
531 if (TestClearPageActive(page)) {
532 VM_BUG_ON_PAGE(PageUnevictable(page), page);
533 SetPageActive(newpage);
534 } else if (TestClearPageUnevictable(page))
535 SetPageUnevictable(newpage);
536 if (PageChecked(page))
537 SetPageChecked(newpage);
538 if (PageMappedToDisk(page))
539 SetPageMappedToDisk(newpage);
540
541 if (PageDirty(page)) {
542 clear_page_dirty_for_io(page);
543 /*
544 * Want to mark the page and the radix tree as dirty, and
545 * redo the accounting that clear_page_dirty_for_io undid,
546 * but we can't use set_page_dirty because that function
547 * is actually a signal that all of the page has become dirty.
548 * Whereas only part of our page may be dirty.
549 */
550 if (PageSwapBacked(page))
551 SetPageDirty(newpage);
552 else
553 __set_page_dirty_nobuffers(newpage);
554 }
555
556 /*
557 * Copy NUMA information to the new page, to prevent over-eager
558 * future migrations of this same page.
559 */
560 cpupid = page_cpupid_xchg_last(page, -1);
561 page_cpupid_xchg_last(newpage, cpupid);
562
563 mlock_migrate_page(newpage, page);
564 ksm_migrate_page(newpage, page);
565 /*
566 * Please do not reorder this without considering how mm/ksm.c's
567 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
568 */
569 ClearPageSwapCache(page);
570 ClearPagePrivate(page);
571 set_page_private(page, 0);
572
573 /*
574 * If any waiters have accumulated on the new page then
575 * wake them up.
576 */
577 if (PageWriteback(newpage))
578 end_page_writeback(newpage);
579 }
580
581 /************************************************************
582 * Migration functions
583 ***********************************************************/
584
585 /*
586 * Common logic to directly migrate a single page suitable for
587 * pages that do not use PagePrivate/PagePrivate2.
588 *
589 * Pages are locked upon entry and exit.
590 */
591 int migrate_page(struct address_space *mapping,
592 struct page *newpage, struct page *page,
593 enum migrate_mode mode)
594 {
595 int rc;
596
597 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
598
599 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
600
601 if (rc != MIGRATEPAGE_SUCCESS)
602 return rc;
603
604 migrate_page_copy(newpage, page);
605 return MIGRATEPAGE_SUCCESS;
606 }
607 EXPORT_SYMBOL(migrate_page);
608
609 #ifdef CONFIG_BLOCK
610 /*
611 * Migration function for pages with buffers. This function can only be used
612 * if the underlying filesystem guarantees that no other references to "page"
613 * exist.
614 */
615 int buffer_migrate_page(struct address_space *mapping,
616 struct page *newpage, struct page *page, enum migrate_mode mode)
617 {
618 struct buffer_head *bh, *head;
619 int rc;
620
621 if (!page_has_buffers(page))
622 return migrate_page(mapping, newpage, page, mode);
623
624 head = page_buffers(page);
625
626 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
627
628 if (rc != MIGRATEPAGE_SUCCESS)
629 return rc;
630
631 /*
632 * In the async case, migrate_page_move_mapping locked the buffers
633 * with an IRQ-safe spinlock held. In the sync case, the buffers
634 * need to be locked now
635 */
636 if (mode != MIGRATE_ASYNC)
637 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
638
639 ClearPagePrivate(page);
640 set_page_private(newpage, page_private(page));
641 set_page_private(page, 0);
642 put_page(page);
643 get_page(newpage);
644
645 bh = head;
646 do {
647 set_bh_page(bh, newpage, bh_offset(bh));
648 bh = bh->b_this_page;
649
650 } while (bh != head);
651
652 SetPagePrivate(newpage);
653
654 migrate_page_copy(newpage, page);
655
656 bh = head;
657 do {
658 unlock_buffer(bh);
659 put_bh(bh);
660 bh = bh->b_this_page;
661
662 } while (bh != head);
663
664 return MIGRATEPAGE_SUCCESS;
665 }
666 EXPORT_SYMBOL(buffer_migrate_page);
667 #endif
668
669 /*
670 * Writeback a page to clean the dirty state
671 */
672 static int writeout(struct address_space *mapping, struct page *page)
673 {
674 struct writeback_control wbc = {
675 .sync_mode = WB_SYNC_NONE,
676 .nr_to_write = 1,
677 .range_start = 0,
678 .range_end = LLONG_MAX,
679 .for_reclaim = 1
680 };
681 int rc;
682
683 if (!mapping->a_ops->writepage)
684 /* No write method for the address space */
685 return -EINVAL;
686
687 if (!clear_page_dirty_for_io(page))
688 /* Someone else already triggered a write */
689 return -EAGAIN;
690
691 /*
692 * A dirty page may imply that the underlying filesystem has
693 * the page on some queue. So the page must be clean for
694 * migration. Writeout may mean we loose the lock and the
695 * page state is no longer what we checked for earlier.
696 * At this point we know that the migration attempt cannot
697 * be successful.
698 */
699 remove_migration_ptes(page, page);
700
701 rc = mapping->a_ops->writepage(page, &wbc);
702
703 if (rc != AOP_WRITEPAGE_ACTIVATE)
704 /* unlocked. Relock */
705 lock_page(page);
706
707 return (rc < 0) ? -EIO : -EAGAIN;
708 }
709
710 /*
711 * Default handling if a filesystem does not provide a migration function.
712 */
713 static int fallback_migrate_page(struct address_space *mapping,
714 struct page *newpage, struct page *page, enum migrate_mode mode)
715 {
716 if (PageDirty(page)) {
717 /* Only writeback pages in full synchronous migration */
718 if (mode != MIGRATE_SYNC)
719 return -EBUSY;
720 return writeout(mapping, page);
721 }
722
723 /*
724 * Buffers may be managed in a filesystem specific way.
725 * We must have no buffers or drop them.
726 */
727 if (page_has_private(page) &&
728 !try_to_release_page(page, GFP_KERNEL))
729 return -EAGAIN;
730
731 return migrate_page(mapping, newpage, page, mode);
732 }
733
734 /*
735 * Move a page to a newly allocated page
736 * The page is locked and all ptes have been successfully removed.
737 *
738 * The new page will have replaced the old page if this function
739 * is successful.
740 *
741 * Return value:
742 * < 0 - error code
743 * MIGRATEPAGE_SUCCESS - success
744 */
745 static int move_to_new_page(struct page *newpage, struct page *page,
746 int remap_swapcache, enum migrate_mode mode)
747 {
748 struct address_space *mapping;
749 int rc;
750
751 /*
752 * Block others from accessing the page when we get around to
753 * establishing additional references. We are the only one
754 * holding a reference to the new page at this point.
755 */
756 if (!trylock_page(newpage))
757 BUG();
758
759 /* Prepare mapping for the new page.*/
760 newpage->index = page->index;
761 newpage->mapping = page->mapping;
762 if (PageSwapBacked(page))
763 SetPageSwapBacked(newpage);
764
765 mapping = page_mapping(page);
766 if (!mapping)
767 rc = migrate_page(mapping, newpage, page, mode);
768 else if (mapping->a_ops->migratepage)
769 /*
770 * Most pages have a mapping and most filesystems provide a
771 * migratepage callback. Anonymous pages are part of swap
772 * space which also has its own migratepage callback. This
773 * is the most common path for page migration.
774 */
775 rc = mapping->a_ops->migratepage(mapping,
776 newpage, page, mode);
777 else
778 rc = fallback_migrate_page(mapping, newpage, page, mode);
779
780 if (rc != MIGRATEPAGE_SUCCESS) {
781 newpage->mapping = NULL;
782 } else {
783 if (remap_swapcache)
784 remove_migration_ptes(page, newpage);
785 page->mapping = NULL;
786 }
787
788 unlock_page(newpage);
789
790 return rc;
791 }
792
793 static int __unmap_and_move(struct page *page, struct page *newpage,
794 int force, enum migrate_mode mode)
795 {
796 int rc = -EAGAIN;
797 int remap_swapcache = 1;
798 struct mem_cgroup *mem;
799 struct anon_vma *anon_vma = NULL;
800
801 if (!trylock_page(page)) {
802 if (!force || mode == MIGRATE_ASYNC)
803 goto out;
804
805 /*
806 * It's not safe for direct compaction to call lock_page.
807 * For example, during page readahead pages are added locked
808 * to the LRU. Later, when the IO completes the pages are
809 * marked uptodate and unlocked. However, the queueing
810 * could be merging multiple pages for one bio (e.g.
811 * mpage_readpages). If an allocation happens for the
812 * second or third page, the process can end up locking
813 * the same page twice and deadlocking. Rather than
814 * trying to be clever about what pages can be locked,
815 * avoid the use of lock_page for direct compaction
816 * altogether.
817 */
818 if (current->flags & PF_MEMALLOC)
819 goto out;
820
821 lock_page(page);
822 }
823
824 /* charge against new page */
825 mem_cgroup_prepare_migration(page, newpage, &mem);
826
827 if (PageWriteback(page)) {
828 /*
829 * Only in the case of a full synchronous migration is it
830 * necessary to wait for PageWriteback. In the async case,
831 * the retry loop is too short and in the sync-light case,
832 * the overhead of stalling is too much
833 */
834 if (mode != MIGRATE_SYNC) {
835 rc = -EBUSY;
836 goto uncharge;
837 }
838 if (!force)
839 goto uncharge;
840 wait_on_page_writeback(page);
841 }
842 /*
843 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
844 * we cannot notice that anon_vma is freed while we migrates a page.
845 * This get_anon_vma() delays freeing anon_vma pointer until the end
846 * of migration. File cache pages are no problem because of page_lock()
847 * File Caches may use write_page() or lock_page() in migration, then,
848 * just care Anon page here.
849 */
850 if (PageAnon(page) && !PageKsm(page)) {
851 /*
852 * Only page_lock_anon_vma_read() understands the subtleties of
853 * getting a hold on an anon_vma from outside one of its mms.
854 */
855 anon_vma = page_get_anon_vma(page);
856 if (anon_vma) {
857 /*
858 * Anon page
859 */
860 } else if (PageSwapCache(page)) {
861 /*
862 * We cannot be sure that the anon_vma of an unmapped
863 * swapcache page is safe to use because we don't
864 * know in advance if the VMA that this page belonged
865 * to still exists. If the VMA and others sharing the
866 * data have been freed, then the anon_vma could
867 * already be invalid.
868 *
869 * To avoid this possibility, swapcache pages get
870 * migrated but are not remapped when migration
871 * completes
872 */
873 remap_swapcache = 0;
874 } else {
875 goto uncharge;
876 }
877 }
878
879 if (unlikely(balloon_page_movable(page))) {
880 /*
881 * A ballooned page does not need any special attention from
882 * physical to virtual reverse mapping procedures.
883 * Skip any attempt to unmap PTEs or to remap swap cache,
884 * in order to avoid burning cycles at rmap level, and perform
885 * the page migration right away (proteced by page lock).
886 */
887 rc = balloon_page_migrate(newpage, page, mode);
888 goto uncharge;
889 }
890
891 /*
892 * Corner case handling:
893 * 1. When a new swap-cache page is read into, it is added to the LRU
894 * and treated as swapcache but it has no rmap yet.
895 * Calling try_to_unmap() against a page->mapping==NULL page will
896 * trigger a BUG. So handle it here.
897 * 2. An orphaned page (see truncate_complete_page) might have
898 * fs-private metadata. The page can be picked up due to memory
899 * offlining. Everywhere else except page reclaim, the page is
900 * invisible to the vm, so the page can not be migrated. So try to
901 * free the metadata, so the page can be freed.
902 */
903 if (!page->mapping) {
904 VM_BUG_ON_PAGE(PageAnon(page), page);
905 if (page_has_private(page)) {
906 try_to_free_buffers(page);
907 goto uncharge;
908 }
909 goto skip_unmap;
910 }
911
912 /* Establish migration ptes or remove ptes */
913 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
914
915 skip_unmap:
916 if (!page_mapped(page))
917 rc = move_to_new_page(newpage, page, remap_swapcache, mode);
918
919 if (rc && remap_swapcache)
920 remove_migration_ptes(page, page);
921
922 /* Drop an anon_vma reference if we took one */
923 if (anon_vma)
924 put_anon_vma(anon_vma);
925
926 uncharge:
927 mem_cgroup_end_migration(mem, page, newpage,
928 (rc == MIGRATEPAGE_SUCCESS ||
929 rc == MIGRATEPAGE_BALLOON_SUCCESS));
930 unlock_page(page);
931 out:
932 return rc;
933 }
934
935 /*
936 * Obtain the lock on page, remove all ptes and migrate the page
937 * to the newly allocated page in newpage.
938 */
939 static int unmap_and_move(new_page_t get_new_page, free_page_t put_new_page,
940 unsigned long private, struct page *page, int force,
941 enum migrate_mode mode)
942 {
943 int rc = 0;
944 int *result = NULL;
945 struct page *newpage = get_new_page(page, private, &result);
946
947 if (!newpage)
948 return -ENOMEM;
949
950 if (page_count(page) == 1) {
951 /* page was freed from under us. So we are done. */
952 goto out;
953 }
954
955 if (unlikely(PageTransHuge(page)))
956 if (unlikely(split_huge_page(page)))
957 goto out;
958
959 rc = __unmap_and_move(page, newpage, force, mode);
960
961 if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
962 /*
963 * A ballooned page has been migrated already.
964 * Now, it's the time to wrap-up counters,
965 * handle the page back to Buddy and return.
966 */
967 dec_zone_page_state(page, NR_ISOLATED_ANON +
968 page_is_file_cache(page));
969 balloon_page_free(page);
970 return MIGRATEPAGE_SUCCESS;
971 }
972 out:
973 if (rc != -EAGAIN) {
974 /*
975 * A page that has been migrated has all references
976 * removed and will be freed. A page that has not been
977 * migrated will have kepts its references and be
978 * restored.
979 */
980 list_del(&page->lru);
981 dec_zone_page_state(page, NR_ISOLATED_ANON +
982 page_is_file_cache(page));
983 putback_lru_page(page);
984 }
985
986 /*
987 * If migration was not successful and there's a freeing callback, use
988 * it. Otherwise, putback_lru_page() will drop the reference grabbed
989 * during isolation.
990 */
991 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
992 put_new_page(newpage, private);
993 else
994 putback_lru_page(newpage);
995
996 if (result) {
997 if (rc)
998 *result = rc;
999 else
1000 *result = page_to_nid(newpage);
1001 }
1002 return rc;
1003 }
1004
1005 /*
1006 * Counterpart of unmap_and_move_page() for hugepage migration.
1007 *
1008 * This function doesn't wait the completion of hugepage I/O
1009 * because there is no race between I/O and migration for hugepage.
1010 * Note that currently hugepage I/O occurs only in direct I/O
1011 * where no lock is held and PG_writeback is irrelevant,
1012 * and writeback status of all subpages are counted in the reference
1013 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1014 * under direct I/O, the reference of the head page is 512 and a bit more.)
1015 * This means that when we try to migrate hugepage whose subpages are
1016 * doing direct I/O, some references remain after try_to_unmap() and
1017 * hugepage migration fails without data corruption.
1018 *
1019 * There is also no race when direct I/O is issued on the page under migration,
1020 * because then pte is replaced with migration swap entry and direct I/O code
1021 * will wait in the page fault for migration to complete.
1022 */
1023 static int unmap_and_move_huge_page(new_page_t get_new_page,
1024 free_page_t put_new_page, unsigned long private,
1025 struct page *hpage, int force,
1026 enum migrate_mode mode)
1027 {
1028 int rc = 0;
1029 int *result = NULL;
1030 struct page *new_hpage;
1031 struct anon_vma *anon_vma = NULL;
1032
1033 /*
1034 * Movability of hugepages depends on architectures and hugepage size.
1035 * This check is necessary because some callers of hugepage migration
1036 * like soft offline and memory hotremove don't walk through page
1037 * tables or check whether the hugepage is pmd-based or not before
1038 * kicking migration.
1039 */
1040 if (!hugepage_migration_supported(page_hstate(hpage))) {
1041 putback_active_hugepage(hpage);
1042 return -ENOSYS;
1043 }
1044
1045 new_hpage = get_new_page(hpage, private, &result);
1046 if (!new_hpage)
1047 return -ENOMEM;
1048
1049 rc = -EAGAIN;
1050
1051 if (!trylock_page(hpage)) {
1052 if (!force || mode != MIGRATE_SYNC)
1053 goto out;
1054 lock_page(hpage);
1055 }
1056
1057 if (PageAnon(hpage))
1058 anon_vma = page_get_anon_vma(hpage);
1059
1060 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1061
1062 if (!page_mapped(hpage))
1063 rc = move_to_new_page(new_hpage, hpage, 1, mode);
1064
1065 if (rc != MIGRATEPAGE_SUCCESS)
1066 remove_migration_ptes(hpage, hpage);
1067
1068 if (anon_vma)
1069 put_anon_vma(anon_vma);
1070
1071 if (rc == MIGRATEPAGE_SUCCESS)
1072 hugetlb_cgroup_migrate(hpage, new_hpage);
1073
1074 unlock_page(hpage);
1075 out:
1076 if (rc != -EAGAIN)
1077 putback_active_hugepage(hpage);
1078
1079 /*
1080 * If migration was not successful and there's a freeing callback, use
1081 * it. Otherwise, put_page() will drop the reference grabbed during
1082 * isolation.
1083 */
1084 if (rc != MIGRATEPAGE_SUCCESS && put_new_page)
1085 put_new_page(new_hpage, private);
1086 else
1087 put_page(new_hpage);
1088
1089 if (result) {
1090 if (rc)
1091 *result = rc;
1092 else
1093 *result = page_to_nid(new_hpage);
1094 }
1095 return rc;
1096 }
1097
1098 /*
1099 * migrate_pages - migrate the pages specified in a list, to the free pages
1100 * supplied as the target for the page migration
1101 *
1102 * @from: The list of pages to be migrated.
1103 * @get_new_page: The function used to allocate free pages to be used
1104 * as the target of the page migration.
1105 * @put_new_page: The function used to free target pages if migration
1106 * fails, or NULL if no special handling is necessary.
1107 * @private: Private data to be passed on to get_new_page()
1108 * @mode: The migration mode that specifies the constraints for
1109 * page migration, if any.
1110 * @reason: The reason for page migration.
1111 *
1112 * The function returns after 10 attempts or if no pages are movable any more
1113 * because the list has become empty or no retryable pages exist any more.
1114 * The caller should call putback_lru_pages() to return pages to the LRU
1115 * or free list only if ret != 0.
1116 *
1117 * Returns the number of pages that were not migrated, or an error code.
1118 */
1119 int migrate_pages(struct list_head *from, new_page_t get_new_page,
1120 free_page_t put_new_page, unsigned long private,
1121 enum migrate_mode mode, int reason)
1122 {
1123 int retry = 1;
1124 int nr_failed = 0;
1125 int nr_succeeded = 0;
1126 int pass = 0;
1127 struct page *page;
1128 struct page *page2;
1129 int swapwrite = current->flags & PF_SWAPWRITE;
1130 int rc;
1131
1132 if (!swapwrite)
1133 current->flags |= PF_SWAPWRITE;
1134
1135 for(pass = 0; pass < 10 && retry; pass++) {
1136 retry = 0;
1137
1138 list_for_each_entry_safe(page, page2, from, lru) {
1139 cond_resched();
1140
1141 if (PageHuge(page))
1142 rc = unmap_and_move_huge_page(get_new_page,
1143 put_new_page, private, page,
1144 pass > 2, mode);
1145 else
1146 rc = unmap_and_move(get_new_page, put_new_page,
1147 private, page, pass > 2, mode);
1148
1149 switch(rc) {
1150 case -ENOMEM:
1151 goto out;
1152 case -EAGAIN:
1153 retry++;
1154 break;
1155 case MIGRATEPAGE_SUCCESS:
1156 nr_succeeded++;
1157 break;
1158 default:
1159 /*
1160 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1161 * unlike -EAGAIN case, the failed page is
1162 * removed from migration page list and not
1163 * retried in the next outer loop.
1164 */
1165 nr_failed++;
1166 break;
1167 }
1168 }
1169 }
1170 rc = nr_failed + retry;
1171 out:
1172 if (nr_succeeded)
1173 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1174 if (nr_failed)
1175 count_vm_events(PGMIGRATE_FAIL, nr_failed);
1176 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1177
1178 if (!swapwrite)
1179 current->flags &= ~PF_SWAPWRITE;
1180
1181 return rc;
1182 }
1183
1184 #ifdef CONFIG_NUMA
1185 /*
1186 * Move a list of individual pages
1187 */
1188 struct page_to_node {
1189 unsigned long addr;
1190 struct page *page;
1191 int node;
1192 int status;
1193 };
1194
1195 static struct page *new_page_node(struct page *p, unsigned long private,
1196 int **result)
1197 {
1198 struct page_to_node *pm = (struct page_to_node *)private;
1199
1200 while (pm->node != MAX_NUMNODES && pm->page != p)
1201 pm++;
1202
1203 if (pm->node == MAX_NUMNODES)
1204 return NULL;
1205
1206 *result = &pm->status;
1207
1208 if (PageHuge(p))
1209 return alloc_huge_page_node(page_hstate(compound_head(p)),
1210 pm->node);
1211 else
1212 return alloc_pages_exact_node(pm->node,
1213 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1214 }
1215
1216 /*
1217 * Move a set of pages as indicated in the pm array. The addr
1218 * field must be set to the virtual address of the page to be moved
1219 * and the node number must contain a valid target node.
1220 * The pm array ends with node = MAX_NUMNODES.
1221 */
1222 static int do_move_page_to_node_array(struct mm_struct *mm,
1223 struct page_to_node *pm,
1224 int migrate_all)
1225 {
1226 int err;
1227 struct page_to_node *pp;
1228 LIST_HEAD(pagelist);
1229
1230 down_read(&mm->mmap_sem);
1231
1232 /*
1233 * Build a list of pages to migrate
1234 */
1235 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1236 struct vm_area_struct *vma;
1237 struct page *page;
1238
1239 err = -EFAULT;
1240 vma = find_vma(mm, pp->addr);
1241 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1242 goto set_status;
1243
1244 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1245
1246 err = PTR_ERR(page);
1247 if (IS_ERR(page))
1248 goto set_status;
1249
1250 err = -ENOENT;
1251 if (!page)
1252 goto set_status;
1253
1254 /* Use PageReserved to check for zero page */
1255 if (PageReserved(page))
1256 goto put_and_set;
1257
1258 pp->page = page;
1259 err = page_to_nid(page);
1260
1261 if (err == pp->node)
1262 /*
1263 * Node already in the right place
1264 */
1265 goto put_and_set;
1266
1267 err = -EACCES;
1268 if (page_mapcount(page) > 1 &&
1269 !migrate_all)
1270 goto put_and_set;
1271
1272 if (PageHuge(page)) {
1273 isolate_huge_page(page, &pagelist);
1274 goto put_and_set;
1275 }
1276
1277 err = isolate_lru_page(page);
1278 if (!err) {
1279 list_add_tail(&page->lru, &pagelist);
1280 inc_zone_page_state(page, NR_ISOLATED_ANON +
1281 page_is_file_cache(page));
1282 }
1283 put_and_set:
1284 /*
1285 * Either remove the duplicate refcount from
1286 * isolate_lru_page() or drop the page ref if it was
1287 * not isolated.
1288 */
1289 put_page(page);
1290 set_status:
1291 pp->status = err;
1292 }
1293
1294 err = 0;
1295 if (!list_empty(&pagelist)) {
1296 err = migrate_pages(&pagelist, new_page_node, NULL,
1297 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1298 if (err)
1299 putback_movable_pages(&pagelist);
1300 }
1301
1302 up_read(&mm->mmap_sem);
1303 return err;
1304 }
1305
1306 /*
1307 * Migrate an array of page address onto an array of nodes and fill
1308 * the corresponding array of status.
1309 */
1310 static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1311 unsigned long nr_pages,
1312 const void __user * __user *pages,
1313 const int __user *nodes,
1314 int __user *status, int flags)
1315 {
1316 struct page_to_node *pm;
1317 unsigned long chunk_nr_pages;
1318 unsigned long chunk_start;
1319 int err;
1320
1321 err = -ENOMEM;
1322 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1323 if (!pm)
1324 goto out;
1325
1326 migrate_prep();
1327
1328 /*
1329 * Store a chunk of page_to_node array in a page,
1330 * but keep the last one as a marker
1331 */
1332 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1333
1334 for (chunk_start = 0;
1335 chunk_start < nr_pages;
1336 chunk_start += chunk_nr_pages) {
1337 int j;
1338
1339 if (chunk_start + chunk_nr_pages > nr_pages)
1340 chunk_nr_pages = nr_pages - chunk_start;
1341
1342 /* fill the chunk pm with addrs and nodes from user-space */
1343 for (j = 0; j < chunk_nr_pages; j++) {
1344 const void __user *p;
1345 int node;
1346
1347 err = -EFAULT;
1348 if (get_user(p, pages + j + chunk_start))
1349 goto out_pm;
1350 pm[j].addr = (unsigned long) p;
1351
1352 if (get_user(node, nodes + j + chunk_start))
1353 goto out_pm;
1354
1355 err = -ENODEV;
1356 if (node < 0 || node >= MAX_NUMNODES)
1357 goto out_pm;
1358
1359 if (!node_state(node, N_MEMORY))
1360 goto out_pm;
1361
1362 err = -EACCES;
1363 if (!node_isset(node, task_nodes))
1364 goto out_pm;
1365
1366 pm[j].node = node;
1367 }
1368
1369 /* End marker for this chunk */
1370 pm[chunk_nr_pages].node = MAX_NUMNODES;
1371
1372 /* Migrate this chunk */
1373 err = do_move_page_to_node_array(mm, pm,
1374 flags & MPOL_MF_MOVE_ALL);
1375 if (err < 0)
1376 goto out_pm;
1377
1378 /* Return status information */
1379 for (j = 0; j < chunk_nr_pages; j++)
1380 if (put_user(pm[j].status, status + j + chunk_start)) {
1381 err = -EFAULT;
1382 goto out_pm;
1383 }
1384 }
1385 err = 0;
1386
1387 out_pm:
1388 free_page((unsigned long)pm);
1389 out:
1390 return err;
1391 }
1392
1393 /*
1394 * Determine the nodes of an array of pages and store it in an array of status.
1395 */
1396 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1397 const void __user **pages, int *status)
1398 {
1399 unsigned long i;
1400
1401 down_read(&mm->mmap_sem);
1402
1403 for (i = 0; i < nr_pages; i++) {
1404 unsigned long addr = (unsigned long)(*pages);
1405 struct vm_area_struct *vma;
1406 struct page *page;
1407 int err = -EFAULT;
1408
1409 vma = find_vma(mm, addr);
1410 if (!vma || addr < vma->vm_start)
1411 goto set_status;
1412
1413 page = follow_page(vma, addr, 0);
1414
1415 err = PTR_ERR(page);
1416 if (IS_ERR(page))
1417 goto set_status;
1418
1419 err = -ENOENT;
1420 /* Use PageReserved to check for zero page */
1421 if (!page || PageReserved(page))
1422 goto set_status;
1423
1424 err = page_to_nid(page);
1425 set_status:
1426 *status = err;
1427
1428 pages++;
1429 status++;
1430 }
1431
1432 up_read(&mm->mmap_sem);
1433 }
1434
1435 /*
1436 * Determine the nodes of a user array of pages and store it in
1437 * a user array of status.
1438 */
1439 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1440 const void __user * __user *pages,
1441 int __user *status)
1442 {
1443 #define DO_PAGES_STAT_CHUNK_NR 16
1444 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1445 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1446
1447 while (nr_pages) {
1448 unsigned long chunk_nr;
1449
1450 chunk_nr = nr_pages;
1451 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1452 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1453
1454 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1455 break;
1456
1457 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1458
1459 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1460 break;
1461
1462 pages += chunk_nr;
1463 status += chunk_nr;
1464 nr_pages -= chunk_nr;
1465 }
1466 return nr_pages ? -EFAULT : 0;
1467 }
1468
1469 /*
1470 * Move a list of pages in the address space of the currently executing
1471 * process.
1472 */
1473 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1474 const void __user * __user *, pages,
1475 const int __user *, nodes,
1476 int __user *, status, int, flags)
1477 {
1478 const struct cred *cred = current_cred(), *tcred;
1479 struct task_struct *task;
1480 struct mm_struct *mm;
1481 int err;
1482 nodemask_t task_nodes;
1483
1484 /* Check flags */
1485 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1486 return -EINVAL;
1487
1488 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1489 return -EPERM;
1490
1491 /* Find the mm_struct */
1492 rcu_read_lock();
1493 task = pid ? find_task_by_vpid(pid) : current;
1494 if (!task) {
1495 rcu_read_unlock();
1496 return -ESRCH;
1497 }
1498 get_task_struct(task);
1499
1500 /*
1501 * Check if this process has the right to modify the specified
1502 * process. The right exists if the process has administrative
1503 * capabilities, superuser privileges or the same
1504 * userid as the target process.
1505 */
1506 tcred = __task_cred(task);
1507 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1508 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1509 !capable(CAP_SYS_NICE)) {
1510 rcu_read_unlock();
1511 err = -EPERM;
1512 goto out;
1513 }
1514 rcu_read_unlock();
1515
1516 err = security_task_movememory(task);
1517 if (err)
1518 goto out;
1519
1520 task_nodes = cpuset_mems_allowed(task);
1521 mm = get_task_mm(task);
1522 put_task_struct(task);
1523
1524 if (!mm)
1525 return -EINVAL;
1526
1527 if (nodes)
1528 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1529 nodes, status, flags);
1530 else
1531 err = do_pages_stat(mm, nr_pages, pages, status);
1532
1533 mmput(mm);
1534 return err;
1535
1536 out:
1537 put_task_struct(task);
1538 return err;
1539 }
1540
1541 /*
1542 * Call migration functions in the vma_ops that may prepare
1543 * memory in a vm for migration. migration functions may perform
1544 * the migration for vmas that do not have an underlying page struct.
1545 */
1546 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1547 const nodemask_t *from, unsigned long flags)
1548 {
1549 struct vm_area_struct *vma;
1550 int err = 0;
1551
1552 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1553 if (vma->vm_ops && vma->vm_ops->migrate) {
1554 err = vma->vm_ops->migrate(vma, to, from, flags);
1555 if (err)
1556 break;
1557 }
1558 }
1559 return err;
1560 }
1561
1562 #ifdef CONFIG_NUMA_BALANCING
1563 /*
1564 * Returns true if this is a safe migration target node for misplaced NUMA
1565 * pages. Currently it only checks the watermarks which crude
1566 */
1567 static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1568 unsigned long nr_migrate_pages)
1569 {
1570 int z;
1571 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1572 struct zone *zone = pgdat->node_zones + z;
1573
1574 if (!populated_zone(zone))
1575 continue;
1576
1577 if (!zone_reclaimable(zone))
1578 continue;
1579
1580 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1581 if (!zone_watermark_ok(zone, 0,
1582 high_wmark_pages(zone) +
1583 nr_migrate_pages,
1584 0, 0))
1585 continue;
1586 return true;
1587 }
1588 return false;
1589 }
1590
1591 static struct page *alloc_misplaced_dst_page(struct page *page,
1592 unsigned long data,
1593 int **result)
1594 {
1595 int nid = (int) data;
1596 struct page *newpage;
1597
1598 newpage = alloc_pages_exact_node(nid,
1599 (GFP_HIGHUSER_MOVABLE |
1600 __GFP_THISNODE | __GFP_NOMEMALLOC |
1601 __GFP_NORETRY | __GFP_NOWARN) &
1602 ~GFP_IOFS, 0);
1603
1604 return newpage;
1605 }
1606
1607 /*
1608 * page migration rate limiting control.
1609 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1610 * window of time. Default here says do not migrate more than 1280M per second.
1611 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1612 * as it is faults that reset the window, pte updates will happen unconditionally
1613 * if there has not been a fault since @pteupdate_interval_millisecs after the
1614 * throttle window closed.
1615 */
1616 static unsigned int migrate_interval_millisecs __read_mostly = 100;
1617 static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1618 static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1619
1620 /* Returns true if NUMA migration is currently rate limited */
1621 bool migrate_ratelimited(int node)
1622 {
1623 pg_data_t *pgdat = NODE_DATA(node);
1624
1625 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1626 msecs_to_jiffies(pteupdate_interval_millisecs)))
1627 return false;
1628
1629 if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1630 return false;
1631
1632 return true;
1633 }
1634
1635 /* Returns true if the node is migrate rate-limited after the update */
1636 static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1637 unsigned long nr_pages)
1638 {
1639 /*
1640 * Rate-limit the amount of data that is being migrated to a node.
1641 * Optimal placement is no good if the memory bus is saturated and
1642 * all the time is being spent migrating!
1643 */
1644 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1645 spin_lock(&pgdat->numabalancing_migrate_lock);
1646 pgdat->numabalancing_migrate_nr_pages = 0;
1647 pgdat->numabalancing_migrate_next_window = jiffies +
1648 msecs_to_jiffies(migrate_interval_millisecs);
1649 spin_unlock(&pgdat->numabalancing_migrate_lock);
1650 }
1651 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1652 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1653 nr_pages);
1654 return true;
1655 }
1656
1657 /*
1658 * This is an unlocked non-atomic update so errors are possible.
1659 * The consequences are failing to migrate when we potentiall should
1660 * have which is not severe enough to warrant locking. If it is ever
1661 * a problem, it can be converted to a per-cpu counter.
1662 */
1663 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1664 return false;
1665 }
1666
1667 static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1668 {
1669 int page_lru;
1670
1671 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1672
1673 /* Avoid migrating to a node that is nearly full */
1674 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1675 return 0;
1676
1677 if (isolate_lru_page(page))
1678 return 0;
1679
1680 /*
1681 * migrate_misplaced_transhuge_page() skips page migration's usual
1682 * check on page_count(), so we must do it here, now that the page
1683 * has been isolated: a GUP pin, or any other pin, prevents migration.
1684 * The expected page count is 3: 1 for page's mapcount and 1 for the
1685 * caller's pin and 1 for the reference taken by isolate_lru_page().
1686 */
1687 if (PageTransHuge(page) && page_count(page) != 3) {
1688 putback_lru_page(page);
1689 return 0;
1690 }
1691
1692 page_lru = page_is_file_cache(page);
1693 mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1694 hpage_nr_pages(page));
1695
1696 /*
1697 * Isolating the page has taken another reference, so the
1698 * caller's reference can be safely dropped without the page
1699 * disappearing underneath us during migration.
1700 */
1701 put_page(page);
1702 return 1;
1703 }
1704
1705 bool pmd_trans_migrating(pmd_t pmd)
1706 {
1707 struct page *page = pmd_page(pmd);
1708 return PageLocked(page);
1709 }
1710
1711 void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1712 {
1713 struct page *page = pmd_page(*pmd);
1714 wait_on_page_locked(page);
1715 }
1716
1717 /*
1718 * Attempt to migrate a misplaced page to the specified destination
1719 * node. Caller is expected to have an elevated reference count on
1720 * the page that will be dropped by this function before returning.
1721 */
1722 int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1723 int node)
1724 {
1725 pg_data_t *pgdat = NODE_DATA(node);
1726 int isolated;
1727 int nr_remaining;
1728 LIST_HEAD(migratepages);
1729
1730 /*
1731 * Don't migrate file pages that are mapped in multiple processes
1732 * with execute permissions as they are probably shared libraries.
1733 */
1734 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1735 (vma->vm_flags & VM_EXEC))
1736 goto out;
1737
1738 /*
1739 * Rate-limit the amount of data that is being migrated to a node.
1740 * Optimal placement is no good if the memory bus is saturated and
1741 * all the time is being spent migrating!
1742 */
1743 if (numamigrate_update_ratelimit(pgdat, 1))
1744 goto out;
1745
1746 isolated = numamigrate_isolate_page(pgdat, page);
1747 if (!isolated)
1748 goto out;
1749
1750 list_add(&page->lru, &migratepages);
1751 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1752 NULL, node, MIGRATE_ASYNC,
1753 MR_NUMA_MISPLACED);
1754 if (nr_remaining) {
1755 if (!list_empty(&migratepages)) {
1756 list_del(&page->lru);
1757 dec_zone_page_state(page, NR_ISOLATED_ANON +
1758 page_is_file_cache(page));
1759 putback_lru_page(page);
1760 }
1761 isolated = 0;
1762 } else
1763 count_vm_numa_event(NUMA_PAGE_MIGRATE);
1764 BUG_ON(!list_empty(&migratepages));
1765 return isolated;
1766
1767 out:
1768 put_page(page);
1769 return 0;
1770 }
1771 #endif /* CONFIG_NUMA_BALANCING */
1772
1773 #if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1774 /*
1775 * Migrates a THP to a given target node. page must be locked and is unlocked
1776 * before returning.
1777 */
1778 int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1779 struct vm_area_struct *vma,
1780 pmd_t *pmd, pmd_t entry,
1781 unsigned long address,
1782 struct page *page, int node)
1783 {
1784 spinlock_t *ptl;
1785 pg_data_t *pgdat = NODE_DATA(node);
1786 int isolated = 0;
1787 struct page *new_page = NULL;
1788 struct mem_cgroup *memcg = NULL;
1789 int page_lru = page_is_file_cache(page);
1790 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1791 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1792 pmd_t orig_entry;
1793
1794 /*
1795 * Rate-limit the amount of data that is being migrated to a node.
1796 * Optimal placement is no good if the memory bus is saturated and
1797 * all the time is being spent migrating!
1798 */
1799 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1800 goto out_dropref;
1801
1802 new_page = alloc_pages_node(node,
1803 (GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1804 HPAGE_PMD_ORDER);
1805 if (!new_page)
1806 goto out_fail;
1807
1808 isolated = numamigrate_isolate_page(pgdat, page);
1809 if (!isolated) {
1810 put_page(new_page);
1811 goto out_fail;
1812 }
1813
1814 if (mm_tlb_flush_pending(mm))
1815 flush_tlb_range(vma, mmun_start, mmun_end);
1816
1817 /* Prepare a page as a migration target */
1818 __set_page_locked(new_page);
1819 SetPageSwapBacked(new_page);
1820
1821 /* anon mapping, we can simply copy page->mapping to the new page: */
1822 new_page->mapping = page->mapping;
1823 new_page->index = page->index;
1824 migrate_page_copy(new_page, page);
1825 WARN_ON(PageLRU(new_page));
1826
1827 /* Recheck the target PMD */
1828 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1829 ptl = pmd_lock(mm, pmd);
1830 if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1831 fail_putback:
1832 spin_unlock(ptl);
1833 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1834
1835 /* Reverse changes made by migrate_page_copy() */
1836 if (TestClearPageActive(new_page))
1837 SetPageActive(page);
1838 if (TestClearPageUnevictable(new_page))
1839 SetPageUnevictable(page);
1840 mlock_migrate_page(page, new_page);
1841
1842 unlock_page(new_page);
1843 put_page(new_page); /* Free it */
1844
1845 /* Retake the callers reference and putback on LRU */
1846 get_page(page);
1847 putback_lru_page(page);
1848 mod_zone_page_state(page_zone(page),
1849 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1850
1851 goto out_unlock;
1852 }
1853
1854 /*
1855 * Traditional migration needs to prepare the memcg charge
1856 * transaction early to prevent the old page from being
1857 * uncharged when installing migration entries. Here we can
1858 * save the potential rollback and start the charge transfer
1859 * only when migration is already known to end successfully.
1860 */
1861 mem_cgroup_prepare_migration(page, new_page, &memcg);
1862
1863 orig_entry = *pmd;
1864 entry = mk_pmd(new_page, vma->vm_page_prot);
1865 entry = pmd_mkhuge(entry);
1866 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1867
1868 /*
1869 * Clear the old entry under pagetable lock and establish the new PTE.
1870 * Any parallel GUP will either observe the old page blocking on the
1871 * page lock, block on the page table lock or observe the new page.
1872 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1873 * guarantee the copy is visible before the pagetable update.
1874 */
1875 flush_cache_range(vma, mmun_start, mmun_end);
1876 page_add_anon_rmap(new_page, vma, mmun_start);
1877 pmdp_clear_flush(vma, mmun_start, pmd);
1878 set_pmd_at(mm, mmun_start, pmd, entry);
1879 flush_tlb_range(vma, mmun_start, mmun_end);
1880 update_mmu_cache_pmd(vma, address, &entry);
1881
1882 if (page_count(page) != 2) {
1883 set_pmd_at(mm, mmun_start, pmd, orig_entry);
1884 flush_tlb_range(vma, mmun_start, mmun_end);
1885 update_mmu_cache_pmd(vma, address, &entry);
1886 page_remove_rmap(new_page);
1887 goto fail_putback;
1888 }
1889
1890 page_remove_rmap(page);
1891
1892 /*
1893 * Finish the charge transaction under the page table lock to
1894 * prevent split_huge_page() from dividing up the charge
1895 * before it's fully transferred to the new page.
1896 */
1897 mem_cgroup_end_migration(memcg, page, new_page, true);
1898 spin_unlock(ptl);
1899 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1900
1901 /* Take an "isolate" reference and put new page on the LRU. */
1902 get_page(new_page);
1903 putback_lru_page(new_page);
1904
1905 unlock_page(new_page);
1906 unlock_page(page);
1907 put_page(page); /* Drop the rmap reference */
1908 put_page(page); /* Drop the LRU isolation reference */
1909
1910 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1911 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1912
1913 mod_zone_page_state(page_zone(page),
1914 NR_ISOLATED_ANON + page_lru,
1915 -HPAGE_PMD_NR);
1916 return isolated;
1917
1918 out_fail:
1919 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1920 out_dropref:
1921 ptl = pmd_lock(mm, pmd);
1922 if (pmd_same(*pmd, entry)) {
1923 entry = pmd_mknonnuma(entry);
1924 set_pmd_at(mm, mmun_start, pmd, entry);
1925 update_mmu_cache_pmd(vma, address, &entry);
1926 }
1927 spin_unlock(ptl);
1928
1929 out_unlock:
1930 unlock_page(page);
1931 put_page(page);
1932 return 0;
1933 }
1934 #endif /* CONFIG_NUMA_BALANCING */
1935
1936 #endif /* CONFIG_NUMA */
This page took 0.150093 seconds and 5 git commands to generate.