6a0c15db7f60663168f29e7bfdbb5aa668ba642b
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/cacheflush.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36
37 #include "internal.h"
38
39 #ifndef arch_mmap_check
40 #define arch_mmap_check(addr, len, flags) (0)
41 #endif
42
43 #ifndef arch_rebalance_pgtables
44 #define arch_rebalance_pgtables(addr, len) (addr)
45 #endif
46
47 static void unmap_region(struct mm_struct *mm,
48 struct vm_area_struct *vma, struct vm_area_struct *prev,
49 unsigned long start, unsigned long end);
50
51 /*
52 * WARNING: the debugging will use recursive algorithms so never enable this
53 * unless you know what you are doing.
54 */
55 #undef DEBUG_MM_RB
56
57 /* description of effects of mapping type and prot in current implementation.
58 * this is due to the limited x86 page protection hardware. The expected
59 * behavior is in parens:
60 *
61 * map_type prot
62 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
63 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
64 * w: (no) no w: (no) no w: (yes) yes w: (no) no
65 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 *
67 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
68 * w: (no) no w: (no) no w: (copy) copy w: (no) no
69 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
70 *
71 */
72 pgprot_t protection_map[16] = {
73 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
74 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
75 };
76
77 pgprot_t vm_get_page_prot(unsigned long vm_flags)
78 {
79 return __pgprot(pgprot_val(protection_map[vm_flags &
80 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
81 pgprot_val(arch_vm_get_page_prot(vm_flags)));
82 }
83 EXPORT_SYMBOL(vm_get_page_prot);
84
85 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
86 int sysctl_overcommit_ratio = 50; /* default is 50% */
87 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
88 struct percpu_counter vm_committed_as;
89
90 /*
91 * Check that a process has enough memory to allocate a new virtual
92 * mapping. 0 means there is enough memory for the allocation to
93 * succeed and -ENOMEM implies there is not.
94 *
95 * We currently support three overcommit policies, which are set via the
96 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 *
98 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
99 * Additional code 2002 Jul 20 by Robert Love.
100 *
101 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 *
103 * Note this is a helper function intended to be used by LSMs which
104 * wish to use this logic.
105 */
106 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
107 {
108 unsigned long free, allowed;
109
110 vm_acct_memory(pages);
111
112 /*
113 * Sometimes we want to use more memory than we have
114 */
115 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
116 return 0;
117
118 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
119 unsigned long n;
120
121 free = global_page_state(NR_FILE_PAGES);
122 free += nr_swap_pages;
123
124 /*
125 * Any slabs which are created with the
126 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
127 * which are reclaimable, under pressure. The dentry
128 * cache and most inode caches should fall into this
129 */
130 free += global_page_state(NR_SLAB_RECLAIMABLE);
131
132 /*
133 * Leave the last 3% for root
134 */
135 if (!cap_sys_admin)
136 free -= free / 32;
137
138 if (free > pages)
139 return 0;
140
141 /*
142 * nr_free_pages() is very expensive on large systems,
143 * only call if we're about to fail.
144 */
145 n = nr_free_pages();
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (n <= totalreserve_pages)
151 goto error;
152 else
153 n -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 n -= n / 32;
160 free += n;
161
162 if (free > pages)
163 return 0;
164
165 goto error;
166 }
167
168 allowed = (totalram_pages - hugetlb_total_pages())
169 * sysctl_overcommit_ratio / 100;
170 /*
171 * Leave the last 3% for root
172 */
173 if (!cap_sys_admin)
174 allowed -= allowed / 32;
175 allowed += total_swap_pages;
176
177 /* Don't let a single process grow too big:
178 leave 3% of the size of this process for other processes */
179 if (mm)
180 allowed -= mm->total_vm / 32;
181
182 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
183 return 0;
184 error:
185 vm_unacct_memory(pages);
186
187 return -ENOMEM;
188 }
189
190 /*
191 * Requires inode->i_mapping->i_mmap_lock
192 */
193 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
194 struct file *file, struct address_space *mapping)
195 {
196 if (vma->vm_flags & VM_DENYWRITE)
197 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
198 if (vma->vm_flags & VM_SHARED)
199 mapping->i_mmap_writable--;
200
201 flush_dcache_mmap_lock(mapping);
202 if (unlikely(vma->vm_flags & VM_NONLINEAR))
203 list_del_init(&vma->shared.vm_set.list);
204 else
205 vma_prio_tree_remove(vma, &mapping->i_mmap);
206 flush_dcache_mmap_unlock(mapping);
207 }
208
209 /*
210 * Unlink a file-based vm structure from its prio_tree, to hide
211 * vma from rmap and vmtruncate before freeing its page tables.
212 */
213 void unlink_file_vma(struct vm_area_struct *vma)
214 {
215 struct file *file = vma->vm_file;
216
217 if (file) {
218 struct address_space *mapping = file->f_mapping;
219 spin_lock(&mapping->i_mmap_lock);
220 __remove_shared_vm_struct(vma, file, mapping);
221 spin_unlock(&mapping->i_mmap_lock);
222 }
223 }
224
225 /*
226 * Close a vm structure and free it, returning the next.
227 */
228 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
229 {
230 struct vm_area_struct *next = vma->vm_next;
231
232 might_sleep();
233 if (vma->vm_ops && vma->vm_ops->close)
234 vma->vm_ops->close(vma);
235 if (vma->vm_file) {
236 fput(vma->vm_file);
237 if (vma->vm_flags & VM_EXECUTABLE)
238 removed_exe_file_vma(vma->vm_mm);
239 }
240 mpol_put(vma_policy(vma));
241 kmem_cache_free(vm_area_cachep, vma);
242 return next;
243 }
244
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
251
252 down_write(&mm->mmap_sem);
253
254 #ifdef CONFIG_COMPAT_BRK
255 min_brk = mm->end_code;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
261
262 /*
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
267 */
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
272
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
277
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
283 }
284
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
288
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
298 }
299
300 #ifdef DEBUG_MM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
320 }
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
324 }
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
328 }
329
330 void validate_mm(struct mm_struct *mm)
331 {
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *tmp = mm->mmap;
335 while (tmp) {
336 tmp = tmp->vm_next;
337 i++;
338 }
339 if (i != mm->map_count)
340 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
341 i = browse_rb(&mm->mm_rb);
342 if (i != mm->map_count)
343 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
344 BUG_ON(bug);
345 }
346 #else
347 #define validate_mm(mm) do { } while (0)
348 #endif
349
350 static struct vm_area_struct *
351 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
352 struct vm_area_struct **pprev, struct rb_node ***rb_link,
353 struct rb_node ** rb_parent)
354 {
355 struct vm_area_struct * vma;
356 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
357
358 __rb_link = &mm->mm_rb.rb_node;
359 rb_prev = __rb_parent = NULL;
360 vma = NULL;
361
362 while (*__rb_link) {
363 struct vm_area_struct *vma_tmp;
364
365 __rb_parent = *__rb_link;
366 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
367
368 if (vma_tmp->vm_end > addr) {
369 vma = vma_tmp;
370 if (vma_tmp->vm_start <= addr)
371 break;
372 __rb_link = &__rb_parent->rb_left;
373 } else {
374 rb_prev = __rb_parent;
375 __rb_link = &__rb_parent->rb_right;
376 }
377 }
378
379 *pprev = NULL;
380 if (rb_prev)
381 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
382 *rb_link = __rb_link;
383 *rb_parent = __rb_parent;
384 return vma;
385 }
386
387 static inline void
388 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
389 struct vm_area_struct *prev, struct rb_node *rb_parent)
390 {
391 if (prev) {
392 vma->vm_next = prev->vm_next;
393 prev->vm_next = vma;
394 } else {
395 mm->mmap = vma;
396 if (rb_parent)
397 vma->vm_next = rb_entry(rb_parent,
398 struct vm_area_struct, vm_rb);
399 else
400 vma->vm_next = NULL;
401 }
402 }
403
404 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
405 struct rb_node **rb_link, struct rb_node *rb_parent)
406 {
407 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
408 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
409 }
410
411 static void __vma_link_file(struct vm_area_struct *vma)
412 {
413 struct file *file;
414
415 file = vma->vm_file;
416 if (file) {
417 struct address_space *mapping = file->f_mapping;
418
419 if (vma->vm_flags & VM_DENYWRITE)
420 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
421 if (vma->vm_flags & VM_SHARED)
422 mapping->i_mmap_writable++;
423
424 flush_dcache_mmap_lock(mapping);
425 if (unlikely(vma->vm_flags & VM_NONLINEAR))
426 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
427 else
428 vma_prio_tree_insert(vma, &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 }
431 }
432
433 static void
434 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
437 {
438 __vma_link_list(mm, vma, prev, rb_parent);
439 __vma_link_rb(mm, vma, rb_link, rb_parent);
440 }
441
442 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
443 struct vm_area_struct *prev, struct rb_node **rb_link,
444 struct rb_node *rb_parent)
445 {
446 struct address_space *mapping = NULL;
447
448 if (vma->vm_file)
449 mapping = vma->vm_file->f_mapping;
450
451 if (mapping) {
452 spin_lock(&mapping->i_mmap_lock);
453 vma->vm_truncate_count = mapping->truncate_count;
454 }
455 anon_vma_lock(vma);
456
457 __vma_link(mm, vma, prev, rb_link, rb_parent);
458 __vma_link_file(vma);
459
460 anon_vma_unlock(vma);
461 if (mapping)
462 spin_unlock(&mapping->i_mmap_lock);
463
464 mm->map_count++;
465 validate_mm(mm);
466 }
467
468 /*
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
472 */
473 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
474 {
475 struct vm_area_struct *__vma, *prev;
476 struct rb_node **rb_link, *rb_parent;
477
478 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
479 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
480 __vma_link(mm, vma, prev, rb_link, rb_parent);
481 mm->map_count++;
482 }
483
484 static inline void
485 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
486 struct vm_area_struct *prev)
487 {
488 prev->vm_next = vma->vm_next;
489 rb_erase(&vma->vm_rb, &mm->mm_rb);
490 if (mm->mmap_cache == vma)
491 mm->mmap_cache = prev;
492 }
493
494 /*
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
500 */
501 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
502 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
503 {
504 struct mm_struct *mm = vma->vm_mm;
505 struct vm_area_struct *next = vma->vm_next;
506 struct vm_area_struct *importer = NULL;
507 struct address_space *mapping = NULL;
508 struct prio_tree_root *root = NULL;
509 struct file *file = vma->vm_file;
510 struct anon_vma *anon_vma = NULL;
511 long adjust_next = 0;
512 int remove_next = 0;
513
514 if (next && !insert) {
515 if (end >= next->vm_end) {
516 /*
517 * vma expands, overlapping all the next, and
518 * perhaps the one after too (mprotect case 6).
519 */
520 again: remove_next = 1 + (end > next->vm_end);
521 end = next->vm_end;
522 anon_vma = next->anon_vma;
523 importer = vma;
524 } else if (end > next->vm_start) {
525 /*
526 * vma expands, overlapping part of the next:
527 * mprotect case 5 shifting the boundary up.
528 */
529 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
530 anon_vma = next->anon_vma;
531 importer = vma;
532 } else if (end < vma->vm_end) {
533 /*
534 * vma shrinks, and !insert tells it's not
535 * split_vma inserting another: so it must be
536 * mprotect case 4 shifting the boundary down.
537 */
538 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
539 anon_vma = next->anon_vma;
540 importer = next;
541 }
542 }
543
544 /*
545 * When changing only vma->vm_end, we don't really need anon_vma lock.
546 */
547 if (vma->anon_vma && (insert || importer || start != vma->vm_start))
548 anon_vma = vma->anon_vma;
549 if (anon_vma) {
550 /*
551 * Easily overlooked: when mprotect shifts the boundary,
552 * make sure the expanding vma has anon_vma set if the
553 * shrinking vma had, to cover any anon pages imported.
554 */
555 if (importer && !importer->anon_vma) {
556 /* Block reverse map lookups until things are set up. */
557 importer->vm_flags |= VM_LOCK_RMAP;
558 if (anon_vma_clone(importer, vma)) {
559 importer->vm_flags &= ~VM_LOCK_RMAP;
560 return -ENOMEM;
561 }
562 importer->anon_vma = anon_vma;
563 }
564 }
565
566 if (file) {
567 mapping = file->f_mapping;
568 if (!(vma->vm_flags & VM_NONLINEAR))
569 root = &mapping->i_mmap;
570 spin_lock(&mapping->i_mmap_lock);
571 if (importer &&
572 vma->vm_truncate_count != next->vm_truncate_count) {
573 /*
574 * unmap_mapping_range might be in progress:
575 * ensure that the expanding vma is rescanned.
576 */
577 importer->vm_truncate_count = 0;
578 }
579 if (insert) {
580 insert->vm_truncate_count = vma->vm_truncate_count;
581 /*
582 * Put into prio_tree now, so instantiated pages
583 * are visible to arm/parisc __flush_dcache_page
584 * throughout; but we cannot insert into address
585 * space until vma start or end is updated.
586 */
587 __vma_link_file(insert);
588 }
589 }
590
591 if (root) {
592 flush_dcache_mmap_lock(mapping);
593 vma_prio_tree_remove(vma, root);
594 if (adjust_next)
595 vma_prio_tree_remove(next, root);
596 }
597
598 vma->vm_start = start;
599 vma->vm_end = end;
600 vma->vm_pgoff = pgoff;
601 if (adjust_next) {
602 next->vm_start += adjust_next << PAGE_SHIFT;
603 next->vm_pgoff += adjust_next;
604 }
605
606 if (root) {
607 if (adjust_next)
608 vma_prio_tree_insert(next, root);
609 vma_prio_tree_insert(vma, root);
610 flush_dcache_mmap_unlock(mapping);
611 }
612
613 if (remove_next) {
614 /*
615 * vma_merge has merged next into vma, and needs
616 * us to remove next before dropping the locks.
617 */
618 __vma_unlink(mm, next, vma);
619 if (file)
620 __remove_shared_vm_struct(next, file, mapping);
621 /*
622 * This VMA is now dead, no need for rmap to follow it.
623 * Call anon_vma_merge below, outside of i_mmap_lock.
624 */
625 next->vm_flags |= VM_LOCK_RMAP;
626 } else if (insert) {
627 /*
628 * split_vma has split insert from vma, and needs
629 * us to insert it before dropping the locks
630 * (it may either follow vma or precede it).
631 */
632 __insert_vm_struct(mm, insert);
633 }
634
635 if (mapping)
636 spin_unlock(&mapping->i_mmap_lock);
637
638 /*
639 * The current VMA has been set up. It is now safe for the
640 * rmap code to get from the pages to the ptes.
641 */
642 if (anon_vma && importer)
643 importer->vm_flags &= ~VM_LOCK_RMAP;
644
645 if (remove_next) {
646 if (file) {
647 fput(file);
648 if (next->vm_flags & VM_EXECUTABLE)
649 removed_exe_file_vma(mm);
650 }
651 /* Protected by mmap_sem and VM_LOCK_RMAP. */
652 if (next->anon_vma)
653 anon_vma_merge(vma, next);
654 mm->map_count--;
655 mpol_put(vma_policy(next));
656 kmem_cache_free(vm_area_cachep, next);
657 /*
658 * In mprotect's case 6 (see comments on vma_merge),
659 * we must remove another next too. It would clutter
660 * up the code too much to do both in one go.
661 */
662 if (remove_next == 2) {
663 next = vma->vm_next;
664 goto again;
665 }
666 }
667
668 validate_mm(mm);
669
670 return 0;
671 }
672
673 /*
674 * If the vma has a ->close operation then the driver probably needs to release
675 * per-vma resources, so we don't attempt to merge those.
676 */
677 static inline int is_mergeable_vma(struct vm_area_struct *vma,
678 struct file *file, unsigned long vm_flags)
679 {
680 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
681 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
682 return 0;
683 if (vma->vm_file != file)
684 return 0;
685 if (vma->vm_ops && vma->vm_ops->close)
686 return 0;
687 return 1;
688 }
689
690 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
691 struct anon_vma *anon_vma2)
692 {
693 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
694 }
695
696 /*
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
699 *
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 *
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
706 */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
713 if (vma->vm_pgoff == vm_pgoff)
714 return 1;
715 }
716 return 0;
717 }
718
719 /*
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
722 *
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730 if (is_mergeable_vma(vma, file, vm_flags) &&
731 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
732 pgoff_t vm_pglen;
733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 return 1;
736 }
737 return 0;
738 }
739
740 /*
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
744 *
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
751 *
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 *
756 * AAAA AAAA AAAA AAAA
757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
758 * cannot merge might become might become might become
759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
761 * mremap move: PPPPNNNNNNNN 8
762 * AAAA
763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
764 * might become case 1 below case 2 below case 3 below
765 *
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 struct vm_area_struct *prev, unsigned long addr,
771 unsigned long end, unsigned long vm_flags,
772 struct anon_vma *anon_vma, struct file *file,
773 pgoff_t pgoff, struct mempolicy *policy)
774 {
775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 struct vm_area_struct *area, *next;
777 int err;
778
779 /*
780 * We later require that vma->vm_flags == vm_flags,
781 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 */
783 if (vm_flags & VM_SPECIAL)
784 return NULL;
785
786 if (prev)
787 next = prev->vm_next;
788 else
789 next = mm->mmap;
790 area = next;
791 if (next && next->vm_end == end) /* cases 6, 7, 8 */
792 next = next->vm_next;
793
794 /*
795 * Can it merge with the predecessor?
796 */
797 if (prev && prev->vm_end == addr &&
798 mpol_equal(vma_policy(prev), policy) &&
799 can_vma_merge_after(prev, vm_flags,
800 anon_vma, file, pgoff)) {
801 /*
802 * OK, it can. Can we now merge in the successor as well?
803 */
804 if (next && end == next->vm_start &&
805 mpol_equal(policy, vma_policy(next)) &&
806 can_vma_merge_before(next, vm_flags,
807 anon_vma, file, pgoff+pglen) &&
808 is_mergeable_anon_vma(prev->anon_vma,
809 next->anon_vma)) {
810 /* cases 1, 6 */
811 err = vma_adjust(prev, prev->vm_start,
812 next->vm_end, prev->vm_pgoff, NULL);
813 } else /* cases 2, 5, 7 */
814 err = vma_adjust(prev, prev->vm_start,
815 end, prev->vm_pgoff, NULL);
816 if (err)
817 return NULL;
818 return prev;
819 }
820
821 /*
822 * Can this new request be merged in front of next?
823 */
824 if (next && end == next->vm_start &&
825 mpol_equal(policy, vma_policy(next)) &&
826 can_vma_merge_before(next, vm_flags,
827 anon_vma, file, pgoff+pglen)) {
828 if (prev && addr < prev->vm_end) /* case 4 */
829 err = vma_adjust(prev, prev->vm_start,
830 addr, prev->vm_pgoff, NULL);
831 else /* cases 3, 8 */
832 err = vma_adjust(area, addr, next->vm_end,
833 next->vm_pgoff - pglen, NULL);
834 if (err)
835 return NULL;
836 return area;
837 }
838
839 return NULL;
840 }
841
842 /*
843 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
844 * neighbouring vmas for a suitable anon_vma, before it goes off
845 * to allocate a new anon_vma. It checks because a repetitive
846 * sequence of mprotects and faults may otherwise lead to distinct
847 * anon_vmas being allocated, preventing vma merge in subsequent
848 * mprotect.
849 */
850 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
851 {
852 struct vm_area_struct *near;
853 unsigned long vm_flags;
854
855 near = vma->vm_next;
856 if (!near)
857 goto try_prev;
858
859 /*
860 * Since only mprotect tries to remerge vmas, match flags
861 * which might be mprotected into each other later on.
862 * Neither mlock nor madvise tries to remerge at present,
863 * so leave their flags as obstructing a merge.
864 */
865 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
866 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
867
868 if (near->anon_vma && vma->vm_end == near->vm_start &&
869 mpol_equal(vma_policy(vma), vma_policy(near)) &&
870 can_vma_merge_before(near, vm_flags,
871 NULL, vma->vm_file, vma->vm_pgoff +
872 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
873 return near->anon_vma;
874 try_prev:
875 /*
876 * It is potentially slow to have to call find_vma_prev here.
877 * But it's only on the first write fault on the vma, not
878 * every time, and we could devise a way to avoid it later
879 * (e.g. stash info in next's anon_vma_node when assigning
880 * an anon_vma, or when trying vma_merge). Another time.
881 */
882 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
883 if (!near)
884 goto none;
885
886 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
887 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
888
889 if (near->anon_vma && near->vm_end == vma->vm_start &&
890 mpol_equal(vma_policy(near), vma_policy(vma)) &&
891 can_vma_merge_after(near, vm_flags,
892 NULL, vma->vm_file, vma->vm_pgoff))
893 return near->anon_vma;
894 none:
895 /*
896 * There's no absolute need to look only at touching neighbours:
897 * we could search further afield for "compatible" anon_vmas.
898 * But it would probably just be a waste of time searching,
899 * or lead to too many vmas hanging off the same anon_vma.
900 * We're trying to allow mprotect remerging later on,
901 * not trying to minimize memory used for anon_vmas.
902 */
903 return NULL;
904 }
905
906 #ifdef CONFIG_PROC_FS
907 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
908 struct file *file, long pages)
909 {
910 const unsigned long stack_flags
911 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
912
913 if (file) {
914 mm->shared_vm += pages;
915 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
916 mm->exec_vm += pages;
917 } else if (flags & stack_flags)
918 mm->stack_vm += pages;
919 if (flags & (VM_RESERVED|VM_IO))
920 mm->reserved_vm += pages;
921 }
922 #endif /* CONFIG_PROC_FS */
923
924 /*
925 * The caller must hold down_write(&current->mm->mmap_sem).
926 */
927
928 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
929 unsigned long len, unsigned long prot,
930 unsigned long flags, unsigned long pgoff)
931 {
932 struct mm_struct * mm = current->mm;
933 struct inode *inode;
934 unsigned int vm_flags;
935 int error;
936 unsigned long reqprot = prot;
937
938 /*
939 * Does the application expect PROT_READ to imply PROT_EXEC?
940 *
941 * (the exception is when the underlying filesystem is noexec
942 * mounted, in which case we dont add PROT_EXEC.)
943 */
944 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
945 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
946 prot |= PROT_EXEC;
947
948 if (!len)
949 return -EINVAL;
950
951 if (!(flags & MAP_FIXED))
952 addr = round_hint_to_min(addr);
953
954 /* Careful about overflows.. */
955 len = PAGE_ALIGN(len);
956 if (!len)
957 return -ENOMEM;
958
959 /* offset overflow? */
960 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
961 return -EOVERFLOW;
962
963 /* Too many mappings? */
964 if (mm->map_count > sysctl_max_map_count)
965 return -ENOMEM;
966
967 /* Obtain the address to map to. we verify (or select) it and ensure
968 * that it represents a valid section of the address space.
969 */
970 addr = get_unmapped_area(file, addr, len, pgoff, flags);
971 if (addr & ~PAGE_MASK)
972 return addr;
973
974 /* Do simple checking here so the lower-level routines won't have
975 * to. we assume access permissions have been handled by the open
976 * of the memory object, so we don't do any here.
977 */
978 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
979 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
980
981 if (flags & MAP_LOCKED)
982 if (!can_do_mlock())
983 return -EPERM;
984
985 /* mlock MCL_FUTURE? */
986 if (vm_flags & VM_LOCKED) {
987 unsigned long locked, lock_limit;
988 locked = len >> PAGE_SHIFT;
989 locked += mm->locked_vm;
990 lock_limit = rlimit(RLIMIT_MEMLOCK);
991 lock_limit >>= PAGE_SHIFT;
992 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
993 return -EAGAIN;
994 }
995
996 inode = file ? file->f_path.dentry->d_inode : NULL;
997
998 if (file) {
999 switch (flags & MAP_TYPE) {
1000 case MAP_SHARED:
1001 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1002 return -EACCES;
1003
1004 /*
1005 * Make sure we don't allow writing to an append-only
1006 * file..
1007 */
1008 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1009 return -EACCES;
1010
1011 /*
1012 * Make sure there are no mandatory locks on the file.
1013 */
1014 if (locks_verify_locked(inode))
1015 return -EAGAIN;
1016
1017 vm_flags |= VM_SHARED | VM_MAYSHARE;
1018 if (!(file->f_mode & FMODE_WRITE))
1019 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1020
1021 /* fall through */
1022 case MAP_PRIVATE:
1023 if (!(file->f_mode & FMODE_READ))
1024 return -EACCES;
1025 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1026 if (vm_flags & VM_EXEC)
1027 return -EPERM;
1028 vm_flags &= ~VM_MAYEXEC;
1029 }
1030
1031 if (!file->f_op || !file->f_op->mmap)
1032 return -ENODEV;
1033 break;
1034
1035 default:
1036 return -EINVAL;
1037 }
1038 } else {
1039 switch (flags & MAP_TYPE) {
1040 case MAP_SHARED:
1041 /*
1042 * Ignore pgoff.
1043 */
1044 pgoff = 0;
1045 vm_flags |= VM_SHARED | VM_MAYSHARE;
1046 break;
1047 case MAP_PRIVATE:
1048 /*
1049 * Set pgoff according to addr for anon_vma.
1050 */
1051 pgoff = addr >> PAGE_SHIFT;
1052 break;
1053 default:
1054 return -EINVAL;
1055 }
1056 }
1057
1058 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1059 if (error)
1060 return error;
1061
1062 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1063 }
1064 EXPORT_SYMBOL(do_mmap_pgoff);
1065
1066 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1067 unsigned long, prot, unsigned long, flags,
1068 unsigned long, fd, unsigned long, pgoff)
1069 {
1070 struct file *file = NULL;
1071 unsigned long retval = -EBADF;
1072
1073 if (!(flags & MAP_ANONYMOUS)) {
1074 if (unlikely(flags & MAP_HUGETLB))
1075 return -EINVAL;
1076 file = fget(fd);
1077 if (!file)
1078 goto out;
1079 } else if (flags & MAP_HUGETLB) {
1080 struct user_struct *user = NULL;
1081 /*
1082 * VM_NORESERVE is used because the reservations will be
1083 * taken when vm_ops->mmap() is called
1084 * A dummy user value is used because we are not locking
1085 * memory so no accounting is necessary
1086 */
1087 len = ALIGN(len, huge_page_size(&default_hstate));
1088 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len, VM_NORESERVE,
1089 &user, HUGETLB_ANONHUGE_INODE);
1090 if (IS_ERR(file))
1091 return PTR_ERR(file);
1092 }
1093
1094 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1095
1096 down_write(&current->mm->mmap_sem);
1097 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1098 up_write(&current->mm->mmap_sem);
1099
1100 if (file)
1101 fput(file);
1102 out:
1103 return retval;
1104 }
1105
1106 /*
1107 * Some shared mappigns will want the pages marked read-only
1108 * to track write events. If so, we'll downgrade vm_page_prot
1109 * to the private version (using protection_map[] without the
1110 * VM_SHARED bit).
1111 */
1112 int vma_wants_writenotify(struct vm_area_struct *vma)
1113 {
1114 unsigned int vm_flags = vma->vm_flags;
1115
1116 /* If it was private or non-writable, the write bit is already clear */
1117 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1118 return 0;
1119
1120 /* The backer wishes to know when pages are first written to? */
1121 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1122 return 1;
1123
1124 /* The open routine did something to the protections already? */
1125 if (pgprot_val(vma->vm_page_prot) !=
1126 pgprot_val(vm_get_page_prot(vm_flags)))
1127 return 0;
1128
1129 /* Specialty mapping? */
1130 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1131 return 0;
1132
1133 /* Can the mapping track the dirty pages? */
1134 return vma->vm_file && vma->vm_file->f_mapping &&
1135 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1136 }
1137
1138 /*
1139 * We account for memory if it's a private writeable mapping,
1140 * not hugepages and VM_NORESERVE wasn't set.
1141 */
1142 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1143 {
1144 /*
1145 * hugetlb has its own accounting separate from the core VM
1146 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1147 */
1148 if (file && is_file_hugepages(file))
1149 return 0;
1150
1151 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1152 }
1153
1154 unsigned long mmap_region(struct file *file, unsigned long addr,
1155 unsigned long len, unsigned long flags,
1156 unsigned int vm_flags, unsigned long pgoff)
1157 {
1158 struct mm_struct *mm = current->mm;
1159 struct vm_area_struct *vma, *prev;
1160 int correct_wcount = 0;
1161 int error;
1162 struct rb_node **rb_link, *rb_parent;
1163 unsigned long charged = 0;
1164 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1165
1166 /* Clear old maps */
1167 error = -ENOMEM;
1168 munmap_back:
1169 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1170 if (vma && vma->vm_start < addr + len) {
1171 if (do_munmap(mm, addr, len))
1172 return -ENOMEM;
1173 goto munmap_back;
1174 }
1175
1176 /* Check against address space limit. */
1177 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1178 return -ENOMEM;
1179
1180 /*
1181 * Set 'VM_NORESERVE' if we should not account for the
1182 * memory use of this mapping.
1183 */
1184 if ((flags & MAP_NORESERVE)) {
1185 /* We honor MAP_NORESERVE if allowed to overcommit */
1186 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1187 vm_flags |= VM_NORESERVE;
1188
1189 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1190 if (file && is_file_hugepages(file))
1191 vm_flags |= VM_NORESERVE;
1192 }
1193
1194 /*
1195 * Private writable mapping: check memory availability
1196 */
1197 if (accountable_mapping(file, vm_flags)) {
1198 charged = len >> PAGE_SHIFT;
1199 if (security_vm_enough_memory(charged))
1200 return -ENOMEM;
1201 vm_flags |= VM_ACCOUNT;
1202 }
1203
1204 /*
1205 * Can we just expand an old mapping?
1206 */
1207 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1208 if (vma)
1209 goto out;
1210
1211 /*
1212 * Determine the object being mapped and call the appropriate
1213 * specific mapper. the address has already been validated, but
1214 * not unmapped, but the maps are removed from the list.
1215 */
1216 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1217 if (!vma) {
1218 error = -ENOMEM;
1219 goto unacct_error;
1220 }
1221
1222 vma->vm_mm = mm;
1223 vma->vm_start = addr;
1224 vma->vm_end = addr + len;
1225 vma->vm_flags = vm_flags;
1226 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1227 vma->vm_pgoff = pgoff;
1228 INIT_LIST_HEAD(&vma->anon_vma_chain);
1229
1230 if (file) {
1231 error = -EINVAL;
1232 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1233 goto free_vma;
1234 if (vm_flags & VM_DENYWRITE) {
1235 error = deny_write_access(file);
1236 if (error)
1237 goto free_vma;
1238 correct_wcount = 1;
1239 }
1240 vma->vm_file = file;
1241 get_file(file);
1242 error = file->f_op->mmap(file, vma);
1243 if (error)
1244 goto unmap_and_free_vma;
1245 if (vm_flags & VM_EXECUTABLE)
1246 added_exe_file_vma(mm);
1247
1248 /* Can addr have changed??
1249 *
1250 * Answer: Yes, several device drivers can do it in their
1251 * f_op->mmap method. -DaveM
1252 */
1253 addr = vma->vm_start;
1254 pgoff = vma->vm_pgoff;
1255 vm_flags = vma->vm_flags;
1256 } else if (vm_flags & VM_SHARED) {
1257 error = shmem_zero_setup(vma);
1258 if (error)
1259 goto free_vma;
1260 }
1261
1262 if (vma_wants_writenotify(vma)) {
1263 pgprot_t pprot = vma->vm_page_prot;
1264
1265 /* Can vma->vm_page_prot have changed??
1266 *
1267 * Answer: Yes, drivers may have changed it in their
1268 * f_op->mmap method.
1269 *
1270 * Ensures that vmas marked as uncached stay that way.
1271 */
1272 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1273 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1274 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1275 }
1276
1277 vma_link(mm, vma, prev, rb_link, rb_parent);
1278 file = vma->vm_file;
1279
1280 /* Once vma denies write, undo our temporary denial count */
1281 if (correct_wcount)
1282 atomic_inc(&inode->i_writecount);
1283 out:
1284 perf_event_mmap(vma);
1285
1286 mm->total_vm += len >> PAGE_SHIFT;
1287 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1288 if (vm_flags & VM_LOCKED) {
1289 if (!mlock_vma_pages_range(vma, addr, addr + len))
1290 mm->locked_vm += (len >> PAGE_SHIFT);
1291 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1292 make_pages_present(addr, addr + len);
1293 return addr;
1294
1295 unmap_and_free_vma:
1296 if (correct_wcount)
1297 atomic_inc(&inode->i_writecount);
1298 vma->vm_file = NULL;
1299 fput(file);
1300
1301 /* Undo any partial mapping done by a device driver. */
1302 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1303 charged = 0;
1304 free_vma:
1305 kmem_cache_free(vm_area_cachep, vma);
1306 unacct_error:
1307 if (charged)
1308 vm_unacct_memory(charged);
1309 return error;
1310 }
1311
1312 /* Get an address range which is currently unmapped.
1313 * For shmat() with addr=0.
1314 *
1315 * Ugly calling convention alert:
1316 * Return value with the low bits set means error value,
1317 * ie
1318 * if (ret & ~PAGE_MASK)
1319 * error = ret;
1320 *
1321 * This function "knows" that -ENOMEM has the bits set.
1322 */
1323 #ifndef HAVE_ARCH_UNMAPPED_AREA
1324 unsigned long
1325 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1326 unsigned long len, unsigned long pgoff, unsigned long flags)
1327 {
1328 struct mm_struct *mm = current->mm;
1329 struct vm_area_struct *vma;
1330 unsigned long start_addr;
1331
1332 if (len > TASK_SIZE)
1333 return -ENOMEM;
1334
1335 if (flags & MAP_FIXED)
1336 return addr;
1337
1338 if (addr) {
1339 addr = PAGE_ALIGN(addr);
1340 vma = find_vma(mm, addr);
1341 if (TASK_SIZE - len >= addr &&
1342 (!vma || addr + len <= vma->vm_start))
1343 return addr;
1344 }
1345 if (len > mm->cached_hole_size) {
1346 start_addr = addr = mm->free_area_cache;
1347 } else {
1348 start_addr = addr = TASK_UNMAPPED_BASE;
1349 mm->cached_hole_size = 0;
1350 }
1351
1352 full_search:
1353 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1354 /* At this point: (!vma || addr < vma->vm_end). */
1355 if (TASK_SIZE - len < addr) {
1356 /*
1357 * Start a new search - just in case we missed
1358 * some holes.
1359 */
1360 if (start_addr != TASK_UNMAPPED_BASE) {
1361 addr = TASK_UNMAPPED_BASE;
1362 start_addr = addr;
1363 mm->cached_hole_size = 0;
1364 goto full_search;
1365 }
1366 return -ENOMEM;
1367 }
1368 if (!vma || addr + len <= vma->vm_start) {
1369 /*
1370 * Remember the place where we stopped the search:
1371 */
1372 mm->free_area_cache = addr + len;
1373 return addr;
1374 }
1375 if (addr + mm->cached_hole_size < vma->vm_start)
1376 mm->cached_hole_size = vma->vm_start - addr;
1377 addr = vma->vm_end;
1378 }
1379 }
1380 #endif
1381
1382 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1383 {
1384 /*
1385 * Is this a new hole at the lowest possible address?
1386 */
1387 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1388 mm->free_area_cache = addr;
1389 mm->cached_hole_size = ~0UL;
1390 }
1391 }
1392
1393 /*
1394 * This mmap-allocator allocates new areas top-down from below the
1395 * stack's low limit (the base):
1396 */
1397 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1398 unsigned long
1399 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1400 const unsigned long len, const unsigned long pgoff,
1401 const unsigned long flags)
1402 {
1403 struct vm_area_struct *vma;
1404 struct mm_struct *mm = current->mm;
1405 unsigned long addr = addr0;
1406
1407 /* requested length too big for entire address space */
1408 if (len > TASK_SIZE)
1409 return -ENOMEM;
1410
1411 if (flags & MAP_FIXED)
1412 return addr;
1413
1414 /* requesting a specific address */
1415 if (addr) {
1416 addr = PAGE_ALIGN(addr);
1417 vma = find_vma(mm, addr);
1418 if (TASK_SIZE - len >= addr &&
1419 (!vma || addr + len <= vma->vm_start))
1420 return addr;
1421 }
1422
1423 /* check if free_area_cache is useful for us */
1424 if (len <= mm->cached_hole_size) {
1425 mm->cached_hole_size = 0;
1426 mm->free_area_cache = mm->mmap_base;
1427 }
1428
1429 /* either no address requested or can't fit in requested address hole */
1430 addr = mm->free_area_cache;
1431
1432 /* make sure it can fit in the remaining address space */
1433 if (addr > len) {
1434 vma = find_vma(mm, addr-len);
1435 if (!vma || addr <= vma->vm_start)
1436 /* remember the address as a hint for next time */
1437 return (mm->free_area_cache = addr-len);
1438 }
1439
1440 if (mm->mmap_base < len)
1441 goto bottomup;
1442
1443 addr = mm->mmap_base-len;
1444
1445 do {
1446 /*
1447 * Lookup failure means no vma is above this address,
1448 * else if new region fits below vma->vm_start,
1449 * return with success:
1450 */
1451 vma = find_vma(mm, addr);
1452 if (!vma || addr+len <= vma->vm_start)
1453 /* remember the address as a hint for next time */
1454 return (mm->free_area_cache = addr);
1455
1456 /* remember the largest hole we saw so far */
1457 if (addr + mm->cached_hole_size < vma->vm_start)
1458 mm->cached_hole_size = vma->vm_start - addr;
1459
1460 /* try just below the current vma->vm_start */
1461 addr = vma->vm_start-len;
1462 } while (len < vma->vm_start);
1463
1464 bottomup:
1465 /*
1466 * A failed mmap() very likely causes application failure,
1467 * so fall back to the bottom-up function here. This scenario
1468 * can happen with large stack limits and large mmap()
1469 * allocations.
1470 */
1471 mm->cached_hole_size = ~0UL;
1472 mm->free_area_cache = TASK_UNMAPPED_BASE;
1473 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1474 /*
1475 * Restore the topdown base:
1476 */
1477 mm->free_area_cache = mm->mmap_base;
1478 mm->cached_hole_size = ~0UL;
1479
1480 return addr;
1481 }
1482 #endif
1483
1484 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1485 {
1486 /*
1487 * Is this a new hole at the highest possible address?
1488 */
1489 if (addr > mm->free_area_cache)
1490 mm->free_area_cache = addr;
1491
1492 /* dont allow allocations above current base */
1493 if (mm->free_area_cache > mm->mmap_base)
1494 mm->free_area_cache = mm->mmap_base;
1495 }
1496
1497 unsigned long
1498 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1499 unsigned long pgoff, unsigned long flags)
1500 {
1501 unsigned long (*get_area)(struct file *, unsigned long,
1502 unsigned long, unsigned long, unsigned long);
1503
1504 unsigned long error = arch_mmap_check(addr, len, flags);
1505 if (error)
1506 return error;
1507
1508 /* Careful about overflows.. */
1509 if (len > TASK_SIZE)
1510 return -ENOMEM;
1511
1512 get_area = current->mm->get_unmapped_area;
1513 if (file && file->f_op && file->f_op->get_unmapped_area)
1514 get_area = file->f_op->get_unmapped_area;
1515 addr = get_area(file, addr, len, pgoff, flags);
1516 if (IS_ERR_VALUE(addr))
1517 return addr;
1518
1519 if (addr > TASK_SIZE - len)
1520 return -ENOMEM;
1521 if (addr & ~PAGE_MASK)
1522 return -EINVAL;
1523
1524 return arch_rebalance_pgtables(addr, len);
1525 }
1526
1527 EXPORT_SYMBOL(get_unmapped_area);
1528
1529 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1530 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1531 {
1532 struct vm_area_struct *vma = NULL;
1533
1534 if (mm) {
1535 /* Check the cache first. */
1536 /* (Cache hit rate is typically around 35%.) */
1537 vma = mm->mmap_cache;
1538 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1539 struct rb_node * rb_node;
1540
1541 rb_node = mm->mm_rb.rb_node;
1542 vma = NULL;
1543
1544 while (rb_node) {
1545 struct vm_area_struct * vma_tmp;
1546
1547 vma_tmp = rb_entry(rb_node,
1548 struct vm_area_struct, vm_rb);
1549
1550 if (vma_tmp->vm_end > addr) {
1551 vma = vma_tmp;
1552 if (vma_tmp->vm_start <= addr)
1553 break;
1554 rb_node = rb_node->rb_left;
1555 } else
1556 rb_node = rb_node->rb_right;
1557 }
1558 if (vma)
1559 mm->mmap_cache = vma;
1560 }
1561 }
1562 return vma;
1563 }
1564
1565 EXPORT_SYMBOL(find_vma);
1566
1567 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1568 struct vm_area_struct *
1569 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1570 struct vm_area_struct **pprev)
1571 {
1572 struct vm_area_struct *vma = NULL, *prev = NULL;
1573 struct rb_node *rb_node;
1574 if (!mm)
1575 goto out;
1576
1577 /* Guard against addr being lower than the first VMA */
1578 vma = mm->mmap;
1579
1580 /* Go through the RB tree quickly. */
1581 rb_node = mm->mm_rb.rb_node;
1582
1583 while (rb_node) {
1584 struct vm_area_struct *vma_tmp;
1585 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1586
1587 if (addr < vma_tmp->vm_end) {
1588 rb_node = rb_node->rb_left;
1589 } else {
1590 prev = vma_tmp;
1591 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1592 break;
1593 rb_node = rb_node->rb_right;
1594 }
1595 }
1596
1597 out:
1598 *pprev = prev;
1599 return prev ? prev->vm_next : vma;
1600 }
1601
1602 /*
1603 * Verify that the stack growth is acceptable and
1604 * update accounting. This is shared with both the
1605 * grow-up and grow-down cases.
1606 */
1607 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1608 {
1609 struct mm_struct *mm = vma->vm_mm;
1610 struct rlimit *rlim = current->signal->rlim;
1611 unsigned long new_start;
1612
1613 /* address space limit tests */
1614 if (!may_expand_vm(mm, grow))
1615 return -ENOMEM;
1616
1617 /* Stack limit test */
1618 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1619 return -ENOMEM;
1620
1621 /* mlock limit tests */
1622 if (vma->vm_flags & VM_LOCKED) {
1623 unsigned long locked;
1624 unsigned long limit;
1625 locked = mm->locked_vm + grow;
1626 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1627 limit >>= PAGE_SHIFT;
1628 if (locked > limit && !capable(CAP_IPC_LOCK))
1629 return -ENOMEM;
1630 }
1631
1632 /* Check to ensure the stack will not grow into a hugetlb-only region */
1633 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1634 vma->vm_end - size;
1635 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1636 return -EFAULT;
1637
1638 /*
1639 * Overcommit.. This must be the final test, as it will
1640 * update security statistics.
1641 */
1642 if (security_vm_enough_memory_mm(mm, grow))
1643 return -ENOMEM;
1644
1645 /* Ok, everything looks good - let it rip */
1646 mm->total_vm += grow;
1647 if (vma->vm_flags & VM_LOCKED)
1648 mm->locked_vm += grow;
1649 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1650 return 0;
1651 }
1652
1653 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1654 /*
1655 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1656 * vma is the last one with address > vma->vm_end. Have to extend vma.
1657 */
1658 #ifndef CONFIG_IA64
1659 static
1660 #endif
1661 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1662 {
1663 int error;
1664
1665 if (!(vma->vm_flags & VM_GROWSUP))
1666 return -EFAULT;
1667
1668 /*
1669 * We must make sure the anon_vma is allocated
1670 * so that the anon_vma locking is not a noop.
1671 */
1672 if (unlikely(anon_vma_prepare(vma)))
1673 return -ENOMEM;
1674 anon_vma_lock(vma);
1675
1676 /*
1677 * vma->vm_start/vm_end cannot change under us because the caller
1678 * is required to hold the mmap_sem in read mode. We need the
1679 * anon_vma lock to serialize against concurrent expand_stacks.
1680 * Also guard against wrapping around to address 0.
1681 */
1682 if (address < PAGE_ALIGN(address+4))
1683 address = PAGE_ALIGN(address+4);
1684 else {
1685 anon_vma_unlock(vma);
1686 return -ENOMEM;
1687 }
1688 error = 0;
1689
1690 /* Somebody else might have raced and expanded it already */
1691 if (address > vma->vm_end) {
1692 unsigned long size, grow;
1693
1694 size = address - vma->vm_start;
1695 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1696
1697 error = acct_stack_growth(vma, size, grow);
1698 if (!error)
1699 vma->vm_end = address;
1700 }
1701 anon_vma_unlock(vma);
1702 return error;
1703 }
1704 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1705
1706 /*
1707 * vma is the first one with address < vma->vm_start. Have to extend vma.
1708 */
1709 static int expand_downwards(struct vm_area_struct *vma,
1710 unsigned long address)
1711 {
1712 int error;
1713
1714 /*
1715 * We must make sure the anon_vma is allocated
1716 * so that the anon_vma locking is not a noop.
1717 */
1718 if (unlikely(anon_vma_prepare(vma)))
1719 return -ENOMEM;
1720
1721 address &= PAGE_MASK;
1722 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1723 if (error)
1724 return error;
1725
1726 anon_vma_lock(vma);
1727
1728 /*
1729 * vma->vm_start/vm_end cannot change under us because the caller
1730 * is required to hold the mmap_sem in read mode. We need the
1731 * anon_vma lock to serialize against concurrent expand_stacks.
1732 */
1733
1734 /* Somebody else might have raced and expanded it already */
1735 if (address < vma->vm_start) {
1736 unsigned long size, grow;
1737
1738 size = vma->vm_end - address;
1739 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1740
1741 error = acct_stack_growth(vma, size, grow);
1742 if (!error) {
1743 vma->vm_start = address;
1744 vma->vm_pgoff -= grow;
1745 }
1746 }
1747 anon_vma_unlock(vma);
1748 return error;
1749 }
1750
1751 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1752 {
1753 return expand_downwards(vma, address);
1754 }
1755
1756 #ifdef CONFIG_STACK_GROWSUP
1757 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1758 {
1759 return expand_upwards(vma, address);
1760 }
1761
1762 struct vm_area_struct *
1763 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1764 {
1765 struct vm_area_struct *vma, *prev;
1766
1767 addr &= PAGE_MASK;
1768 vma = find_vma_prev(mm, addr, &prev);
1769 if (vma && (vma->vm_start <= addr))
1770 return vma;
1771 if (!prev || expand_stack(prev, addr))
1772 return NULL;
1773 if (prev->vm_flags & VM_LOCKED) {
1774 mlock_vma_pages_range(prev, addr, prev->vm_end);
1775 }
1776 return prev;
1777 }
1778 #else
1779 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1780 {
1781 return expand_downwards(vma, address);
1782 }
1783
1784 struct vm_area_struct *
1785 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1786 {
1787 struct vm_area_struct * vma;
1788 unsigned long start;
1789
1790 addr &= PAGE_MASK;
1791 vma = find_vma(mm,addr);
1792 if (!vma)
1793 return NULL;
1794 if (vma->vm_start <= addr)
1795 return vma;
1796 if (!(vma->vm_flags & VM_GROWSDOWN))
1797 return NULL;
1798 start = vma->vm_start;
1799 if (expand_stack(vma, addr))
1800 return NULL;
1801 if (vma->vm_flags & VM_LOCKED) {
1802 mlock_vma_pages_range(vma, addr, start);
1803 }
1804 return vma;
1805 }
1806 #endif
1807
1808 /*
1809 * Ok - we have the memory areas we should free on the vma list,
1810 * so release them, and do the vma updates.
1811 *
1812 * Called with the mm semaphore held.
1813 */
1814 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1815 {
1816 /* Update high watermark before we lower total_vm */
1817 update_hiwater_vm(mm);
1818 do {
1819 long nrpages = vma_pages(vma);
1820
1821 mm->total_vm -= nrpages;
1822 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1823 vma = remove_vma(vma);
1824 } while (vma);
1825 validate_mm(mm);
1826 }
1827
1828 /*
1829 * Get rid of page table information in the indicated region.
1830 *
1831 * Called with the mm semaphore held.
1832 */
1833 static void unmap_region(struct mm_struct *mm,
1834 struct vm_area_struct *vma, struct vm_area_struct *prev,
1835 unsigned long start, unsigned long end)
1836 {
1837 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1838 struct mmu_gather *tlb;
1839 unsigned long nr_accounted = 0;
1840
1841 lru_add_drain();
1842 tlb = tlb_gather_mmu(mm, 0);
1843 update_hiwater_rss(mm);
1844 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1845 vm_unacct_memory(nr_accounted);
1846 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1847 next? next->vm_start: 0);
1848 tlb_finish_mmu(tlb, start, end);
1849 }
1850
1851 /*
1852 * Create a list of vma's touched by the unmap, removing them from the mm's
1853 * vma list as we go..
1854 */
1855 static void
1856 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1857 struct vm_area_struct *prev, unsigned long end)
1858 {
1859 struct vm_area_struct **insertion_point;
1860 struct vm_area_struct *tail_vma = NULL;
1861 unsigned long addr;
1862
1863 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1864 do {
1865 rb_erase(&vma->vm_rb, &mm->mm_rb);
1866 mm->map_count--;
1867 tail_vma = vma;
1868 vma = vma->vm_next;
1869 } while (vma && vma->vm_start < end);
1870 *insertion_point = vma;
1871 tail_vma->vm_next = NULL;
1872 if (mm->unmap_area == arch_unmap_area)
1873 addr = prev ? prev->vm_end : mm->mmap_base;
1874 else
1875 addr = vma ? vma->vm_start : mm->mmap_base;
1876 mm->unmap_area(mm, addr);
1877 mm->mmap_cache = NULL; /* Kill the cache. */
1878 }
1879
1880 /*
1881 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1882 * munmap path where it doesn't make sense to fail.
1883 */
1884 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1885 unsigned long addr, int new_below)
1886 {
1887 struct mempolicy *pol;
1888 struct vm_area_struct *new;
1889 int err = -ENOMEM;
1890
1891 if (is_vm_hugetlb_page(vma) && (addr &
1892 ~(huge_page_mask(hstate_vma(vma)))))
1893 return -EINVAL;
1894
1895 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1896 if (!new)
1897 goto out_err;
1898
1899 /* most fields are the same, copy all, and then fixup */
1900 *new = *vma;
1901
1902 INIT_LIST_HEAD(&new->anon_vma_chain);
1903
1904 if (new_below)
1905 new->vm_end = addr;
1906 else {
1907 new->vm_start = addr;
1908 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1909 }
1910
1911 pol = mpol_dup(vma_policy(vma));
1912 if (IS_ERR(pol)) {
1913 err = PTR_ERR(pol);
1914 goto out_free_vma;
1915 }
1916 vma_set_policy(new, pol);
1917
1918 if (anon_vma_clone(new, vma))
1919 goto out_free_mpol;
1920
1921 if (new->vm_file) {
1922 get_file(new->vm_file);
1923 if (vma->vm_flags & VM_EXECUTABLE)
1924 added_exe_file_vma(mm);
1925 }
1926
1927 if (new->vm_ops && new->vm_ops->open)
1928 new->vm_ops->open(new);
1929
1930 if (new_below)
1931 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1932 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1933 else
1934 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1935
1936 /* Success. */
1937 if (!err)
1938 return 0;
1939
1940 /* Clean everything up if vma_adjust failed. */
1941 new->vm_ops->close(new);
1942 if (new->vm_file) {
1943 if (vma->vm_flags & VM_EXECUTABLE)
1944 removed_exe_file_vma(mm);
1945 fput(new->vm_file);
1946 }
1947 out_free_mpol:
1948 mpol_put(pol);
1949 out_free_vma:
1950 kmem_cache_free(vm_area_cachep, new);
1951 out_err:
1952 return err;
1953 }
1954
1955 /*
1956 * Split a vma into two pieces at address 'addr', a new vma is allocated
1957 * either for the first part or the tail.
1958 */
1959 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1960 unsigned long addr, int new_below)
1961 {
1962 if (mm->map_count >= sysctl_max_map_count)
1963 return -ENOMEM;
1964
1965 return __split_vma(mm, vma, addr, new_below);
1966 }
1967
1968 /* Munmap is split into 2 main parts -- this part which finds
1969 * what needs doing, and the areas themselves, which do the
1970 * work. This now handles partial unmappings.
1971 * Jeremy Fitzhardinge <jeremy@goop.org>
1972 */
1973 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1974 {
1975 unsigned long end;
1976 struct vm_area_struct *vma, *prev, *last;
1977
1978 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1979 return -EINVAL;
1980
1981 if ((len = PAGE_ALIGN(len)) == 0)
1982 return -EINVAL;
1983
1984 /* Find the first overlapping VMA */
1985 vma = find_vma_prev(mm, start, &prev);
1986 if (!vma)
1987 return 0;
1988 /* we have start < vma->vm_end */
1989
1990 /* if it doesn't overlap, we have nothing.. */
1991 end = start + len;
1992 if (vma->vm_start >= end)
1993 return 0;
1994
1995 /*
1996 * If we need to split any vma, do it now to save pain later.
1997 *
1998 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1999 * unmapped vm_area_struct will remain in use: so lower split_vma
2000 * places tmp vma above, and higher split_vma places tmp vma below.
2001 */
2002 if (start > vma->vm_start) {
2003 int error;
2004
2005 /*
2006 * Make sure that map_count on return from munmap() will
2007 * not exceed its limit; but let map_count go just above
2008 * its limit temporarily, to help free resources as expected.
2009 */
2010 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2011 return -ENOMEM;
2012
2013 error = __split_vma(mm, vma, start, 0);
2014 if (error)
2015 return error;
2016 prev = vma;
2017 }
2018
2019 /* Does it split the last one? */
2020 last = find_vma(mm, end);
2021 if (last && end > last->vm_start) {
2022 int error = __split_vma(mm, last, end, 1);
2023 if (error)
2024 return error;
2025 }
2026 vma = prev? prev->vm_next: mm->mmap;
2027
2028 /*
2029 * unlock any mlock()ed ranges before detaching vmas
2030 */
2031 if (mm->locked_vm) {
2032 struct vm_area_struct *tmp = vma;
2033 while (tmp && tmp->vm_start < end) {
2034 if (tmp->vm_flags & VM_LOCKED) {
2035 mm->locked_vm -= vma_pages(tmp);
2036 munlock_vma_pages_all(tmp);
2037 }
2038 tmp = tmp->vm_next;
2039 }
2040 }
2041
2042 /*
2043 * Remove the vma's, and unmap the actual pages
2044 */
2045 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2046 unmap_region(mm, vma, prev, start, end);
2047
2048 /* Fix up all other VM information */
2049 remove_vma_list(mm, vma);
2050
2051 return 0;
2052 }
2053
2054 EXPORT_SYMBOL(do_munmap);
2055
2056 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2057 {
2058 int ret;
2059 struct mm_struct *mm = current->mm;
2060
2061 profile_munmap(addr);
2062
2063 down_write(&mm->mmap_sem);
2064 ret = do_munmap(mm, addr, len);
2065 up_write(&mm->mmap_sem);
2066 return ret;
2067 }
2068
2069 static inline void verify_mm_writelocked(struct mm_struct *mm)
2070 {
2071 #ifdef CONFIG_DEBUG_VM
2072 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2073 WARN_ON(1);
2074 up_read(&mm->mmap_sem);
2075 }
2076 #endif
2077 }
2078
2079 /*
2080 * this is really a simplified "do_mmap". it only handles
2081 * anonymous maps. eventually we may be able to do some
2082 * brk-specific accounting here.
2083 */
2084 unsigned long do_brk(unsigned long addr, unsigned long len)
2085 {
2086 struct mm_struct * mm = current->mm;
2087 struct vm_area_struct * vma, * prev;
2088 unsigned long flags;
2089 struct rb_node ** rb_link, * rb_parent;
2090 pgoff_t pgoff = addr >> PAGE_SHIFT;
2091 int error;
2092
2093 len = PAGE_ALIGN(len);
2094 if (!len)
2095 return addr;
2096
2097 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2098 if (error)
2099 return error;
2100
2101 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2102
2103 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2104 if (error & ~PAGE_MASK)
2105 return error;
2106
2107 /*
2108 * mlock MCL_FUTURE?
2109 */
2110 if (mm->def_flags & VM_LOCKED) {
2111 unsigned long locked, lock_limit;
2112 locked = len >> PAGE_SHIFT;
2113 locked += mm->locked_vm;
2114 lock_limit = rlimit(RLIMIT_MEMLOCK);
2115 lock_limit >>= PAGE_SHIFT;
2116 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2117 return -EAGAIN;
2118 }
2119
2120 /*
2121 * mm->mmap_sem is required to protect against another thread
2122 * changing the mappings in case we sleep.
2123 */
2124 verify_mm_writelocked(mm);
2125
2126 /*
2127 * Clear old maps. this also does some error checking for us
2128 */
2129 munmap_back:
2130 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2131 if (vma && vma->vm_start < addr + len) {
2132 if (do_munmap(mm, addr, len))
2133 return -ENOMEM;
2134 goto munmap_back;
2135 }
2136
2137 /* Check against address space limits *after* clearing old maps... */
2138 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2139 return -ENOMEM;
2140
2141 if (mm->map_count > sysctl_max_map_count)
2142 return -ENOMEM;
2143
2144 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2145 return -ENOMEM;
2146
2147 /* Can we just expand an old private anonymous mapping? */
2148 vma = vma_merge(mm, prev, addr, addr + len, flags,
2149 NULL, NULL, pgoff, NULL);
2150 if (vma)
2151 goto out;
2152
2153 /*
2154 * create a vma struct for an anonymous mapping
2155 */
2156 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2157 if (!vma) {
2158 vm_unacct_memory(len >> PAGE_SHIFT);
2159 return -ENOMEM;
2160 }
2161
2162 INIT_LIST_HEAD(&vma->anon_vma_chain);
2163 vma->vm_mm = mm;
2164 vma->vm_start = addr;
2165 vma->vm_end = addr + len;
2166 vma->vm_pgoff = pgoff;
2167 vma->vm_flags = flags;
2168 vma->vm_page_prot = vm_get_page_prot(flags);
2169 vma_link(mm, vma, prev, rb_link, rb_parent);
2170 out:
2171 mm->total_vm += len >> PAGE_SHIFT;
2172 if (flags & VM_LOCKED) {
2173 if (!mlock_vma_pages_range(vma, addr, addr + len))
2174 mm->locked_vm += (len >> PAGE_SHIFT);
2175 }
2176 return addr;
2177 }
2178
2179 EXPORT_SYMBOL(do_brk);
2180
2181 /* Release all mmaps. */
2182 void exit_mmap(struct mm_struct *mm)
2183 {
2184 struct mmu_gather *tlb;
2185 struct vm_area_struct *vma;
2186 unsigned long nr_accounted = 0;
2187 unsigned long end;
2188
2189 /* mm's last user has gone, and its about to be pulled down */
2190 mmu_notifier_release(mm);
2191
2192 if (mm->locked_vm) {
2193 vma = mm->mmap;
2194 while (vma) {
2195 if (vma->vm_flags & VM_LOCKED)
2196 munlock_vma_pages_all(vma);
2197 vma = vma->vm_next;
2198 }
2199 }
2200
2201 arch_exit_mmap(mm);
2202
2203 vma = mm->mmap;
2204 if (!vma) /* Can happen if dup_mmap() received an OOM */
2205 return;
2206
2207 lru_add_drain();
2208 flush_cache_mm(mm);
2209 tlb = tlb_gather_mmu(mm, 1);
2210 /* update_hiwater_rss(mm) here? but nobody should be looking */
2211 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2212 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2213 vm_unacct_memory(nr_accounted);
2214
2215 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2216 tlb_finish_mmu(tlb, 0, end);
2217
2218 /*
2219 * Walk the list again, actually closing and freeing it,
2220 * with preemption enabled, without holding any MM locks.
2221 */
2222 while (vma)
2223 vma = remove_vma(vma);
2224
2225 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2226 }
2227
2228 /* Insert vm structure into process list sorted by address
2229 * and into the inode's i_mmap tree. If vm_file is non-NULL
2230 * then i_mmap_lock is taken here.
2231 */
2232 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2233 {
2234 struct vm_area_struct * __vma, * prev;
2235 struct rb_node ** rb_link, * rb_parent;
2236
2237 /*
2238 * The vm_pgoff of a purely anonymous vma should be irrelevant
2239 * until its first write fault, when page's anon_vma and index
2240 * are set. But now set the vm_pgoff it will almost certainly
2241 * end up with (unless mremap moves it elsewhere before that
2242 * first wfault), so /proc/pid/maps tells a consistent story.
2243 *
2244 * By setting it to reflect the virtual start address of the
2245 * vma, merges and splits can happen in a seamless way, just
2246 * using the existing file pgoff checks and manipulations.
2247 * Similarly in do_mmap_pgoff and in do_brk.
2248 */
2249 if (!vma->vm_file) {
2250 BUG_ON(vma->anon_vma);
2251 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2252 }
2253 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2254 if (__vma && __vma->vm_start < vma->vm_end)
2255 return -ENOMEM;
2256 if ((vma->vm_flags & VM_ACCOUNT) &&
2257 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2258 return -ENOMEM;
2259 vma_link(mm, vma, prev, rb_link, rb_parent);
2260 return 0;
2261 }
2262
2263 /*
2264 * Copy the vma structure to a new location in the same mm,
2265 * prior to moving page table entries, to effect an mremap move.
2266 */
2267 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2268 unsigned long addr, unsigned long len, pgoff_t pgoff)
2269 {
2270 struct vm_area_struct *vma = *vmap;
2271 unsigned long vma_start = vma->vm_start;
2272 struct mm_struct *mm = vma->vm_mm;
2273 struct vm_area_struct *new_vma, *prev;
2274 struct rb_node **rb_link, *rb_parent;
2275 struct mempolicy *pol;
2276
2277 /*
2278 * If anonymous vma has not yet been faulted, update new pgoff
2279 * to match new location, to increase its chance of merging.
2280 */
2281 if (!vma->vm_file && !vma->anon_vma)
2282 pgoff = addr >> PAGE_SHIFT;
2283
2284 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2285 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2286 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2287 if (new_vma) {
2288 /*
2289 * Source vma may have been merged into new_vma
2290 */
2291 if (vma_start >= new_vma->vm_start &&
2292 vma_start < new_vma->vm_end)
2293 *vmap = new_vma;
2294 } else {
2295 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2296 if (new_vma) {
2297 *new_vma = *vma;
2298 pol = mpol_dup(vma_policy(vma));
2299 if (IS_ERR(pol))
2300 goto out_free_vma;
2301 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2302 if (anon_vma_clone(new_vma, vma))
2303 goto out_free_mempol;
2304 vma_set_policy(new_vma, pol);
2305 new_vma->vm_start = addr;
2306 new_vma->vm_end = addr + len;
2307 new_vma->vm_pgoff = pgoff;
2308 if (new_vma->vm_file) {
2309 get_file(new_vma->vm_file);
2310 if (vma->vm_flags & VM_EXECUTABLE)
2311 added_exe_file_vma(mm);
2312 }
2313 if (new_vma->vm_ops && new_vma->vm_ops->open)
2314 new_vma->vm_ops->open(new_vma);
2315 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2316 }
2317 }
2318 return new_vma;
2319
2320 out_free_mempol:
2321 mpol_put(pol);
2322 out_free_vma:
2323 kmem_cache_free(vm_area_cachep, new_vma);
2324 return NULL;
2325 }
2326
2327 /*
2328 * Return true if the calling process may expand its vm space by the passed
2329 * number of pages
2330 */
2331 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2332 {
2333 unsigned long cur = mm->total_vm; /* pages */
2334 unsigned long lim;
2335
2336 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2337
2338 if (cur + npages > lim)
2339 return 0;
2340 return 1;
2341 }
2342
2343
2344 static int special_mapping_fault(struct vm_area_struct *vma,
2345 struct vm_fault *vmf)
2346 {
2347 pgoff_t pgoff;
2348 struct page **pages;
2349
2350 /*
2351 * special mappings have no vm_file, and in that case, the mm
2352 * uses vm_pgoff internally. So we have to subtract it from here.
2353 * We are allowed to do this because we are the mm; do not copy
2354 * this code into drivers!
2355 */
2356 pgoff = vmf->pgoff - vma->vm_pgoff;
2357
2358 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2359 pgoff--;
2360
2361 if (*pages) {
2362 struct page *page = *pages;
2363 get_page(page);
2364 vmf->page = page;
2365 return 0;
2366 }
2367
2368 return VM_FAULT_SIGBUS;
2369 }
2370
2371 /*
2372 * Having a close hook prevents vma merging regardless of flags.
2373 */
2374 static void special_mapping_close(struct vm_area_struct *vma)
2375 {
2376 }
2377
2378 static const struct vm_operations_struct special_mapping_vmops = {
2379 .close = special_mapping_close,
2380 .fault = special_mapping_fault,
2381 };
2382
2383 /*
2384 * Called with mm->mmap_sem held for writing.
2385 * Insert a new vma covering the given region, with the given flags.
2386 * Its pages are supplied by the given array of struct page *.
2387 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2388 * The region past the last page supplied will always produce SIGBUS.
2389 * The array pointer and the pages it points to are assumed to stay alive
2390 * for as long as this mapping might exist.
2391 */
2392 int install_special_mapping(struct mm_struct *mm,
2393 unsigned long addr, unsigned long len,
2394 unsigned long vm_flags, struct page **pages)
2395 {
2396 struct vm_area_struct *vma;
2397
2398 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2399 if (unlikely(vma == NULL))
2400 return -ENOMEM;
2401
2402 INIT_LIST_HEAD(&vma->anon_vma_chain);
2403 vma->vm_mm = mm;
2404 vma->vm_start = addr;
2405 vma->vm_end = addr + len;
2406
2407 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2408 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2409
2410 vma->vm_ops = &special_mapping_vmops;
2411 vma->vm_private_data = pages;
2412
2413 if (unlikely(insert_vm_struct(mm, vma))) {
2414 kmem_cache_free(vm_area_cachep, vma);
2415 return -ENOMEM;
2416 }
2417
2418 mm->total_vm += len >> PAGE_SHIFT;
2419
2420 perf_event_mmap(vma);
2421
2422 return 0;
2423 }
2424
2425 static DEFINE_MUTEX(mm_all_locks_mutex);
2426
2427 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2428 {
2429 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2430 /*
2431 * The LSB of head.next can't change from under us
2432 * because we hold the mm_all_locks_mutex.
2433 */
2434 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2435 /*
2436 * We can safely modify head.next after taking the
2437 * anon_vma->lock. If some other vma in this mm shares
2438 * the same anon_vma we won't take it again.
2439 *
2440 * No need of atomic instructions here, head.next
2441 * can't change from under us thanks to the
2442 * anon_vma->lock.
2443 */
2444 if (__test_and_set_bit(0, (unsigned long *)
2445 &anon_vma->head.next))
2446 BUG();
2447 }
2448 }
2449
2450 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2451 {
2452 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2453 /*
2454 * AS_MM_ALL_LOCKS can't change from under us because
2455 * we hold the mm_all_locks_mutex.
2456 *
2457 * Operations on ->flags have to be atomic because
2458 * even if AS_MM_ALL_LOCKS is stable thanks to the
2459 * mm_all_locks_mutex, there may be other cpus
2460 * changing other bitflags in parallel to us.
2461 */
2462 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2463 BUG();
2464 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2465 }
2466 }
2467
2468 /*
2469 * This operation locks against the VM for all pte/vma/mm related
2470 * operations that could ever happen on a certain mm. This includes
2471 * vmtruncate, try_to_unmap, and all page faults.
2472 *
2473 * The caller must take the mmap_sem in write mode before calling
2474 * mm_take_all_locks(). The caller isn't allowed to release the
2475 * mmap_sem until mm_drop_all_locks() returns.
2476 *
2477 * mmap_sem in write mode is required in order to block all operations
2478 * that could modify pagetables and free pages without need of
2479 * altering the vma layout (for example populate_range() with
2480 * nonlinear vmas). It's also needed in write mode to avoid new
2481 * anon_vmas to be associated with existing vmas.
2482 *
2483 * A single task can't take more than one mm_take_all_locks() in a row
2484 * or it would deadlock.
2485 *
2486 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2487 * mapping->flags avoid to take the same lock twice, if more than one
2488 * vma in this mm is backed by the same anon_vma or address_space.
2489 *
2490 * We can take all the locks in random order because the VM code
2491 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2492 * takes more than one of them in a row. Secondly we're protected
2493 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2494 *
2495 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2496 * that may have to take thousand of locks.
2497 *
2498 * mm_take_all_locks() can fail if it's interrupted by signals.
2499 */
2500 int mm_take_all_locks(struct mm_struct *mm)
2501 {
2502 struct vm_area_struct *vma;
2503 struct anon_vma_chain *avc;
2504 int ret = -EINTR;
2505
2506 BUG_ON(down_read_trylock(&mm->mmap_sem));
2507
2508 mutex_lock(&mm_all_locks_mutex);
2509
2510 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2511 if (signal_pending(current))
2512 goto out_unlock;
2513 if (vma->vm_file && vma->vm_file->f_mapping)
2514 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2515 }
2516
2517 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2518 if (signal_pending(current))
2519 goto out_unlock;
2520 if (vma->anon_vma)
2521 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2522 vm_lock_anon_vma(mm, avc->anon_vma);
2523 }
2524
2525 ret = 0;
2526
2527 out_unlock:
2528 if (ret)
2529 mm_drop_all_locks(mm);
2530
2531 return ret;
2532 }
2533
2534 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2535 {
2536 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2537 /*
2538 * The LSB of head.next can't change to 0 from under
2539 * us because we hold the mm_all_locks_mutex.
2540 *
2541 * We must however clear the bitflag before unlocking
2542 * the vma so the users using the anon_vma->head will
2543 * never see our bitflag.
2544 *
2545 * No need of atomic instructions here, head.next
2546 * can't change from under us until we release the
2547 * anon_vma->lock.
2548 */
2549 if (!__test_and_clear_bit(0, (unsigned long *)
2550 &anon_vma->head.next))
2551 BUG();
2552 spin_unlock(&anon_vma->lock);
2553 }
2554 }
2555
2556 static void vm_unlock_mapping(struct address_space *mapping)
2557 {
2558 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2559 /*
2560 * AS_MM_ALL_LOCKS can't change to 0 from under us
2561 * because we hold the mm_all_locks_mutex.
2562 */
2563 spin_unlock(&mapping->i_mmap_lock);
2564 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2565 &mapping->flags))
2566 BUG();
2567 }
2568 }
2569
2570 /*
2571 * The mmap_sem cannot be released by the caller until
2572 * mm_drop_all_locks() returns.
2573 */
2574 void mm_drop_all_locks(struct mm_struct *mm)
2575 {
2576 struct vm_area_struct *vma;
2577 struct anon_vma_chain *avc;
2578
2579 BUG_ON(down_read_trylock(&mm->mmap_sem));
2580 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2581
2582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2583 if (vma->anon_vma)
2584 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2585 vm_unlock_anon_vma(avc->anon_vma);
2586 if (vma->vm_file && vma->vm_file->f_mapping)
2587 vm_unlock_mapping(vma->vm_file->f_mapping);
2588 }
2589
2590 mutex_unlock(&mm_all_locks_mutex);
2591 }
2592
2593 /*
2594 * initialise the VMA slab
2595 */
2596 void __init mmap_init(void)
2597 {
2598 int ret;
2599
2600 ret = percpu_counter_init(&vm_committed_as, 0);
2601 VM_BUG_ON(ret);
2602 }
This page took 0.118863 seconds and 5 git commands to generate.