hugetlb: hugepage migration core
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37
38 #include "internal.h"
39
40 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41
42 /*
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
46 */
47 int migrate_prep(void)
48 {
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58 }
59
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 lru_add_drain();
64
65 return 0;
66 }
67
68 /*
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
71 */
72 void putback_lru_pages(struct list_head *l)
73 {
74 struct page *page;
75 struct page *page2;
76
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
82 }
83 }
84
85 /*
86 * Restore a potential migration pte to a working pte entry
87 */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
90 {
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
108
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
112
113 pmd = pmd_offset(pud, addr);
114 if (!pmd_present(*pmd))
115 goto out;
116
117 ptep = pte_offset_map(pmd, addr);
118
119 if (!is_swap_pte(*ptep)) {
120 pte_unmap(ptep);
121 goto out;
122 }
123
124 ptl = pte_lockptr(mm, pmd);
125 }
126
127 spin_lock(ptl);
128 pte = *ptep;
129 if (!is_swap_pte(pte))
130 goto unlock;
131
132 entry = pte_to_swp_entry(pte);
133
134 if (!is_migration_entry(entry) ||
135 migration_entry_to_page(entry) != old)
136 goto unlock;
137
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
142 if (PageHuge(new))
143 pte = pte_mkhuge(pte);
144 flush_cache_page(vma, addr, pte_pfn(pte));
145 set_pte_at(mm, addr, ptep, pte);
146
147 if (PageHuge(new)) {
148 if (PageAnon(new))
149 hugepage_add_anon_rmap(new, vma, addr);
150 else
151 page_dup_rmap(new);
152 } else if (PageAnon(new))
153 page_add_anon_rmap(new, vma, addr);
154 else
155 page_add_file_rmap(new);
156
157 /* No need to invalidate - it was non-present before */
158 update_mmu_cache(vma, addr, ptep);
159 unlock:
160 pte_unmap_unlock(ptep, ptl);
161 out:
162 return SWAP_AGAIN;
163 }
164
165 /*
166 * Get rid of all migration entries and replace them by
167 * references to the indicated page.
168 */
169 static void remove_migration_ptes(struct page *old, struct page *new)
170 {
171 rmap_walk(new, remove_migration_pte, old);
172 }
173
174 /*
175 * Something used the pte of a page under migration. We need to
176 * get to the page and wait until migration is finished.
177 * When we return from this function the fault will be retried.
178 *
179 * This function is called from do_swap_page().
180 */
181 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
182 unsigned long address)
183 {
184 pte_t *ptep, pte;
185 spinlock_t *ptl;
186 swp_entry_t entry;
187 struct page *page;
188
189 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
190 pte = *ptep;
191 if (!is_swap_pte(pte))
192 goto out;
193
194 entry = pte_to_swp_entry(pte);
195 if (!is_migration_entry(entry))
196 goto out;
197
198 page = migration_entry_to_page(entry);
199
200 /*
201 * Once radix-tree replacement of page migration started, page_count
202 * *must* be zero. And, we don't want to call wait_on_page_locked()
203 * against a page without get_page().
204 * So, we use get_page_unless_zero(), here. Even failed, page fault
205 * will occur again.
206 */
207 if (!get_page_unless_zero(page))
208 goto out;
209 pte_unmap_unlock(ptep, ptl);
210 wait_on_page_locked(page);
211 put_page(page);
212 return;
213 out:
214 pte_unmap_unlock(ptep, ptl);
215 }
216
217 /*
218 * Replace the page in the mapping.
219 *
220 * The number of remaining references must be:
221 * 1 for anonymous pages without a mapping
222 * 2 for pages with a mapping
223 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
224 */
225 static int migrate_page_move_mapping(struct address_space *mapping,
226 struct page *newpage, struct page *page)
227 {
228 int expected_count;
229 void **pslot;
230
231 if (!mapping) {
232 /* Anonymous page without mapping */
233 if (page_count(page) != 1)
234 return -EAGAIN;
235 return 0;
236 }
237
238 spin_lock_irq(&mapping->tree_lock);
239
240 pslot = radix_tree_lookup_slot(&mapping->page_tree,
241 page_index(page));
242
243 expected_count = 2 + page_has_private(page);
244 if (page_count(page) != expected_count ||
245 (struct page *)radix_tree_deref_slot(pslot) != page) {
246 spin_unlock_irq(&mapping->tree_lock);
247 return -EAGAIN;
248 }
249
250 if (!page_freeze_refs(page, expected_count)) {
251 spin_unlock_irq(&mapping->tree_lock);
252 return -EAGAIN;
253 }
254
255 /*
256 * Now we know that no one else is looking at the page.
257 */
258 get_page(newpage); /* add cache reference */
259 if (PageSwapCache(page)) {
260 SetPageSwapCache(newpage);
261 set_page_private(newpage, page_private(page));
262 }
263
264 radix_tree_replace_slot(pslot, newpage);
265
266 page_unfreeze_refs(page, expected_count);
267 /*
268 * Drop cache reference from old page.
269 * We know this isn't the last reference.
270 */
271 __put_page(page);
272
273 /*
274 * If moved to a different zone then also account
275 * the page for that zone. Other VM counters will be
276 * taken care of when we establish references to the
277 * new page and drop references to the old page.
278 *
279 * Note that anonymous pages are accounted for
280 * via NR_FILE_PAGES and NR_ANON_PAGES if they
281 * are mapped to swap space.
282 */
283 __dec_zone_page_state(page, NR_FILE_PAGES);
284 __inc_zone_page_state(newpage, NR_FILE_PAGES);
285 if (PageSwapBacked(page)) {
286 __dec_zone_page_state(page, NR_SHMEM);
287 __inc_zone_page_state(newpage, NR_SHMEM);
288 }
289 spin_unlock_irq(&mapping->tree_lock);
290
291 return 0;
292 }
293
294 /*
295 * The expected number of remaining references is the same as that
296 * of migrate_page_move_mapping().
297 */
298 int migrate_huge_page_move_mapping(struct address_space *mapping,
299 struct page *newpage, struct page *page)
300 {
301 int expected_count;
302 void **pslot;
303
304 if (!mapping) {
305 if (page_count(page) != 1)
306 return -EAGAIN;
307 return 0;
308 }
309
310 spin_lock_irq(&mapping->tree_lock);
311
312 pslot = radix_tree_lookup_slot(&mapping->page_tree,
313 page_index(page));
314
315 expected_count = 2 + page_has_private(page);
316 if (page_count(page) != expected_count ||
317 (struct page *)radix_tree_deref_slot(pslot) != page) {
318 spin_unlock_irq(&mapping->tree_lock);
319 return -EAGAIN;
320 }
321
322 if (!page_freeze_refs(page, expected_count)) {
323 spin_unlock_irq(&mapping->tree_lock);
324 return -EAGAIN;
325 }
326
327 get_page(newpage);
328
329 radix_tree_replace_slot(pslot, newpage);
330
331 page_unfreeze_refs(page, expected_count);
332
333 __put_page(page);
334
335 spin_unlock_irq(&mapping->tree_lock);
336 return 0;
337 }
338
339 /*
340 * Copy the page to its new location
341 */
342 void migrate_page_copy(struct page *newpage, struct page *page)
343 {
344 if (PageHuge(page))
345 copy_huge_page(newpage, page);
346 else
347 copy_highpage(newpage, page);
348
349 if (PageError(page))
350 SetPageError(newpage);
351 if (PageReferenced(page))
352 SetPageReferenced(newpage);
353 if (PageUptodate(page))
354 SetPageUptodate(newpage);
355 if (TestClearPageActive(page)) {
356 VM_BUG_ON(PageUnevictable(page));
357 SetPageActive(newpage);
358 } else if (TestClearPageUnevictable(page))
359 SetPageUnevictable(newpage);
360 if (PageChecked(page))
361 SetPageChecked(newpage);
362 if (PageMappedToDisk(page))
363 SetPageMappedToDisk(newpage);
364
365 if (PageDirty(page)) {
366 clear_page_dirty_for_io(page);
367 /*
368 * Want to mark the page and the radix tree as dirty, and
369 * redo the accounting that clear_page_dirty_for_io undid,
370 * but we can't use set_page_dirty because that function
371 * is actually a signal that all of the page has become dirty.
372 * Wheras only part of our page may be dirty.
373 */
374 __set_page_dirty_nobuffers(newpage);
375 }
376
377 mlock_migrate_page(newpage, page);
378 ksm_migrate_page(newpage, page);
379
380 ClearPageSwapCache(page);
381 ClearPagePrivate(page);
382 set_page_private(page, 0);
383 page->mapping = NULL;
384
385 /*
386 * If any waiters have accumulated on the new page then
387 * wake them up.
388 */
389 if (PageWriteback(newpage))
390 end_page_writeback(newpage);
391 }
392
393 /************************************************************
394 * Migration functions
395 ***********************************************************/
396
397 /* Always fail migration. Used for mappings that are not movable */
398 int fail_migrate_page(struct address_space *mapping,
399 struct page *newpage, struct page *page)
400 {
401 return -EIO;
402 }
403 EXPORT_SYMBOL(fail_migrate_page);
404
405 /*
406 * Common logic to directly migrate a single page suitable for
407 * pages that do not use PagePrivate/PagePrivate2.
408 *
409 * Pages are locked upon entry and exit.
410 */
411 int migrate_page(struct address_space *mapping,
412 struct page *newpage, struct page *page)
413 {
414 int rc;
415
416 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
417
418 rc = migrate_page_move_mapping(mapping, newpage, page);
419
420 if (rc)
421 return rc;
422
423 migrate_page_copy(newpage, page);
424 return 0;
425 }
426 EXPORT_SYMBOL(migrate_page);
427
428 #ifdef CONFIG_BLOCK
429 /*
430 * Migration function for pages with buffers. This function can only be used
431 * if the underlying filesystem guarantees that no other references to "page"
432 * exist.
433 */
434 int buffer_migrate_page(struct address_space *mapping,
435 struct page *newpage, struct page *page)
436 {
437 struct buffer_head *bh, *head;
438 int rc;
439
440 if (!page_has_buffers(page))
441 return migrate_page(mapping, newpage, page);
442
443 head = page_buffers(page);
444
445 rc = migrate_page_move_mapping(mapping, newpage, page);
446
447 if (rc)
448 return rc;
449
450 bh = head;
451 do {
452 get_bh(bh);
453 lock_buffer(bh);
454 bh = bh->b_this_page;
455
456 } while (bh != head);
457
458 ClearPagePrivate(page);
459 set_page_private(newpage, page_private(page));
460 set_page_private(page, 0);
461 put_page(page);
462 get_page(newpage);
463
464 bh = head;
465 do {
466 set_bh_page(bh, newpage, bh_offset(bh));
467 bh = bh->b_this_page;
468
469 } while (bh != head);
470
471 SetPagePrivate(newpage);
472
473 migrate_page_copy(newpage, page);
474
475 bh = head;
476 do {
477 unlock_buffer(bh);
478 put_bh(bh);
479 bh = bh->b_this_page;
480
481 } while (bh != head);
482
483 return 0;
484 }
485 EXPORT_SYMBOL(buffer_migrate_page);
486 #endif
487
488 /*
489 * Writeback a page to clean the dirty state
490 */
491 static int writeout(struct address_space *mapping, struct page *page)
492 {
493 struct writeback_control wbc = {
494 .sync_mode = WB_SYNC_NONE,
495 .nr_to_write = 1,
496 .range_start = 0,
497 .range_end = LLONG_MAX,
498 .nonblocking = 1,
499 .for_reclaim = 1
500 };
501 int rc;
502
503 if (!mapping->a_ops->writepage)
504 /* No write method for the address space */
505 return -EINVAL;
506
507 if (!clear_page_dirty_for_io(page))
508 /* Someone else already triggered a write */
509 return -EAGAIN;
510
511 /*
512 * A dirty page may imply that the underlying filesystem has
513 * the page on some queue. So the page must be clean for
514 * migration. Writeout may mean we loose the lock and the
515 * page state is no longer what we checked for earlier.
516 * At this point we know that the migration attempt cannot
517 * be successful.
518 */
519 remove_migration_ptes(page, page);
520
521 rc = mapping->a_ops->writepage(page, &wbc);
522
523 if (rc != AOP_WRITEPAGE_ACTIVATE)
524 /* unlocked. Relock */
525 lock_page(page);
526
527 return (rc < 0) ? -EIO : -EAGAIN;
528 }
529
530 /*
531 * Default handling if a filesystem does not provide a migration function.
532 */
533 static int fallback_migrate_page(struct address_space *mapping,
534 struct page *newpage, struct page *page)
535 {
536 if (PageDirty(page))
537 return writeout(mapping, page);
538
539 /*
540 * Buffers may be managed in a filesystem specific way.
541 * We must have no buffers or drop them.
542 */
543 if (page_has_private(page) &&
544 !try_to_release_page(page, GFP_KERNEL))
545 return -EAGAIN;
546
547 return migrate_page(mapping, newpage, page);
548 }
549
550 /*
551 * Move a page to a newly allocated page
552 * The page is locked and all ptes have been successfully removed.
553 *
554 * The new page will have replaced the old page if this function
555 * is successful.
556 *
557 * Return value:
558 * < 0 - error code
559 * == 0 - success
560 */
561 static int move_to_new_page(struct page *newpage, struct page *page,
562 int remap_swapcache)
563 {
564 struct address_space *mapping;
565 int rc;
566
567 /*
568 * Block others from accessing the page when we get around to
569 * establishing additional references. We are the only one
570 * holding a reference to the new page at this point.
571 */
572 if (!trylock_page(newpage))
573 BUG();
574
575 /* Prepare mapping for the new page.*/
576 newpage->index = page->index;
577 newpage->mapping = page->mapping;
578 if (PageSwapBacked(page))
579 SetPageSwapBacked(newpage);
580
581 mapping = page_mapping(page);
582 if (!mapping)
583 rc = migrate_page(mapping, newpage, page);
584 else if (mapping->a_ops->migratepage)
585 /*
586 * Most pages have a mapping and most filesystems
587 * should provide a migration function. Anonymous
588 * pages are part of swap space which also has its
589 * own migration function. This is the most common
590 * path for page migration.
591 */
592 rc = mapping->a_ops->migratepage(mapping,
593 newpage, page);
594 else
595 rc = fallback_migrate_page(mapping, newpage, page);
596
597 if (rc) {
598 newpage->mapping = NULL;
599 } else {
600 if (remap_swapcache)
601 remove_migration_ptes(page, newpage);
602 }
603
604 unlock_page(newpage);
605
606 return rc;
607 }
608
609 /*
610 * Obtain the lock on page, remove all ptes and migrate the page
611 * to the newly allocated page in newpage.
612 */
613 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
614 struct page *page, int force, int offlining)
615 {
616 int rc = 0;
617 int *result = NULL;
618 struct page *newpage = get_new_page(page, private, &result);
619 int remap_swapcache = 1;
620 int rcu_locked = 0;
621 int charge = 0;
622 struct mem_cgroup *mem = NULL;
623 struct anon_vma *anon_vma = NULL;
624
625 if (!newpage)
626 return -ENOMEM;
627
628 if (page_count(page) == 1) {
629 /* page was freed from under us. So we are done. */
630 goto move_newpage;
631 }
632
633 /* prepare cgroup just returns 0 or -ENOMEM */
634 rc = -EAGAIN;
635
636 if (!trylock_page(page)) {
637 if (!force)
638 goto move_newpage;
639 lock_page(page);
640 }
641
642 /*
643 * Only memory hotplug's offline_pages() caller has locked out KSM,
644 * and can safely migrate a KSM page. The other cases have skipped
645 * PageKsm along with PageReserved - but it is only now when we have
646 * the page lock that we can be certain it will not go KSM beneath us
647 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
648 * its pagecount raised, but only here do we take the page lock which
649 * serializes that).
650 */
651 if (PageKsm(page) && !offlining) {
652 rc = -EBUSY;
653 goto unlock;
654 }
655
656 /* charge against new page */
657 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
658 if (charge == -ENOMEM) {
659 rc = -ENOMEM;
660 goto unlock;
661 }
662 BUG_ON(charge);
663
664 if (PageWriteback(page)) {
665 if (!force)
666 goto uncharge;
667 wait_on_page_writeback(page);
668 }
669 /*
670 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
671 * we cannot notice that anon_vma is freed while we migrates a page.
672 * This rcu_read_lock() delays freeing anon_vma pointer until the end
673 * of migration. File cache pages are no problem because of page_lock()
674 * File Caches may use write_page() or lock_page() in migration, then,
675 * just care Anon page here.
676 */
677 if (PageAnon(page)) {
678 rcu_read_lock();
679 rcu_locked = 1;
680
681 /* Determine how to safely use anon_vma */
682 if (!page_mapped(page)) {
683 if (!PageSwapCache(page))
684 goto rcu_unlock;
685
686 /*
687 * We cannot be sure that the anon_vma of an unmapped
688 * swapcache page is safe to use because we don't
689 * know in advance if the VMA that this page belonged
690 * to still exists. If the VMA and others sharing the
691 * data have been freed, then the anon_vma could
692 * already be invalid.
693 *
694 * To avoid this possibility, swapcache pages get
695 * migrated but are not remapped when migration
696 * completes
697 */
698 remap_swapcache = 0;
699 } else {
700 /*
701 * Take a reference count on the anon_vma if the
702 * page is mapped so that it is guaranteed to
703 * exist when the page is remapped later
704 */
705 anon_vma = page_anon_vma(page);
706 get_anon_vma(anon_vma);
707 }
708 }
709
710 /*
711 * Corner case handling:
712 * 1. When a new swap-cache page is read into, it is added to the LRU
713 * and treated as swapcache but it has no rmap yet.
714 * Calling try_to_unmap() against a page->mapping==NULL page will
715 * trigger a BUG. So handle it here.
716 * 2. An orphaned page (see truncate_complete_page) might have
717 * fs-private metadata. The page can be picked up due to memory
718 * offlining. Everywhere else except page reclaim, the page is
719 * invisible to the vm, so the page can not be migrated. So try to
720 * free the metadata, so the page can be freed.
721 */
722 if (!page->mapping) {
723 if (!PageAnon(page) && page_has_private(page)) {
724 /*
725 * Go direct to try_to_free_buffers() here because
726 * a) that's what try_to_release_page() would do anyway
727 * b) we may be under rcu_read_lock() here, so we can't
728 * use GFP_KERNEL which is what try_to_release_page()
729 * needs to be effective.
730 */
731 try_to_free_buffers(page);
732 goto rcu_unlock;
733 }
734 goto skip_unmap;
735 }
736
737 /* Establish migration ptes or remove ptes */
738 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
739
740 skip_unmap:
741 if (!page_mapped(page))
742 rc = move_to_new_page(newpage, page, remap_swapcache);
743
744 if (rc && remap_swapcache)
745 remove_migration_ptes(page, page);
746 rcu_unlock:
747
748 /* Drop an anon_vma reference if we took one */
749 if (anon_vma)
750 drop_anon_vma(anon_vma);
751
752 if (rcu_locked)
753 rcu_read_unlock();
754 uncharge:
755 if (!charge)
756 mem_cgroup_end_migration(mem, page, newpage);
757 unlock:
758 unlock_page(page);
759
760 if (rc != -EAGAIN) {
761 /*
762 * A page that has been migrated has all references
763 * removed and will be freed. A page that has not been
764 * migrated will have kepts its references and be
765 * restored.
766 */
767 list_del(&page->lru);
768 dec_zone_page_state(page, NR_ISOLATED_ANON +
769 page_is_file_cache(page));
770 putback_lru_page(page);
771 }
772
773 move_newpage:
774
775 /*
776 * Move the new page to the LRU. If migration was not successful
777 * then this will free the page.
778 */
779 putback_lru_page(newpage);
780
781 if (result) {
782 if (rc)
783 *result = rc;
784 else
785 *result = page_to_nid(newpage);
786 }
787 return rc;
788 }
789
790 /*
791 * Counterpart of unmap_and_move_page() for hugepage migration.
792 *
793 * This function doesn't wait the completion of hugepage I/O
794 * because there is no race between I/O and migration for hugepage.
795 * Note that currently hugepage I/O occurs only in direct I/O
796 * where no lock is held and PG_writeback is irrelevant,
797 * and writeback status of all subpages are counted in the reference
798 * count of the head page (i.e. if all subpages of a 2MB hugepage are
799 * under direct I/O, the reference of the head page is 512 and a bit more.)
800 * This means that when we try to migrate hugepage whose subpages are
801 * doing direct I/O, some references remain after try_to_unmap() and
802 * hugepage migration fails without data corruption.
803 *
804 * There is also no race when direct I/O is issued on the page under migration,
805 * because then pte is replaced with migration swap entry and direct I/O code
806 * will wait in the page fault for migration to complete.
807 */
808 static int unmap_and_move_huge_page(new_page_t get_new_page,
809 unsigned long private, struct page *hpage,
810 int force, int offlining)
811 {
812 int rc = 0;
813 int *result = NULL;
814 struct page *new_hpage = get_new_page(hpage, private, &result);
815 int rcu_locked = 0;
816 struct anon_vma *anon_vma = NULL;
817
818 if (!new_hpage)
819 return -ENOMEM;
820
821 rc = -EAGAIN;
822
823 if (!trylock_page(hpage)) {
824 if (!force)
825 goto out;
826 lock_page(hpage);
827 }
828
829 if (PageAnon(hpage)) {
830 rcu_read_lock();
831 rcu_locked = 1;
832
833 if (page_mapped(hpage)) {
834 anon_vma = page_anon_vma(hpage);
835 atomic_inc(&anon_vma->external_refcount);
836 }
837 }
838
839 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
840
841 if (!page_mapped(hpage))
842 rc = move_to_new_page(new_hpage, hpage, 1);
843
844 if (rc)
845 remove_migration_ptes(hpage, hpage);
846
847 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
848 &anon_vma->lock)) {
849 int empty = list_empty(&anon_vma->head);
850 spin_unlock(&anon_vma->lock);
851 if (empty)
852 anon_vma_free(anon_vma);
853 }
854
855 if (rcu_locked)
856 rcu_read_unlock();
857 out:
858 unlock_page(hpage);
859
860 if (rc != -EAGAIN) {
861 list_del(&hpage->lru);
862 put_page(hpage);
863 }
864
865 put_page(new_hpage);
866
867 if (result) {
868 if (rc)
869 *result = rc;
870 else
871 *result = page_to_nid(new_hpage);
872 }
873 return rc;
874 }
875
876 /*
877 * migrate_pages
878 *
879 * The function takes one list of pages to migrate and a function
880 * that determines from the page to be migrated and the private data
881 * the target of the move and allocates the page.
882 *
883 * The function returns after 10 attempts or if no pages
884 * are movable anymore because to has become empty
885 * or no retryable pages exist anymore. All pages will be
886 * returned to the LRU or freed.
887 *
888 * Return: Number of pages not migrated or error code.
889 */
890 int migrate_pages(struct list_head *from,
891 new_page_t get_new_page, unsigned long private, int offlining)
892 {
893 int retry = 1;
894 int nr_failed = 0;
895 int pass = 0;
896 struct page *page;
897 struct page *page2;
898 int swapwrite = current->flags & PF_SWAPWRITE;
899 int rc;
900
901 if (!swapwrite)
902 current->flags |= PF_SWAPWRITE;
903
904 for(pass = 0; pass < 10 && retry; pass++) {
905 retry = 0;
906
907 list_for_each_entry_safe(page, page2, from, lru) {
908 cond_resched();
909
910 rc = unmap_and_move(get_new_page, private,
911 page, pass > 2, offlining);
912
913 switch(rc) {
914 case -ENOMEM:
915 goto out;
916 case -EAGAIN:
917 retry++;
918 break;
919 case 0:
920 break;
921 default:
922 /* Permanent failure */
923 nr_failed++;
924 break;
925 }
926 }
927 }
928 rc = 0;
929 out:
930 if (!swapwrite)
931 current->flags &= ~PF_SWAPWRITE;
932
933 putback_lru_pages(from);
934
935 if (rc)
936 return rc;
937
938 return nr_failed + retry;
939 }
940
941 int migrate_huge_pages(struct list_head *from,
942 new_page_t get_new_page, unsigned long private, int offlining)
943 {
944 int retry = 1;
945 int nr_failed = 0;
946 int pass = 0;
947 struct page *page;
948 struct page *page2;
949 int rc;
950
951 for (pass = 0; pass < 10 && retry; pass++) {
952 retry = 0;
953
954 list_for_each_entry_safe(page, page2, from, lru) {
955 cond_resched();
956
957 rc = unmap_and_move_huge_page(get_new_page,
958 private, page, pass > 2, offlining);
959
960 switch(rc) {
961 case -ENOMEM:
962 goto out;
963 case -EAGAIN:
964 retry++;
965 break;
966 case 0:
967 break;
968 default:
969 /* Permanent failure */
970 nr_failed++;
971 break;
972 }
973 }
974 }
975 rc = 0;
976 out:
977
978 list_for_each_entry_safe(page, page2, from, lru)
979 put_page(page);
980
981 if (rc)
982 return rc;
983
984 return nr_failed + retry;
985 }
986
987 #ifdef CONFIG_NUMA
988 /*
989 * Move a list of individual pages
990 */
991 struct page_to_node {
992 unsigned long addr;
993 struct page *page;
994 int node;
995 int status;
996 };
997
998 static struct page *new_page_node(struct page *p, unsigned long private,
999 int **result)
1000 {
1001 struct page_to_node *pm = (struct page_to_node *)private;
1002
1003 while (pm->node != MAX_NUMNODES && pm->page != p)
1004 pm++;
1005
1006 if (pm->node == MAX_NUMNODES)
1007 return NULL;
1008
1009 *result = &pm->status;
1010
1011 return alloc_pages_exact_node(pm->node,
1012 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1013 }
1014
1015 /*
1016 * Move a set of pages as indicated in the pm array. The addr
1017 * field must be set to the virtual address of the page to be moved
1018 * and the node number must contain a valid target node.
1019 * The pm array ends with node = MAX_NUMNODES.
1020 */
1021 static int do_move_page_to_node_array(struct mm_struct *mm,
1022 struct page_to_node *pm,
1023 int migrate_all)
1024 {
1025 int err;
1026 struct page_to_node *pp;
1027 LIST_HEAD(pagelist);
1028
1029 down_read(&mm->mmap_sem);
1030
1031 /*
1032 * Build a list of pages to migrate
1033 */
1034 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1035 struct vm_area_struct *vma;
1036 struct page *page;
1037
1038 err = -EFAULT;
1039 vma = find_vma(mm, pp->addr);
1040 if (!vma || !vma_migratable(vma))
1041 goto set_status;
1042
1043 page = follow_page(vma, pp->addr, FOLL_GET);
1044
1045 err = PTR_ERR(page);
1046 if (IS_ERR(page))
1047 goto set_status;
1048
1049 err = -ENOENT;
1050 if (!page)
1051 goto set_status;
1052
1053 /* Use PageReserved to check for zero page */
1054 if (PageReserved(page) || PageKsm(page))
1055 goto put_and_set;
1056
1057 pp->page = page;
1058 err = page_to_nid(page);
1059
1060 if (err == pp->node)
1061 /*
1062 * Node already in the right place
1063 */
1064 goto put_and_set;
1065
1066 err = -EACCES;
1067 if (page_mapcount(page) > 1 &&
1068 !migrate_all)
1069 goto put_and_set;
1070
1071 err = isolate_lru_page(page);
1072 if (!err) {
1073 list_add_tail(&page->lru, &pagelist);
1074 inc_zone_page_state(page, NR_ISOLATED_ANON +
1075 page_is_file_cache(page));
1076 }
1077 put_and_set:
1078 /*
1079 * Either remove the duplicate refcount from
1080 * isolate_lru_page() or drop the page ref if it was
1081 * not isolated.
1082 */
1083 put_page(page);
1084 set_status:
1085 pp->status = err;
1086 }
1087
1088 err = 0;
1089 if (!list_empty(&pagelist))
1090 err = migrate_pages(&pagelist, new_page_node,
1091 (unsigned long)pm, 0);
1092
1093 up_read(&mm->mmap_sem);
1094 return err;
1095 }
1096
1097 /*
1098 * Migrate an array of page address onto an array of nodes and fill
1099 * the corresponding array of status.
1100 */
1101 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1102 unsigned long nr_pages,
1103 const void __user * __user *pages,
1104 const int __user *nodes,
1105 int __user *status, int flags)
1106 {
1107 struct page_to_node *pm;
1108 nodemask_t task_nodes;
1109 unsigned long chunk_nr_pages;
1110 unsigned long chunk_start;
1111 int err;
1112
1113 task_nodes = cpuset_mems_allowed(task);
1114
1115 err = -ENOMEM;
1116 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1117 if (!pm)
1118 goto out;
1119
1120 migrate_prep();
1121
1122 /*
1123 * Store a chunk of page_to_node array in a page,
1124 * but keep the last one as a marker
1125 */
1126 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1127
1128 for (chunk_start = 0;
1129 chunk_start < nr_pages;
1130 chunk_start += chunk_nr_pages) {
1131 int j;
1132
1133 if (chunk_start + chunk_nr_pages > nr_pages)
1134 chunk_nr_pages = nr_pages - chunk_start;
1135
1136 /* fill the chunk pm with addrs and nodes from user-space */
1137 for (j = 0; j < chunk_nr_pages; j++) {
1138 const void __user *p;
1139 int node;
1140
1141 err = -EFAULT;
1142 if (get_user(p, pages + j + chunk_start))
1143 goto out_pm;
1144 pm[j].addr = (unsigned long) p;
1145
1146 if (get_user(node, nodes + j + chunk_start))
1147 goto out_pm;
1148
1149 err = -ENODEV;
1150 if (node < 0 || node >= MAX_NUMNODES)
1151 goto out_pm;
1152
1153 if (!node_state(node, N_HIGH_MEMORY))
1154 goto out_pm;
1155
1156 err = -EACCES;
1157 if (!node_isset(node, task_nodes))
1158 goto out_pm;
1159
1160 pm[j].node = node;
1161 }
1162
1163 /* End marker for this chunk */
1164 pm[chunk_nr_pages].node = MAX_NUMNODES;
1165
1166 /* Migrate this chunk */
1167 err = do_move_page_to_node_array(mm, pm,
1168 flags & MPOL_MF_MOVE_ALL);
1169 if (err < 0)
1170 goto out_pm;
1171
1172 /* Return status information */
1173 for (j = 0; j < chunk_nr_pages; j++)
1174 if (put_user(pm[j].status, status + j + chunk_start)) {
1175 err = -EFAULT;
1176 goto out_pm;
1177 }
1178 }
1179 err = 0;
1180
1181 out_pm:
1182 free_page((unsigned long)pm);
1183 out:
1184 return err;
1185 }
1186
1187 /*
1188 * Determine the nodes of an array of pages and store it in an array of status.
1189 */
1190 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1191 const void __user **pages, int *status)
1192 {
1193 unsigned long i;
1194
1195 down_read(&mm->mmap_sem);
1196
1197 for (i = 0; i < nr_pages; i++) {
1198 unsigned long addr = (unsigned long)(*pages);
1199 struct vm_area_struct *vma;
1200 struct page *page;
1201 int err = -EFAULT;
1202
1203 vma = find_vma(mm, addr);
1204 if (!vma)
1205 goto set_status;
1206
1207 page = follow_page(vma, addr, 0);
1208
1209 err = PTR_ERR(page);
1210 if (IS_ERR(page))
1211 goto set_status;
1212
1213 err = -ENOENT;
1214 /* Use PageReserved to check for zero page */
1215 if (!page || PageReserved(page) || PageKsm(page))
1216 goto set_status;
1217
1218 err = page_to_nid(page);
1219 set_status:
1220 *status = err;
1221
1222 pages++;
1223 status++;
1224 }
1225
1226 up_read(&mm->mmap_sem);
1227 }
1228
1229 /*
1230 * Determine the nodes of a user array of pages and store it in
1231 * a user array of status.
1232 */
1233 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1234 const void __user * __user *pages,
1235 int __user *status)
1236 {
1237 #define DO_PAGES_STAT_CHUNK_NR 16
1238 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1239 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1240
1241 while (nr_pages) {
1242 unsigned long chunk_nr;
1243
1244 chunk_nr = nr_pages;
1245 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1246 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1247
1248 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1249 break;
1250
1251 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1252
1253 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1254 break;
1255
1256 pages += chunk_nr;
1257 status += chunk_nr;
1258 nr_pages -= chunk_nr;
1259 }
1260 return nr_pages ? -EFAULT : 0;
1261 }
1262
1263 /*
1264 * Move a list of pages in the address space of the currently executing
1265 * process.
1266 */
1267 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1268 const void __user * __user *, pages,
1269 const int __user *, nodes,
1270 int __user *, status, int, flags)
1271 {
1272 const struct cred *cred = current_cred(), *tcred;
1273 struct task_struct *task;
1274 struct mm_struct *mm;
1275 int err;
1276
1277 /* Check flags */
1278 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1279 return -EINVAL;
1280
1281 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1282 return -EPERM;
1283
1284 /* Find the mm_struct */
1285 read_lock(&tasklist_lock);
1286 task = pid ? find_task_by_vpid(pid) : current;
1287 if (!task) {
1288 read_unlock(&tasklist_lock);
1289 return -ESRCH;
1290 }
1291 mm = get_task_mm(task);
1292 read_unlock(&tasklist_lock);
1293
1294 if (!mm)
1295 return -EINVAL;
1296
1297 /*
1298 * Check if this process has the right to modify the specified
1299 * process. The right exists if the process has administrative
1300 * capabilities, superuser privileges or the same
1301 * userid as the target process.
1302 */
1303 rcu_read_lock();
1304 tcred = __task_cred(task);
1305 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1306 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1307 !capable(CAP_SYS_NICE)) {
1308 rcu_read_unlock();
1309 err = -EPERM;
1310 goto out;
1311 }
1312 rcu_read_unlock();
1313
1314 err = security_task_movememory(task);
1315 if (err)
1316 goto out;
1317
1318 if (nodes) {
1319 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1320 flags);
1321 } else {
1322 err = do_pages_stat(mm, nr_pages, pages, status);
1323 }
1324
1325 out:
1326 mmput(mm);
1327 return err;
1328 }
1329
1330 /*
1331 * Call migration functions in the vma_ops that may prepare
1332 * memory in a vm for migration. migration functions may perform
1333 * the migration for vmas that do not have an underlying page struct.
1334 */
1335 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1336 const nodemask_t *from, unsigned long flags)
1337 {
1338 struct vm_area_struct *vma;
1339 int err = 0;
1340
1341 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1342 if (vma->vm_ops && vma->vm_ops->migrate) {
1343 err = vma->vm_ops->migrate(vma, to, from, flags);
1344 if (err)
1345 break;
1346 }
1347 }
1348 return err;
1349 }
1350 #endif
This page took 0.05681 seconds and 6 git commands to generate.