Merge tag 'platform-drivers-x86-v4.3-2' of git://git.infradead.org/users/dvhart/linux...
[deliverable/linux.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24
25 #include "internal.h"
26
27 int can_do_mlock(void)
28 {
29 if (rlimit(RLIMIT_MEMLOCK) != 0)
30 return 1;
31 if (capable(CAP_IPC_LOCK))
32 return 1;
33 return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36
37 /*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54 /*
55 * LRU accounting for clear_page_mlock()
56 */
57 void clear_page_mlock(struct page *page)
58 {
59 if (!TestClearPageMlocked(page))
60 return;
61
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
69 * We lost the race. the page already moved to evictable list.
70 */
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
73 }
74 }
75
76 /*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80 void mlock_vma_page(struct page *page)
81 {
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page));
84
85 if (!TestSetPageMlocked(page)) {
86 mod_zone_page_state(page_zone(page), NR_MLOCK,
87 hpage_nr_pages(page));
88 count_vm_event(UNEVICTABLE_PGMLOCKED);
89 if (!isolate_lru_page(page))
90 putback_lru_page(page);
91 }
92 }
93
94 /*
95 * Isolate a page from LRU with optional get_page() pin.
96 * Assumes lru_lock already held and page already pinned.
97 */
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99 {
100 if (PageLRU(page)) {
101 struct lruvec *lruvec;
102
103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 if (getpage)
105 get_page(page);
106 ClearPageLRU(page);
107 del_page_from_lru_list(page, lruvec, page_lru(page));
108 return true;
109 }
110
111 return false;
112 }
113
114 /*
115 * Finish munlock after successful page isolation
116 *
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
119 */
120 static void __munlock_isolated_page(struct page *page)
121 {
122 int ret = SWAP_AGAIN;
123
124 /*
125 * Optimization: if the page was mapped just once, that's our mapping
126 * and we don't need to check all the other vmas.
127 */
128 if (page_mapcount(page) > 1)
129 ret = try_to_munlock(page);
130
131 /* Did try_to_unlock() succeed or punt? */
132 if (ret != SWAP_MLOCK)
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
135 putback_lru_page(page);
136 }
137
138 /*
139 * Accounting for page isolation fail during munlock
140 *
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
146 */
147 static void __munlock_isolation_failed(struct page *page)
148 {
149 if (PageUnevictable(page))
150 __count_vm_event(UNEVICTABLE_PGSTRANDED);
151 else
152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153 }
154
155 /**
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
158 *
159 * returns the size of the page as a page mask (0 for normal page,
160 * HPAGE_PMD_NR - 1 for THP head page)
161 *
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it. However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU. If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance. If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
172 */
173 unsigned int munlock_vma_page(struct page *page)
174 {
175 unsigned int nr_pages;
176 struct zone *zone = page_zone(page);
177
178 /* For try_to_munlock() and to serialize with page migration */
179 BUG_ON(!PageLocked(page));
180
181 /*
182 * Serialize with any parallel __split_huge_page_refcount() which
183 * might otherwise copy PageMlocked to part of the tail pages before
184 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185 */
186 spin_lock_irq(&zone->lru_lock);
187
188 nr_pages = hpage_nr_pages(page);
189 if (!TestClearPageMlocked(page))
190 goto unlock_out;
191
192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193
194 if (__munlock_isolate_lru_page(page, true)) {
195 spin_unlock_irq(&zone->lru_lock);
196 __munlock_isolated_page(page);
197 goto out;
198 }
199 __munlock_isolation_failed(page);
200
201 unlock_out:
202 spin_unlock_irq(&zone->lru_lock);
203
204 out:
205 return nr_pages - 1;
206 }
207
208 /*
209 * convert get_user_pages() return value to posix mlock() error
210 */
211 static int __mlock_posix_error_return(long retval)
212 {
213 if (retval == -EFAULT)
214 retval = -ENOMEM;
215 else if (retval == -ENOMEM)
216 retval = -EAGAIN;
217 return retval;
218 }
219
220 /*
221 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
222 *
223 * The fast path is available only for evictable pages with single mapping.
224 * Then we can bypass the per-cpu pvec and get better performance.
225 * when mapcount > 1 we need try_to_munlock() which can fail.
226 * when !page_evictable(), we need the full redo logic of putback_lru_page to
227 * avoid leaving evictable page in unevictable list.
228 *
229 * In case of success, @page is added to @pvec and @pgrescued is incremented
230 * in case that the page was previously unevictable. @page is also unlocked.
231 */
232 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
233 int *pgrescued)
234 {
235 VM_BUG_ON_PAGE(PageLRU(page), page);
236 VM_BUG_ON_PAGE(!PageLocked(page), page);
237
238 if (page_mapcount(page) <= 1 && page_evictable(page)) {
239 pagevec_add(pvec, page);
240 if (TestClearPageUnevictable(page))
241 (*pgrescued)++;
242 unlock_page(page);
243 return true;
244 }
245
246 return false;
247 }
248
249 /*
250 * Putback multiple evictable pages to the LRU
251 *
252 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
253 * the pages might have meanwhile become unevictable but that is OK.
254 */
255 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
256 {
257 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
258 /*
259 *__pagevec_lru_add() calls release_pages() so we don't call
260 * put_page() explicitly
261 */
262 __pagevec_lru_add(pvec);
263 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
264 }
265
266 /*
267 * Munlock a batch of pages from the same zone
268 *
269 * The work is split to two main phases. First phase clears the Mlocked flag
270 * and attempts to isolate the pages, all under a single zone lru lock.
271 * The second phase finishes the munlock only for pages where isolation
272 * succeeded.
273 *
274 * Note that the pagevec may be modified during the process.
275 */
276 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
277 {
278 int i;
279 int nr = pagevec_count(pvec);
280 int delta_munlocked;
281 struct pagevec pvec_putback;
282 int pgrescued = 0;
283
284 pagevec_init(&pvec_putback, 0);
285
286 /* Phase 1: page isolation */
287 spin_lock_irq(&zone->lru_lock);
288 for (i = 0; i < nr; i++) {
289 struct page *page = pvec->pages[i];
290
291 if (TestClearPageMlocked(page)) {
292 /*
293 * We already have pin from follow_page_mask()
294 * so we can spare the get_page() here.
295 */
296 if (__munlock_isolate_lru_page(page, false))
297 continue;
298 else
299 __munlock_isolation_failed(page);
300 }
301
302 /*
303 * We won't be munlocking this page in the next phase
304 * but we still need to release the follow_page_mask()
305 * pin. We cannot do it under lru_lock however. If it's
306 * the last pin, __page_cache_release() would deadlock.
307 */
308 pagevec_add(&pvec_putback, pvec->pages[i]);
309 pvec->pages[i] = NULL;
310 }
311 delta_munlocked = -nr + pagevec_count(&pvec_putback);
312 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
313 spin_unlock_irq(&zone->lru_lock);
314
315 /* Now we can release pins of pages that we are not munlocking */
316 pagevec_release(&pvec_putback);
317
318 /* Phase 2: page munlock */
319 for (i = 0; i < nr; i++) {
320 struct page *page = pvec->pages[i];
321
322 if (page) {
323 lock_page(page);
324 if (!__putback_lru_fast_prepare(page, &pvec_putback,
325 &pgrescued)) {
326 /*
327 * Slow path. We don't want to lose the last
328 * pin before unlock_page()
329 */
330 get_page(page); /* for putback_lru_page() */
331 __munlock_isolated_page(page);
332 unlock_page(page);
333 put_page(page); /* from follow_page_mask() */
334 }
335 }
336 }
337
338 /*
339 * Phase 3: page putback for pages that qualified for the fast path
340 * This will also call put_page() to return pin from follow_page_mask()
341 */
342 if (pagevec_count(&pvec_putback))
343 __putback_lru_fast(&pvec_putback, pgrescued);
344 }
345
346 /*
347 * Fill up pagevec for __munlock_pagevec using pte walk
348 *
349 * The function expects that the struct page corresponding to @start address is
350 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
351 *
352 * The rest of @pvec is filled by subsequent pages within the same pmd and same
353 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
354 * pages also get pinned.
355 *
356 * Returns the address of the next page that should be scanned. This equals
357 * @start + PAGE_SIZE when no page could be added by the pte walk.
358 */
359 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
360 struct vm_area_struct *vma, int zoneid, unsigned long start,
361 unsigned long end)
362 {
363 pte_t *pte;
364 spinlock_t *ptl;
365
366 /*
367 * Initialize pte walk starting at the already pinned page where we
368 * are sure that there is a pte, as it was pinned under the same
369 * mmap_sem write op.
370 */
371 pte = get_locked_pte(vma->vm_mm, start, &ptl);
372 /* Make sure we do not cross the page table boundary */
373 end = pgd_addr_end(start, end);
374 end = pud_addr_end(start, end);
375 end = pmd_addr_end(start, end);
376
377 /* The page next to the pinned page is the first we will try to get */
378 start += PAGE_SIZE;
379 while (start < end) {
380 struct page *page = NULL;
381 pte++;
382 if (pte_present(*pte))
383 page = vm_normal_page(vma, start, *pte);
384 /*
385 * Break if page could not be obtained or the page's node+zone does not
386 * match
387 */
388 if (!page || page_zone_id(page) != zoneid)
389 break;
390
391 get_page(page);
392 /*
393 * Increase the address that will be returned *before* the
394 * eventual break due to pvec becoming full by adding the page
395 */
396 start += PAGE_SIZE;
397 if (pagevec_add(pvec, page) == 0)
398 break;
399 }
400 pte_unmap_unlock(pte, ptl);
401 return start;
402 }
403
404 /*
405 * munlock_vma_pages_range() - munlock all pages in the vma range.'
406 * @vma - vma containing range to be munlock()ed.
407 * @start - start address in @vma of the range
408 * @end - end of range in @vma.
409 *
410 * For mremap(), munmap() and exit().
411 *
412 * Called with @vma VM_LOCKED.
413 *
414 * Returns with VM_LOCKED cleared. Callers must be prepared to
415 * deal with this.
416 *
417 * We don't save and restore VM_LOCKED here because pages are
418 * still on lru. In unmap path, pages might be scanned by reclaim
419 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
420 * free them. This will result in freeing mlocked pages.
421 */
422 void munlock_vma_pages_range(struct vm_area_struct *vma,
423 unsigned long start, unsigned long end)
424 {
425 vma->vm_flags &= ~VM_LOCKED;
426
427 while (start < end) {
428 struct page *page = NULL;
429 unsigned int page_mask;
430 unsigned long page_increm;
431 struct pagevec pvec;
432 struct zone *zone;
433 int zoneid;
434
435 pagevec_init(&pvec, 0);
436 /*
437 * Although FOLL_DUMP is intended for get_dump_page(),
438 * it just so happens that its special treatment of the
439 * ZERO_PAGE (returning an error instead of doing get_page)
440 * suits munlock very well (and if somehow an abnormal page
441 * has sneaked into the range, we won't oops here: great).
442 */
443 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
444 &page_mask);
445
446 if (page && !IS_ERR(page)) {
447 if (PageTransHuge(page)) {
448 lock_page(page);
449 /*
450 * Any THP page found by follow_page_mask() may
451 * have gotten split before reaching
452 * munlock_vma_page(), so we need to recompute
453 * the page_mask here.
454 */
455 page_mask = munlock_vma_page(page);
456 unlock_page(page);
457 put_page(page); /* follow_page_mask() */
458 } else {
459 /*
460 * Non-huge pages are handled in batches via
461 * pagevec. The pin from follow_page_mask()
462 * prevents them from collapsing by THP.
463 */
464 pagevec_add(&pvec, page);
465 zone = page_zone(page);
466 zoneid = page_zone_id(page);
467
468 /*
469 * Try to fill the rest of pagevec using fast
470 * pte walk. This will also update start to
471 * the next page to process. Then munlock the
472 * pagevec.
473 */
474 start = __munlock_pagevec_fill(&pvec, vma,
475 zoneid, start, end);
476 __munlock_pagevec(&pvec, zone);
477 goto next;
478 }
479 }
480 /* It's a bug to munlock in the middle of a THP page */
481 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
482 page_increm = 1 + page_mask;
483 start += page_increm * PAGE_SIZE;
484 next:
485 cond_resched();
486 }
487 }
488
489 /*
490 * mlock_fixup - handle mlock[all]/munlock[all] requests.
491 *
492 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
493 * munlock is a no-op. However, for some special vmas, we go ahead and
494 * populate the ptes.
495 *
496 * For vmas that pass the filters, merge/split as appropriate.
497 */
498 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
499 unsigned long start, unsigned long end, vm_flags_t newflags)
500 {
501 struct mm_struct *mm = vma->vm_mm;
502 pgoff_t pgoff;
503 int nr_pages;
504 int ret = 0;
505 int lock = !!(newflags & VM_LOCKED);
506
507 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
508 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
509 goto out; /* don't set VM_LOCKED, don't count */
510
511 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
512 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
513 vma->vm_file, pgoff, vma_policy(vma),
514 vma->vm_userfaultfd_ctx);
515 if (*prev) {
516 vma = *prev;
517 goto success;
518 }
519
520 if (start != vma->vm_start) {
521 ret = split_vma(mm, vma, start, 1);
522 if (ret)
523 goto out;
524 }
525
526 if (end != vma->vm_end) {
527 ret = split_vma(mm, vma, end, 0);
528 if (ret)
529 goto out;
530 }
531
532 success:
533 /*
534 * Keep track of amount of locked VM.
535 */
536 nr_pages = (end - start) >> PAGE_SHIFT;
537 if (!lock)
538 nr_pages = -nr_pages;
539 mm->locked_vm += nr_pages;
540
541 /*
542 * vm_flags is protected by the mmap_sem held in write mode.
543 * It's okay if try_to_unmap_one unmaps a page just after we
544 * set VM_LOCKED, populate_vma_page_range will bring it back.
545 */
546
547 if (lock)
548 vma->vm_flags = newflags;
549 else
550 munlock_vma_pages_range(vma, start, end);
551
552 out:
553 *prev = vma;
554 return ret;
555 }
556
557 static int do_mlock(unsigned long start, size_t len, int on)
558 {
559 unsigned long nstart, end, tmp;
560 struct vm_area_struct * vma, * prev;
561 int error;
562
563 VM_BUG_ON(start & ~PAGE_MASK);
564 VM_BUG_ON(len != PAGE_ALIGN(len));
565 end = start + len;
566 if (end < start)
567 return -EINVAL;
568 if (end == start)
569 return 0;
570 vma = find_vma(current->mm, start);
571 if (!vma || vma->vm_start > start)
572 return -ENOMEM;
573
574 prev = vma->vm_prev;
575 if (start > vma->vm_start)
576 prev = vma;
577
578 for (nstart = start ; ; ) {
579 vm_flags_t newflags;
580
581 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
582
583 newflags = vma->vm_flags & ~VM_LOCKED;
584 if (on)
585 newflags |= VM_LOCKED;
586
587 tmp = vma->vm_end;
588 if (tmp > end)
589 tmp = end;
590 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
591 if (error)
592 break;
593 nstart = tmp;
594 if (nstart < prev->vm_end)
595 nstart = prev->vm_end;
596 if (nstart >= end)
597 break;
598
599 vma = prev->vm_next;
600 if (!vma || vma->vm_start != nstart) {
601 error = -ENOMEM;
602 break;
603 }
604 }
605 return error;
606 }
607
608 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
609 {
610 unsigned long locked;
611 unsigned long lock_limit;
612 int error = -ENOMEM;
613
614 if (!can_do_mlock())
615 return -EPERM;
616
617 lru_add_drain_all(); /* flush pagevec */
618
619 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
620 start &= PAGE_MASK;
621
622 lock_limit = rlimit(RLIMIT_MEMLOCK);
623 lock_limit >>= PAGE_SHIFT;
624 locked = len >> PAGE_SHIFT;
625
626 down_write(&current->mm->mmap_sem);
627
628 locked += current->mm->locked_vm;
629
630 /* check against resource limits */
631 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
632 error = do_mlock(start, len, 1);
633
634 up_write(&current->mm->mmap_sem);
635 if (error)
636 return error;
637
638 error = __mm_populate(start, len, 0);
639 if (error)
640 return __mlock_posix_error_return(error);
641 return 0;
642 }
643
644 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
645 {
646 int ret;
647
648 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
649 start &= PAGE_MASK;
650
651 down_write(&current->mm->mmap_sem);
652 ret = do_mlock(start, len, 0);
653 up_write(&current->mm->mmap_sem);
654
655 return ret;
656 }
657
658 static int do_mlockall(int flags)
659 {
660 struct vm_area_struct * vma, * prev = NULL;
661
662 if (flags & MCL_FUTURE)
663 current->mm->def_flags |= VM_LOCKED;
664 else
665 current->mm->def_flags &= ~VM_LOCKED;
666 if (flags == MCL_FUTURE)
667 goto out;
668
669 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
670 vm_flags_t newflags;
671
672 newflags = vma->vm_flags & ~VM_LOCKED;
673 if (flags & MCL_CURRENT)
674 newflags |= VM_LOCKED;
675
676 /* Ignore errors */
677 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
678 cond_resched_rcu_qs();
679 }
680 out:
681 return 0;
682 }
683
684 SYSCALL_DEFINE1(mlockall, int, flags)
685 {
686 unsigned long lock_limit;
687 int ret = -EINVAL;
688
689 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
690 goto out;
691
692 ret = -EPERM;
693 if (!can_do_mlock())
694 goto out;
695
696 if (flags & MCL_CURRENT)
697 lru_add_drain_all(); /* flush pagevec */
698
699 lock_limit = rlimit(RLIMIT_MEMLOCK);
700 lock_limit >>= PAGE_SHIFT;
701
702 ret = -ENOMEM;
703 down_write(&current->mm->mmap_sem);
704
705 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
706 capable(CAP_IPC_LOCK))
707 ret = do_mlockall(flags);
708 up_write(&current->mm->mmap_sem);
709 if (!ret && (flags & MCL_CURRENT))
710 mm_populate(0, TASK_SIZE);
711 out:
712 return ret;
713 }
714
715 SYSCALL_DEFINE0(munlockall)
716 {
717 int ret;
718
719 down_write(&current->mm->mmap_sem);
720 ret = do_mlockall(0);
721 up_write(&current->mm->mmap_sem);
722 return ret;
723 }
724
725 /*
726 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
727 * shm segments) get accounted against the user_struct instead.
728 */
729 static DEFINE_SPINLOCK(shmlock_user_lock);
730
731 int user_shm_lock(size_t size, struct user_struct *user)
732 {
733 unsigned long lock_limit, locked;
734 int allowed = 0;
735
736 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
737 lock_limit = rlimit(RLIMIT_MEMLOCK);
738 if (lock_limit == RLIM_INFINITY)
739 allowed = 1;
740 lock_limit >>= PAGE_SHIFT;
741 spin_lock(&shmlock_user_lock);
742 if (!allowed &&
743 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
744 goto out;
745 get_uid(user);
746 user->locked_shm += locked;
747 allowed = 1;
748 out:
749 spin_unlock(&shmlock_user_lock);
750 return allowed;
751 }
752
753 void user_shm_unlock(size_t size, struct user_struct *user)
754 {
755 spin_lock(&shmlock_user_lock);
756 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
757 spin_unlock(&shmlock_user_lock);
758 free_uid(user);
759 }
This page took 0.070895 seconds and 6 git commands to generate.