Merge branch 'hwpoison-hugepages' into hwpoison
[deliverable/linux.git] / mm / migrate.c
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter
13 */
14
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/nsproxy.h>
23 #include <linux/pagevec.h>
24 #include <linux/ksm.h>
25 #include <linux/rmap.h>
26 #include <linux/topology.h>
27 #include <linux/cpu.h>
28 #include <linux/cpuset.h>
29 #include <linux/writeback.h>
30 #include <linux/mempolicy.h>
31 #include <linux/vmalloc.h>
32 #include <linux/security.h>
33 #include <linux/memcontrol.h>
34 #include <linux/syscalls.h>
35 #include <linux/hugetlb.h>
36 #include <linux/gfp.h>
37
38 #include "internal.h"
39
40 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
41
42 /*
43 * migrate_prep() needs to be called before we start compiling a list of pages
44 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
45 * undesirable, use migrate_prep_local()
46 */
47 int migrate_prep(void)
48 {
49 /*
50 * Clear the LRU lists so pages can be isolated.
51 * Note that pages may be moved off the LRU after we have
52 * drained them. Those pages will fail to migrate like other
53 * pages that may be busy.
54 */
55 lru_add_drain_all();
56
57 return 0;
58 }
59
60 /* Do the necessary work of migrate_prep but not if it involves other CPUs */
61 int migrate_prep_local(void)
62 {
63 lru_add_drain();
64
65 return 0;
66 }
67
68 /*
69 * Add isolated pages on the list back to the LRU under page lock
70 * to avoid leaking evictable pages back onto unevictable list.
71 */
72 void putback_lru_pages(struct list_head *l)
73 {
74 struct page *page;
75 struct page *page2;
76
77 list_for_each_entry_safe(page, page2, l, lru) {
78 list_del(&page->lru);
79 dec_zone_page_state(page, NR_ISOLATED_ANON +
80 page_is_file_cache(page));
81 putback_lru_page(page);
82 }
83 }
84
85 /*
86 * Restore a potential migration pte to a working pte entry
87 */
88 static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
89 unsigned long addr, void *old)
90 {
91 struct mm_struct *mm = vma->vm_mm;
92 swp_entry_t entry;
93 pgd_t *pgd;
94 pud_t *pud;
95 pmd_t *pmd;
96 pte_t *ptep, pte;
97 spinlock_t *ptl;
98
99 if (unlikely(PageHuge(new))) {
100 ptep = huge_pte_offset(mm, addr);
101 if (!ptep)
102 goto out;
103 ptl = &mm->page_table_lock;
104 } else {
105 pgd = pgd_offset(mm, addr);
106 if (!pgd_present(*pgd))
107 goto out;
108
109 pud = pud_offset(pgd, addr);
110 if (!pud_present(*pud))
111 goto out;
112
113 pmd = pmd_offset(pud, addr);
114 if (!pmd_present(*pmd))
115 goto out;
116
117 ptep = pte_offset_map(pmd, addr);
118
119 if (!is_swap_pte(*ptep)) {
120 pte_unmap(ptep);
121 goto out;
122 }
123
124 ptl = pte_lockptr(mm, pmd);
125 }
126
127 spin_lock(ptl);
128 pte = *ptep;
129 if (!is_swap_pte(pte))
130 goto unlock;
131
132 entry = pte_to_swp_entry(pte);
133
134 if (!is_migration_entry(entry) ||
135 migration_entry_to_page(entry) != old)
136 goto unlock;
137
138 get_page(new);
139 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
140 if (is_write_migration_entry(entry))
141 pte = pte_mkwrite(pte);
142 #ifdef CONFIG_HUGETLB_PAGE
143 if (PageHuge(new))
144 pte = pte_mkhuge(pte);
145 #endif
146 flush_cache_page(vma, addr, pte_pfn(pte));
147 set_pte_at(mm, addr, ptep, pte);
148
149 if (PageHuge(new)) {
150 if (PageAnon(new))
151 hugepage_add_anon_rmap(new, vma, addr);
152 else
153 page_dup_rmap(new);
154 } else if (PageAnon(new))
155 page_add_anon_rmap(new, vma, addr);
156 else
157 page_add_file_rmap(new);
158
159 /* No need to invalidate - it was non-present before */
160 update_mmu_cache(vma, addr, ptep);
161 unlock:
162 pte_unmap_unlock(ptep, ptl);
163 out:
164 return SWAP_AGAIN;
165 }
166
167 /*
168 * Get rid of all migration entries and replace them by
169 * references to the indicated page.
170 */
171 static void remove_migration_ptes(struct page *old, struct page *new)
172 {
173 rmap_walk(new, remove_migration_pte, old);
174 }
175
176 /*
177 * Something used the pte of a page under migration. We need to
178 * get to the page and wait until migration is finished.
179 * When we return from this function the fault will be retried.
180 *
181 * This function is called from do_swap_page().
182 */
183 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
184 unsigned long address)
185 {
186 pte_t *ptep, pte;
187 spinlock_t *ptl;
188 swp_entry_t entry;
189 struct page *page;
190
191 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
192 pte = *ptep;
193 if (!is_swap_pte(pte))
194 goto out;
195
196 entry = pte_to_swp_entry(pte);
197 if (!is_migration_entry(entry))
198 goto out;
199
200 page = migration_entry_to_page(entry);
201
202 /*
203 * Once radix-tree replacement of page migration started, page_count
204 * *must* be zero. And, we don't want to call wait_on_page_locked()
205 * against a page without get_page().
206 * So, we use get_page_unless_zero(), here. Even failed, page fault
207 * will occur again.
208 */
209 if (!get_page_unless_zero(page))
210 goto out;
211 pte_unmap_unlock(ptep, ptl);
212 wait_on_page_locked(page);
213 put_page(page);
214 return;
215 out:
216 pte_unmap_unlock(ptep, ptl);
217 }
218
219 /*
220 * Replace the page in the mapping.
221 *
222 * The number of remaining references must be:
223 * 1 for anonymous pages without a mapping
224 * 2 for pages with a mapping
225 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
226 */
227 static int migrate_page_move_mapping(struct address_space *mapping,
228 struct page *newpage, struct page *page)
229 {
230 int expected_count;
231 void **pslot;
232
233 if (!mapping) {
234 /* Anonymous page without mapping */
235 if (page_count(page) != 1)
236 return -EAGAIN;
237 return 0;
238 }
239
240 spin_lock_irq(&mapping->tree_lock);
241
242 pslot = radix_tree_lookup_slot(&mapping->page_tree,
243 page_index(page));
244
245 expected_count = 2 + page_has_private(page);
246 if (page_count(page) != expected_count ||
247 (struct page *)radix_tree_deref_slot(pslot) != page) {
248 spin_unlock_irq(&mapping->tree_lock);
249 return -EAGAIN;
250 }
251
252 if (!page_freeze_refs(page, expected_count)) {
253 spin_unlock_irq(&mapping->tree_lock);
254 return -EAGAIN;
255 }
256
257 /*
258 * Now we know that no one else is looking at the page.
259 */
260 get_page(newpage); /* add cache reference */
261 if (PageSwapCache(page)) {
262 SetPageSwapCache(newpage);
263 set_page_private(newpage, page_private(page));
264 }
265
266 radix_tree_replace_slot(pslot, newpage);
267
268 page_unfreeze_refs(page, expected_count);
269 /*
270 * Drop cache reference from old page.
271 * We know this isn't the last reference.
272 */
273 __put_page(page);
274
275 /*
276 * If moved to a different zone then also account
277 * the page for that zone. Other VM counters will be
278 * taken care of when we establish references to the
279 * new page and drop references to the old page.
280 *
281 * Note that anonymous pages are accounted for
282 * via NR_FILE_PAGES and NR_ANON_PAGES if they
283 * are mapped to swap space.
284 */
285 __dec_zone_page_state(page, NR_FILE_PAGES);
286 __inc_zone_page_state(newpage, NR_FILE_PAGES);
287 if (PageSwapBacked(page)) {
288 __dec_zone_page_state(page, NR_SHMEM);
289 __inc_zone_page_state(newpage, NR_SHMEM);
290 }
291 spin_unlock_irq(&mapping->tree_lock);
292
293 return 0;
294 }
295
296 /*
297 * The expected number of remaining references is the same as that
298 * of migrate_page_move_mapping().
299 */
300 int migrate_huge_page_move_mapping(struct address_space *mapping,
301 struct page *newpage, struct page *page)
302 {
303 int expected_count;
304 void **pslot;
305
306 if (!mapping) {
307 if (page_count(page) != 1)
308 return -EAGAIN;
309 return 0;
310 }
311
312 spin_lock_irq(&mapping->tree_lock);
313
314 pslot = radix_tree_lookup_slot(&mapping->page_tree,
315 page_index(page));
316
317 expected_count = 2 + page_has_private(page);
318 if (page_count(page) != expected_count ||
319 (struct page *)radix_tree_deref_slot(pslot) != page) {
320 spin_unlock_irq(&mapping->tree_lock);
321 return -EAGAIN;
322 }
323
324 if (!page_freeze_refs(page, expected_count)) {
325 spin_unlock_irq(&mapping->tree_lock);
326 return -EAGAIN;
327 }
328
329 get_page(newpage);
330
331 radix_tree_replace_slot(pslot, newpage);
332
333 page_unfreeze_refs(page, expected_count);
334
335 __put_page(page);
336
337 spin_unlock_irq(&mapping->tree_lock);
338 return 0;
339 }
340
341 /*
342 * Copy the page to its new location
343 */
344 void migrate_page_copy(struct page *newpage, struct page *page)
345 {
346 if (PageHuge(page))
347 copy_huge_page(newpage, page);
348 else
349 copy_highpage(newpage, page);
350
351 if (PageError(page))
352 SetPageError(newpage);
353 if (PageReferenced(page))
354 SetPageReferenced(newpage);
355 if (PageUptodate(page))
356 SetPageUptodate(newpage);
357 if (TestClearPageActive(page)) {
358 VM_BUG_ON(PageUnevictable(page));
359 SetPageActive(newpage);
360 } else if (TestClearPageUnevictable(page))
361 SetPageUnevictable(newpage);
362 if (PageChecked(page))
363 SetPageChecked(newpage);
364 if (PageMappedToDisk(page))
365 SetPageMappedToDisk(newpage);
366
367 if (PageDirty(page)) {
368 clear_page_dirty_for_io(page);
369 /*
370 * Want to mark the page and the radix tree as dirty, and
371 * redo the accounting that clear_page_dirty_for_io undid,
372 * but we can't use set_page_dirty because that function
373 * is actually a signal that all of the page has become dirty.
374 * Wheras only part of our page may be dirty.
375 */
376 __set_page_dirty_nobuffers(newpage);
377 }
378
379 mlock_migrate_page(newpage, page);
380 ksm_migrate_page(newpage, page);
381
382 ClearPageSwapCache(page);
383 ClearPagePrivate(page);
384 set_page_private(page, 0);
385 page->mapping = NULL;
386
387 /*
388 * If any waiters have accumulated on the new page then
389 * wake them up.
390 */
391 if (PageWriteback(newpage))
392 end_page_writeback(newpage);
393 }
394
395 /************************************************************
396 * Migration functions
397 ***********************************************************/
398
399 /* Always fail migration. Used for mappings that are not movable */
400 int fail_migrate_page(struct address_space *mapping,
401 struct page *newpage, struct page *page)
402 {
403 return -EIO;
404 }
405 EXPORT_SYMBOL(fail_migrate_page);
406
407 /*
408 * Common logic to directly migrate a single page suitable for
409 * pages that do not use PagePrivate/PagePrivate2.
410 *
411 * Pages are locked upon entry and exit.
412 */
413 int migrate_page(struct address_space *mapping,
414 struct page *newpage, struct page *page)
415 {
416 int rc;
417
418 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
419
420 rc = migrate_page_move_mapping(mapping, newpage, page);
421
422 if (rc)
423 return rc;
424
425 migrate_page_copy(newpage, page);
426 return 0;
427 }
428 EXPORT_SYMBOL(migrate_page);
429
430 #ifdef CONFIG_BLOCK
431 /*
432 * Migration function for pages with buffers. This function can only be used
433 * if the underlying filesystem guarantees that no other references to "page"
434 * exist.
435 */
436 int buffer_migrate_page(struct address_space *mapping,
437 struct page *newpage, struct page *page)
438 {
439 struct buffer_head *bh, *head;
440 int rc;
441
442 if (!page_has_buffers(page))
443 return migrate_page(mapping, newpage, page);
444
445 head = page_buffers(page);
446
447 rc = migrate_page_move_mapping(mapping, newpage, page);
448
449 if (rc)
450 return rc;
451
452 bh = head;
453 do {
454 get_bh(bh);
455 lock_buffer(bh);
456 bh = bh->b_this_page;
457
458 } while (bh != head);
459
460 ClearPagePrivate(page);
461 set_page_private(newpage, page_private(page));
462 set_page_private(page, 0);
463 put_page(page);
464 get_page(newpage);
465
466 bh = head;
467 do {
468 set_bh_page(bh, newpage, bh_offset(bh));
469 bh = bh->b_this_page;
470
471 } while (bh != head);
472
473 SetPagePrivate(newpage);
474
475 migrate_page_copy(newpage, page);
476
477 bh = head;
478 do {
479 unlock_buffer(bh);
480 put_bh(bh);
481 bh = bh->b_this_page;
482
483 } while (bh != head);
484
485 return 0;
486 }
487 EXPORT_SYMBOL(buffer_migrate_page);
488 #endif
489
490 /*
491 * Writeback a page to clean the dirty state
492 */
493 static int writeout(struct address_space *mapping, struct page *page)
494 {
495 struct writeback_control wbc = {
496 .sync_mode = WB_SYNC_NONE,
497 .nr_to_write = 1,
498 .range_start = 0,
499 .range_end = LLONG_MAX,
500 .nonblocking = 1,
501 .for_reclaim = 1
502 };
503 int rc;
504
505 if (!mapping->a_ops->writepage)
506 /* No write method for the address space */
507 return -EINVAL;
508
509 if (!clear_page_dirty_for_io(page))
510 /* Someone else already triggered a write */
511 return -EAGAIN;
512
513 /*
514 * A dirty page may imply that the underlying filesystem has
515 * the page on some queue. So the page must be clean for
516 * migration. Writeout may mean we loose the lock and the
517 * page state is no longer what we checked for earlier.
518 * At this point we know that the migration attempt cannot
519 * be successful.
520 */
521 remove_migration_ptes(page, page);
522
523 rc = mapping->a_ops->writepage(page, &wbc);
524
525 if (rc != AOP_WRITEPAGE_ACTIVATE)
526 /* unlocked. Relock */
527 lock_page(page);
528
529 return (rc < 0) ? -EIO : -EAGAIN;
530 }
531
532 /*
533 * Default handling if a filesystem does not provide a migration function.
534 */
535 static int fallback_migrate_page(struct address_space *mapping,
536 struct page *newpage, struct page *page)
537 {
538 if (PageDirty(page))
539 return writeout(mapping, page);
540
541 /*
542 * Buffers may be managed in a filesystem specific way.
543 * We must have no buffers or drop them.
544 */
545 if (page_has_private(page) &&
546 !try_to_release_page(page, GFP_KERNEL))
547 return -EAGAIN;
548
549 return migrate_page(mapping, newpage, page);
550 }
551
552 /*
553 * Move a page to a newly allocated page
554 * The page is locked and all ptes have been successfully removed.
555 *
556 * The new page will have replaced the old page if this function
557 * is successful.
558 *
559 * Return value:
560 * < 0 - error code
561 * == 0 - success
562 */
563 static int move_to_new_page(struct page *newpage, struct page *page,
564 int remap_swapcache)
565 {
566 struct address_space *mapping;
567 int rc;
568
569 /*
570 * Block others from accessing the page when we get around to
571 * establishing additional references. We are the only one
572 * holding a reference to the new page at this point.
573 */
574 if (!trylock_page(newpage))
575 BUG();
576
577 /* Prepare mapping for the new page.*/
578 newpage->index = page->index;
579 newpage->mapping = page->mapping;
580 if (PageSwapBacked(page))
581 SetPageSwapBacked(newpage);
582
583 mapping = page_mapping(page);
584 if (!mapping)
585 rc = migrate_page(mapping, newpage, page);
586 else if (mapping->a_ops->migratepage)
587 /*
588 * Most pages have a mapping and most filesystems
589 * should provide a migration function. Anonymous
590 * pages are part of swap space which also has its
591 * own migration function. This is the most common
592 * path for page migration.
593 */
594 rc = mapping->a_ops->migratepage(mapping,
595 newpage, page);
596 else
597 rc = fallback_migrate_page(mapping, newpage, page);
598
599 if (rc) {
600 newpage->mapping = NULL;
601 } else {
602 if (remap_swapcache)
603 remove_migration_ptes(page, newpage);
604 }
605
606 unlock_page(newpage);
607
608 return rc;
609 }
610
611 /*
612 * Obtain the lock on page, remove all ptes and migrate the page
613 * to the newly allocated page in newpage.
614 */
615 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
616 struct page *page, int force, int offlining)
617 {
618 int rc = 0;
619 int *result = NULL;
620 struct page *newpage = get_new_page(page, private, &result);
621 int remap_swapcache = 1;
622 int rcu_locked = 0;
623 int charge = 0;
624 struct mem_cgroup *mem = NULL;
625 struct anon_vma *anon_vma = NULL;
626
627 if (!newpage)
628 return -ENOMEM;
629
630 if (page_count(page) == 1) {
631 /* page was freed from under us. So we are done. */
632 goto move_newpage;
633 }
634
635 /* prepare cgroup just returns 0 or -ENOMEM */
636 rc = -EAGAIN;
637
638 if (!trylock_page(page)) {
639 if (!force)
640 goto move_newpage;
641 lock_page(page);
642 }
643
644 /*
645 * Only memory hotplug's offline_pages() caller has locked out KSM,
646 * and can safely migrate a KSM page. The other cases have skipped
647 * PageKsm along with PageReserved - but it is only now when we have
648 * the page lock that we can be certain it will not go KSM beneath us
649 * (KSM will not upgrade a page from PageAnon to PageKsm when it sees
650 * its pagecount raised, but only here do we take the page lock which
651 * serializes that).
652 */
653 if (PageKsm(page) && !offlining) {
654 rc = -EBUSY;
655 goto unlock;
656 }
657
658 /* charge against new page */
659 charge = mem_cgroup_prepare_migration(page, newpage, &mem);
660 if (charge == -ENOMEM) {
661 rc = -ENOMEM;
662 goto unlock;
663 }
664 BUG_ON(charge);
665
666 if (PageWriteback(page)) {
667 if (!force)
668 goto uncharge;
669 wait_on_page_writeback(page);
670 }
671 /*
672 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
673 * we cannot notice that anon_vma is freed while we migrates a page.
674 * This rcu_read_lock() delays freeing anon_vma pointer until the end
675 * of migration. File cache pages are no problem because of page_lock()
676 * File Caches may use write_page() or lock_page() in migration, then,
677 * just care Anon page here.
678 */
679 if (PageAnon(page)) {
680 rcu_read_lock();
681 rcu_locked = 1;
682
683 /* Determine how to safely use anon_vma */
684 if (!page_mapped(page)) {
685 if (!PageSwapCache(page))
686 goto rcu_unlock;
687
688 /*
689 * We cannot be sure that the anon_vma of an unmapped
690 * swapcache page is safe to use because we don't
691 * know in advance if the VMA that this page belonged
692 * to still exists. If the VMA and others sharing the
693 * data have been freed, then the anon_vma could
694 * already be invalid.
695 *
696 * To avoid this possibility, swapcache pages get
697 * migrated but are not remapped when migration
698 * completes
699 */
700 remap_swapcache = 0;
701 } else {
702 /*
703 * Take a reference count on the anon_vma if the
704 * page is mapped so that it is guaranteed to
705 * exist when the page is remapped later
706 */
707 anon_vma = page_anon_vma(page);
708 get_anon_vma(anon_vma);
709 }
710 }
711
712 /*
713 * Corner case handling:
714 * 1. When a new swap-cache page is read into, it is added to the LRU
715 * and treated as swapcache but it has no rmap yet.
716 * Calling try_to_unmap() against a page->mapping==NULL page will
717 * trigger a BUG. So handle it here.
718 * 2. An orphaned page (see truncate_complete_page) might have
719 * fs-private metadata. The page can be picked up due to memory
720 * offlining. Everywhere else except page reclaim, the page is
721 * invisible to the vm, so the page can not be migrated. So try to
722 * free the metadata, so the page can be freed.
723 */
724 if (!page->mapping) {
725 if (!PageAnon(page) && page_has_private(page)) {
726 /*
727 * Go direct to try_to_free_buffers() here because
728 * a) that's what try_to_release_page() would do anyway
729 * b) we may be under rcu_read_lock() here, so we can't
730 * use GFP_KERNEL which is what try_to_release_page()
731 * needs to be effective.
732 */
733 try_to_free_buffers(page);
734 goto rcu_unlock;
735 }
736 goto skip_unmap;
737 }
738
739 /* Establish migration ptes or remove ptes */
740 try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
741
742 skip_unmap:
743 if (!page_mapped(page))
744 rc = move_to_new_page(newpage, page, remap_swapcache);
745
746 if (rc && remap_swapcache)
747 remove_migration_ptes(page, page);
748 rcu_unlock:
749
750 /* Drop an anon_vma reference if we took one */
751 if (anon_vma)
752 drop_anon_vma(anon_vma);
753
754 if (rcu_locked)
755 rcu_read_unlock();
756 uncharge:
757 if (!charge)
758 mem_cgroup_end_migration(mem, page, newpage);
759 unlock:
760 unlock_page(page);
761
762 if (rc != -EAGAIN) {
763 /*
764 * A page that has been migrated has all references
765 * removed and will be freed. A page that has not been
766 * migrated will have kepts its references and be
767 * restored.
768 */
769 list_del(&page->lru);
770 dec_zone_page_state(page, NR_ISOLATED_ANON +
771 page_is_file_cache(page));
772 putback_lru_page(page);
773 }
774
775 move_newpage:
776
777 /*
778 * Move the new page to the LRU. If migration was not successful
779 * then this will free the page.
780 */
781 putback_lru_page(newpage);
782
783 if (result) {
784 if (rc)
785 *result = rc;
786 else
787 *result = page_to_nid(newpage);
788 }
789 return rc;
790 }
791
792 /*
793 * Counterpart of unmap_and_move_page() for hugepage migration.
794 *
795 * This function doesn't wait the completion of hugepage I/O
796 * because there is no race between I/O and migration for hugepage.
797 * Note that currently hugepage I/O occurs only in direct I/O
798 * where no lock is held and PG_writeback is irrelevant,
799 * and writeback status of all subpages are counted in the reference
800 * count of the head page (i.e. if all subpages of a 2MB hugepage are
801 * under direct I/O, the reference of the head page is 512 and a bit more.)
802 * This means that when we try to migrate hugepage whose subpages are
803 * doing direct I/O, some references remain after try_to_unmap() and
804 * hugepage migration fails without data corruption.
805 *
806 * There is also no race when direct I/O is issued on the page under migration,
807 * because then pte is replaced with migration swap entry and direct I/O code
808 * will wait in the page fault for migration to complete.
809 */
810 static int unmap_and_move_huge_page(new_page_t get_new_page,
811 unsigned long private, struct page *hpage,
812 int force, int offlining)
813 {
814 int rc = 0;
815 int *result = NULL;
816 struct page *new_hpage = get_new_page(hpage, private, &result);
817 int rcu_locked = 0;
818 struct anon_vma *anon_vma = NULL;
819
820 if (!new_hpage)
821 return -ENOMEM;
822
823 rc = -EAGAIN;
824
825 if (!trylock_page(hpage)) {
826 if (!force)
827 goto out;
828 lock_page(hpage);
829 }
830
831 if (PageAnon(hpage)) {
832 rcu_read_lock();
833 rcu_locked = 1;
834
835 if (page_mapped(hpage)) {
836 anon_vma = page_anon_vma(hpage);
837 atomic_inc(&anon_vma->external_refcount);
838 }
839 }
840
841 try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
842
843 if (!page_mapped(hpage))
844 rc = move_to_new_page(new_hpage, hpage, 1);
845
846 if (rc)
847 remove_migration_ptes(hpage, hpage);
848
849 if (anon_vma && atomic_dec_and_lock(&anon_vma->external_refcount,
850 &anon_vma->lock)) {
851 int empty = list_empty(&anon_vma->head);
852 spin_unlock(&anon_vma->lock);
853 if (empty)
854 anon_vma_free(anon_vma);
855 }
856
857 if (rcu_locked)
858 rcu_read_unlock();
859 out:
860 unlock_page(hpage);
861
862 if (rc != -EAGAIN) {
863 list_del(&hpage->lru);
864 put_page(hpage);
865 }
866
867 put_page(new_hpage);
868
869 if (result) {
870 if (rc)
871 *result = rc;
872 else
873 *result = page_to_nid(new_hpage);
874 }
875 return rc;
876 }
877
878 /*
879 * migrate_pages
880 *
881 * The function takes one list of pages to migrate and a function
882 * that determines from the page to be migrated and the private data
883 * the target of the move and allocates the page.
884 *
885 * The function returns after 10 attempts or if no pages
886 * are movable anymore because to has become empty
887 * or no retryable pages exist anymore. All pages will be
888 * returned to the LRU or freed.
889 *
890 * Return: Number of pages not migrated or error code.
891 */
892 int migrate_pages(struct list_head *from,
893 new_page_t get_new_page, unsigned long private, int offlining)
894 {
895 int retry = 1;
896 int nr_failed = 0;
897 int pass = 0;
898 struct page *page;
899 struct page *page2;
900 int swapwrite = current->flags & PF_SWAPWRITE;
901 int rc;
902
903 if (!swapwrite)
904 current->flags |= PF_SWAPWRITE;
905
906 for(pass = 0; pass < 10 && retry; pass++) {
907 retry = 0;
908
909 list_for_each_entry_safe(page, page2, from, lru) {
910 cond_resched();
911
912 rc = unmap_and_move(get_new_page, private,
913 page, pass > 2, offlining);
914
915 switch(rc) {
916 case -ENOMEM:
917 goto out;
918 case -EAGAIN:
919 retry++;
920 break;
921 case 0:
922 break;
923 default:
924 /* Permanent failure */
925 nr_failed++;
926 break;
927 }
928 }
929 }
930 rc = 0;
931 out:
932 if (!swapwrite)
933 current->flags &= ~PF_SWAPWRITE;
934
935 putback_lru_pages(from);
936
937 if (rc)
938 return rc;
939
940 return nr_failed + retry;
941 }
942
943 int migrate_huge_pages(struct list_head *from,
944 new_page_t get_new_page, unsigned long private, int offlining)
945 {
946 int retry = 1;
947 int nr_failed = 0;
948 int pass = 0;
949 struct page *page;
950 struct page *page2;
951 int rc;
952
953 for (pass = 0; pass < 10 && retry; pass++) {
954 retry = 0;
955
956 list_for_each_entry_safe(page, page2, from, lru) {
957 cond_resched();
958
959 rc = unmap_and_move_huge_page(get_new_page,
960 private, page, pass > 2, offlining);
961
962 switch(rc) {
963 case -ENOMEM:
964 goto out;
965 case -EAGAIN:
966 retry++;
967 break;
968 case 0:
969 break;
970 default:
971 /* Permanent failure */
972 nr_failed++;
973 break;
974 }
975 }
976 }
977 rc = 0;
978 out:
979
980 list_for_each_entry_safe(page, page2, from, lru)
981 put_page(page);
982
983 if (rc)
984 return rc;
985
986 return nr_failed + retry;
987 }
988
989 #ifdef CONFIG_NUMA
990 /*
991 * Move a list of individual pages
992 */
993 struct page_to_node {
994 unsigned long addr;
995 struct page *page;
996 int node;
997 int status;
998 };
999
1000 static struct page *new_page_node(struct page *p, unsigned long private,
1001 int **result)
1002 {
1003 struct page_to_node *pm = (struct page_to_node *)private;
1004
1005 while (pm->node != MAX_NUMNODES && pm->page != p)
1006 pm++;
1007
1008 if (pm->node == MAX_NUMNODES)
1009 return NULL;
1010
1011 *result = &pm->status;
1012
1013 return alloc_pages_exact_node(pm->node,
1014 GFP_HIGHUSER_MOVABLE | GFP_THISNODE, 0);
1015 }
1016
1017 /*
1018 * Move a set of pages as indicated in the pm array. The addr
1019 * field must be set to the virtual address of the page to be moved
1020 * and the node number must contain a valid target node.
1021 * The pm array ends with node = MAX_NUMNODES.
1022 */
1023 static int do_move_page_to_node_array(struct mm_struct *mm,
1024 struct page_to_node *pm,
1025 int migrate_all)
1026 {
1027 int err;
1028 struct page_to_node *pp;
1029 LIST_HEAD(pagelist);
1030
1031 down_read(&mm->mmap_sem);
1032
1033 /*
1034 * Build a list of pages to migrate
1035 */
1036 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1037 struct vm_area_struct *vma;
1038 struct page *page;
1039
1040 err = -EFAULT;
1041 vma = find_vma(mm, pp->addr);
1042 if (!vma || !vma_migratable(vma))
1043 goto set_status;
1044
1045 page = follow_page(vma, pp->addr, FOLL_GET);
1046
1047 err = PTR_ERR(page);
1048 if (IS_ERR(page))
1049 goto set_status;
1050
1051 err = -ENOENT;
1052 if (!page)
1053 goto set_status;
1054
1055 /* Use PageReserved to check for zero page */
1056 if (PageReserved(page) || PageKsm(page))
1057 goto put_and_set;
1058
1059 pp->page = page;
1060 err = page_to_nid(page);
1061
1062 if (err == pp->node)
1063 /*
1064 * Node already in the right place
1065 */
1066 goto put_and_set;
1067
1068 err = -EACCES;
1069 if (page_mapcount(page) > 1 &&
1070 !migrate_all)
1071 goto put_and_set;
1072
1073 err = isolate_lru_page(page);
1074 if (!err) {
1075 list_add_tail(&page->lru, &pagelist);
1076 inc_zone_page_state(page, NR_ISOLATED_ANON +
1077 page_is_file_cache(page));
1078 }
1079 put_and_set:
1080 /*
1081 * Either remove the duplicate refcount from
1082 * isolate_lru_page() or drop the page ref if it was
1083 * not isolated.
1084 */
1085 put_page(page);
1086 set_status:
1087 pp->status = err;
1088 }
1089
1090 err = 0;
1091 if (!list_empty(&pagelist))
1092 err = migrate_pages(&pagelist, new_page_node,
1093 (unsigned long)pm, 0);
1094
1095 up_read(&mm->mmap_sem);
1096 return err;
1097 }
1098
1099 /*
1100 * Migrate an array of page address onto an array of nodes and fill
1101 * the corresponding array of status.
1102 */
1103 static int do_pages_move(struct mm_struct *mm, struct task_struct *task,
1104 unsigned long nr_pages,
1105 const void __user * __user *pages,
1106 const int __user *nodes,
1107 int __user *status, int flags)
1108 {
1109 struct page_to_node *pm;
1110 nodemask_t task_nodes;
1111 unsigned long chunk_nr_pages;
1112 unsigned long chunk_start;
1113 int err;
1114
1115 task_nodes = cpuset_mems_allowed(task);
1116
1117 err = -ENOMEM;
1118 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1119 if (!pm)
1120 goto out;
1121
1122 migrate_prep();
1123
1124 /*
1125 * Store a chunk of page_to_node array in a page,
1126 * but keep the last one as a marker
1127 */
1128 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1129
1130 for (chunk_start = 0;
1131 chunk_start < nr_pages;
1132 chunk_start += chunk_nr_pages) {
1133 int j;
1134
1135 if (chunk_start + chunk_nr_pages > nr_pages)
1136 chunk_nr_pages = nr_pages - chunk_start;
1137
1138 /* fill the chunk pm with addrs and nodes from user-space */
1139 for (j = 0; j < chunk_nr_pages; j++) {
1140 const void __user *p;
1141 int node;
1142
1143 err = -EFAULT;
1144 if (get_user(p, pages + j + chunk_start))
1145 goto out_pm;
1146 pm[j].addr = (unsigned long) p;
1147
1148 if (get_user(node, nodes + j + chunk_start))
1149 goto out_pm;
1150
1151 err = -ENODEV;
1152 if (node < 0 || node >= MAX_NUMNODES)
1153 goto out_pm;
1154
1155 if (!node_state(node, N_HIGH_MEMORY))
1156 goto out_pm;
1157
1158 err = -EACCES;
1159 if (!node_isset(node, task_nodes))
1160 goto out_pm;
1161
1162 pm[j].node = node;
1163 }
1164
1165 /* End marker for this chunk */
1166 pm[chunk_nr_pages].node = MAX_NUMNODES;
1167
1168 /* Migrate this chunk */
1169 err = do_move_page_to_node_array(mm, pm,
1170 flags & MPOL_MF_MOVE_ALL);
1171 if (err < 0)
1172 goto out_pm;
1173
1174 /* Return status information */
1175 for (j = 0; j < chunk_nr_pages; j++)
1176 if (put_user(pm[j].status, status + j + chunk_start)) {
1177 err = -EFAULT;
1178 goto out_pm;
1179 }
1180 }
1181 err = 0;
1182
1183 out_pm:
1184 free_page((unsigned long)pm);
1185 out:
1186 return err;
1187 }
1188
1189 /*
1190 * Determine the nodes of an array of pages and store it in an array of status.
1191 */
1192 static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1193 const void __user **pages, int *status)
1194 {
1195 unsigned long i;
1196
1197 down_read(&mm->mmap_sem);
1198
1199 for (i = 0; i < nr_pages; i++) {
1200 unsigned long addr = (unsigned long)(*pages);
1201 struct vm_area_struct *vma;
1202 struct page *page;
1203 int err = -EFAULT;
1204
1205 vma = find_vma(mm, addr);
1206 if (!vma)
1207 goto set_status;
1208
1209 page = follow_page(vma, addr, 0);
1210
1211 err = PTR_ERR(page);
1212 if (IS_ERR(page))
1213 goto set_status;
1214
1215 err = -ENOENT;
1216 /* Use PageReserved to check for zero page */
1217 if (!page || PageReserved(page) || PageKsm(page))
1218 goto set_status;
1219
1220 err = page_to_nid(page);
1221 set_status:
1222 *status = err;
1223
1224 pages++;
1225 status++;
1226 }
1227
1228 up_read(&mm->mmap_sem);
1229 }
1230
1231 /*
1232 * Determine the nodes of a user array of pages and store it in
1233 * a user array of status.
1234 */
1235 static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1236 const void __user * __user *pages,
1237 int __user *status)
1238 {
1239 #define DO_PAGES_STAT_CHUNK_NR 16
1240 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1241 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1242
1243 while (nr_pages) {
1244 unsigned long chunk_nr;
1245
1246 chunk_nr = nr_pages;
1247 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1248 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1249
1250 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1251 break;
1252
1253 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1254
1255 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1256 break;
1257
1258 pages += chunk_nr;
1259 status += chunk_nr;
1260 nr_pages -= chunk_nr;
1261 }
1262 return nr_pages ? -EFAULT : 0;
1263 }
1264
1265 /*
1266 * Move a list of pages in the address space of the currently executing
1267 * process.
1268 */
1269 SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1270 const void __user * __user *, pages,
1271 const int __user *, nodes,
1272 int __user *, status, int, flags)
1273 {
1274 const struct cred *cred = current_cred(), *tcred;
1275 struct task_struct *task;
1276 struct mm_struct *mm;
1277 int err;
1278
1279 /* Check flags */
1280 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1281 return -EINVAL;
1282
1283 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1284 return -EPERM;
1285
1286 /* Find the mm_struct */
1287 read_lock(&tasklist_lock);
1288 task = pid ? find_task_by_vpid(pid) : current;
1289 if (!task) {
1290 read_unlock(&tasklist_lock);
1291 return -ESRCH;
1292 }
1293 mm = get_task_mm(task);
1294 read_unlock(&tasklist_lock);
1295
1296 if (!mm)
1297 return -EINVAL;
1298
1299 /*
1300 * Check if this process has the right to modify the specified
1301 * process. The right exists if the process has administrative
1302 * capabilities, superuser privileges or the same
1303 * userid as the target process.
1304 */
1305 rcu_read_lock();
1306 tcred = __task_cred(task);
1307 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1308 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1309 !capable(CAP_SYS_NICE)) {
1310 rcu_read_unlock();
1311 err = -EPERM;
1312 goto out;
1313 }
1314 rcu_read_unlock();
1315
1316 err = security_task_movememory(task);
1317 if (err)
1318 goto out;
1319
1320 if (nodes) {
1321 err = do_pages_move(mm, task, nr_pages, pages, nodes, status,
1322 flags);
1323 } else {
1324 err = do_pages_stat(mm, nr_pages, pages, status);
1325 }
1326
1327 out:
1328 mmput(mm);
1329 return err;
1330 }
1331
1332 /*
1333 * Call migration functions in the vma_ops that may prepare
1334 * memory in a vm for migration. migration functions may perform
1335 * the migration for vmas that do not have an underlying page struct.
1336 */
1337 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1338 const nodemask_t *from, unsigned long flags)
1339 {
1340 struct vm_area_struct *vma;
1341 int err = 0;
1342
1343 for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1344 if (vma->vm_ops && vma->vm_ops->migrate) {
1345 err = vma->vm_ops->migrate(vma, to, from, flags);
1346 if (err)
1347 break;
1348 }
1349 }
1350 return err;
1351 }
1352 #endif
This page took 0.057546 seconds and 6 git commands to generate.