mm/oom_kill: fix the wrong task->mm == mm checks in oom_kill_process()
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
48 #include <asm/tlb.h>
49 #include <asm/mmu_context.h>
50
51 #include "internal.h"
52
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
55 #endif
56
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
59 #endif
60
61 static void unmap_region(struct mm_struct *mm,
62 struct vm_area_struct *vma, struct vm_area_struct *prev,
63 unsigned long start, unsigned long end);
64
65 /* description of effects of mapping type and prot in current implementation.
66 * this is due to the limited x86 page protection hardware. The expected
67 * behavior is in parens:
68 *
69 * map_type prot
70 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
71 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
72 * w: (no) no w: (no) no w: (yes) yes w: (no) no
73 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
74 *
75 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
76 * w: (no) no w: (no) no w: (copy) copy w: (no) no
77 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
78 *
79 */
80 pgprot_t protection_map[16] = {
81 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
82 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
83 };
84
85 pgprot_t vm_get_page_prot(unsigned long vm_flags)
86 {
87 return __pgprot(pgprot_val(protection_map[vm_flags &
88 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
89 pgprot_val(arch_vm_get_page_prot(vm_flags)));
90 }
91 EXPORT_SYMBOL(vm_get_page_prot);
92
93 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
94 {
95 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
96 }
97
98 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
99 void vma_set_page_prot(struct vm_area_struct *vma)
100 {
101 unsigned long vm_flags = vma->vm_flags;
102
103 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
104 if (vma_wants_writenotify(vma)) {
105 vm_flags &= ~VM_SHARED;
106 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
107 vm_flags);
108 }
109 }
110
111
112 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
113 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
114 unsigned long sysctl_overcommit_kbytes __read_mostly;
115 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
116 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
117 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
118 /*
119 * Make sure vm_committed_as in one cacheline and not cacheline shared with
120 * other variables. It can be updated by several CPUs frequently.
121 */
122 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
123
124 /*
125 * The global memory commitment made in the system can be a metric
126 * that can be used to drive ballooning decisions when Linux is hosted
127 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
128 * balancing memory across competing virtual machines that are hosted.
129 * Several metrics drive this policy engine including the guest reported
130 * memory commitment.
131 */
132 unsigned long vm_memory_committed(void)
133 {
134 return percpu_counter_read_positive(&vm_committed_as);
135 }
136 EXPORT_SYMBOL_GPL(vm_memory_committed);
137
138 /*
139 * Check that a process has enough memory to allocate a new virtual
140 * mapping. 0 means there is enough memory for the allocation to
141 * succeed and -ENOMEM implies there is not.
142 *
143 * We currently support three overcommit policies, which are set via the
144 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
145 *
146 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
147 * Additional code 2002 Jul 20 by Robert Love.
148 *
149 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
150 *
151 * Note this is a helper function intended to be used by LSMs which
152 * wish to use this logic.
153 */
154 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
155 {
156 long free, allowed, reserve;
157
158 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
159 -(s64)vm_committed_as_batch * num_online_cpus(),
160 "memory commitment underflow");
161
162 vm_acct_memory(pages);
163
164 /*
165 * Sometimes we want to use more memory than we have
166 */
167 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
168 return 0;
169
170 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
171 free = global_page_state(NR_FREE_PAGES);
172 free += global_page_state(NR_FILE_PAGES);
173
174 /*
175 * shmem pages shouldn't be counted as free in this
176 * case, they can't be purged, only swapped out, and
177 * that won't affect the overall amount of available
178 * memory in the system.
179 */
180 free -= global_page_state(NR_SHMEM);
181
182 free += get_nr_swap_pages();
183
184 /*
185 * Any slabs which are created with the
186 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
187 * which are reclaimable, under pressure. The dentry
188 * cache and most inode caches should fall into this
189 */
190 free += global_page_state(NR_SLAB_RECLAIMABLE);
191
192 /*
193 * Leave reserved pages. The pages are not for anonymous pages.
194 */
195 if (free <= totalreserve_pages)
196 goto error;
197 else
198 free -= totalreserve_pages;
199
200 /*
201 * Reserve some for root
202 */
203 if (!cap_sys_admin)
204 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
205
206 if (free > pages)
207 return 0;
208
209 goto error;
210 }
211
212 allowed = vm_commit_limit();
213 /*
214 * Reserve some for root
215 */
216 if (!cap_sys_admin)
217 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
218
219 /*
220 * Don't let a single process grow so big a user can't recover
221 */
222 if (mm) {
223 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
224 allowed -= min_t(long, mm->total_vm / 32, reserve);
225 }
226
227 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
228 return 0;
229 error:
230 vm_unacct_memory(pages);
231
232 return -ENOMEM;
233 }
234
235 /*
236 * Requires inode->i_mapping->i_mmap_rwsem
237 */
238 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
239 struct file *file, struct address_space *mapping)
240 {
241 if (vma->vm_flags & VM_DENYWRITE)
242 atomic_inc(&file_inode(file)->i_writecount);
243 if (vma->vm_flags & VM_SHARED)
244 mapping_unmap_writable(mapping);
245
246 flush_dcache_mmap_lock(mapping);
247 vma_interval_tree_remove(vma, &mapping->i_mmap);
248 flush_dcache_mmap_unlock(mapping);
249 }
250
251 /*
252 * Unlink a file-based vm structure from its interval tree, to hide
253 * vma from rmap and vmtruncate before freeing its page tables.
254 */
255 void unlink_file_vma(struct vm_area_struct *vma)
256 {
257 struct file *file = vma->vm_file;
258
259 if (file) {
260 struct address_space *mapping = file->f_mapping;
261 i_mmap_lock_write(mapping);
262 __remove_shared_vm_struct(vma, file, mapping);
263 i_mmap_unlock_write(mapping);
264 }
265 }
266
267 /*
268 * Close a vm structure and free it, returning the next.
269 */
270 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
271 {
272 struct vm_area_struct *next = vma->vm_next;
273
274 might_sleep();
275 if (vma->vm_ops && vma->vm_ops->close)
276 vma->vm_ops->close(vma);
277 if (vma->vm_file)
278 fput(vma->vm_file);
279 mpol_put(vma_policy(vma));
280 kmem_cache_free(vm_area_cachep, vma);
281 return next;
282 }
283
284 static unsigned long do_brk(unsigned long addr, unsigned long len);
285
286 SYSCALL_DEFINE1(brk, unsigned long, brk)
287 {
288 unsigned long retval;
289 unsigned long newbrk, oldbrk;
290 struct mm_struct *mm = current->mm;
291 unsigned long min_brk;
292 bool populate;
293
294 down_write(&mm->mmap_sem);
295
296 #ifdef CONFIG_COMPAT_BRK
297 /*
298 * CONFIG_COMPAT_BRK can still be overridden by setting
299 * randomize_va_space to 2, which will still cause mm->start_brk
300 * to be arbitrarily shifted
301 */
302 if (current->brk_randomized)
303 min_brk = mm->start_brk;
304 else
305 min_brk = mm->end_data;
306 #else
307 min_brk = mm->start_brk;
308 #endif
309 if (brk < min_brk)
310 goto out;
311
312 /*
313 * Check against rlimit here. If this check is done later after the test
314 * of oldbrk with newbrk then it can escape the test and let the data
315 * segment grow beyond its set limit the in case where the limit is
316 * not page aligned -Ram Gupta
317 */
318 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
319 mm->end_data, mm->start_data))
320 goto out;
321
322 newbrk = PAGE_ALIGN(brk);
323 oldbrk = PAGE_ALIGN(mm->brk);
324 if (oldbrk == newbrk)
325 goto set_brk;
326
327 /* Always allow shrinking brk. */
328 if (brk <= mm->brk) {
329 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
330 goto set_brk;
331 goto out;
332 }
333
334 /* Check against existing mmap mappings. */
335 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
336 goto out;
337
338 /* Ok, looks good - let it rip. */
339 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
340 goto out;
341
342 set_brk:
343 mm->brk = brk;
344 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
345 up_write(&mm->mmap_sem);
346 if (populate)
347 mm_populate(oldbrk, newbrk - oldbrk);
348 return brk;
349
350 out:
351 retval = mm->brk;
352 up_write(&mm->mmap_sem);
353 return retval;
354 }
355
356 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
357 {
358 unsigned long max, subtree_gap;
359 max = vma->vm_start;
360 if (vma->vm_prev)
361 max -= vma->vm_prev->vm_end;
362 if (vma->vm_rb.rb_left) {
363 subtree_gap = rb_entry(vma->vm_rb.rb_left,
364 struct vm_area_struct, vm_rb)->rb_subtree_gap;
365 if (subtree_gap > max)
366 max = subtree_gap;
367 }
368 if (vma->vm_rb.rb_right) {
369 subtree_gap = rb_entry(vma->vm_rb.rb_right,
370 struct vm_area_struct, vm_rb)->rb_subtree_gap;
371 if (subtree_gap > max)
372 max = subtree_gap;
373 }
374 return max;
375 }
376
377 #ifdef CONFIG_DEBUG_VM_RB
378 static int browse_rb(struct rb_root *root)
379 {
380 int i = 0, j, bug = 0;
381 struct rb_node *nd, *pn = NULL;
382 unsigned long prev = 0, pend = 0;
383
384 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 struct vm_area_struct *vma;
386 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 if (vma->vm_start < prev) {
388 pr_emerg("vm_start %lx < prev %lx\n",
389 vma->vm_start, prev);
390 bug = 1;
391 }
392 if (vma->vm_start < pend) {
393 pr_emerg("vm_start %lx < pend %lx\n",
394 vma->vm_start, pend);
395 bug = 1;
396 }
397 if (vma->vm_start > vma->vm_end) {
398 pr_emerg("vm_start %lx > vm_end %lx\n",
399 vma->vm_start, vma->vm_end);
400 bug = 1;
401 }
402 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
403 pr_emerg("free gap %lx, correct %lx\n",
404 vma->rb_subtree_gap,
405 vma_compute_subtree_gap(vma));
406 bug = 1;
407 }
408 i++;
409 pn = nd;
410 prev = vma->vm_start;
411 pend = vma->vm_end;
412 }
413 j = 0;
414 for (nd = pn; nd; nd = rb_prev(nd))
415 j++;
416 if (i != j) {
417 pr_emerg("backwards %d, forwards %d\n", j, i);
418 bug = 1;
419 }
420 return bug ? -1 : i;
421 }
422
423 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
424 {
425 struct rb_node *nd;
426
427 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
428 struct vm_area_struct *vma;
429 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
430 VM_BUG_ON_VMA(vma != ignore &&
431 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
432 vma);
433 }
434 }
435
436 static void validate_mm(struct mm_struct *mm)
437 {
438 int bug = 0;
439 int i = 0;
440 unsigned long highest_address = 0;
441 struct vm_area_struct *vma = mm->mmap;
442
443 while (vma) {
444 struct anon_vma_chain *avc;
445
446 vma_lock_anon_vma(vma);
447 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
448 anon_vma_interval_tree_verify(avc);
449 vma_unlock_anon_vma(vma);
450 highest_address = vma->vm_end;
451 vma = vma->vm_next;
452 i++;
453 }
454 if (i != mm->map_count) {
455 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
456 bug = 1;
457 }
458 if (highest_address != mm->highest_vm_end) {
459 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
460 mm->highest_vm_end, highest_address);
461 bug = 1;
462 }
463 i = browse_rb(&mm->mm_rb);
464 if (i != mm->map_count) {
465 if (i != -1)
466 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
467 bug = 1;
468 }
469 VM_BUG_ON_MM(bug, mm);
470 }
471 #else
472 #define validate_mm_rb(root, ignore) do { } while (0)
473 #define validate_mm(mm) do { } while (0)
474 #endif
475
476 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
477 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
478
479 /*
480 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
481 * vma->vm_prev->vm_end values changed, without modifying the vma's position
482 * in the rbtree.
483 */
484 static void vma_gap_update(struct vm_area_struct *vma)
485 {
486 /*
487 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
488 * function that does exacltly what we want.
489 */
490 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
491 }
492
493 static inline void vma_rb_insert(struct vm_area_struct *vma,
494 struct rb_root *root)
495 {
496 /* All rb_subtree_gap values must be consistent prior to insertion */
497 validate_mm_rb(root, NULL);
498
499 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
500 }
501
502 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
503 {
504 /*
505 * All rb_subtree_gap values must be consistent prior to erase,
506 * with the possible exception of the vma being erased.
507 */
508 validate_mm_rb(root, vma);
509
510 /*
511 * Note rb_erase_augmented is a fairly large inline function,
512 * so make sure we instantiate it only once with our desired
513 * augmented rbtree callbacks.
514 */
515 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
516 }
517
518 /*
519 * vma has some anon_vma assigned, and is already inserted on that
520 * anon_vma's interval trees.
521 *
522 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
523 * vma must be removed from the anon_vma's interval trees using
524 * anon_vma_interval_tree_pre_update_vma().
525 *
526 * After the update, the vma will be reinserted using
527 * anon_vma_interval_tree_post_update_vma().
528 *
529 * The entire update must be protected by exclusive mmap_sem and by
530 * the root anon_vma's mutex.
531 */
532 static inline void
533 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
534 {
535 struct anon_vma_chain *avc;
536
537 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
538 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
539 }
540
541 static inline void
542 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
543 {
544 struct anon_vma_chain *avc;
545
546 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
547 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
548 }
549
550 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
551 unsigned long end, struct vm_area_struct **pprev,
552 struct rb_node ***rb_link, struct rb_node **rb_parent)
553 {
554 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
555
556 __rb_link = &mm->mm_rb.rb_node;
557 rb_prev = __rb_parent = NULL;
558
559 while (*__rb_link) {
560 struct vm_area_struct *vma_tmp;
561
562 __rb_parent = *__rb_link;
563 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
564
565 if (vma_tmp->vm_end > addr) {
566 /* Fail if an existing vma overlaps the area */
567 if (vma_tmp->vm_start < end)
568 return -ENOMEM;
569 __rb_link = &__rb_parent->rb_left;
570 } else {
571 rb_prev = __rb_parent;
572 __rb_link = &__rb_parent->rb_right;
573 }
574 }
575
576 *pprev = NULL;
577 if (rb_prev)
578 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
579 *rb_link = __rb_link;
580 *rb_parent = __rb_parent;
581 return 0;
582 }
583
584 static unsigned long count_vma_pages_range(struct mm_struct *mm,
585 unsigned long addr, unsigned long end)
586 {
587 unsigned long nr_pages = 0;
588 struct vm_area_struct *vma;
589
590 /* Find first overlaping mapping */
591 vma = find_vma_intersection(mm, addr, end);
592 if (!vma)
593 return 0;
594
595 nr_pages = (min(end, vma->vm_end) -
596 max(addr, vma->vm_start)) >> PAGE_SHIFT;
597
598 /* Iterate over the rest of the overlaps */
599 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
600 unsigned long overlap_len;
601
602 if (vma->vm_start > end)
603 break;
604
605 overlap_len = min(end, vma->vm_end) - vma->vm_start;
606 nr_pages += overlap_len >> PAGE_SHIFT;
607 }
608
609 return nr_pages;
610 }
611
612 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
613 struct rb_node **rb_link, struct rb_node *rb_parent)
614 {
615 /* Update tracking information for the gap following the new vma. */
616 if (vma->vm_next)
617 vma_gap_update(vma->vm_next);
618 else
619 mm->highest_vm_end = vma->vm_end;
620
621 /*
622 * vma->vm_prev wasn't known when we followed the rbtree to find the
623 * correct insertion point for that vma. As a result, we could not
624 * update the vma vm_rb parents rb_subtree_gap values on the way down.
625 * So, we first insert the vma with a zero rb_subtree_gap value
626 * (to be consistent with what we did on the way down), and then
627 * immediately update the gap to the correct value. Finally we
628 * rebalance the rbtree after all augmented values have been set.
629 */
630 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
631 vma->rb_subtree_gap = 0;
632 vma_gap_update(vma);
633 vma_rb_insert(vma, &mm->mm_rb);
634 }
635
636 static void __vma_link_file(struct vm_area_struct *vma)
637 {
638 struct file *file;
639
640 file = vma->vm_file;
641 if (file) {
642 struct address_space *mapping = file->f_mapping;
643
644 if (vma->vm_flags & VM_DENYWRITE)
645 atomic_dec(&file_inode(file)->i_writecount);
646 if (vma->vm_flags & VM_SHARED)
647 atomic_inc(&mapping->i_mmap_writable);
648
649 flush_dcache_mmap_lock(mapping);
650 vma_interval_tree_insert(vma, &mapping->i_mmap);
651 flush_dcache_mmap_unlock(mapping);
652 }
653 }
654
655 static void
656 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
657 struct vm_area_struct *prev, struct rb_node **rb_link,
658 struct rb_node *rb_parent)
659 {
660 __vma_link_list(mm, vma, prev, rb_parent);
661 __vma_link_rb(mm, vma, rb_link, rb_parent);
662 }
663
664 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
665 struct vm_area_struct *prev, struct rb_node **rb_link,
666 struct rb_node *rb_parent)
667 {
668 struct address_space *mapping = NULL;
669
670 if (vma->vm_file) {
671 mapping = vma->vm_file->f_mapping;
672 i_mmap_lock_write(mapping);
673 }
674
675 __vma_link(mm, vma, prev, rb_link, rb_parent);
676 __vma_link_file(vma);
677
678 if (mapping)
679 i_mmap_unlock_write(mapping);
680
681 mm->map_count++;
682 validate_mm(mm);
683 }
684
685 /*
686 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
687 * mm's list and rbtree. It has already been inserted into the interval tree.
688 */
689 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
690 {
691 struct vm_area_struct *prev;
692 struct rb_node **rb_link, *rb_parent;
693
694 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
695 &prev, &rb_link, &rb_parent))
696 BUG();
697 __vma_link(mm, vma, prev, rb_link, rb_parent);
698 mm->map_count++;
699 }
700
701 static inline void
702 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
703 struct vm_area_struct *prev)
704 {
705 struct vm_area_struct *next;
706
707 vma_rb_erase(vma, &mm->mm_rb);
708 prev->vm_next = next = vma->vm_next;
709 if (next)
710 next->vm_prev = prev;
711
712 /* Kill the cache */
713 vmacache_invalidate(mm);
714 }
715
716 /*
717 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
718 * is already present in an i_mmap tree without adjusting the tree.
719 * The following helper function should be used when such adjustments
720 * are necessary. The "insert" vma (if any) is to be inserted
721 * before we drop the necessary locks.
722 */
723 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
724 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
725 {
726 struct mm_struct *mm = vma->vm_mm;
727 struct vm_area_struct *next = vma->vm_next;
728 struct vm_area_struct *importer = NULL;
729 struct address_space *mapping = NULL;
730 struct rb_root *root = NULL;
731 struct anon_vma *anon_vma = NULL;
732 struct file *file = vma->vm_file;
733 bool start_changed = false, end_changed = false;
734 long adjust_next = 0;
735 int remove_next = 0;
736
737 if (next && !insert) {
738 struct vm_area_struct *exporter = NULL;
739
740 if (end >= next->vm_end) {
741 /*
742 * vma expands, overlapping all the next, and
743 * perhaps the one after too (mprotect case 6).
744 */
745 again: remove_next = 1 + (end > next->vm_end);
746 end = next->vm_end;
747 exporter = next;
748 importer = vma;
749 } else if (end > next->vm_start) {
750 /*
751 * vma expands, overlapping part of the next:
752 * mprotect case 5 shifting the boundary up.
753 */
754 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
755 exporter = next;
756 importer = vma;
757 } else if (end < vma->vm_end) {
758 /*
759 * vma shrinks, and !insert tells it's not
760 * split_vma inserting another: so it must be
761 * mprotect case 4 shifting the boundary down.
762 */
763 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
764 exporter = vma;
765 importer = next;
766 }
767
768 /*
769 * Easily overlooked: when mprotect shifts the boundary,
770 * make sure the expanding vma has anon_vma set if the
771 * shrinking vma had, to cover any anon pages imported.
772 */
773 if (exporter && exporter->anon_vma && !importer->anon_vma) {
774 int error;
775
776 importer->anon_vma = exporter->anon_vma;
777 error = anon_vma_clone(importer, exporter);
778 if (error)
779 return error;
780 }
781 }
782
783 if (file) {
784 mapping = file->f_mapping;
785 root = &mapping->i_mmap;
786 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
787
788 if (adjust_next)
789 uprobe_munmap(next, next->vm_start, next->vm_end);
790
791 i_mmap_lock_write(mapping);
792 if (insert) {
793 /*
794 * Put into interval tree now, so instantiated pages
795 * are visible to arm/parisc __flush_dcache_page
796 * throughout; but we cannot insert into address
797 * space until vma start or end is updated.
798 */
799 __vma_link_file(insert);
800 }
801 }
802
803 vma_adjust_trans_huge(vma, start, end, adjust_next);
804
805 anon_vma = vma->anon_vma;
806 if (!anon_vma && adjust_next)
807 anon_vma = next->anon_vma;
808 if (anon_vma) {
809 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
810 anon_vma != next->anon_vma, next);
811 anon_vma_lock_write(anon_vma);
812 anon_vma_interval_tree_pre_update_vma(vma);
813 if (adjust_next)
814 anon_vma_interval_tree_pre_update_vma(next);
815 }
816
817 if (root) {
818 flush_dcache_mmap_lock(mapping);
819 vma_interval_tree_remove(vma, root);
820 if (adjust_next)
821 vma_interval_tree_remove(next, root);
822 }
823
824 if (start != vma->vm_start) {
825 vma->vm_start = start;
826 start_changed = true;
827 }
828 if (end != vma->vm_end) {
829 vma->vm_end = end;
830 end_changed = true;
831 }
832 vma->vm_pgoff = pgoff;
833 if (adjust_next) {
834 next->vm_start += adjust_next << PAGE_SHIFT;
835 next->vm_pgoff += adjust_next;
836 }
837
838 if (root) {
839 if (adjust_next)
840 vma_interval_tree_insert(next, root);
841 vma_interval_tree_insert(vma, root);
842 flush_dcache_mmap_unlock(mapping);
843 }
844
845 if (remove_next) {
846 /*
847 * vma_merge has merged next into vma, and needs
848 * us to remove next before dropping the locks.
849 */
850 __vma_unlink(mm, next, vma);
851 if (file)
852 __remove_shared_vm_struct(next, file, mapping);
853 } else if (insert) {
854 /*
855 * split_vma has split insert from vma, and needs
856 * us to insert it before dropping the locks
857 * (it may either follow vma or precede it).
858 */
859 __insert_vm_struct(mm, insert);
860 } else {
861 if (start_changed)
862 vma_gap_update(vma);
863 if (end_changed) {
864 if (!next)
865 mm->highest_vm_end = end;
866 else if (!adjust_next)
867 vma_gap_update(next);
868 }
869 }
870
871 if (anon_vma) {
872 anon_vma_interval_tree_post_update_vma(vma);
873 if (adjust_next)
874 anon_vma_interval_tree_post_update_vma(next);
875 anon_vma_unlock_write(anon_vma);
876 }
877 if (mapping)
878 i_mmap_unlock_write(mapping);
879
880 if (root) {
881 uprobe_mmap(vma);
882
883 if (adjust_next)
884 uprobe_mmap(next);
885 }
886
887 if (remove_next) {
888 if (file) {
889 uprobe_munmap(next, next->vm_start, next->vm_end);
890 fput(file);
891 }
892 if (next->anon_vma)
893 anon_vma_merge(vma, next);
894 mm->map_count--;
895 mpol_put(vma_policy(next));
896 kmem_cache_free(vm_area_cachep, next);
897 /*
898 * In mprotect's case 6 (see comments on vma_merge),
899 * we must remove another next too. It would clutter
900 * up the code too much to do both in one go.
901 */
902 next = vma->vm_next;
903 if (remove_next == 2)
904 goto again;
905 else if (next)
906 vma_gap_update(next);
907 else
908 mm->highest_vm_end = end;
909 }
910 if (insert && file)
911 uprobe_mmap(insert);
912
913 validate_mm(mm);
914
915 return 0;
916 }
917
918 /*
919 * If the vma has a ->close operation then the driver probably needs to release
920 * per-vma resources, so we don't attempt to merge those.
921 */
922 static inline int is_mergeable_vma(struct vm_area_struct *vma,
923 struct file *file, unsigned long vm_flags,
924 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
925 {
926 /*
927 * VM_SOFTDIRTY should not prevent from VMA merging, if we
928 * match the flags but dirty bit -- the caller should mark
929 * merged VMA as dirty. If dirty bit won't be excluded from
930 * comparison, we increase pressue on the memory system forcing
931 * the kernel to generate new VMAs when old one could be
932 * extended instead.
933 */
934 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
935 return 0;
936 if (vma->vm_file != file)
937 return 0;
938 if (vma->vm_ops && vma->vm_ops->close)
939 return 0;
940 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
941 return 0;
942 return 1;
943 }
944
945 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
946 struct anon_vma *anon_vma2,
947 struct vm_area_struct *vma)
948 {
949 /*
950 * The list_is_singular() test is to avoid merging VMA cloned from
951 * parents. This can improve scalability caused by anon_vma lock.
952 */
953 if ((!anon_vma1 || !anon_vma2) && (!vma ||
954 list_is_singular(&vma->anon_vma_chain)))
955 return 1;
956 return anon_vma1 == anon_vma2;
957 }
958
959 /*
960 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
961 * in front of (at a lower virtual address and file offset than) the vma.
962 *
963 * We cannot merge two vmas if they have differently assigned (non-NULL)
964 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
965 *
966 * We don't check here for the merged mmap wrapping around the end of pagecache
967 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
968 * wrap, nor mmaps which cover the final page at index -1UL.
969 */
970 static int
971 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
972 struct anon_vma *anon_vma, struct file *file,
973 pgoff_t vm_pgoff,
974 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
975 {
976 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
977 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
978 if (vma->vm_pgoff == vm_pgoff)
979 return 1;
980 }
981 return 0;
982 }
983
984 /*
985 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
986 * beyond (at a higher virtual address and file offset than) the vma.
987 *
988 * We cannot merge two vmas if they have differently assigned (non-NULL)
989 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
990 */
991 static int
992 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
993 struct anon_vma *anon_vma, struct file *file,
994 pgoff_t vm_pgoff,
995 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
996 {
997 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
998 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
999 pgoff_t vm_pglen;
1000 vm_pglen = vma_pages(vma);
1001 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1002 return 1;
1003 }
1004 return 0;
1005 }
1006
1007 /*
1008 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1009 * whether that can be merged with its predecessor or its successor.
1010 * Or both (it neatly fills a hole).
1011 *
1012 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1013 * certain not to be mapped by the time vma_merge is called; but when
1014 * called for mprotect, it is certain to be already mapped (either at
1015 * an offset within prev, or at the start of next), and the flags of
1016 * this area are about to be changed to vm_flags - and the no-change
1017 * case has already been eliminated.
1018 *
1019 * The following mprotect cases have to be considered, where AAAA is
1020 * the area passed down from mprotect_fixup, never extending beyond one
1021 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1022 *
1023 * AAAA AAAA AAAA AAAA
1024 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1025 * cannot merge might become might become might become
1026 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1027 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1028 * mremap move: PPPPNNNNNNNN 8
1029 * AAAA
1030 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1031 * might become case 1 below case 2 below case 3 below
1032 *
1033 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1034 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1035 */
1036 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1037 struct vm_area_struct *prev, unsigned long addr,
1038 unsigned long end, unsigned long vm_flags,
1039 struct anon_vma *anon_vma, struct file *file,
1040 pgoff_t pgoff, struct mempolicy *policy,
1041 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1042 {
1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1044 struct vm_area_struct *area, *next;
1045 int err;
1046
1047 /*
1048 * We later require that vma->vm_flags == vm_flags,
1049 * so this tests vma->vm_flags & VM_SPECIAL, too.
1050 */
1051 if (vm_flags & VM_SPECIAL)
1052 return NULL;
1053
1054 if (prev)
1055 next = prev->vm_next;
1056 else
1057 next = mm->mmap;
1058 area = next;
1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1060 next = next->vm_next;
1061
1062 /*
1063 * Can it merge with the predecessor?
1064 */
1065 if (prev && prev->vm_end == addr &&
1066 mpol_equal(vma_policy(prev), policy) &&
1067 can_vma_merge_after(prev, vm_flags,
1068 anon_vma, file, pgoff,
1069 vm_userfaultfd_ctx)) {
1070 /*
1071 * OK, it can. Can we now merge in the successor as well?
1072 */
1073 if (next && end == next->vm_start &&
1074 mpol_equal(policy, vma_policy(next)) &&
1075 can_vma_merge_before(next, vm_flags,
1076 anon_vma, file,
1077 pgoff+pglen,
1078 vm_userfaultfd_ctx) &&
1079 is_mergeable_anon_vma(prev->anon_vma,
1080 next->anon_vma, NULL)) {
1081 /* cases 1, 6 */
1082 err = vma_adjust(prev, prev->vm_start,
1083 next->vm_end, prev->vm_pgoff, NULL);
1084 } else /* cases 2, 5, 7 */
1085 err = vma_adjust(prev, prev->vm_start,
1086 end, prev->vm_pgoff, NULL);
1087 if (err)
1088 return NULL;
1089 khugepaged_enter_vma_merge(prev, vm_flags);
1090 return prev;
1091 }
1092
1093 /*
1094 * Can this new request be merged in front of next?
1095 */
1096 if (next && end == next->vm_start &&
1097 mpol_equal(policy, vma_policy(next)) &&
1098 can_vma_merge_before(next, vm_flags,
1099 anon_vma, file, pgoff+pglen,
1100 vm_userfaultfd_ctx)) {
1101 if (prev && addr < prev->vm_end) /* case 4 */
1102 err = vma_adjust(prev, prev->vm_start,
1103 addr, prev->vm_pgoff, NULL);
1104 else /* cases 3, 8 */
1105 err = vma_adjust(area, addr, next->vm_end,
1106 next->vm_pgoff - pglen, NULL);
1107 if (err)
1108 return NULL;
1109 khugepaged_enter_vma_merge(area, vm_flags);
1110 return area;
1111 }
1112
1113 return NULL;
1114 }
1115
1116 /*
1117 * Rough compatbility check to quickly see if it's even worth looking
1118 * at sharing an anon_vma.
1119 *
1120 * They need to have the same vm_file, and the flags can only differ
1121 * in things that mprotect may change.
1122 *
1123 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1124 * we can merge the two vma's. For example, we refuse to merge a vma if
1125 * there is a vm_ops->close() function, because that indicates that the
1126 * driver is doing some kind of reference counting. But that doesn't
1127 * really matter for the anon_vma sharing case.
1128 */
1129 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1130 {
1131 return a->vm_end == b->vm_start &&
1132 mpol_equal(vma_policy(a), vma_policy(b)) &&
1133 a->vm_file == b->vm_file &&
1134 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1135 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1136 }
1137
1138 /*
1139 * Do some basic sanity checking to see if we can re-use the anon_vma
1140 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1141 * the same as 'old', the other will be the new one that is trying
1142 * to share the anon_vma.
1143 *
1144 * NOTE! This runs with mm_sem held for reading, so it is possible that
1145 * the anon_vma of 'old' is concurrently in the process of being set up
1146 * by another page fault trying to merge _that_. But that's ok: if it
1147 * is being set up, that automatically means that it will be a singleton
1148 * acceptable for merging, so we can do all of this optimistically. But
1149 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1150 *
1151 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1152 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1153 * is to return an anon_vma that is "complex" due to having gone through
1154 * a fork).
1155 *
1156 * We also make sure that the two vma's are compatible (adjacent,
1157 * and with the same memory policies). That's all stable, even with just
1158 * a read lock on the mm_sem.
1159 */
1160 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1161 {
1162 if (anon_vma_compatible(a, b)) {
1163 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1164
1165 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1166 return anon_vma;
1167 }
1168 return NULL;
1169 }
1170
1171 /*
1172 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1173 * neighbouring vmas for a suitable anon_vma, before it goes off
1174 * to allocate a new anon_vma. It checks because a repetitive
1175 * sequence of mprotects and faults may otherwise lead to distinct
1176 * anon_vmas being allocated, preventing vma merge in subsequent
1177 * mprotect.
1178 */
1179 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1180 {
1181 struct anon_vma *anon_vma;
1182 struct vm_area_struct *near;
1183
1184 near = vma->vm_next;
1185 if (!near)
1186 goto try_prev;
1187
1188 anon_vma = reusable_anon_vma(near, vma, near);
1189 if (anon_vma)
1190 return anon_vma;
1191 try_prev:
1192 near = vma->vm_prev;
1193 if (!near)
1194 goto none;
1195
1196 anon_vma = reusable_anon_vma(near, near, vma);
1197 if (anon_vma)
1198 return anon_vma;
1199 none:
1200 /*
1201 * There's no absolute need to look only at touching neighbours:
1202 * we could search further afield for "compatible" anon_vmas.
1203 * But it would probably just be a waste of time searching,
1204 * or lead to too many vmas hanging off the same anon_vma.
1205 * We're trying to allow mprotect remerging later on,
1206 * not trying to minimize memory used for anon_vmas.
1207 */
1208 return NULL;
1209 }
1210
1211 #ifdef CONFIG_PROC_FS
1212 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1213 struct file *file, long pages)
1214 {
1215 const unsigned long stack_flags
1216 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1217
1218 mm->total_vm += pages;
1219
1220 if (file) {
1221 mm->shared_vm += pages;
1222 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1223 mm->exec_vm += pages;
1224 } else if (flags & stack_flags)
1225 mm->stack_vm += pages;
1226 }
1227 #endif /* CONFIG_PROC_FS */
1228
1229 /*
1230 * If a hint addr is less than mmap_min_addr change hint to be as
1231 * low as possible but still greater than mmap_min_addr
1232 */
1233 static inline unsigned long round_hint_to_min(unsigned long hint)
1234 {
1235 hint &= PAGE_MASK;
1236 if (((void *)hint != NULL) &&
1237 (hint < mmap_min_addr))
1238 return PAGE_ALIGN(mmap_min_addr);
1239 return hint;
1240 }
1241
1242 static inline int mlock_future_check(struct mm_struct *mm,
1243 unsigned long flags,
1244 unsigned long len)
1245 {
1246 unsigned long locked, lock_limit;
1247
1248 /* mlock MCL_FUTURE? */
1249 if (flags & VM_LOCKED) {
1250 locked = len >> PAGE_SHIFT;
1251 locked += mm->locked_vm;
1252 lock_limit = rlimit(RLIMIT_MEMLOCK);
1253 lock_limit >>= PAGE_SHIFT;
1254 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1255 return -EAGAIN;
1256 }
1257 return 0;
1258 }
1259
1260 /*
1261 * The caller must hold down_write(&current->mm->mmap_sem).
1262 */
1263 unsigned long do_mmap(struct file *file, unsigned long addr,
1264 unsigned long len, unsigned long prot,
1265 unsigned long flags, vm_flags_t vm_flags,
1266 unsigned long pgoff, unsigned long *populate)
1267 {
1268 struct mm_struct *mm = current->mm;
1269
1270 *populate = 0;
1271
1272 if (!len)
1273 return -EINVAL;
1274
1275 /*
1276 * Does the application expect PROT_READ to imply PROT_EXEC?
1277 *
1278 * (the exception is when the underlying filesystem is noexec
1279 * mounted, in which case we dont add PROT_EXEC.)
1280 */
1281 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1282 if (!(file && path_noexec(&file->f_path)))
1283 prot |= PROT_EXEC;
1284
1285 if (!(flags & MAP_FIXED))
1286 addr = round_hint_to_min(addr);
1287
1288 /* Careful about overflows.. */
1289 len = PAGE_ALIGN(len);
1290 if (!len)
1291 return -ENOMEM;
1292
1293 /* offset overflow? */
1294 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1295 return -EOVERFLOW;
1296
1297 /* Too many mappings? */
1298 if (mm->map_count > sysctl_max_map_count)
1299 return -ENOMEM;
1300
1301 /* Obtain the address to map to. we verify (or select) it and ensure
1302 * that it represents a valid section of the address space.
1303 */
1304 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1305 if (offset_in_page(addr))
1306 return addr;
1307
1308 /* Do simple checking here so the lower-level routines won't have
1309 * to. we assume access permissions have been handled by the open
1310 * of the memory object, so we don't do any here.
1311 */
1312 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1313 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1314
1315 if (flags & MAP_LOCKED)
1316 if (!can_do_mlock())
1317 return -EPERM;
1318
1319 if (mlock_future_check(mm, vm_flags, len))
1320 return -EAGAIN;
1321
1322 if (file) {
1323 struct inode *inode = file_inode(file);
1324
1325 switch (flags & MAP_TYPE) {
1326 case MAP_SHARED:
1327 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1328 return -EACCES;
1329
1330 /*
1331 * Make sure we don't allow writing to an append-only
1332 * file..
1333 */
1334 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1335 return -EACCES;
1336
1337 /*
1338 * Make sure there are no mandatory locks on the file.
1339 */
1340 if (locks_verify_locked(file))
1341 return -EAGAIN;
1342
1343 vm_flags |= VM_SHARED | VM_MAYSHARE;
1344 if (!(file->f_mode & FMODE_WRITE))
1345 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1346
1347 /* fall through */
1348 case MAP_PRIVATE:
1349 if (!(file->f_mode & FMODE_READ))
1350 return -EACCES;
1351 if (path_noexec(&file->f_path)) {
1352 if (vm_flags & VM_EXEC)
1353 return -EPERM;
1354 vm_flags &= ~VM_MAYEXEC;
1355 }
1356
1357 if (!file->f_op->mmap)
1358 return -ENODEV;
1359 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1360 return -EINVAL;
1361 break;
1362
1363 default:
1364 return -EINVAL;
1365 }
1366 } else {
1367 switch (flags & MAP_TYPE) {
1368 case MAP_SHARED:
1369 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1370 return -EINVAL;
1371 /*
1372 * Ignore pgoff.
1373 */
1374 pgoff = 0;
1375 vm_flags |= VM_SHARED | VM_MAYSHARE;
1376 break;
1377 case MAP_PRIVATE:
1378 /*
1379 * Set pgoff according to addr for anon_vma.
1380 */
1381 pgoff = addr >> PAGE_SHIFT;
1382 break;
1383 default:
1384 return -EINVAL;
1385 }
1386 }
1387
1388 /*
1389 * Set 'VM_NORESERVE' if we should not account for the
1390 * memory use of this mapping.
1391 */
1392 if (flags & MAP_NORESERVE) {
1393 /* We honor MAP_NORESERVE if allowed to overcommit */
1394 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1395 vm_flags |= VM_NORESERVE;
1396
1397 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1398 if (file && is_file_hugepages(file))
1399 vm_flags |= VM_NORESERVE;
1400 }
1401
1402 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1403 if (!IS_ERR_VALUE(addr) &&
1404 ((vm_flags & VM_LOCKED) ||
1405 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1406 *populate = len;
1407 return addr;
1408 }
1409
1410 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1411 unsigned long, prot, unsigned long, flags,
1412 unsigned long, fd, unsigned long, pgoff)
1413 {
1414 struct file *file = NULL;
1415 unsigned long retval = -EBADF;
1416
1417 if (!(flags & MAP_ANONYMOUS)) {
1418 audit_mmap_fd(fd, flags);
1419 file = fget(fd);
1420 if (!file)
1421 goto out;
1422 if (is_file_hugepages(file))
1423 len = ALIGN(len, huge_page_size(hstate_file(file)));
1424 retval = -EINVAL;
1425 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1426 goto out_fput;
1427 } else if (flags & MAP_HUGETLB) {
1428 struct user_struct *user = NULL;
1429 struct hstate *hs;
1430
1431 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1432 if (!hs)
1433 return -EINVAL;
1434
1435 len = ALIGN(len, huge_page_size(hs));
1436 /*
1437 * VM_NORESERVE is used because the reservations will be
1438 * taken when vm_ops->mmap() is called
1439 * A dummy user value is used because we are not locking
1440 * memory so no accounting is necessary
1441 */
1442 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1443 VM_NORESERVE,
1444 &user, HUGETLB_ANONHUGE_INODE,
1445 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1446 if (IS_ERR(file))
1447 return PTR_ERR(file);
1448 }
1449
1450 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1451
1452 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1453 out_fput:
1454 if (file)
1455 fput(file);
1456 out:
1457 return retval;
1458 }
1459
1460 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1461 struct mmap_arg_struct {
1462 unsigned long addr;
1463 unsigned long len;
1464 unsigned long prot;
1465 unsigned long flags;
1466 unsigned long fd;
1467 unsigned long offset;
1468 };
1469
1470 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1471 {
1472 struct mmap_arg_struct a;
1473
1474 if (copy_from_user(&a, arg, sizeof(a)))
1475 return -EFAULT;
1476 if (offset_in_page(a.offset))
1477 return -EINVAL;
1478
1479 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1480 a.offset >> PAGE_SHIFT);
1481 }
1482 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1483
1484 /*
1485 * Some shared mappigns will want the pages marked read-only
1486 * to track write events. If so, we'll downgrade vm_page_prot
1487 * to the private version (using protection_map[] without the
1488 * VM_SHARED bit).
1489 */
1490 int vma_wants_writenotify(struct vm_area_struct *vma)
1491 {
1492 vm_flags_t vm_flags = vma->vm_flags;
1493 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1494
1495 /* If it was private or non-writable, the write bit is already clear */
1496 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1497 return 0;
1498
1499 /* The backer wishes to know when pages are first written to? */
1500 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1501 return 1;
1502
1503 /* The open routine did something to the protections that pgprot_modify
1504 * won't preserve? */
1505 if (pgprot_val(vma->vm_page_prot) !=
1506 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1507 return 0;
1508
1509 /* Do we need to track softdirty? */
1510 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1511 return 1;
1512
1513 /* Specialty mapping? */
1514 if (vm_flags & VM_PFNMAP)
1515 return 0;
1516
1517 /* Can the mapping track the dirty pages? */
1518 return vma->vm_file && vma->vm_file->f_mapping &&
1519 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1520 }
1521
1522 /*
1523 * We account for memory if it's a private writeable mapping,
1524 * not hugepages and VM_NORESERVE wasn't set.
1525 */
1526 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1527 {
1528 /*
1529 * hugetlb has its own accounting separate from the core VM
1530 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1531 */
1532 if (file && is_file_hugepages(file))
1533 return 0;
1534
1535 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1536 }
1537
1538 unsigned long mmap_region(struct file *file, unsigned long addr,
1539 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1540 {
1541 struct mm_struct *mm = current->mm;
1542 struct vm_area_struct *vma, *prev;
1543 int error;
1544 struct rb_node **rb_link, *rb_parent;
1545 unsigned long charged = 0;
1546
1547 /* Check against address space limit. */
1548 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1549 unsigned long nr_pages;
1550
1551 /*
1552 * MAP_FIXED may remove pages of mappings that intersects with
1553 * requested mapping. Account for the pages it would unmap.
1554 */
1555 if (!(vm_flags & MAP_FIXED))
1556 return -ENOMEM;
1557
1558 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1559
1560 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1561 return -ENOMEM;
1562 }
1563
1564 /* Clear old maps */
1565 error = -ENOMEM;
1566 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1567 &rb_parent)) {
1568 if (do_munmap(mm, addr, len))
1569 return -ENOMEM;
1570 }
1571
1572 /*
1573 * Private writable mapping: check memory availability
1574 */
1575 if (accountable_mapping(file, vm_flags)) {
1576 charged = len >> PAGE_SHIFT;
1577 if (security_vm_enough_memory_mm(mm, charged))
1578 return -ENOMEM;
1579 vm_flags |= VM_ACCOUNT;
1580 }
1581
1582 /*
1583 * Can we just expand an old mapping?
1584 */
1585 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1586 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1587 if (vma)
1588 goto out;
1589
1590 /*
1591 * Determine the object being mapped and call the appropriate
1592 * specific mapper. the address has already been validated, but
1593 * not unmapped, but the maps are removed from the list.
1594 */
1595 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1596 if (!vma) {
1597 error = -ENOMEM;
1598 goto unacct_error;
1599 }
1600
1601 vma->vm_mm = mm;
1602 vma->vm_start = addr;
1603 vma->vm_end = addr + len;
1604 vma->vm_flags = vm_flags;
1605 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1606 vma->vm_pgoff = pgoff;
1607 INIT_LIST_HEAD(&vma->anon_vma_chain);
1608
1609 if (file) {
1610 if (vm_flags & VM_DENYWRITE) {
1611 error = deny_write_access(file);
1612 if (error)
1613 goto free_vma;
1614 }
1615 if (vm_flags & VM_SHARED) {
1616 error = mapping_map_writable(file->f_mapping);
1617 if (error)
1618 goto allow_write_and_free_vma;
1619 }
1620
1621 /* ->mmap() can change vma->vm_file, but must guarantee that
1622 * vma_link() below can deny write-access if VM_DENYWRITE is set
1623 * and map writably if VM_SHARED is set. This usually means the
1624 * new file must not have been exposed to user-space, yet.
1625 */
1626 vma->vm_file = get_file(file);
1627 error = file->f_op->mmap(file, vma);
1628 if (error)
1629 goto unmap_and_free_vma;
1630
1631 /* Can addr have changed??
1632 *
1633 * Answer: Yes, several device drivers can do it in their
1634 * f_op->mmap method. -DaveM
1635 * Bug: If addr is changed, prev, rb_link, rb_parent should
1636 * be updated for vma_link()
1637 */
1638 WARN_ON_ONCE(addr != vma->vm_start);
1639
1640 addr = vma->vm_start;
1641 vm_flags = vma->vm_flags;
1642 } else if (vm_flags & VM_SHARED) {
1643 error = shmem_zero_setup(vma);
1644 if (error)
1645 goto free_vma;
1646 }
1647
1648 vma_link(mm, vma, prev, rb_link, rb_parent);
1649 /* Once vma denies write, undo our temporary denial count */
1650 if (file) {
1651 if (vm_flags & VM_SHARED)
1652 mapping_unmap_writable(file->f_mapping);
1653 if (vm_flags & VM_DENYWRITE)
1654 allow_write_access(file);
1655 }
1656 file = vma->vm_file;
1657 out:
1658 perf_event_mmap(vma);
1659
1660 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1661 if (vm_flags & VM_LOCKED) {
1662 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1663 vma == get_gate_vma(current->mm)))
1664 mm->locked_vm += (len >> PAGE_SHIFT);
1665 else
1666 vma->vm_flags &= ~VM_LOCKED;
1667 }
1668
1669 if (file)
1670 uprobe_mmap(vma);
1671
1672 /*
1673 * New (or expanded) vma always get soft dirty status.
1674 * Otherwise user-space soft-dirty page tracker won't
1675 * be able to distinguish situation when vma area unmapped,
1676 * then new mapped in-place (which must be aimed as
1677 * a completely new data area).
1678 */
1679 vma->vm_flags |= VM_SOFTDIRTY;
1680
1681 vma_set_page_prot(vma);
1682
1683 return addr;
1684
1685 unmap_and_free_vma:
1686 vma->vm_file = NULL;
1687 fput(file);
1688
1689 /* Undo any partial mapping done by a device driver. */
1690 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1691 charged = 0;
1692 if (vm_flags & VM_SHARED)
1693 mapping_unmap_writable(file->f_mapping);
1694 allow_write_and_free_vma:
1695 if (vm_flags & VM_DENYWRITE)
1696 allow_write_access(file);
1697 free_vma:
1698 kmem_cache_free(vm_area_cachep, vma);
1699 unacct_error:
1700 if (charged)
1701 vm_unacct_memory(charged);
1702 return error;
1703 }
1704
1705 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1706 {
1707 /*
1708 * We implement the search by looking for an rbtree node that
1709 * immediately follows a suitable gap. That is,
1710 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1711 * - gap_end = vma->vm_start >= info->low_limit + length;
1712 * - gap_end - gap_start >= length
1713 */
1714
1715 struct mm_struct *mm = current->mm;
1716 struct vm_area_struct *vma;
1717 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1718
1719 /* Adjust search length to account for worst case alignment overhead */
1720 length = info->length + info->align_mask;
1721 if (length < info->length)
1722 return -ENOMEM;
1723
1724 /* Adjust search limits by the desired length */
1725 if (info->high_limit < length)
1726 return -ENOMEM;
1727 high_limit = info->high_limit - length;
1728
1729 if (info->low_limit > high_limit)
1730 return -ENOMEM;
1731 low_limit = info->low_limit + length;
1732
1733 /* Check if rbtree root looks promising */
1734 if (RB_EMPTY_ROOT(&mm->mm_rb))
1735 goto check_highest;
1736 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1737 if (vma->rb_subtree_gap < length)
1738 goto check_highest;
1739
1740 while (true) {
1741 /* Visit left subtree if it looks promising */
1742 gap_end = vma->vm_start;
1743 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1744 struct vm_area_struct *left =
1745 rb_entry(vma->vm_rb.rb_left,
1746 struct vm_area_struct, vm_rb);
1747 if (left->rb_subtree_gap >= length) {
1748 vma = left;
1749 continue;
1750 }
1751 }
1752
1753 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1754 check_current:
1755 /* Check if current node has a suitable gap */
1756 if (gap_start > high_limit)
1757 return -ENOMEM;
1758 if (gap_end >= low_limit && gap_end - gap_start >= length)
1759 goto found;
1760
1761 /* Visit right subtree if it looks promising */
1762 if (vma->vm_rb.rb_right) {
1763 struct vm_area_struct *right =
1764 rb_entry(vma->vm_rb.rb_right,
1765 struct vm_area_struct, vm_rb);
1766 if (right->rb_subtree_gap >= length) {
1767 vma = right;
1768 continue;
1769 }
1770 }
1771
1772 /* Go back up the rbtree to find next candidate node */
1773 while (true) {
1774 struct rb_node *prev = &vma->vm_rb;
1775 if (!rb_parent(prev))
1776 goto check_highest;
1777 vma = rb_entry(rb_parent(prev),
1778 struct vm_area_struct, vm_rb);
1779 if (prev == vma->vm_rb.rb_left) {
1780 gap_start = vma->vm_prev->vm_end;
1781 gap_end = vma->vm_start;
1782 goto check_current;
1783 }
1784 }
1785 }
1786
1787 check_highest:
1788 /* Check highest gap, which does not precede any rbtree node */
1789 gap_start = mm->highest_vm_end;
1790 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1791 if (gap_start > high_limit)
1792 return -ENOMEM;
1793
1794 found:
1795 /* We found a suitable gap. Clip it with the original low_limit. */
1796 if (gap_start < info->low_limit)
1797 gap_start = info->low_limit;
1798
1799 /* Adjust gap address to the desired alignment */
1800 gap_start += (info->align_offset - gap_start) & info->align_mask;
1801
1802 VM_BUG_ON(gap_start + info->length > info->high_limit);
1803 VM_BUG_ON(gap_start + info->length > gap_end);
1804 return gap_start;
1805 }
1806
1807 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1808 {
1809 struct mm_struct *mm = current->mm;
1810 struct vm_area_struct *vma;
1811 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1812
1813 /* Adjust search length to account for worst case alignment overhead */
1814 length = info->length + info->align_mask;
1815 if (length < info->length)
1816 return -ENOMEM;
1817
1818 /*
1819 * Adjust search limits by the desired length.
1820 * See implementation comment at top of unmapped_area().
1821 */
1822 gap_end = info->high_limit;
1823 if (gap_end < length)
1824 return -ENOMEM;
1825 high_limit = gap_end - length;
1826
1827 if (info->low_limit > high_limit)
1828 return -ENOMEM;
1829 low_limit = info->low_limit + length;
1830
1831 /* Check highest gap, which does not precede any rbtree node */
1832 gap_start = mm->highest_vm_end;
1833 if (gap_start <= high_limit)
1834 goto found_highest;
1835
1836 /* Check if rbtree root looks promising */
1837 if (RB_EMPTY_ROOT(&mm->mm_rb))
1838 return -ENOMEM;
1839 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1840 if (vma->rb_subtree_gap < length)
1841 return -ENOMEM;
1842
1843 while (true) {
1844 /* Visit right subtree if it looks promising */
1845 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1846 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1847 struct vm_area_struct *right =
1848 rb_entry(vma->vm_rb.rb_right,
1849 struct vm_area_struct, vm_rb);
1850 if (right->rb_subtree_gap >= length) {
1851 vma = right;
1852 continue;
1853 }
1854 }
1855
1856 check_current:
1857 /* Check if current node has a suitable gap */
1858 gap_end = vma->vm_start;
1859 if (gap_end < low_limit)
1860 return -ENOMEM;
1861 if (gap_start <= high_limit && gap_end - gap_start >= length)
1862 goto found;
1863
1864 /* Visit left subtree if it looks promising */
1865 if (vma->vm_rb.rb_left) {
1866 struct vm_area_struct *left =
1867 rb_entry(vma->vm_rb.rb_left,
1868 struct vm_area_struct, vm_rb);
1869 if (left->rb_subtree_gap >= length) {
1870 vma = left;
1871 continue;
1872 }
1873 }
1874
1875 /* Go back up the rbtree to find next candidate node */
1876 while (true) {
1877 struct rb_node *prev = &vma->vm_rb;
1878 if (!rb_parent(prev))
1879 return -ENOMEM;
1880 vma = rb_entry(rb_parent(prev),
1881 struct vm_area_struct, vm_rb);
1882 if (prev == vma->vm_rb.rb_right) {
1883 gap_start = vma->vm_prev ?
1884 vma->vm_prev->vm_end : 0;
1885 goto check_current;
1886 }
1887 }
1888 }
1889
1890 found:
1891 /* We found a suitable gap. Clip it with the original high_limit. */
1892 if (gap_end > info->high_limit)
1893 gap_end = info->high_limit;
1894
1895 found_highest:
1896 /* Compute highest gap address at the desired alignment */
1897 gap_end -= info->length;
1898 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1899
1900 VM_BUG_ON(gap_end < info->low_limit);
1901 VM_BUG_ON(gap_end < gap_start);
1902 return gap_end;
1903 }
1904
1905 /* Get an address range which is currently unmapped.
1906 * For shmat() with addr=0.
1907 *
1908 * Ugly calling convention alert:
1909 * Return value with the low bits set means error value,
1910 * ie
1911 * if (ret & ~PAGE_MASK)
1912 * error = ret;
1913 *
1914 * This function "knows" that -ENOMEM has the bits set.
1915 */
1916 #ifndef HAVE_ARCH_UNMAPPED_AREA
1917 unsigned long
1918 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1919 unsigned long len, unsigned long pgoff, unsigned long flags)
1920 {
1921 struct mm_struct *mm = current->mm;
1922 struct vm_area_struct *vma;
1923 struct vm_unmapped_area_info info;
1924
1925 if (len > TASK_SIZE - mmap_min_addr)
1926 return -ENOMEM;
1927
1928 if (flags & MAP_FIXED)
1929 return addr;
1930
1931 if (addr) {
1932 addr = PAGE_ALIGN(addr);
1933 vma = find_vma(mm, addr);
1934 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1935 (!vma || addr + len <= vma->vm_start))
1936 return addr;
1937 }
1938
1939 info.flags = 0;
1940 info.length = len;
1941 info.low_limit = mm->mmap_base;
1942 info.high_limit = TASK_SIZE;
1943 info.align_mask = 0;
1944 return vm_unmapped_area(&info);
1945 }
1946 #endif
1947
1948 /*
1949 * This mmap-allocator allocates new areas top-down from below the
1950 * stack's low limit (the base):
1951 */
1952 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1953 unsigned long
1954 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1955 const unsigned long len, const unsigned long pgoff,
1956 const unsigned long flags)
1957 {
1958 struct vm_area_struct *vma;
1959 struct mm_struct *mm = current->mm;
1960 unsigned long addr = addr0;
1961 struct vm_unmapped_area_info info;
1962
1963 /* requested length too big for entire address space */
1964 if (len > TASK_SIZE - mmap_min_addr)
1965 return -ENOMEM;
1966
1967 if (flags & MAP_FIXED)
1968 return addr;
1969
1970 /* requesting a specific address */
1971 if (addr) {
1972 addr = PAGE_ALIGN(addr);
1973 vma = find_vma(mm, addr);
1974 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1975 (!vma || addr + len <= vma->vm_start))
1976 return addr;
1977 }
1978
1979 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1980 info.length = len;
1981 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1982 info.high_limit = mm->mmap_base;
1983 info.align_mask = 0;
1984 addr = vm_unmapped_area(&info);
1985
1986 /*
1987 * A failed mmap() very likely causes application failure,
1988 * so fall back to the bottom-up function here. This scenario
1989 * can happen with large stack limits and large mmap()
1990 * allocations.
1991 */
1992 if (offset_in_page(addr)) {
1993 VM_BUG_ON(addr != -ENOMEM);
1994 info.flags = 0;
1995 info.low_limit = TASK_UNMAPPED_BASE;
1996 info.high_limit = TASK_SIZE;
1997 addr = vm_unmapped_area(&info);
1998 }
1999
2000 return addr;
2001 }
2002 #endif
2003
2004 unsigned long
2005 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2006 unsigned long pgoff, unsigned long flags)
2007 {
2008 unsigned long (*get_area)(struct file *, unsigned long,
2009 unsigned long, unsigned long, unsigned long);
2010
2011 unsigned long error = arch_mmap_check(addr, len, flags);
2012 if (error)
2013 return error;
2014
2015 /* Careful about overflows.. */
2016 if (len > TASK_SIZE)
2017 return -ENOMEM;
2018
2019 get_area = current->mm->get_unmapped_area;
2020 if (file && file->f_op->get_unmapped_area)
2021 get_area = file->f_op->get_unmapped_area;
2022 addr = get_area(file, addr, len, pgoff, flags);
2023 if (IS_ERR_VALUE(addr))
2024 return addr;
2025
2026 if (addr > TASK_SIZE - len)
2027 return -ENOMEM;
2028 if (offset_in_page(addr))
2029 return -EINVAL;
2030
2031 addr = arch_rebalance_pgtables(addr, len);
2032 error = security_mmap_addr(addr);
2033 return error ? error : addr;
2034 }
2035
2036 EXPORT_SYMBOL(get_unmapped_area);
2037
2038 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2039 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2040 {
2041 struct rb_node *rb_node;
2042 struct vm_area_struct *vma;
2043
2044 /* Check the cache first. */
2045 vma = vmacache_find(mm, addr);
2046 if (likely(vma))
2047 return vma;
2048
2049 rb_node = mm->mm_rb.rb_node;
2050
2051 while (rb_node) {
2052 struct vm_area_struct *tmp;
2053
2054 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2055
2056 if (tmp->vm_end > addr) {
2057 vma = tmp;
2058 if (tmp->vm_start <= addr)
2059 break;
2060 rb_node = rb_node->rb_left;
2061 } else
2062 rb_node = rb_node->rb_right;
2063 }
2064
2065 if (vma)
2066 vmacache_update(addr, vma);
2067 return vma;
2068 }
2069
2070 EXPORT_SYMBOL(find_vma);
2071
2072 /*
2073 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2074 */
2075 struct vm_area_struct *
2076 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2077 struct vm_area_struct **pprev)
2078 {
2079 struct vm_area_struct *vma;
2080
2081 vma = find_vma(mm, addr);
2082 if (vma) {
2083 *pprev = vma->vm_prev;
2084 } else {
2085 struct rb_node *rb_node = mm->mm_rb.rb_node;
2086 *pprev = NULL;
2087 while (rb_node) {
2088 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2089 rb_node = rb_node->rb_right;
2090 }
2091 }
2092 return vma;
2093 }
2094
2095 /*
2096 * Verify that the stack growth is acceptable and
2097 * update accounting. This is shared with both the
2098 * grow-up and grow-down cases.
2099 */
2100 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2101 {
2102 struct mm_struct *mm = vma->vm_mm;
2103 struct rlimit *rlim = current->signal->rlim;
2104 unsigned long new_start, actual_size;
2105
2106 /* address space limit tests */
2107 if (!may_expand_vm(mm, grow))
2108 return -ENOMEM;
2109
2110 /* Stack limit test */
2111 actual_size = size;
2112 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2113 actual_size -= PAGE_SIZE;
2114 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2115 return -ENOMEM;
2116
2117 /* mlock limit tests */
2118 if (vma->vm_flags & VM_LOCKED) {
2119 unsigned long locked;
2120 unsigned long limit;
2121 locked = mm->locked_vm + grow;
2122 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2123 limit >>= PAGE_SHIFT;
2124 if (locked > limit && !capable(CAP_IPC_LOCK))
2125 return -ENOMEM;
2126 }
2127
2128 /* Check to ensure the stack will not grow into a hugetlb-only region */
2129 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2130 vma->vm_end - size;
2131 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2132 return -EFAULT;
2133
2134 /*
2135 * Overcommit.. This must be the final test, as it will
2136 * update security statistics.
2137 */
2138 if (security_vm_enough_memory_mm(mm, grow))
2139 return -ENOMEM;
2140
2141 return 0;
2142 }
2143
2144 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2145 /*
2146 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2147 * vma is the last one with address > vma->vm_end. Have to extend vma.
2148 */
2149 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2150 {
2151 struct mm_struct *mm = vma->vm_mm;
2152 int error;
2153
2154 if (!(vma->vm_flags & VM_GROWSUP))
2155 return -EFAULT;
2156
2157 /*
2158 * We must make sure the anon_vma is allocated
2159 * so that the anon_vma locking is not a noop.
2160 */
2161 if (unlikely(anon_vma_prepare(vma)))
2162 return -ENOMEM;
2163 vma_lock_anon_vma(vma);
2164
2165 /*
2166 * vma->vm_start/vm_end cannot change under us because the caller
2167 * is required to hold the mmap_sem in read mode. We need the
2168 * anon_vma lock to serialize against concurrent expand_stacks.
2169 * Also guard against wrapping around to address 0.
2170 */
2171 if (address < PAGE_ALIGN(address+4))
2172 address = PAGE_ALIGN(address+4);
2173 else {
2174 vma_unlock_anon_vma(vma);
2175 return -ENOMEM;
2176 }
2177 error = 0;
2178
2179 /* Somebody else might have raced and expanded it already */
2180 if (address > vma->vm_end) {
2181 unsigned long size, grow;
2182
2183 size = address - vma->vm_start;
2184 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2185
2186 error = -ENOMEM;
2187 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2188 error = acct_stack_growth(vma, size, grow);
2189 if (!error) {
2190 /*
2191 * vma_gap_update() doesn't support concurrent
2192 * updates, but we only hold a shared mmap_sem
2193 * lock here, so we need to protect against
2194 * concurrent vma expansions.
2195 * vma_lock_anon_vma() doesn't help here, as
2196 * we don't guarantee that all growable vmas
2197 * in a mm share the same root anon vma.
2198 * So, we reuse mm->page_table_lock to guard
2199 * against concurrent vma expansions.
2200 */
2201 spin_lock(&mm->page_table_lock);
2202 if (vma->vm_flags & VM_LOCKED)
2203 mm->locked_vm += grow;
2204 vm_stat_account(mm, vma->vm_flags,
2205 vma->vm_file, grow);
2206 anon_vma_interval_tree_pre_update_vma(vma);
2207 vma->vm_end = address;
2208 anon_vma_interval_tree_post_update_vma(vma);
2209 if (vma->vm_next)
2210 vma_gap_update(vma->vm_next);
2211 else
2212 mm->highest_vm_end = address;
2213 spin_unlock(&mm->page_table_lock);
2214
2215 perf_event_mmap(vma);
2216 }
2217 }
2218 }
2219 vma_unlock_anon_vma(vma);
2220 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2221 validate_mm(mm);
2222 return error;
2223 }
2224 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2225
2226 /*
2227 * vma is the first one with address < vma->vm_start. Have to extend vma.
2228 */
2229 int expand_downwards(struct vm_area_struct *vma,
2230 unsigned long address)
2231 {
2232 struct mm_struct *mm = vma->vm_mm;
2233 int error;
2234
2235 /*
2236 * We must make sure the anon_vma is allocated
2237 * so that the anon_vma locking is not a noop.
2238 */
2239 if (unlikely(anon_vma_prepare(vma)))
2240 return -ENOMEM;
2241
2242 address &= PAGE_MASK;
2243 error = security_mmap_addr(address);
2244 if (error)
2245 return error;
2246
2247 vma_lock_anon_vma(vma);
2248
2249 /*
2250 * vma->vm_start/vm_end cannot change under us because the caller
2251 * is required to hold the mmap_sem in read mode. We need the
2252 * anon_vma lock to serialize against concurrent expand_stacks.
2253 */
2254
2255 /* Somebody else might have raced and expanded it already */
2256 if (address < vma->vm_start) {
2257 unsigned long size, grow;
2258
2259 size = vma->vm_end - address;
2260 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2261
2262 error = -ENOMEM;
2263 if (grow <= vma->vm_pgoff) {
2264 error = acct_stack_growth(vma, size, grow);
2265 if (!error) {
2266 /*
2267 * vma_gap_update() doesn't support concurrent
2268 * updates, but we only hold a shared mmap_sem
2269 * lock here, so we need to protect against
2270 * concurrent vma expansions.
2271 * vma_lock_anon_vma() doesn't help here, as
2272 * we don't guarantee that all growable vmas
2273 * in a mm share the same root anon vma.
2274 * So, we reuse mm->page_table_lock to guard
2275 * against concurrent vma expansions.
2276 */
2277 spin_lock(&mm->page_table_lock);
2278 if (vma->vm_flags & VM_LOCKED)
2279 mm->locked_vm += grow;
2280 vm_stat_account(mm, vma->vm_flags,
2281 vma->vm_file, grow);
2282 anon_vma_interval_tree_pre_update_vma(vma);
2283 vma->vm_start = address;
2284 vma->vm_pgoff -= grow;
2285 anon_vma_interval_tree_post_update_vma(vma);
2286 vma_gap_update(vma);
2287 spin_unlock(&mm->page_table_lock);
2288
2289 perf_event_mmap(vma);
2290 }
2291 }
2292 }
2293 vma_unlock_anon_vma(vma);
2294 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2295 validate_mm(mm);
2296 return error;
2297 }
2298
2299 /*
2300 * Note how expand_stack() refuses to expand the stack all the way to
2301 * abut the next virtual mapping, *unless* that mapping itself is also
2302 * a stack mapping. We want to leave room for a guard page, after all
2303 * (the guard page itself is not added here, that is done by the
2304 * actual page faulting logic)
2305 *
2306 * This matches the behavior of the guard page logic (see mm/memory.c:
2307 * check_stack_guard_page()), which only allows the guard page to be
2308 * removed under these circumstances.
2309 */
2310 #ifdef CONFIG_STACK_GROWSUP
2311 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2312 {
2313 struct vm_area_struct *next;
2314
2315 address &= PAGE_MASK;
2316 next = vma->vm_next;
2317 if (next && next->vm_start == address + PAGE_SIZE) {
2318 if (!(next->vm_flags & VM_GROWSUP))
2319 return -ENOMEM;
2320 }
2321 return expand_upwards(vma, address);
2322 }
2323
2324 struct vm_area_struct *
2325 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2326 {
2327 struct vm_area_struct *vma, *prev;
2328
2329 addr &= PAGE_MASK;
2330 vma = find_vma_prev(mm, addr, &prev);
2331 if (vma && (vma->vm_start <= addr))
2332 return vma;
2333 if (!prev || expand_stack(prev, addr))
2334 return NULL;
2335 if (prev->vm_flags & VM_LOCKED)
2336 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2337 return prev;
2338 }
2339 #else
2340 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2341 {
2342 struct vm_area_struct *prev;
2343
2344 address &= PAGE_MASK;
2345 prev = vma->vm_prev;
2346 if (prev && prev->vm_end == address) {
2347 if (!(prev->vm_flags & VM_GROWSDOWN))
2348 return -ENOMEM;
2349 }
2350 return expand_downwards(vma, address);
2351 }
2352
2353 struct vm_area_struct *
2354 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2355 {
2356 struct vm_area_struct *vma;
2357 unsigned long start;
2358
2359 addr &= PAGE_MASK;
2360 vma = find_vma(mm, addr);
2361 if (!vma)
2362 return NULL;
2363 if (vma->vm_start <= addr)
2364 return vma;
2365 if (!(vma->vm_flags & VM_GROWSDOWN))
2366 return NULL;
2367 start = vma->vm_start;
2368 if (expand_stack(vma, addr))
2369 return NULL;
2370 if (vma->vm_flags & VM_LOCKED)
2371 populate_vma_page_range(vma, addr, start, NULL);
2372 return vma;
2373 }
2374 #endif
2375
2376 EXPORT_SYMBOL_GPL(find_extend_vma);
2377
2378 /*
2379 * Ok - we have the memory areas we should free on the vma list,
2380 * so release them, and do the vma updates.
2381 *
2382 * Called with the mm semaphore held.
2383 */
2384 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2385 {
2386 unsigned long nr_accounted = 0;
2387
2388 /* Update high watermark before we lower total_vm */
2389 update_hiwater_vm(mm);
2390 do {
2391 long nrpages = vma_pages(vma);
2392
2393 if (vma->vm_flags & VM_ACCOUNT)
2394 nr_accounted += nrpages;
2395 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2396 vma = remove_vma(vma);
2397 } while (vma);
2398 vm_unacct_memory(nr_accounted);
2399 validate_mm(mm);
2400 }
2401
2402 /*
2403 * Get rid of page table information in the indicated region.
2404 *
2405 * Called with the mm semaphore held.
2406 */
2407 static void unmap_region(struct mm_struct *mm,
2408 struct vm_area_struct *vma, struct vm_area_struct *prev,
2409 unsigned long start, unsigned long end)
2410 {
2411 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2412 struct mmu_gather tlb;
2413
2414 lru_add_drain();
2415 tlb_gather_mmu(&tlb, mm, start, end);
2416 update_hiwater_rss(mm);
2417 unmap_vmas(&tlb, vma, start, end);
2418 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2419 next ? next->vm_start : USER_PGTABLES_CEILING);
2420 tlb_finish_mmu(&tlb, start, end);
2421 }
2422
2423 /*
2424 * Create a list of vma's touched by the unmap, removing them from the mm's
2425 * vma list as we go..
2426 */
2427 static void
2428 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2429 struct vm_area_struct *prev, unsigned long end)
2430 {
2431 struct vm_area_struct **insertion_point;
2432 struct vm_area_struct *tail_vma = NULL;
2433
2434 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2435 vma->vm_prev = NULL;
2436 do {
2437 vma_rb_erase(vma, &mm->mm_rb);
2438 mm->map_count--;
2439 tail_vma = vma;
2440 vma = vma->vm_next;
2441 } while (vma && vma->vm_start < end);
2442 *insertion_point = vma;
2443 if (vma) {
2444 vma->vm_prev = prev;
2445 vma_gap_update(vma);
2446 } else
2447 mm->highest_vm_end = prev ? prev->vm_end : 0;
2448 tail_vma->vm_next = NULL;
2449
2450 /* Kill the cache */
2451 vmacache_invalidate(mm);
2452 }
2453
2454 /*
2455 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2456 * munmap path where it doesn't make sense to fail.
2457 */
2458 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2459 unsigned long addr, int new_below)
2460 {
2461 struct vm_area_struct *new;
2462 int err;
2463
2464 if (is_vm_hugetlb_page(vma) && (addr &
2465 ~(huge_page_mask(hstate_vma(vma)))))
2466 return -EINVAL;
2467
2468 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2469 if (!new)
2470 return -ENOMEM;
2471
2472 /* most fields are the same, copy all, and then fixup */
2473 *new = *vma;
2474
2475 INIT_LIST_HEAD(&new->anon_vma_chain);
2476
2477 if (new_below)
2478 new->vm_end = addr;
2479 else {
2480 new->vm_start = addr;
2481 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2482 }
2483
2484 err = vma_dup_policy(vma, new);
2485 if (err)
2486 goto out_free_vma;
2487
2488 err = anon_vma_clone(new, vma);
2489 if (err)
2490 goto out_free_mpol;
2491
2492 if (new->vm_file)
2493 get_file(new->vm_file);
2494
2495 if (new->vm_ops && new->vm_ops->open)
2496 new->vm_ops->open(new);
2497
2498 if (new_below)
2499 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2500 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2501 else
2502 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2503
2504 /* Success. */
2505 if (!err)
2506 return 0;
2507
2508 /* Clean everything up if vma_adjust failed. */
2509 if (new->vm_ops && new->vm_ops->close)
2510 new->vm_ops->close(new);
2511 if (new->vm_file)
2512 fput(new->vm_file);
2513 unlink_anon_vmas(new);
2514 out_free_mpol:
2515 mpol_put(vma_policy(new));
2516 out_free_vma:
2517 kmem_cache_free(vm_area_cachep, new);
2518 return err;
2519 }
2520
2521 /*
2522 * Split a vma into two pieces at address 'addr', a new vma is allocated
2523 * either for the first part or the tail.
2524 */
2525 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2526 unsigned long addr, int new_below)
2527 {
2528 if (mm->map_count >= sysctl_max_map_count)
2529 return -ENOMEM;
2530
2531 return __split_vma(mm, vma, addr, new_below);
2532 }
2533
2534 /* Munmap is split into 2 main parts -- this part which finds
2535 * what needs doing, and the areas themselves, which do the
2536 * work. This now handles partial unmappings.
2537 * Jeremy Fitzhardinge <jeremy@goop.org>
2538 */
2539 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2540 {
2541 unsigned long end;
2542 struct vm_area_struct *vma, *prev, *last;
2543
2544 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2545 return -EINVAL;
2546
2547 len = PAGE_ALIGN(len);
2548 if (len == 0)
2549 return -EINVAL;
2550
2551 /* Find the first overlapping VMA */
2552 vma = find_vma(mm, start);
2553 if (!vma)
2554 return 0;
2555 prev = vma->vm_prev;
2556 /* we have start < vma->vm_end */
2557
2558 /* if it doesn't overlap, we have nothing.. */
2559 end = start + len;
2560 if (vma->vm_start >= end)
2561 return 0;
2562
2563 /*
2564 * If we need to split any vma, do it now to save pain later.
2565 *
2566 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2567 * unmapped vm_area_struct will remain in use: so lower split_vma
2568 * places tmp vma above, and higher split_vma places tmp vma below.
2569 */
2570 if (start > vma->vm_start) {
2571 int error;
2572
2573 /*
2574 * Make sure that map_count on return from munmap() will
2575 * not exceed its limit; but let map_count go just above
2576 * its limit temporarily, to help free resources as expected.
2577 */
2578 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2579 return -ENOMEM;
2580
2581 error = __split_vma(mm, vma, start, 0);
2582 if (error)
2583 return error;
2584 prev = vma;
2585 }
2586
2587 /* Does it split the last one? */
2588 last = find_vma(mm, end);
2589 if (last && end > last->vm_start) {
2590 int error = __split_vma(mm, last, end, 1);
2591 if (error)
2592 return error;
2593 }
2594 vma = prev ? prev->vm_next : mm->mmap;
2595
2596 /*
2597 * unlock any mlock()ed ranges before detaching vmas
2598 */
2599 if (mm->locked_vm) {
2600 struct vm_area_struct *tmp = vma;
2601 while (tmp && tmp->vm_start < end) {
2602 if (tmp->vm_flags & VM_LOCKED) {
2603 mm->locked_vm -= vma_pages(tmp);
2604 munlock_vma_pages_all(tmp);
2605 }
2606 tmp = tmp->vm_next;
2607 }
2608 }
2609
2610 /*
2611 * Remove the vma's, and unmap the actual pages
2612 */
2613 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2614 unmap_region(mm, vma, prev, start, end);
2615
2616 arch_unmap(mm, vma, start, end);
2617
2618 /* Fix up all other VM information */
2619 remove_vma_list(mm, vma);
2620
2621 return 0;
2622 }
2623
2624 int vm_munmap(unsigned long start, size_t len)
2625 {
2626 int ret;
2627 struct mm_struct *mm = current->mm;
2628
2629 down_write(&mm->mmap_sem);
2630 ret = do_munmap(mm, start, len);
2631 up_write(&mm->mmap_sem);
2632 return ret;
2633 }
2634 EXPORT_SYMBOL(vm_munmap);
2635
2636 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2637 {
2638 profile_munmap(addr);
2639 return vm_munmap(addr, len);
2640 }
2641
2642
2643 /*
2644 * Emulation of deprecated remap_file_pages() syscall.
2645 */
2646 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2647 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2648 {
2649
2650 struct mm_struct *mm = current->mm;
2651 struct vm_area_struct *vma;
2652 unsigned long populate = 0;
2653 unsigned long ret = -EINVAL;
2654 struct file *file;
2655
2656 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2657 "See Documentation/vm/remap_file_pages.txt.\n",
2658 current->comm, current->pid);
2659
2660 if (prot)
2661 return ret;
2662 start = start & PAGE_MASK;
2663 size = size & PAGE_MASK;
2664
2665 if (start + size <= start)
2666 return ret;
2667
2668 /* Does pgoff wrap? */
2669 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2670 return ret;
2671
2672 down_write(&mm->mmap_sem);
2673 vma = find_vma(mm, start);
2674
2675 if (!vma || !(vma->vm_flags & VM_SHARED))
2676 goto out;
2677
2678 if (start < vma->vm_start || start + size > vma->vm_end)
2679 goto out;
2680
2681 if (pgoff == linear_page_index(vma, start)) {
2682 ret = 0;
2683 goto out;
2684 }
2685
2686 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2687 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2688 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2689
2690 flags &= MAP_NONBLOCK;
2691 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2692 if (vma->vm_flags & VM_LOCKED) {
2693 flags |= MAP_LOCKED;
2694 /* drop PG_Mlocked flag for over-mapped range */
2695 munlock_vma_pages_range(vma, start, start + size);
2696 }
2697
2698 file = get_file(vma->vm_file);
2699 ret = do_mmap_pgoff(vma->vm_file, start, size,
2700 prot, flags, pgoff, &populate);
2701 fput(file);
2702 out:
2703 up_write(&mm->mmap_sem);
2704 if (populate)
2705 mm_populate(ret, populate);
2706 if (!IS_ERR_VALUE(ret))
2707 ret = 0;
2708 return ret;
2709 }
2710
2711 static inline void verify_mm_writelocked(struct mm_struct *mm)
2712 {
2713 #ifdef CONFIG_DEBUG_VM
2714 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2715 WARN_ON(1);
2716 up_read(&mm->mmap_sem);
2717 }
2718 #endif
2719 }
2720
2721 /*
2722 * this is really a simplified "do_mmap". it only handles
2723 * anonymous maps. eventually we may be able to do some
2724 * brk-specific accounting here.
2725 */
2726 static unsigned long do_brk(unsigned long addr, unsigned long len)
2727 {
2728 struct mm_struct *mm = current->mm;
2729 struct vm_area_struct *vma, *prev;
2730 unsigned long flags;
2731 struct rb_node **rb_link, *rb_parent;
2732 pgoff_t pgoff = addr >> PAGE_SHIFT;
2733 int error;
2734
2735 len = PAGE_ALIGN(len);
2736 if (!len)
2737 return addr;
2738
2739 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2740
2741 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2742 if (offset_in_page(error))
2743 return error;
2744
2745 error = mlock_future_check(mm, mm->def_flags, len);
2746 if (error)
2747 return error;
2748
2749 /*
2750 * mm->mmap_sem is required to protect against another thread
2751 * changing the mappings in case we sleep.
2752 */
2753 verify_mm_writelocked(mm);
2754
2755 /*
2756 * Clear old maps. this also does some error checking for us
2757 */
2758 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2759 &rb_parent)) {
2760 if (do_munmap(mm, addr, len))
2761 return -ENOMEM;
2762 }
2763
2764 /* Check against address space limits *after* clearing old maps... */
2765 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2766 return -ENOMEM;
2767
2768 if (mm->map_count > sysctl_max_map_count)
2769 return -ENOMEM;
2770
2771 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2772 return -ENOMEM;
2773
2774 /* Can we just expand an old private anonymous mapping? */
2775 vma = vma_merge(mm, prev, addr, addr + len, flags,
2776 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2777 if (vma)
2778 goto out;
2779
2780 /*
2781 * create a vma struct for an anonymous mapping
2782 */
2783 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2784 if (!vma) {
2785 vm_unacct_memory(len >> PAGE_SHIFT);
2786 return -ENOMEM;
2787 }
2788
2789 INIT_LIST_HEAD(&vma->anon_vma_chain);
2790 vma->vm_mm = mm;
2791 vma->vm_start = addr;
2792 vma->vm_end = addr + len;
2793 vma->vm_pgoff = pgoff;
2794 vma->vm_flags = flags;
2795 vma->vm_page_prot = vm_get_page_prot(flags);
2796 vma_link(mm, vma, prev, rb_link, rb_parent);
2797 out:
2798 perf_event_mmap(vma);
2799 mm->total_vm += len >> PAGE_SHIFT;
2800 if (flags & VM_LOCKED)
2801 mm->locked_vm += (len >> PAGE_SHIFT);
2802 vma->vm_flags |= VM_SOFTDIRTY;
2803 return addr;
2804 }
2805
2806 unsigned long vm_brk(unsigned long addr, unsigned long len)
2807 {
2808 struct mm_struct *mm = current->mm;
2809 unsigned long ret;
2810 bool populate;
2811
2812 down_write(&mm->mmap_sem);
2813 ret = do_brk(addr, len);
2814 populate = ((mm->def_flags & VM_LOCKED) != 0);
2815 up_write(&mm->mmap_sem);
2816 if (populate)
2817 mm_populate(addr, len);
2818 return ret;
2819 }
2820 EXPORT_SYMBOL(vm_brk);
2821
2822 /* Release all mmaps. */
2823 void exit_mmap(struct mm_struct *mm)
2824 {
2825 struct mmu_gather tlb;
2826 struct vm_area_struct *vma;
2827 unsigned long nr_accounted = 0;
2828
2829 /* mm's last user has gone, and its about to be pulled down */
2830 mmu_notifier_release(mm);
2831
2832 if (mm->locked_vm) {
2833 vma = mm->mmap;
2834 while (vma) {
2835 if (vma->vm_flags & VM_LOCKED)
2836 munlock_vma_pages_all(vma);
2837 vma = vma->vm_next;
2838 }
2839 }
2840
2841 arch_exit_mmap(mm);
2842
2843 vma = mm->mmap;
2844 if (!vma) /* Can happen if dup_mmap() received an OOM */
2845 return;
2846
2847 lru_add_drain();
2848 flush_cache_mm(mm);
2849 tlb_gather_mmu(&tlb, mm, 0, -1);
2850 /* update_hiwater_rss(mm) here? but nobody should be looking */
2851 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2852 unmap_vmas(&tlb, vma, 0, -1);
2853
2854 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2855 tlb_finish_mmu(&tlb, 0, -1);
2856
2857 /*
2858 * Walk the list again, actually closing and freeing it,
2859 * with preemption enabled, without holding any MM locks.
2860 */
2861 while (vma) {
2862 if (vma->vm_flags & VM_ACCOUNT)
2863 nr_accounted += vma_pages(vma);
2864 vma = remove_vma(vma);
2865 }
2866 vm_unacct_memory(nr_accounted);
2867 }
2868
2869 /* Insert vm structure into process list sorted by address
2870 * and into the inode's i_mmap tree. If vm_file is non-NULL
2871 * then i_mmap_rwsem is taken here.
2872 */
2873 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2874 {
2875 struct vm_area_struct *prev;
2876 struct rb_node **rb_link, *rb_parent;
2877
2878 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2879 &prev, &rb_link, &rb_parent))
2880 return -ENOMEM;
2881 if ((vma->vm_flags & VM_ACCOUNT) &&
2882 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2883 return -ENOMEM;
2884
2885 /*
2886 * The vm_pgoff of a purely anonymous vma should be irrelevant
2887 * until its first write fault, when page's anon_vma and index
2888 * are set. But now set the vm_pgoff it will almost certainly
2889 * end up with (unless mremap moves it elsewhere before that
2890 * first wfault), so /proc/pid/maps tells a consistent story.
2891 *
2892 * By setting it to reflect the virtual start address of the
2893 * vma, merges and splits can happen in a seamless way, just
2894 * using the existing file pgoff checks and manipulations.
2895 * Similarly in do_mmap_pgoff and in do_brk.
2896 */
2897 if (vma_is_anonymous(vma)) {
2898 BUG_ON(vma->anon_vma);
2899 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2900 }
2901
2902 vma_link(mm, vma, prev, rb_link, rb_parent);
2903 return 0;
2904 }
2905
2906 /*
2907 * Copy the vma structure to a new location in the same mm,
2908 * prior to moving page table entries, to effect an mremap move.
2909 */
2910 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2911 unsigned long addr, unsigned long len, pgoff_t pgoff,
2912 bool *need_rmap_locks)
2913 {
2914 struct vm_area_struct *vma = *vmap;
2915 unsigned long vma_start = vma->vm_start;
2916 struct mm_struct *mm = vma->vm_mm;
2917 struct vm_area_struct *new_vma, *prev;
2918 struct rb_node **rb_link, *rb_parent;
2919 bool faulted_in_anon_vma = true;
2920
2921 /*
2922 * If anonymous vma has not yet been faulted, update new pgoff
2923 * to match new location, to increase its chance of merging.
2924 */
2925 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2926 pgoff = addr >> PAGE_SHIFT;
2927 faulted_in_anon_vma = false;
2928 }
2929
2930 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2931 return NULL; /* should never get here */
2932 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2933 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2934 vma->vm_userfaultfd_ctx);
2935 if (new_vma) {
2936 /*
2937 * Source vma may have been merged into new_vma
2938 */
2939 if (unlikely(vma_start >= new_vma->vm_start &&
2940 vma_start < new_vma->vm_end)) {
2941 /*
2942 * The only way we can get a vma_merge with
2943 * self during an mremap is if the vma hasn't
2944 * been faulted in yet and we were allowed to
2945 * reset the dst vma->vm_pgoff to the
2946 * destination address of the mremap to allow
2947 * the merge to happen. mremap must change the
2948 * vm_pgoff linearity between src and dst vmas
2949 * (in turn preventing a vma_merge) to be
2950 * safe. It is only safe to keep the vm_pgoff
2951 * linear if there are no pages mapped yet.
2952 */
2953 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2954 *vmap = vma = new_vma;
2955 }
2956 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2957 } else {
2958 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2959 if (!new_vma)
2960 goto out;
2961 *new_vma = *vma;
2962 new_vma->vm_start = addr;
2963 new_vma->vm_end = addr + len;
2964 new_vma->vm_pgoff = pgoff;
2965 if (vma_dup_policy(vma, new_vma))
2966 goto out_free_vma;
2967 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2968 if (anon_vma_clone(new_vma, vma))
2969 goto out_free_mempol;
2970 if (new_vma->vm_file)
2971 get_file(new_vma->vm_file);
2972 if (new_vma->vm_ops && new_vma->vm_ops->open)
2973 new_vma->vm_ops->open(new_vma);
2974 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2975 *need_rmap_locks = false;
2976 }
2977 return new_vma;
2978
2979 out_free_mempol:
2980 mpol_put(vma_policy(new_vma));
2981 out_free_vma:
2982 kmem_cache_free(vm_area_cachep, new_vma);
2983 out:
2984 return NULL;
2985 }
2986
2987 /*
2988 * Return true if the calling process may expand its vm space by the passed
2989 * number of pages
2990 */
2991 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2992 {
2993 unsigned long cur = mm->total_vm; /* pages */
2994 unsigned long lim;
2995
2996 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2997
2998 if (cur + npages > lim)
2999 return 0;
3000 return 1;
3001 }
3002
3003 static int special_mapping_fault(struct vm_area_struct *vma,
3004 struct vm_fault *vmf);
3005
3006 /*
3007 * Having a close hook prevents vma merging regardless of flags.
3008 */
3009 static void special_mapping_close(struct vm_area_struct *vma)
3010 {
3011 }
3012
3013 static const char *special_mapping_name(struct vm_area_struct *vma)
3014 {
3015 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3016 }
3017
3018 static const struct vm_operations_struct special_mapping_vmops = {
3019 .close = special_mapping_close,
3020 .fault = special_mapping_fault,
3021 .name = special_mapping_name,
3022 };
3023
3024 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3025 .close = special_mapping_close,
3026 .fault = special_mapping_fault,
3027 };
3028
3029 static int special_mapping_fault(struct vm_area_struct *vma,
3030 struct vm_fault *vmf)
3031 {
3032 pgoff_t pgoff;
3033 struct page **pages;
3034
3035 if (vma->vm_ops == &legacy_special_mapping_vmops)
3036 pages = vma->vm_private_data;
3037 else
3038 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3039 pages;
3040
3041 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3042 pgoff--;
3043
3044 if (*pages) {
3045 struct page *page = *pages;
3046 get_page(page);
3047 vmf->page = page;
3048 return 0;
3049 }
3050
3051 return VM_FAULT_SIGBUS;
3052 }
3053
3054 static struct vm_area_struct *__install_special_mapping(
3055 struct mm_struct *mm,
3056 unsigned long addr, unsigned long len,
3057 unsigned long vm_flags, const struct vm_operations_struct *ops,
3058 void *priv)
3059 {
3060 int ret;
3061 struct vm_area_struct *vma;
3062
3063 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3064 if (unlikely(vma == NULL))
3065 return ERR_PTR(-ENOMEM);
3066
3067 INIT_LIST_HEAD(&vma->anon_vma_chain);
3068 vma->vm_mm = mm;
3069 vma->vm_start = addr;
3070 vma->vm_end = addr + len;
3071
3072 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3073 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3074
3075 vma->vm_ops = ops;
3076 vma->vm_private_data = priv;
3077
3078 ret = insert_vm_struct(mm, vma);
3079 if (ret)
3080 goto out;
3081
3082 mm->total_vm += len >> PAGE_SHIFT;
3083
3084 perf_event_mmap(vma);
3085
3086 return vma;
3087
3088 out:
3089 kmem_cache_free(vm_area_cachep, vma);
3090 return ERR_PTR(ret);
3091 }
3092
3093 /*
3094 * Called with mm->mmap_sem held for writing.
3095 * Insert a new vma covering the given region, with the given flags.
3096 * Its pages are supplied by the given array of struct page *.
3097 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3098 * The region past the last page supplied will always produce SIGBUS.
3099 * The array pointer and the pages it points to are assumed to stay alive
3100 * for as long as this mapping might exist.
3101 */
3102 struct vm_area_struct *_install_special_mapping(
3103 struct mm_struct *mm,
3104 unsigned long addr, unsigned long len,
3105 unsigned long vm_flags, const struct vm_special_mapping *spec)
3106 {
3107 return __install_special_mapping(mm, addr, len, vm_flags,
3108 &special_mapping_vmops, (void *)spec);
3109 }
3110
3111 int install_special_mapping(struct mm_struct *mm,
3112 unsigned long addr, unsigned long len,
3113 unsigned long vm_flags, struct page **pages)
3114 {
3115 struct vm_area_struct *vma = __install_special_mapping(
3116 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3117 (void *)pages);
3118
3119 return PTR_ERR_OR_ZERO(vma);
3120 }
3121
3122 static DEFINE_MUTEX(mm_all_locks_mutex);
3123
3124 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3125 {
3126 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3127 /*
3128 * The LSB of head.next can't change from under us
3129 * because we hold the mm_all_locks_mutex.
3130 */
3131 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3132 /*
3133 * We can safely modify head.next after taking the
3134 * anon_vma->root->rwsem. If some other vma in this mm shares
3135 * the same anon_vma we won't take it again.
3136 *
3137 * No need of atomic instructions here, head.next
3138 * can't change from under us thanks to the
3139 * anon_vma->root->rwsem.
3140 */
3141 if (__test_and_set_bit(0, (unsigned long *)
3142 &anon_vma->root->rb_root.rb_node))
3143 BUG();
3144 }
3145 }
3146
3147 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3148 {
3149 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3150 /*
3151 * AS_MM_ALL_LOCKS can't change from under us because
3152 * we hold the mm_all_locks_mutex.
3153 *
3154 * Operations on ->flags have to be atomic because
3155 * even if AS_MM_ALL_LOCKS is stable thanks to the
3156 * mm_all_locks_mutex, there may be other cpus
3157 * changing other bitflags in parallel to us.
3158 */
3159 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3160 BUG();
3161 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3162 }
3163 }
3164
3165 /*
3166 * This operation locks against the VM for all pte/vma/mm related
3167 * operations that could ever happen on a certain mm. This includes
3168 * vmtruncate, try_to_unmap, and all page faults.
3169 *
3170 * The caller must take the mmap_sem in write mode before calling
3171 * mm_take_all_locks(). The caller isn't allowed to release the
3172 * mmap_sem until mm_drop_all_locks() returns.
3173 *
3174 * mmap_sem in write mode is required in order to block all operations
3175 * that could modify pagetables and free pages without need of
3176 * altering the vma layout. It's also needed in write mode to avoid new
3177 * anon_vmas to be associated with existing vmas.
3178 *
3179 * A single task can't take more than one mm_take_all_locks() in a row
3180 * or it would deadlock.
3181 *
3182 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3183 * mapping->flags avoid to take the same lock twice, if more than one
3184 * vma in this mm is backed by the same anon_vma or address_space.
3185 *
3186 * We can take all the locks in random order because the VM code
3187 * taking i_mmap_rwsem or anon_vma->rwsem outside the mmap_sem never
3188 * takes more than one of them in a row. Secondly we're protected
3189 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3190 *
3191 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3192 * that may have to take thousand of locks.
3193 *
3194 * mm_take_all_locks() can fail if it's interrupted by signals.
3195 */
3196 int mm_take_all_locks(struct mm_struct *mm)
3197 {
3198 struct vm_area_struct *vma;
3199 struct anon_vma_chain *avc;
3200
3201 BUG_ON(down_read_trylock(&mm->mmap_sem));
3202
3203 mutex_lock(&mm_all_locks_mutex);
3204
3205 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3206 if (signal_pending(current))
3207 goto out_unlock;
3208 if (vma->vm_file && vma->vm_file->f_mapping)
3209 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3210 }
3211
3212 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3213 if (signal_pending(current))
3214 goto out_unlock;
3215 if (vma->anon_vma)
3216 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3217 vm_lock_anon_vma(mm, avc->anon_vma);
3218 }
3219
3220 return 0;
3221
3222 out_unlock:
3223 mm_drop_all_locks(mm);
3224 return -EINTR;
3225 }
3226
3227 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3228 {
3229 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3230 /*
3231 * The LSB of head.next can't change to 0 from under
3232 * us because we hold the mm_all_locks_mutex.
3233 *
3234 * We must however clear the bitflag before unlocking
3235 * the vma so the users using the anon_vma->rb_root will
3236 * never see our bitflag.
3237 *
3238 * No need of atomic instructions here, head.next
3239 * can't change from under us until we release the
3240 * anon_vma->root->rwsem.
3241 */
3242 if (!__test_and_clear_bit(0, (unsigned long *)
3243 &anon_vma->root->rb_root.rb_node))
3244 BUG();
3245 anon_vma_unlock_write(anon_vma);
3246 }
3247 }
3248
3249 static void vm_unlock_mapping(struct address_space *mapping)
3250 {
3251 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3252 /*
3253 * AS_MM_ALL_LOCKS can't change to 0 from under us
3254 * because we hold the mm_all_locks_mutex.
3255 */
3256 i_mmap_unlock_write(mapping);
3257 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3258 &mapping->flags))
3259 BUG();
3260 }
3261 }
3262
3263 /*
3264 * The mmap_sem cannot be released by the caller until
3265 * mm_drop_all_locks() returns.
3266 */
3267 void mm_drop_all_locks(struct mm_struct *mm)
3268 {
3269 struct vm_area_struct *vma;
3270 struct anon_vma_chain *avc;
3271
3272 BUG_ON(down_read_trylock(&mm->mmap_sem));
3273 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3274
3275 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3276 if (vma->anon_vma)
3277 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3278 vm_unlock_anon_vma(avc->anon_vma);
3279 if (vma->vm_file && vma->vm_file->f_mapping)
3280 vm_unlock_mapping(vma->vm_file->f_mapping);
3281 }
3282
3283 mutex_unlock(&mm_all_locks_mutex);
3284 }
3285
3286 /*
3287 * initialise the VMA slab
3288 */
3289 void __init mmap_init(void)
3290 {
3291 int ret;
3292
3293 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3294 VM_BUG_ON(ret);
3295 }
3296
3297 /*
3298 * Initialise sysctl_user_reserve_kbytes.
3299 *
3300 * This is intended to prevent a user from starting a single memory hogging
3301 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3302 * mode.
3303 *
3304 * The default value is min(3% of free memory, 128MB)
3305 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3306 */
3307 static int init_user_reserve(void)
3308 {
3309 unsigned long free_kbytes;
3310
3311 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3312
3313 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3314 return 0;
3315 }
3316 subsys_initcall(init_user_reserve);
3317
3318 /*
3319 * Initialise sysctl_admin_reserve_kbytes.
3320 *
3321 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3322 * to log in and kill a memory hogging process.
3323 *
3324 * Systems with more than 256MB will reserve 8MB, enough to recover
3325 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3326 * only reserve 3% of free pages by default.
3327 */
3328 static int init_admin_reserve(void)
3329 {
3330 unsigned long free_kbytes;
3331
3332 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3333
3334 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3335 return 0;
3336 }
3337 subsys_initcall(init_admin_reserve);
3338
3339 /*
3340 * Reinititalise user and admin reserves if memory is added or removed.
3341 *
3342 * The default user reserve max is 128MB, and the default max for the
3343 * admin reserve is 8MB. These are usually, but not always, enough to
3344 * enable recovery from a memory hogging process using login/sshd, a shell,
3345 * and tools like top. It may make sense to increase or even disable the
3346 * reserve depending on the existence of swap or variations in the recovery
3347 * tools. So, the admin may have changed them.
3348 *
3349 * If memory is added and the reserves have been eliminated or increased above
3350 * the default max, then we'll trust the admin.
3351 *
3352 * If memory is removed and there isn't enough free memory, then we
3353 * need to reset the reserves.
3354 *
3355 * Otherwise keep the reserve set by the admin.
3356 */
3357 static int reserve_mem_notifier(struct notifier_block *nb,
3358 unsigned long action, void *data)
3359 {
3360 unsigned long tmp, free_kbytes;
3361
3362 switch (action) {
3363 case MEM_ONLINE:
3364 /* Default max is 128MB. Leave alone if modified by operator. */
3365 tmp = sysctl_user_reserve_kbytes;
3366 if (0 < tmp && tmp < (1UL << 17))
3367 init_user_reserve();
3368
3369 /* Default max is 8MB. Leave alone if modified by operator. */
3370 tmp = sysctl_admin_reserve_kbytes;
3371 if (0 < tmp && tmp < (1UL << 13))
3372 init_admin_reserve();
3373
3374 break;
3375 case MEM_OFFLINE:
3376 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3377
3378 if (sysctl_user_reserve_kbytes > free_kbytes) {
3379 init_user_reserve();
3380 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3381 sysctl_user_reserve_kbytes);
3382 }
3383
3384 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3385 init_admin_reserve();
3386 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3387 sysctl_admin_reserve_kbytes);
3388 }
3389 break;
3390 default:
3391 break;
3392 }
3393 return NOTIFY_OK;
3394 }
3395
3396 static struct notifier_block reserve_mem_nb = {
3397 .notifier_call = reserve_mem_notifier,
3398 };
3399
3400 static int __meminit init_reserve_notifier(void)
3401 {
3402 if (register_hotmemory_notifier(&reserve_mem_nb))
3403 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3404
3405 return 0;
3406 }
3407 subsys_initcall(init_reserve_notifier);
This page took 0.100558 seconds and 5 git commands to generate.