mm: compaction: allow compaction to isolate dirty pages
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/export.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37
38 #include <asm/tlbflush.h>
39
40 #include "internal.h"
41
42 /*
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
46 */
47 int migrate_prep(void)
48 {
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58 }
59
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 lru_add_drain();
64
65 return 0;
66 }
67
68 /*
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
71 */
72 void putback_lru_pages(struct list_head *l)
73 {
74 struct page *page;
75 struct page *page2;
76
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
82 }
83 }
84
85 /*
86 * Restore a potential migration pte to a working pte entry
87 */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
90 {
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
108
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
112
113 pmd = pmd_offset(pud, addr);
114 if (pmd_trans_huge(*pmd))
115 goto out;
116 if (!pmd_present(*pmd))
117 goto out;
118
119 ptep = pte_offset_map(pmd, addr);
120
121 /*
122 * Peek to check is_swap_pte() before taking ptlock? No, we
123 * can race mremap's move_ptes(), which skips anon_vma lock.
124 */
125
126 ptl = pte_lockptr(mm, pmd);
127 }
128
129 spin_lock(ptl);
130 pte = *ptep;
131 if (!is_swap_pte(pte))
132 goto unlock;
133
134 entry = pte_to_swp_entry(pte);
135
136 if (!is_migration_entry(entry) ||
137 migration_entry_to_page(entry) != old)
138 goto unlock;
139
140 get_page(new);
141 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
142 if (is_write_migration_entry(entry))
143 pte = pte_mkwrite(pte);
144 #ifdef CONFIG_HUGETLB_PAGE
145 if (PageHuge(new))
146 pte = pte_mkhuge(pte);
147 #endif
148 flush_cache_page(vma, addr, pte_pfn(pte));
149 set_pte_at(mm, addr, ptep, pte);
150
151 if (PageHuge(new)) {
152 if (PageAnon(new))
153 hugepage_add_anon_rmap(new, vma, addr);
154 else
155 page_dup_rmap(new);
156 } else if (PageAnon(new))
157 page_add_anon_rmap(new, vma, addr);
158 else
159 page_add_file_rmap(new);
160
161 /* No need to invalidate - it was non-present before */
162 update_mmu_cache(vma, addr, ptep);
163 unlock:
164 pte_unmap_unlock(ptep, ptl);
165 out:
166 return SWAP_AGAIN;
167 }
168
169 /*
170 * Get rid of all migration entries and replace them by
171 * references to the indicated page.
172 */
173 static void remove_migration_ptes(struct page *old, struct page *new)
174 {
175 rmap_walk(new, remove_migration_pte, old);
176 }
177
178 /*
179 * Something used the pte of a page under migration. We need to
180 * get to the page and wait until migration is finished.
181 * When we return from this function the fault will be retried.
182 */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185 {
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215 out:
216 pte_unmap_unlock(ptep, ptl);
217 }
218
219 /*
220 * Replace the page in the mapping.
221 *
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
226 */
227 static int migrate_page_move_mapping(struct address_space *mapping,
228 struct page *newpage, struct page *page)
229 {
230 int expected_count;
231 void **pslot;
232
233 if (!mapping) {
234 /* Anonymous page without mapping */
235 if (page_count(page) != 1)
236 return -EAGAIN;
237 return 0;
238 }
239
240 spin_lock_irq(&mapping->tree_lock);
241
242 pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 page_index(page));
244
245 expected_count = 2 + page_has_private(page);
246 if (page_count(page) != expected_count ||
247 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
248 spin_unlock_irq(&mapping->tree_lock);
249 return -EAGAIN;
250 }
251
252 if (!page_freeze_refs(page, expected_count)) {
253 spin_unlock_irq(&mapping->tree_lock);
254 return -EAGAIN;
255 }
256
257 /*
258 * Now we know that no one else is looking at the page.
259 */
260 get_page(newpage); /* add cache reference */
261 if (PageSwapCache(page)) {
262 SetPageSwapCache(newpage);
263 set_page_private(newpage, page_private(page));
264 }
265
266 radix_tree_replace_slot(pslot, newpage);
267
268 /*
269 * Drop cache reference from old page by unfreezing
270 * to one less reference.
271 * We know this isn't the last reference.
272 */
273 page_unfreeze_refs(page, expected_count - 1);
274
275 /*
276 * If moved to a different zone then also account
277 * the page for that zone. Other VM counters will be
278 * taken care of when we establish references to the
279 * new page and drop references to the old page.
280 *
281 * Note that anonymous pages are accounted for
282 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 * are mapped to swap space.
284 */
285 __dec_zone_page_state(page, NR_FILE_PAGES);
286 __inc_zone_page_state(newpage, NR_FILE_PAGES);
287 if (!PageSwapCache(page) && PageSwapBacked(page)) {
288 __dec_zone_page_state(page, NR_SHMEM);
289 __inc_zone_page_state(newpage, NR_SHMEM);
290 }
291 spin_unlock_irq(&mapping->tree_lock);
292
293 return 0;
294 }
295
296 /*
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
299 */
300 int migrate_huge_page_move_mapping(struct address_space *mapping,
301 struct page *newpage, struct page *page)
302 {
303 int expected_count;
304 void **pslot;
305
306 if (!mapping) {
307 if (page_count(page) != 1)
308 return -EAGAIN;
309 return 0;
310 }
311
312 spin_lock_irq(&mapping->tree_lock);
313
314 pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 page_index(page));
316
317 expected_count = 2 + page_has_private(page);
318 if (page_count(page) != expected_count ||
319 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
320 spin_unlock_irq(&mapping->tree_lock);
321 return -EAGAIN;
322 }
323
324 if (!page_freeze_refs(page, expected_count)) {
325 spin_unlock_irq(&mapping->tree_lock);
326 return -EAGAIN;
327 }
328
329 get_page(newpage);
330
331 radix_tree_replace_slot(pslot, newpage);
332
333 page_unfreeze_refs(page, expected_count - 1);
334
335 spin_unlock_irq(&mapping->tree_lock);
336 return 0;
337 }
338
339 /*
340 * Copy the page to its new location
341 */
342 void migrate_page_copy(struct page *newpage, struct page *page)
343 {
344 if (PageHuge(page))
345 copy_huge_page(newpage, page);
346 else
347 copy_highpage(newpage, page);
348
349 if (PageError(page))
350 SetPageError(newpage);
351 if (PageReferenced(page))
352 SetPageReferenced(newpage);
353 if (PageUptodate(page))
354 SetPageUptodate(newpage);
355 if (TestClearPageActive(page)) {
356 VM_BUG_ON(PageUnevictable(page));
357 SetPageActive(newpage);
358 } else if (TestClearPageUnevictable(page))
359 SetPageUnevictable(newpage);
360 if (PageChecked(page))
361 SetPageChecked(newpage);
362 if (PageMappedToDisk(page))
363 SetPageMappedToDisk(newpage);
364
365 if (PageDirty(page)) {
366 clear_page_dirty_for_io(page);
367 /*
368 * Want to mark the page and the radix tree as dirty, and
369 * redo the accounting that clear_page_dirty_for_io undid,
370 * but we can't use set_page_dirty because that function
371 * is actually a signal that all of the page has become dirty.
372 * Whereas only part of our page may be dirty.
373 */
374 __set_page_dirty_nobuffers(newpage);
375 }
376
377 mlock_migrate_page(newpage, page);
378 ksm_migrate_page(newpage, page);
379
380 ClearPageSwapCache(page);
381 ClearPagePrivate(page);
382 set_page_private(page, 0);
383 page->mapping = NULL;
384
385 /*
386 * If any waiters have accumulated on the new page then
387 * wake them up.
388 */
389 if (PageWriteback(newpage))
390 end_page_writeback(newpage);
391 }
392
393 /************************************************************
394 * Migration functions
395 ***********************************************************/
396
397 /* Always fail migration. Used for mappings that are not movable */
398 int fail_migrate_page(struct address_space *mapping,
399 struct page *newpage, struct page *page)
400 {
401 return -EIO;
402 }
403 EXPORT_SYMBOL(fail_migrate_page);
404
405 /*
406 * Common logic to directly migrate a single page suitable for
407 * pages that do not use PagePrivate/PagePrivate2.
408 *
409 * Pages are locked upon entry and exit.
410 */
411 int migrate_page(struct address_space *mapping,
412 struct page *newpage, struct page *page)
413 {
414 int rc;
415
416 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
417
418 rc = migrate_page_move_mapping(mapping, newpage, page);
419
420 if (rc)
421 return rc;
422
423 migrate_page_copy(newpage, page);
424 return 0;
425 }
426 EXPORT_SYMBOL(migrate_page);
427
428 #ifdef CONFIG_BLOCK
429 /*
430 * Migration function for pages with buffers. This function can only be used
431 * if the underlying filesystem guarantees that no other references to "page"
432 * exist.
433 */
434 int buffer_migrate_page(struct address_space *mapping,
435 struct page *newpage, struct page *page)
436 {
437 struct buffer_head *bh, *head;
438 int rc;
439
440 if (!page_has_buffers(page))
441 return migrate_page(mapping, newpage, page);
442
443 head = page_buffers(page);
444
445 rc = migrate_page_move_mapping(mapping, newpage, page);
446
447 if (rc)
448 return rc;
449
450 bh = head;
451 do {
452 get_bh(bh);
453 lock_buffer(bh);
454 bh = bh->b_this_page;
455
456 } while (bh != head);
457
458 ClearPagePrivate(page);
459 set_page_private(newpage, page_private(page));
460 set_page_private(page, 0);
461 put_page(page);
462 get_page(newpage);
463
464 bh = head;
465 do {
466 set_bh_page(bh, newpage, bh_offset(bh));
467 bh = bh->b_this_page;
468
469 } while (bh != head);
470
471 SetPagePrivate(newpage);
472
473 migrate_page_copy(newpage, page);
474
475 bh = head;
476 do {
477 unlock_buffer(bh);
478 put_bh(bh);
479 bh = bh->b_this_page;
480
481 } while (bh != head);
482
483 return 0;
484 }
485 EXPORT_SYMBOL(buffer_migrate_page);
486 #endif
487
488 /*
489 * Writeback a page to clean the dirty state
490 */
491 static int writeout(struct address_space *mapping, struct page *page)
492 {
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = 1,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .for_reclaim = 1
499 };
500 int rc;
501
502 if (!mapping->a_ops->writepage)
503 /* No write method for the address space */
504 return -EINVAL;
505
506 if (!clear_page_dirty_for_io(page))
507 /* Someone else already triggered a write */
508 return -EAGAIN;
509
510 /*
511 * A dirty page may imply that the underlying filesystem has
512 * the page on some queue. So the page must be clean for
513 * migration. Writeout may mean we loose the lock and the
514 * page state is no longer what we checked for earlier.
515 * At this point we know that the migration attempt cannot
516 * be successful.
517 */
518 remove_migration_ptes(page, page);
519
520 rc = mapping->a_ops->writepage(page, &wbc);
521
522 if (rc != AOP_WRITEPAGE_ACTIVATE)
523 /* unlocked. Relock */
524 lock_page(page);
525
526 return (rc < 0) ? -EIO : -EAGAIN;
527 }
528
529 /*
530 * Default handling if a filesystem does not provide a migration function.
531 */
532 static int fallback_migrate_page(struct address_space *mapping,
533 struct page *newpage, struct page *page)
534 {
535 if (PageDirty(page))
536 return writeout(mapping, page);
537
538 /*
539 * Buffers may be managed in a filesystem specific way.
540 * We must have no buffers or drop them.
541 */
542 if (page_has_private(page) &&
543 !try_to_release_page(page, GFP_KERNEL))
544 return -EAGAIN;
545
546 return migrate_page(mapping, newpage, page);
547 }
548
549 /*
550 * Move a page to a newly allocated page
551 * The page is locked and all ptes have been successfully removed.
552 *
553 * The new page will have replaced the old page if this function
554 * is successful.
555 *
556 * Return value:
557 * < 0 - error code
558 * == 0 - success
559 */
560 static int move_to_new_page(struct page *newpage, struct page *page,
561 int remap_swapcache, bool sync)
562 {
563 struct address_space *mapping;
564 int rc;
565
566 /*
567 * Block others from accessing the page when we get around to
568 * establishing additional references. We are the only one
569 * holding a reference to the new page at this point.
570 */
571 if (!trylock_page(newpage))
572 BUG();
573
574 /* Prepare mapping for the new page.*/
575 newpage->index = page->index;
576 newpage->mapping = page->mapping;
577 if (PageSwapBacked(page))
578 SetPageSwapBacked(newpage);
579
580 mapping = page_mapping(page);
581 if (!mapping)
582 rc = migrate_page(mapping, newpage, page);
583 else {
584 /*
585 * Do not writeback pages if !sync and migratepage is
586 * not pointing to migrate_page() which is nonblocking
587 * (swapcache/tmpfs uses migratepage = migrate_page).
588 */
589 if (PageDirty(page) && !sync &&
590 mapping->a_ops->migratepage != migrate_page)
591 rc = -EBUSY;
592 else if (mapping->a_ops->migratepage)
593 /*
594 * Most pages have a mapping and most filesystems
595 * should provide a migration function. Anonymous
596 * pages are part of swap space which also has its
597 * own migration function. This is the most common
598 * path for page migration.
599 */
600 rc = mapping->a_ops->migratepage(mapping,
601 newpage, page);
602 else
603 rc = fallback_migrate_page(mapping, newpage, page);
604 }
605
606 if (rc) {
607 newpage->mapping = NULL;
608 } else {
609 if (remap_swapcache)
610 remove_migration_ptes(page, newpage);
611 }
612
613 unlock_page(newpage);
614
615 return rc;
616 }
617
618 static int __unmap_and_move(struct page *page, struct page *newpage,
619 int force, bool offlining, bool sync)
620 {
621 int rc = -EAGAIN;
622 int remap_swapcache = 1;
623 int charge = 0;
624 struct mem_cgroup *mem;
625 struct anon_vma *anon_vma = NULL;
626
627 if (!trylock_page(page)) {
628 if (!force || !sync)
629 goto out;
630
631 /*
632 * It's not safe for direct compaction to call lock_page.
633 * For example, during page readahead pages are added locked
634 * to the LRU. Later, when the IO completes the pages are
635 * marked uptodate and unlocked. However, the queueing
636 * could be merging multiple pages for one bio (e.g.
637 * mpage_readpages). If an allocation happens for the
638 * second or third page, the process can end up locking
639 * the same page twice and deadlocking. Rather than
640 * trying to be clever about what pages can be locked,
641 * avoid the use of lock_page for direct compaction
642 * altogether.
643 */
644 if (current->flags & PF_MEMALLOC)
645 goto out;
646
647 lock_page(page);
648 }
649
650 /*
651 * Only memory hotplug's offline_pages() caller has locked out KSM,
652 * and can safely migrate a KSM page. The other cases have skipped
653 * PageKsm along with PageReserved - but it is only now when we have
654 * the page lock that we can be certain it will not go KSM beneath us
655 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
656 * its pagecount raised, but only here do we take the page lock which
657 * serializes that).
658 */
659 if (PageKsm(page) && !offlining) {
660 rc = -EBUSY;
661 goto unlock;
662 }
663
664 /* charge against new page */
665 charge = mem_cgroup_prepare_migration(page, newpage, &mem, GFP_KERNEL);
666 if (charge == -ENOMEM) {
667 rc = -ENOMEM;
668 goto unlock;
669 }
670 BUG_ON(charge);
671
672 if (PageWriteback(page)) {
673 /*
674 * For !sync, there is no point retrying as the retry loop
675 * is expected to be too short for PageWriteback to be cleared
676 */
677 if (!sync) {
678 rc = -EBUSY;
679 goto uncharge;
680 }
681 if (!force)
682 goto uncharge;
683 wait_on_page_writeback(page);
684 }
685 /*
686 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
687 * we cannot notice that anon_vma is freed while we migrates a page.
688 * This get_anon_vma() delays freeing anon_vma pointer until the end
689 * of migration. File cache pages are no problem because of page_lock()
690 * File Caches may use write_page() or lock_page() in migration, then,
691 * just care Anon page here.
692 */
693 if (PageAnon(page)) {
694 /*
695 * Only page_lock_anon_vma() understands the subtleties of
696 * getting a hold on an anon_vma from outside one of its mms.
697 */
698 anon_vma = page_get_anon_vma(page);
699 if (anon_vma) {
700 /*
701 * Anon page
702 */
703 } else if (PageSwapCache(page)) {
704 /*
705 * We cannot be sure that the anon_vma of an unmapped
706 * swapcache page is safe to use because we don't
707 * know in advance if the VMA that this page belonged
708 * to still exists. If the VMA and others sharing the
709 * data have been freed, then the anon_vma could
710 * already be invalid.
711 *
712 * To avoid this possibility, swapcache pages get
713 * migrated but are not remapped when migration
714 * completes
715 */
716 remap_swapcache = 0;
717 } else {
718 goto uncharge;
719 }
720 }
721
722 /*
723 * Corner case handling:
724 * 1. When a new swap-cache page is read into, it is added to the LRU
725 * and treated as swapcache but it has no rmap yet.
726 * Calling try_to_unmap() against a page->mapping==NULL page will
727 * trigger a BUG. So handle it here.
728 * 2. An orphaned page (see truncate_complete_page) might have
729 * fs-private metadata. The page can be picked up due to memory
730 * offlining. Everywhere else except page reclaim, the page is
731 * invisible to the vm, so the page can not be migrated. So try to
732 * free the metadata, so the page can be freed.
733 */
734 if (!page->mapping) {
735 VM_BUG_ON(PageAnon(page));
736 if (page_has_private(page)) {
737 try_to_free_buffers(page);
738 goto uncharge;
739 }
740 goto skip_unmap;
741 }
742
743 /* Establish migration ptes or remove ptes */
744 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
745
746 skip_unmap:
747 if (!page_mapped(page))
748 rc = move_to_new_page(newpage, page, remap_swapcache, sync);
749
750 if (rc && remap_swapcache)
751 remove_migration_ptes(page, page);
752
753 /* Drop an anon_vma reference if we took one */
754 if (anon_vma)
755 put_anon_vma(anon_vma);
756
757 uncharge:
758 if (!charge)
759 mem_cgroup_end_migration(mem, page, newpage, rc == 0);
760 unlock:
761 unlock_page(page);
762 out:
763 return rc;
764 }
765
766 /*
767 * Obtain the lock on page, remove all ptes and migrate the page
768 * to the newly allocated page in newpage.
769 */
770 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
771 struct page *page, int force, bool offlining, bool sync)
772 {
773 int rc = 0;
774 int *result = NULL;
775 struct page *newpage = get_new_page(page, private, &result);
776
777 if (!newpage)
778 return -ENOMEM;
779
780 mem_cgroup_reset_owner(newpage);
781
782 if (page_count(page) == 1) {
783 /* page was freed from under us. So we are done. */
784 goto out;
785 }
786
787 if (unlikely(PageTransHuge(page)))
788 if (unlikely(split_huge_page(page)))
789 goto out;
790
791 rc = __unmap_and_move(page, newpage, force, offlining, sync);
792 out:
793 if (rc != -EAGAIN) {
794 /*
795 * A page that has been migrated has all references
796 * removed and will be freed. A page that has not been
797 * migrated will have kepts its references and be
798 * restored.
799 */
800 list_del(&page->lru);
801 dec_zone_page_state(page, NR_ISOLATED_ANON +
802 page_is_file_cache(page));
803 putback_lru_page(page);
804 }
805 /*
806 * Move the new page to the LRU. If migration was not successful
807 * then this will free the page.
808 */
809 putback_lru_page(newpage);
810 if (result) {
811 if (rc)
812 *result = rc;
813 else
814 *result = page_to_nid(newpage);
815 }
816 return rc;
817 }
818
819 /*
820 * Counterpart of unmap_and_move_page() for hugepage migration.
821 *
822 * This function doesn't wait the completion of hugepage I/O
823 * because there is no race between I/O and migration for hugepage.
824 * Note that currently hugepage I/O occurs only in direct I/O
825 * where no lock is held and PG_writeback is irrelevant,
826 * and writeback status of all subpages are counted in the reference
827 * count of the head page (i.e. if all subpages of a 2MB hugepage are
828 * under direct I/O, the reference of the head page is 512 and a bit more.)
829 * This means that when we try to migrate hugepage whose subpages are
830 * doing direct I/O, some references remain after try_to_unmap() and
831 * hugepage migration fails without data corruption.
832 *
833 * There is also no race when direct I/O is issued on the page under migration,
834 * because then pte is replaced with migration swap entry and direct I/O code
835 * will wait in the page fault for migration to complete.
836 */
837 static int unmap_and_move_huge_page(new_page_t get_new_page,
838 unsigned long private, struct page *hpage,
839 int force, bool offlining, bool sync)
840 {
841 int rc = 0;
842 int *result = NULL;
843 struct page *new_hpage = get_new_page(hpage, private, &result);
844 struct anon_vma *anon_vma = NULL;
845
846 if (!new_hpage)
847 return -ENOMEM;
848
849 rc = -EAGAIN;
850
851 if (!trylock_page(hpage)) {
852 if (!force || !sync)
853 goto out;
854 lock_page(hpage);
855 }
856
857 if (PageAnon(hpage))
858 anon_vma = page_get_anon_vma(hpage);
859
860 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
861
862 if (!page_mapped(hpage))
863 rc = move_to_new_page(new_hpage, hpage, 1, sync);
864
865 if (rc)
866 remove_migration_ptes(hpage, hpage);
867
868 if (anon_vma)
869 put_anon_vma(anon_vma);
870 unlock_page(hpage);
871
872 out:
873 if (rc != -EAGAIN) {
874 list_del(&hpage->lru);
875 put_page(hpage);
876 }
877
878 put_page(new_hpage);
879
880 if (result) {
881 if (rc)
882 *result = rc;
883 else
884 *result = page_to_nid(new_hpage);
885 }
886 return rc;
887 }
888
889 /*
890 * migrate_pages
891 *
892 * The function takes one list of pages to migrate and a function
893 * that determines from the page to be migrated and the private data
894 * the target of the move and allocates the page.
895 *
896 * The function returns after 10 attempts or if no pages
897 * are movable anymore because to has become empty
898 * or no retryable pages exist anymore.
899 * Caller should call putback_lru_pages to return pages to the LRU
900 * or free list only if ret != 0.
901 *
902 * Return: Number of pages not migrated or error code.
903 */
904 int migrate_pages(struct list_head *from,
905 new_page_t get_new_page, unsigned long private, bool offlining,
906 bool sync)
907 {
908 int retry = 1;
909 int nr_failed = 0;
910 int pass = 0;
911 struct page *page;
912 struct page *page2;
913 int swapwrite = current->flags & PF_SWAPWRITE;
914 int rc;
915
916 if (!swapwrite)
917 current->flags |= PF_SWAPWRITE;
918
919 for(pass = 0; pass < 10 && retry; pass++) {
920 retry = 0;
921
922 list_for_each_entry_safe(page, page2, from, lru) {
923 cond_resched();
924
925 rc = unmap_and_move(get_new_page, private,
926 page, pass > 2, offlining,
927 sync);
928
929 switch(rc) {
930 case -ENOMEM:
931 goto out;
932 case -EAGAIN:
933 retry++;
934 break;
935 case 0:
936 break;
937 default:
938 /* Permanent failure */
939 nr_failed++;
940 break;
941 }
942 }
943 }
944 rc = 0;
945 out:
946 if (!swapwrite)
947 current->flags &= ~PF_SWAPWRITE;
948
949 if (rc)
950 return rc;
951
952 return nr_failed + retry;
953 }
954
955 int migrate_huge_pages(struct list_head *from,
956 new_page_t get_new_page, unsigned long private, bool offlining,
957 bool sync)
958 {
959 int retry = 1;
960 int nr_failed = 0;
961 int pass = 0;
962 struct page *page;
963 struct page *page2;
964 int rc;
965
966 for (pass = 0; pass < 10 && retry; pass++) {
967 retry = 0;
968
969 list_for_each_entry_safe(page, page2, from, lru) {
970 cond_resched();
971
972 rc = unmap_and_move_huge_page(get_new_page,
973 private, page, pass > 2, offlining,
974 sync);
975
976 switch(rc) {
977 case -ENOMEM:
978 goto out;
979 case -EAGAIN:
980 retry++;
981 break;
982 case 0:
983 break;
984 default:
985 /* Permanent failure */
986 nr_failed++;
987 break;
988 }
989 }
990 }
991 rc = 0;
992 out:
993 if (rc)
994 return rc;
995
996 return nr_failed + retry;
997 }
998
999 #ifdef CONFIG_NUMA
1000 /*
1001 * Move a list of individual pages
1002 */
1003 struct page_to_node {
1004 unsigned long addr;
1005 struct page *page;
1006 int node;
1007 int status;
1008 };
1009
1010 static struct page *new_page_node(struct page *p, unsigned long private,
1011 int **result)
1012 {
1013 struct page_to_node *pm = (struct page_to_node *)private;
1014
1015 while (pm->node != MAX_NUMNODES && pm->page != p)
1016 pm++;
1017
1018 if (pm->node == MAX_NUMNODES)
1019 return NULL;
1020
1021 *result = &pm->status;
1022
1023 return alloc_pages_exact_node(pm->node,
1024 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1025 }
1026
1027 /*
1028 * Move a set of pages as indicated in the pm array. The addr
1029 * field must be set to the virtual address of the page to be moved
1030 * and the node number must contain a valid target node.
1031 * The pm array ends with node = MAX_NUMNODES.
1032 */
1033 static int do_move_page_to_node_array(struct mm_struct *mm,
1034 struct page_to_node *pm,
1035 int migrate_all)
1036 {
1037 int err;
1038 struct page_to_node *pp;
1039 LIST_HEAD(pagelist);
1040
1041 down_read(&mm->mmap_sem);
1042
1043 /*
1044 * Build a list of pages to migrate
1045 */
1046 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1047 struct vm_area_struct *vma;
1048 struct page *page;
1049
1050 err = -EFAULT;
1051 vma = find_vma(mm, pp->addr);
1052 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1053 goto set_status;
1054
1055 page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
1056
1057 err = PTR_ERR(page);
1058 if (IS_ERR(page))
1059 goto set_status;
1060
1061 err = -ENOENT;
1062 if (!page)
1063 goto set_status;
1064
1065 /* Use PageReserved to check for zero page */
1066 if (PageReserved(page) || PageKsm(page))
1067 goto put_and_set;
1068
1069 pp->page = page;
1070 err = page_to_nid(page);
1071
1072 if (err == pp->node)
1073 /*
1074 * Node already in the right place
1075 */
1076 goto put_and_set;
1077
1078 err = -EACCES;
1079 if (page_mapcount(page) > 1 &&
1080 !migrate_all)
1081 goto put_and_set;
1082
1083 err = isolate_lru_page(page);
1084 if (!err) {
1085 list_add_tail(&page->lru, &pagelist);
1086 inc_zone_page_state(page, NR_ISOLATED_ANON +
1087 page_is_file_cache(page));
1088 }
1089 put_and_set:
1090 /*
1091 * Either remove the duplicate refcount from
1092 * isolate_lru_page() or drop the page ref if it was
1093 * not isolated.
1094 */
1095 put_page(page);
1096 set_status:
1097 pp->status = err;
1098 }
1099
1100 err = 0;
1101 if (!list_empty(&pagelist)) {
1102 err = migrate_pages(&pagelist, new_page_node,
1103 (unsigned long)pm, 0, true);
1104 if (err)
1105 putback_lru_pages(&pagelist);
1106 }
1107
1108 up_read(&mm->mmap_sem);
1109 return err;
1110 }
1111
1112 /*
1113 * Migrate an array of page address onto an array of nodes and fill
1114 * the corresponding array of status.
1115 */
1116 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1117 unsigned long nr_pages,
1118 const void __user * __user *pages,
1119 const int __user *nodes,
1120 int __user *status, int flags)
1121 {
1122 struct page_to_node *pm;
1123 nodemask_t task_nodes;
1124 unsigned long chunk_nr_pages;
1125 unsigned long chunk_start;
1126 int err;
1127
1128 task_nodes = cpuset_mems_allowed(task);
1129
1130 err = -ENOMEM;
1131 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1132 if (!pm)
1133 goto out;
1134
1135 migrate_prep();
1136
1137 /*
1138 * Store a chunk of page_to_node array in a page,
1139 * but keep the last one as a marker
1140 */
1141 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1142
1143 for (chunk_start = 0;
1144 chunk_start < nr_pages;
1145 chunk_start += chunk_nr_pages) {
1146 int j;
1147
1148 if (chunk_start + chunk_nr_pages > nr_pages)
1149 chunk_nr_pages = nr_pages - chunk_start;
1150
1151 /* fill the chunk pm with addrs and nodes from user-space */
1152 for (j = 0; j < chunk_nr_pages; j++) {
1153 const void __user *p;
1154 int node;
1155
1156 err = -EFAULT;
1157 if (get_user(p, pages + j + chunk_start))
1158 goto out_pm;
1159 pm[j].addr = (unsigned long) p;
1160
1161 if (get_user(node, nodes + j + chunk_start))
1162 goto out_pm;
1163
1164 err = -ENODEV;
1165 if (node < 0 || node >= MAX_NUMNODES)
1166 goto out_pm;
1167
1168 if (!node_state(node, N_HIGH_MEMORY))
1169 goto out_pm;
1170
1171 err = -EACCES;
1172 if (!node_isset(node, task_nodes))
1173 goto out_pm;
1174
1175 pm[j].node = node;
1176 }
1177
1178 /* End marker for this chunk */
1179 pm[chunk_nr_pages].node = MAX_NUMNODES;
1180
1181 /* Migrate this chunk */
1182 err = do_move_page_to_node_array(mm, pm,
1183 flags & MPOL_MF_MOVE_ALL);
1184 if (err < 0)
1185 goto out_pm;
1186
1187 /* Return status information */
1188 for (j = 0; j < chunk_nr_pages; j++)
1189 if (put_user(pm[j].status, status + j + chunk_start)) {
1190 err = -EFAULT;
1191 goto out_pm;
1192 }
1193 }
1194 err = 0;
1195
1196 out_pm:
1197 free_page((unsigned long)pm);
1198 out:
1199 return err;
1200 }
1201
1202 /*
1203 * Determine the nodes of an array of pages and store it in an array of status.
1204 */
1205 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1206 const void __user **pages, int *status)
1207 {
1208 unsigned long i;
1209
1210 down_read(&mm->mmap_sem);
1211
1212 for (i = 0; i < nr_pages; i++) {
1213 unsigned long addr = (unsigned long)(*pages);
1214 struct vm_area_struct *vma;
1215 struct page *page;
1216 int err = -EFAULT;
1217
1218 vma = find_vma(mm, addr);
1219 if (!vma || addr < vma->vm_start)
1220 goto set_status;
1221
1222 page = follow_page(vma, addr, 0);
1223
1224 err = PTR_ERR(page);
1225 if (IS_ERR(page))
1226 goto set_status;
1227
1228 err = -ENOENT;
1229 /* Use PageReserved to check for zero page */
1230 if (!page || PageReserved(page) || PageKsm(page))
1231 goto set_status;
1232
1233 err = page_to_nid(page);
1234 set_status:
1235 *status = err;
1236
1237 pages++;
1238 status++;
1239 }
1240
1241 up_read(&mm->mmap_sem);
1242 }
1243
1244 /*
1245 * Determine the nodes of a user array of pages and store it in
1246 * a user array of status.
1247 */
1248 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1249 const void __user * __user *pages,
1250 int __user *status)
1251 {
1252 #define DO_PAGES_STAT_CHUNK_NR 16
1253 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1254 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1255
1256 while (nr_pages) {
1257 unsigned long chunk_nr;
1258
1259 chunk_nr = nr_pages;
1260 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1261 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1262
1263 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1264 break;
1265
1266 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1267
1268 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1269 break;
1270
1271 pages += chunk_nr;
1272 status += chunk_nr;
1273 nr_pages -= chunk_nr;
1274 }
1275 return nr_pages ? -EFAULT : 0;
1276 }
1277
1278 /*
1279 * Move a list of pages in the address space of the currently executing
1280 * process.
1281 */
1282 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1283 const void __user * __user *, pages,
1284 const int __user *, nodes,
1285 int __user *, status, int, flags)
1286 {
1287 const struct cred *cred = current_cred(), *tcred;
1288 struct task_struct *task;
1289 struct mm_struct *mm;
1290 int err;
1291
1292 /* Check flags */
1293 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1294 return -EINVAL;
1295
1296 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1297 return -EPERM;
1298
1299 /* Find the mm_struct */
1300 rcu_read_lock();
1301 task = pid ? find_task_by_vpid(pid) : current;
1302 if (!task) {
1303 rcu_read_unlock();
1304 return -ESRCH;
1305 }
1306 mm = get_task_mm(task);
1307 rcu_read_unlock();
1308
1309 if (!mm)
1310 return -EINVAL;
1311
1312 /*
1313 * Check if this process has the right to modify the specified
1314 * process. The right exists if the process has administrative
1315 * capabilities, superuser privileges or the same
1316 * userid as the target process.
1317 */
1318 rcu_read_lock();
1319 tcred = __task_cred(task);
1320 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1321 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1322 !capable(CAP_SYS_NICE)) {
1323 rcu_read_unlock();
1324 err = -EPERM;
1325 goto out;
1326 }
1327 rcu_read_unlock();
1328
1329 err = security_task_movememory(task);
1330 if (err)
1331 goto out;
1332
1333 if (nodes) {
1334 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1335 flags);
1336 } else {
1337 err = do_pages_stat(mm, nr_pages, pages, status);
1338 }
1339
1340 out:
1341 mmput(mm);
1342 return err;
1343 }
1344
1345 /*
1346 * Call migration functions in the vma_ops that may prepare
1347 * memory in a vm for migration. migration functions may perform
1348 * the migration for vmas that do not have an underlying page struct.
1349 */
1350 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1351 const nodemask_t *from, unsigned long flags)
1352 {
1353 struct vm_area_struct *vma;
1354 int err = 0;
1355
1356 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1357 if (vma->vm_ops && vma->vm_ops->migrate) {
1358 err = vma->vm_ops->migrate(vma, to, from, flags);
1359 if (err)
1360 break;
1361 }
1362 }
1363 return err;
1364 }
1365 #endif
This page took 0.060608 seconds and 5 git commands to generate.