mm: reinititalise user and admin reserves if memory is added or removed
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35 #include <linux/sched/sysctl.h>
36 #include <linux/notifier.h>
37 #include <linux/memory.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/cacheflush.h>
41 #include <asm/tlb.h>
42 #include <asm/mmu_context.h>
43
44 #include "internal.h"
45
46 #ifndef arch_mmap_check
47 #define arch_mmap_check(addr, len, flags) (0)
48 #endif
49
50 #ifndef arch_rebalance_pgtables
51 #define arch_rebalance_pgtables(addr, len) (addr)
52 #endif
53
54 static void unmap_region(struct mm_struct *mm,
55 struct vm_area_struct *vma, struct vm_area_struct *prev,
56 unsigned long start, unsigned long end);
57
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
61 *
62 * map_type prot
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 *
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 *
72 */
73 pgprot_t protection_map[16] = {
74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80 return __pgprot(pgprot_val(protection_map[vm_flags &
81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85
86 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
87 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
90 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * The global memory commitment made in the system can be a metric
99 * that can be used to drive ballooning decisions when Linux is hosted
100 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
101 * balancing memory across competing virtual machines that are hosted.
102 * Several metrics drive this policy engine including the guest reported
103 * memory commitment.
104 */
105 unsigned long vm_memory_committed(void)
106 {
107 return percpu_counter_read_positive(&vm_committed_as);
108 }
109 EXPORT_SYMBOL_GPL(vm_memory_committed);
110
111 /*
112 * Check that a process has enough memory to allocate a new virtual
113 * mapping. 0 means there is enough memory for the allocation to
114 * succeed and -ENOMEM implies there is not.
115 *
116 * We currently support three overcommit policies, which are set via the
117 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
118 *
119 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
120 * Additional code 2002 Jul 20 by Robert Love.
121 *
122 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
123 *
124 * Note this is a helper function intended to be used by LSMs which
125 * wish to use this logic.
126 */
127 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
128 {
129 unsigned long free, allowed, reserve;
130
131 vm_acct_memory(pages);
132
133 /*
134 * Sometimes we want to use more memory than we have
135 */
136 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
137 return 0;
138
139 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
140 free = global_page_state(NR_FREE_PAGES);
141 free += global_page_state(NR_FILE_PAGES);
142
143 /*
144 * shmem pages shouldn't be counted as free in this
145 * case, they can't be purged, only swapped out, and
146 * that won't affect the overall amount of available
147 * memory in the system.
148 */
149 free -= global_page_state(NR_SHMEM);
150
151 free += get_nr_swap_pages();
152
153 /*
154 * Any slabs which are created with the
155 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
156 * which are reclaimable, under pressure. The dentry
157 * cache and most inode caches should fall into this
158 */
159 free += global_page_state(NR_SLAB_RECLAIMABLE);
160
161 /*
162 * Leave reserved pages. The pages are not for anonymous pages.
163 */
164 if (free <= totalreserve_pages)
165 goto error;
166 else
167 free -= totalreserve_pages;
168
169 /*
170 * Reserve some for root
171 */
172 if (!cap_sys_admin)
173 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
174
175 if (free > pages)
176 return 0;
177
178 goto error;
179 }
180
181 allowed = (totalram_pages - hugetlb_total_pages())
182 * sysctl_overcommit_ratio / 100;
183 /*
184 * Reserve some for root
185 */
186 if (!cap_sys_admin)
187 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
188 allowed += total_swap_pages;
189
190 /*
191 * Don't let a single process grow so big a user can't recover
192 */
193 if (mm) {
194 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
195 allowed -= min(mm->total_vm / 32, reserve);
196 }
197
198 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
199 return 0;
200 error:
201 vm_unacct_memory(pages);
202
203 return -ENOMEM;
204 }
205
206 /*
207 * Requires inode->i_mapping->i_mmap_mutex
208 */
209 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
210 struct file *file, struct address_space *mapping)
211 {
212 if (vma->vm_flags & VM_DENYWRITE)
213 atomic_inc(&file_inode(file)->i_writecount);
214 if (vma->vm_flags & VM_SHARED)
215 mapping->i_mmap_writable--;
216
217 flush_dcache_mmap_lock(mapping);
218 if (unlikely(vma->vm_flags & VM_NONLINEAR))
219 list_del_init(&vma->shared.nonlinear);
220 else
221 vma_interval_tree_remove(vma, &mapping->i_mmap);
222 flush_dcache_mmap_unlock(mapping);
223 }
224
225 /*
226 * Unlink a file-based vm structure from its interval tree, to hide
227 * vma from rmap and vmtruncate before freeing its page tables.
228 */
229 void unlink_file_vma(struct vm_area_struct *vma)
230 {
231 struct file *file = vma->vm_file;
232
233 if (file) {
234 struct address_space *mapping = file->f_mapping;
235 mutex_lock(&mapping->i_mmap_mutex);
236 __remove_shared_vm_struct(vma, file, mapping);
237 mutex_unlock(&mapping->i_mmap_mutex);
238 }
239 }
240
241 /*
242 * Close a vm structure and free it, returning the next.
243 */
244 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
245 {
246 struct vm_area_struct *next = vma->vm_next;
247
248 might_sleep();
249 if (vma->vm_ops && vma->vm_ops->close)
250 vma->vm_ops->close(vma);
251 if (vma->vm_file)
252 fput(vma->vm_file);
253 mpol_put(vma_policy(vma));
254 kmem_cache_free(vm_area_cachep, vma);
255 return next;
256 }
257
258 static unsigned long do_brk(unsigned long addr, unsigned long len);
259
260 SYSCALL_DEFINE1(brk, unsigned long, brk)
261 {
262 unsigned long rlim, retval;
263 unsigned long newbrk, oldbrk;
264 struct mm_struct *mm = current->mm;
265 unsigned long min_brk;
266 bool populate;
267
268 down_write(&mm->mmap_sem);
269
270 #ifdef CONFIG_COMPAT_BRK
271 /*
272 * CONFIG_COMPAT_BRK can still be overridden by setting
273 * randomize_va_space to 2, which will still cause mm->start_brk
274 * to be arbitrarily shifted
275 */
276 if (current->brk_randomized)
277 min_brk = mm->start_brk;
278 else
279 min_brk = mm->end_data;
280 #else
281 min_brk = mm->start_brk;
282 #endif
283 if (brk < min_brk)
284 goto out;
285
286 /*
287 * Check against rlimit here. If this check is done later after the test
288 * of oldbrk with newbrk then it can escape the test and let the data
289 * segment grow beyond its set limit the in case where the limit is
290 * not page aligned -Ram Gupta
291 */
292 rlim = rlimit(RLIMIT_DATA);
293 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
294 (mm->end_data - mm->start_data) > rlim)
295 goto out;
296
297 newbrk = PAGE_ALIGN(brk);
298 oldbrk = PAGE_ALIGN(mm->brk);
299 if (oldbrk == newbrk)
300 goto set_brk;
301
302 /* Always allow shrinking brk. */
303 if (brk <= mm->brk) {
304 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
305 goto set_brk;
306 goto out;
307 }
308
309 /* Check against existing mmap mappings. */
310 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
311 goto out;
312
313 /* Ok, looks good - let it rip. */
314 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
315 goto out;
316
317 set_brk:
318 mm->brk = brk;
319 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
320 up_write(&mm->mmap_sem);
321 if (populate)
322 mm_populate(oldbrk, newbrk - oldbrk);
323 return brk;
324
325 out:
326 retval = mm->brk;
327 up_write(&mm->mmap_sem);
328 return retval;
329 }
330
331 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
332 {
333 unsigned long max, subtree_gap;
334 max = vma->vm_start;
335 if (vma->vm_prev)
336 max -= vma->vm_prev->vm_end;
337 if (vma->vm_rb.rb_left) {
338 subtree_gap = rb_entry(vma->vm_rb.rb_left,
339 struct vm_area_struct, vm_rb)->rb_subtree_gap;
340 if (subtree_gap > max)
341 max = subtree_gap;
342 }
343 if (vma->vm_rb.rb_right) {
344 subtree_gap = rb_entry(vma->vm_rb.rb_right,
345 struct vm_area_struct, vm_rb)->rb_subtree_gap;
346 if (subtree_gap > max)
347 max = subtree_gap;
348 }
349 return max;
350 }
351
352 #ifdef CONFIG_DEBUG_VM_RB
353 static int browse_rb(struct rb_root *root)
354 {
355 int i = 0, j, bug = 0;
356 struct rb_node *nd, *pn = NULL;
357 unsigned long prev = 0, pend = 0;
358
359 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
360 struct vm_area_struct *vma;
361 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
362 if (vma->vm_start < prev) {
363 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
364 bug = 1;
365 }
366 if (vma->vm_start < pend) {
367 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
368 bug = 1;
369 }
370 if (vma->vm_start > vma->vm_end) {
371 printk("vm_end %lx < vm_start %lx\n",
372 vma->vm_end, vma->vm_start);
373 bug = 1;
374 }
375 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
376 printk("free gap %lx, correct %lx\n",
377 vma->rb_subtree_gap,
378 vma_compute_subtree_gap(vma));
379 bug = 1;
380 }
381 i++;
382 pn = nd;
383 prev = vma->vm_start;
384 pend = vma->vm_end;
385 }
386 j = 0;
387 for (nd = pn; nd; nd = rb_prev(nd))
388 j++;
389 if (i != j) {
390 printk("backwards %d, forwards %d\n", j, i);
391 bug = 1;
392 }
393 return bug ? -1 : i;
394 }
395
396 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
397 {
398 struct rb_node *nd;
399
400 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
401 struct vm_area_struct *vma;
402 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
403 BUG_ON(vma != ignore &&
404 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
405 }
406 }
407
408 void validate_mm(struct mm_struct *mm)
409 {
410 int bug = 0;
411 int i = 0;
412 unsigned long highest_address = 0;
413 struct vm_area_struct *vma = mm->mmap;
414 while (vma) {
415 struct anon_vma_chain *avc;
416 vma_lock_anon_vma(vma);
417 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
418 anon_vma_interval_tree_verify(avc);
419 vma_unlock_anon_vma(vma);
420 highest_address = vma->vm_end;
421 vma = vma->vm_next;
422 i++;
423 }
424 if (i != mm->map_count) {
425 printk("map_count %d vm_next %d\n", mm->map_count, i);
426 bug = 1;
427 }
428 if (highest_address != mm->highest_vm_end) {
429 printk("mm->highest_vm_end %lx, found %lx\n",
430 mm->highest_vm_end, highest_address);
431 bug = 1;
432 }
433 i = browse_rb(&mm->mm_rb);
434 if (i != mm->map_count) {
435 printk("map_count %d rb %d\n", mm->map_count, i);
436 bug = 1;
437 }
438 BUG_ON(bug);
439 }
440 #else
441 #define validate_mm_rb(root, ignore) do { } while (0)
442 #define validate_mm(mm) do { } while (0)
443 #endif
444
445 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
446 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
447
448 /*
449 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
450 * vma->vm_prev->vm_end values changed, without modifying the vma's position
451 * in the rbtree.
452 */
453 static void vma_gap_update(struct vm_area_struct *vma)
454 {
455 /*
456 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
457 * function that does exacltly what we want.
458 */
459 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
460 }
461
462 static inline void vma_rb_insert(struct vm_area_struct *vma,
463 struct rb_root *root)
464 {
465 /* All rb_subtree_gap values must be consistent prior to insertion */
466 validate_mm_rb(root, NULL);
467
468 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
472 {
473 /*
474 * All rb_subtree_gap values must be consistent prior to erase,
475 * with the possible exception of the vma being erased.
476 */
477 validate_mm_rb(root, vma);
478
479 /*
480 * Note rb_erase_augmented is a fairly large inline function,
481 * so make sure we instantiate it only once with our desired
482 * augmented rbtree callbacks.
483 */
484 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
485 }
486
487 /*
488 * vma has some anon_vma assigned, and is already inserted on that
489 * anon_vma's interval trees.
490 *
491 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
492 * vma must be removed from the anon_vma's interval trees using
493 * anon_vma_interval_tree_pre_update_vma().
494 *
495 * After the update, the vma will be reinserted using
496 * anon_vma_interval_tree_post_update_vma().
497 *
498 * The entire update must be protected by exclusive mmap_sem and by
499 * the root anon_vma's mutex.
500 */
501 static inline void
502 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
503 {
504 struct anon_vma_chain *avc;
505
506 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
507 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
508 }
509
510 static inline void
511 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
512 {
513 struct anon_vma_chain *avc;
514
515 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
516 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
517 }
518
519 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
520 unsigned long end, struct vm_area_struct **pprev,
521 struct rb_node ***rb_link, struct rb_node **rb_parent)
522 {
523 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
524
525 __rb_link = &mm->mm_rb.rb_node;
526 rb_prev = __rb_parent = NULL;
527
528 while (*__rb_link) {
529 struct vm_area_struct *vma_tmp;
530
531 __rb_parent = *__rb_link;
532 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
533
534 if (vma_tmp->vm_end > addr) {
535 /* Fail if an existing vma overlaps the area */
536 if (vma_tmp->vm_start < end)
537 return -ENOMEM;
538 __rb_link = &__rb_parent->rb_left;
539 } else {
540 rb_prev = __rb_parent;
541 __rb_link = &__rb_parent->rb_right;
542 }
543 }
544
545 *pprev = NULL;
546 if (rb_prev)
547 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
548 *rb_link = __rb_link;
549 *rb_parent = __rb_parent;
550 return 0;
551 }
552
553 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
554 struct rb_node **rb_link, struct rb_node *rb_parent)
555 {
556 /* Update tracking information for the gap following the new vma. */
557 if (vma->vm_next)
558 vma_gap_update(vma->vm_next);
559 else
560 mm->highest_vm_end = vma->vm_end;
561
562 /*
563 * vma->vm_prev wasn't known when we followed the rbtree to find the
564 * correct insertion point for that vma. As a result, we could not
565 * update the vma vm_rb parents rb_subtree_gap values on the way down.
566 * So, we first insert the vma with a zero rb_subtree_gap value
567 * (to be consistent with what we did on the way down), and then
568 * immediately update the gap to the correct value. Finally we
569 * rebalance the rbtree after all augmented values have been set.
570 */
571 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
572 vma->rb_subtree_gap = 0;
573 vma_gap_update(vma);
574 vma_rb_insert(vma, &mm->mm_rb);
575 }
576
577 static void __vma_link_file(struct vm_area_struct *vma)
578 {
579 struct file *file;
580
581 file = vma->vm_file;
582 if (file) {
583 struct address_space *mapping = file->f_mapping;
584
585 if (vma->vm_flags & VM_DENYWRITE)
586 atomic_dec(&file_inode(file)->i_writecount);
587 if (vma->vm_flags & VM_SHARED)
588 mapping->i_mmap_writable++;
589
590 flush_dcache_mmap_lock(mapping);
591 if (unlikely(vma->vm_flags & VM_NONLINEAR))
592 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
593 else
594 vma_interval_tree_insert(vma, &mapping->i_mmap);
595 flush_dcache_mmap_unlock(mapping);
596 }
597 }
598
599 static void
600 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
601 struct vm_area_struct *prev, struct rb_node **rb_link,
602 struct rb_node *rb_parent)
603 {
604 __vma_link_list(mm, vma, prev, rb_parent);
605 __vma_link_rb(mm, vma, rb_link, rb_parent);
606 }
607
608 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
609 struct vm_area_struct *prev, struct rb_node **rb_link,
610 struct rb_node *rb_parent)
611 {
612 struct address_space *mapping = NULL;
613
614 if (vma->vm_file)
615 mapping = vma->vm_file->f_mapping;
616
617 if (mapping)
618 mutex_lock(&mapping->i_mmap_mutex);
619
620 __vma_link(mm, vma, prev, rb_link, rb_parent);
621 __vma_link_file(vma);
622
623 if (mapping)
624 mutex_unlock(&mapping->i_mmap_mutex);
625
626 mm->map_count++;
627 validate_mm(mm);
628 }
629
630 /*
631 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
632 * mm's list and rbtree. It has already been inserted into the interval tree.
633 */
634 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
635 {
636 struct vm_area_struct *prev;
637 struct rb_node **rb_link, *rb_parent;
638
639 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
640 &prev, &rb_link, &rb_parent))
641 BUG();
642 __vma_link(mm, vma, prev, rb_link, rb_parent);
643 mm->map_count++;
644 }
645
646 static inline void
647 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
648 struct vm_area_struct *prev)
649 {
650 struct vm_area_struct *next;
651
652 vma_rb_erase(vma, &mm->mm_rb);
653 prev->vm_next = next = vma->vm_next;
654 if (next)
655 next->vm_prev = prev;
656 if (mm->mmap_cache == vma)
657 mm->mmap_cache = prev;
658 }
659
660 /*
661 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
662 * is already present in an i_mmap tree without adjusting the tree.
663 * The following helper function should be used when such adjustments
664 * are necessary. The "insert" vma (if any) is to be inserted
665 * before we drop the necessary locks.
666 */
667 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
668 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
669 {
670 struct mm_struct *mm = vma->vm_mm;
671 struct vm_area_struct *next = vma->vm_next;
672 struct vm_area_struct *importer = NULL;
673 struct address_space *mapping = NULL;
674 struct rb_root *root = NULL;
675 struct anon_vma *anon_vma = NULL;
676 struct file *file = vma->vm_file;
677 bool start_changed = false, end_changed = false;
678 long adjust_next = 0;
679 int remove_next = 0;
680
681 if (next && !insert) {
682 struct vm_area_struct *exporter = NULL;
683
684 if (end >= next->vm_end) {
685 /*
686 * vma expands, overlapping all the next, and
687 * perhaps the one after too (mprotect case 6).
688 */
689 again: remove_next = 1 + (end > next->vm_end);
690 end = next->vm_end;
691 exporter = next;
692 importer = vma;
693 } else if (end > next->vm_start) {
694 /*
695 * vma expands, overlapping part of the next:
696 * mprotect case 5 shifting the boundary up.
697 */
698 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
699 exporter = next;
700 importer = vma;
701 } else if (end < vma->vm_end) {
702 /*
703 * vma shrinks, and !insert tells it's not
704 * split_vma inserting another: so it must be
705 * mprotect case 4 shifting the boundary down.
706 */
707 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
708 exporter = vma;
709 importer = next;
710 }
711
712 /*
713 * Easily overlooked: when mprotect shifts the boundary,
714 * make sure the expanding vma has anon_vma set if the
715 * shrinking vma had, to cover any anon pages imported.
716 */
717 if (exporter && exporter->anon_vma && !importer->anon_vma) {
718 if (anon_vma_clone(importer, exporter))
719 return -ENOMEM;
720 importer->anon_vma = exporter->anon_vma;
721 }
722 }
723
724 if (file) {
725 mapping = file->f_mapping;
726 if (!(vma->vm_flags & VM_NONLINEAR)) {
727 root = &mapping->i_mmap;
728 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
729
730 if (adjust_next)
731 uprobe_munmap(next, next->vm_start,
732 next->vm_end);
733 }
734
735 mutex_lock(&mapping->i_mmap_mutex);
736 if (insert) {
737 /*
738 * Put into interval tree now, so instantiated pages
739 * are visible to arm/parisc __flush_dcache_page
740 * throughout; but we cannot insert into address
741 * space until vma start or end is updated.
742 */
743 __vma_link_file(insert);
744 }
745 }
746
747 vma_adjust_trans_huge(vma, start, end, adjust_next);
748
749 anon_vma = vma->anon_vma;
750 if (!anon_vma && adjust_next)
751 anon_vma = next->anon_vma;
752 if (anon_vma) {
753 VM_BUG_ON(adjust_next && next->anon_vma &&
754 anon_vma != next->anon_vma);
755 anon_vma_lock_write(anon_vma);
756 anon_vma_interval_tree_pre_update_vma(vma);
757 if (adjust_next)
758 anon_vma_interval_tree_pre_update_vma(next);
759 }
760
761 if (root) {
762 flush_dcache_mmap_lock(mapping);
763 vma_interval_tree_remove(vma, root);
764 if (adjust_next)
765 vma_interval_tree_remove(next, root);
766 }
767
768 if (start != vma->vm_start) {
769 vma->vm_start = start;
770 start_changed = true;
771 }
772 if (end != vma->vm_end) {
773 vma->vm_end = end;
774 end_changed = true;
775 }
776 vma->vm_pgoff = pgoff;
777 if (adjust_next) {
778 next->vm_start += adjust_next << PAGE_SHIFT;
779 next->vm_pgoff += adjust_next;
780 }
781
782 if (root) {
783 if (adjust_next)
784 vma_interval_tree_insert(next, root);
785 vma_interval_tree_insert(vma, root);
786 flush_dcache_mmap_unlock(mapping);
787 }
788
789 if (remove_next) {
790 /*
791 * vma_merge has merged next into vma, and needs
792 * us to remove next before dropping the locks.
793 */
794 __vma_unlink(mm, next, vma);
795 if (file)
796 __remove_shared_vm_struct(next, file, mapping);
797 } else if (insert) {
798 /*
799 * split_vma has split insert from vma, and needs
800 * us to insert it before dropping the locks
801 * (it may either follow vma or precede it).
802 */
803 __insert_vm_struct(mm, insert);
804 } else {
805 if (start_changed)
806 vma_gap_update(vma);
807 if (end_changed) {
808 if (!next)
809 mm->highest_vm_end = end;
810 else if (!adjust_next)
811 vma_gap_update(next);
812 }
813 }
814
815 if (anon_vma) {
816 anon_vma_interval_tree_post_update_vma(vma);
817 if (adjust_next)
818 anon_vma_interval_tree_post_update_vma(next);
819 anon_vma_unlock_write(anon_vma);
820 }
821 if (mapping)
822 mutex_unlock(&mapping->i_mmap_mutex);
823
824 if (root) {
825 uprobe_mmap(vma);
826
827 if (adjust_next)
828 uprobe_mmap(next);
829 }
830
831 if (remove_next) {
832 if (file) {
833 uprobe_munmap(next, next->vm_start, next->vm_end);
834 fput(file);
835 }
836 if (next->anon_vma)
837 anon_vma_merge(vma, next);
838 mm->map_count--;
839 vma_set_policy(vma, vma_policy(next));
840 kmem_cache_free(vm_area_cachep, next);
841 /*
842 * In mprotect's case 6 (see comments on vma_merge),
843 * we must remove another next too. It would clutter
844 * up the code too much to do both in one go.
845 */
846 next = vma->vm_next;
847 if (remove_next == 2)
848 goto again;
849 else if (next)
850 vma_gap_update(next);
851 else
852 mm->highest_vm_end = end;
853 }
854 if (insert && file)
855 uprobe_mmap(insert);
856
857 validate_mm(mm);
858
859 return 0;
860 }
861
862 /*
863 * If the vma has a ->close operation then the driver probably needs to release
864 * per-vma resources, so we don't attempt to merge those.
865 */
866 static inline int is_mergeable_vma(struct vm_area_struct *vma,
867 struct file *file, unsigned long vm_flags)
868 {
869 if (vma->vm_flags ^ vm_flags)
870 return 0;
871 if (vma->vm_file != file)
872 return 0;
873 if (vma->vm_ops && vma->vm_ops->close)
874 return 0;
875 return 1;
876 }
877
878 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
879 struct anon_vma *anon_vma2,
880 struct vm_area_struct *vma)
881 {
882 /*
883 * The list_is_singular() test is to avoid merging VMA cloned from
884 * parents. This can improve scalability caused by anon_vma lock.
885 */
886 if ((!anon_vma1 || !anon_vma2) && (!vma ||
887 list_is_singular(&vma->anon_vma_chain)))
888 return 1;
889 return anon_vma1 == anon_vma2;
890 }
891
892 /*
893 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
894 * in front of (at a lower virtual address and file offset than) the vma.
895 *
896 * We cannot merge two vmas if they have differently assigned (non-NULL)
897 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
898 *
899 * We don't check here for the merged mmap wrapping around the end of pagecache
900 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
901 * wrap, nor mmaps which cover the final page at index -1UL.
902 */
903 static int
904 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
905 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
906 {
907 if (is_mergeable_vma(vma, file, vm_flags) &&
908 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
909 if (vma->vm_pgoff == vm_pgoff)
910 return 1;
911 }
912 return 0;
913 }
914
915 /*
916 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
917 * beyond (at a higher virtual address and file offset than) the vma.
918 *
919 * We cannot merge two vmas if they have differently assigned (non-NULL)
920 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
921 */
922 static int
923 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
924 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
925 {
926 if (is_mergeable_vma(vma, file, vm_flags) &&
927 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
928 pgoff_t vm_pglen;
929 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
930 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
931 return 1;
932 }
933 return 0;
934 }
935
936 /*
937 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
938 * whether that can be merged with its predecessor or its successor.
939 * Or both (it neatly fills a hole).
940 *
941 * In most cases - when called for mmap, brk or mremap - [addr,end) is
942 * certain not to be mapped by the time vma_merge is called; but when
943 * called for mprotect, it is certain to be already mapped (either at
944 * an offset within prev, or at the start of next), and the flags of
945 * this area are about to be changed to vm_flags - and the no-change
946 * case has already been eliminated.
947 *
948 * The following mprotect cases have to be considered, where AAAA is
949 * the area passed down from mprotect_fixup, never extending beyond one
950 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
951 *
952 * AAAA AAAA AAAA AAAA
953 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
954 * cannot merge might become might become might become
955 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
956 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
957 * mremap move: PPPPNNNNNNNN 8
958 * AAAA
959 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
960 * might become case 1 below case 2 below case 3 below
961 *
962 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
963 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
964 */
965 struct vm_area_struct *vma_merge(struct mm_struct *mm,
966 struct vm_area_struct *prev, unsigned long addr,
967 unsigned long end, unsigned long vm_flags,
968 struct anon_vma *anon_vma, struct file *file,
969 pgoff_t pgoff, struct mempolicy *policy)
970 {
971 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
972 struct vm_area_struct *area, *next;
973 int err;
974
975 /*
976 * We later require that vma->vm_flags == vm_flags,
977 * so this tests vma->vm_flags & VM_SPECIAL, too.
978 */
979 if (vm_flags & VM_SPECIAL)
980 return NULL;
981
982 if (prev)
983 next = prev->vm_next;
984 else
985 next = mm->mmap;
986 area = next;
987 if (next && next->vm_end == end) /* cases 6, 7, 8 */
988 next = next->vm_next;
989
990 /*
991 * Can it merge with the predecessor?
992 */
993 if (prev && prev->vm_end == addr &&
994 mpol_equal(vma_policy(prev), policy) &&
995 can_vma_merge_after(prev, vm_flags,
996 anon_vma, file, pgoff)) {
997 /*
998 * OK, it can. Can we now merge in the successor as well?
999 */
1000 if (next && end == next->vm_start &&
1001 mpol_equal(policy, vma_policy(next)) &&
1002 can_vma_merge_before(next, vm_flags,
1003 anon_vma, file, pgoff+pglen) &&
1004 is_mergeable_anon_vma(prev->anon_vma,
1005 next->anon_vma, NULL)) {
1006 /* cases 1, 6 */
1007 err = vma_adjust(prev, prev->vm_start,
1008 next->vm_end, prev->vm_pgoff, NULL);
1009 } else /* cases 2, 5, 7 */
1010 err = vma_adjust(prev, prev->vm_start,
1011 end, prev->vm_pgoff, NULL);
1012 if (err)
1013 return NULL;
1014 khugepaged_enter_vma_merge(prev);
1015 return prev;
1016 }
1017
1018 /*
1019 * Can this new request be merged in front of next?
1020 */
1021 if (next && end == next->vm_start &&
1022 mpol_equal(policy, vma_policy(next)) &&
1023 can_vma_merge_before(next, vm_flags,
1024 anon_vma, file, pgoff+pglen)) {
1025 if (prev && addr < prev->vm_end) /* case 4 */
1026 err = vma_adjust(prev, prev->vm_start,
1027 addr, prev->vm_pgoff, NULL);
1028 else /* cases 3, 8 */
1029 err = vma_adjust(area, addr, next->vm_end,
1030 next->vm_pgoff - pglen, NULL);
1031 if (err)
1032 return NULL;
1033 khugepaged_enter_vma_merge(area);
1034 return area;
1035 }
1036
1037 return NULL;
1038 }
1039
1040 /*
1041 * Rough compatbility check to quickly see if it's even worth looking
1042 * at sharing an anon_vma.
1043 *
1044 * They need to have the same vm_file, and the flags can only differ
1045 * in things that mprotect may change.
1046 *
1047 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1048 * we can merge the two vma's. For example, we refuse to merge a vma if
1049 * there is a vm_ops->close() function, because that indicates that the
1050 * driver is doing some kind of reference counting. But that doesn't
1051 * really matter for the anon_vma sharing case.
1052 */
1053 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1054 {
1055 return a->vm_end == b->vm_start &&
1056 mpol_equal(vma_policy(a), vma_policy(b)) &&
1057 a->vm_file == b->vm_file &&
1058 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1059 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1060 }
1061
1062 /*
1063 * Do some basic sanity checking to see if we can re-use the anon_vma
1064 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1065 * the same as 'old', the other will be the new one that is trying
1066 * to share the anon_vma.
1067 *
1068 * NOTE! This runs with mm_sem held for reading, so it is possible that
1069 * the anon_vma of 'old' is concurrently in the process of being set up
1070 * by another page fault trying to merge _that_. But that's ok: if it
1071 * is being set up, that automatically means that it will be a singleton
1072 * acceptable for merging, so we can do all of this optimistically. But
1073 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1074 *
1075 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1076 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1077 * is to return an anon_vma that is "complex" due to having gone through
1078 * a fork).
1079 *
1080 * We also make sure that the two vma's are compatible (adjacent,
1081 * and with the same memory policies). That's all stable, even with just
1082 * a read lock on the mm_sem.
1083 */
1084 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1085 {
1086 if (anon_vma_compatible(a, b)) {
1087 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1088
1089 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1090 return anon_vma;
1091 }
1092 return NULL;
1093 }
1094
1095 /*
1096 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1097 * neighbouring vmas for a suitable anon_vma, before it goes off
1098 * to allocate a new anon_vma. It checks because a repetitive
1099 * sequence of mprotects and faults may otherwise lead to distinct
1100 * anon_vmas being allocated, preventing vma merge in subsequent
1101 * mprotect.
1102 */
1103 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1104 {
1105 struct anon_vma *anon_vma;
1106 struct vm_area_struct *near;
1107
1108 near = vma->vm_next;
1109 if (!near)
1110 goto try_prev;
1111
1112 anon_vma = reusable_anon_vma(near, vma, near);
1113 if (anon_vma)
1114 return anon_vma;
1115 try_prev:
1116 near = vma->vm_prev;
1117 if (!near)
1118 goto none;
1119
1120 anon_vma = reusable_anon_vma(near, near, vma);
1121 if (anon_vma)
1122 return anon_vma;
1123 none:
1124 /*
1125 * There's no absolute need to look only at touching neighbours:
1126 * we could search further afield for "compatible" anon_vmas.
1127 * But it would probably just be a waste of time searching,
1128 * or lead to too many vmas hanging off the same anon_vma.
1129 * We're trying to allow mprotect remerging later on,
1130 * not trying to minimize memory used for anon_vmas.
1131 */
1132 return NULL;
1133 }
1134
1135 #ifdef CONFIG_PROC_FS
1136 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1137 struct file *file, long pages)
1138 {
1139 const unsigned long stack_flags
1140 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1141
1142 mm->total_vm += pages;
1143
1144 if (file) {
1145 mm->shared_vm += pages;
1146 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1147 mm->exec_vm += pages;
1148 } else if (flags & stack_flags)
1149 mm->stack_vm += pages;
1150 }
1151 #endif /* CONFIG_PROC_FS */
1152
1153 /*
1154 * If a hint addr is less than mmap_min_addr change hint to be as
1155 * low as possible but still greater than mmap_min_addr
1156 */
1157 static inline unsigned long round_hint_to_min(unsigned long hint)
1158 {
1159 hint &= PAGE_MASK;
1160 if (((void *)hint != NULL) &&
1161 (hint < mmap_min_addr))
1162 return PAGE_ALIGN(mmap_min_addr);
1163 return hint;
1164 }
1165
1166 /*
1167 * The caller must hold down_write(&current->mm->mmap_sem).
1168 */
1169
1170 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1171 unsigned long len, unsigned long prot,
1172 unsigned long flags, unsigned long pgoff,
1173 unsigned long *populate)
1174 {
1175 struct mm_struct * mm = current->mm;
1176 struct inode *inode;
1177 vm_flags_t vm_flags;
1178
1179 *populate = 0;
1180
1181 /*
1182 * Does the application expect PROT_READ to imply PROT_EXEC?
1183 *
1184 * (the exception is when the underlying filesystem is noexec
1185 * mounted, in which case we dont add PROT_EXEC.)
1186 */
1187 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1188 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1189 prot |= PROT_EXEC;
1190
1191 if (!len)
1192 return -EINVAL;
1193
1194 if (!(flags & MAP_FIXED))
1195 addr = round_hint_to_min(addr);
1196
1197 /* Careful about overflows.. */
1198 len = PAGE_ALIGN(len);
1199 if (!len)
1200 return -ENOMEM;
1201
1202 /* offset overflow? */
1203 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1204 return -EOVERFLOW;
1205
1206 /* Too many mappings? */
1207 if (mm->map_count > sysctl_max_map_count)
1208 return -ENOMEM;
1209
1210 /* Obtain the address to map to. we verify (or select) it and ensure
1211 * that it represents a valid section of the address space.
1212 */
1213 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1214 if (addr & ~PAGE_MASK)
1215 return addr;
1216
1217 /* Do simple checking here so the lower-level routines won't have
1218 * to. we assume access permissions have been handled by the open
1219 * of the memory object, so we don't do any here.
1220 */
1221 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1222 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1223
1224 if (flags & MAP_LOCKED)
1225 if (!can_do_mlock())
1226 return -EPERM;
1227
1228 /* mlock MCL_FUTURE? */
1229 if (vm_flags & VM_LOCKED) {
1230 unsigned long locked, lock_limit;
1231 locked = len >> PAGE_SHIFT;
1232 locked += mm->locked_vm;
1233 lock_limit = rlimit(RLIMIT_MEMLOCK);
1234 lock_limit >>= PAGE_SHIFT;
1235 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1236 return -EAGAIN;
1237 }
1238
1239 inode = file ? file_inode(file) : NULL;
1240
1241 if (file) {
1242 switch (flags & MAP_TYPE) {
1243 case MAP_SHARED:
1244 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1245 return -EACCES;
1246
1247 /*
1248 * Make sure we don't allow writing to an append-only
1249 * file..
1250 */
1251 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1252 return -EACCES;
1253
1254 /*
1255 * Make sure there are no mandatory locks on the file.
1256 */
1257 if (locks_verify_locked(inode))
1258 return -EAGAIN;
1259
1260 vm_flags |= VM_SHARED | VM_MAYSHARE;
1261 if (!(file->f_mode & FMODE_WRITE))
1262 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1263
1264 /* fall through */
1265 case MAP_PRIVATE:
1266 if (!(file->f_mode & FMODE_READ))
1267 return -EACCES;
1268 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1269 if (vm_flags & VM_EXEC)
1270 return -EPERM;
1271 vm_flags &= ~VM_MAYEXEC;
1272 }
1273
1274 if (!file->f_op || !file->f_op->mmap)
1275 return -ENODEV;
1276 break;
1277
1278 default:
1279 return -EINVAL;
1280 }
1281 } else {
1282 switch (flags & MAP_TYPE) {
1283 case MAP_SHARED:
1284 /*
1285 * Ignore pgoff.
1286 */
1287 pgoff = 0;
1288 vm_flags |= VM_SHARED | VM_MAYSHARE;
1289 break;
1290 case MAP_PRIVATE:
1291 /*
1292 * Set pgoff according to addr for anon_vma.
1293 */
1294 pgoff = addr >> PAGE_SHIFT;
1295 break;
1296 default:
1297 return -EINVAL;
1298 }
1299 }
1300
1301 /*
1302 * Set 'VM_NORESERVE' if we should not account for the
1303 * memory use of this mapping.
1304 */
1305 if (flags & MAP_NORESERVE) {
1306 /* We honor MAP_NORESERVE if allowed to overcommit */
1307 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1308 vm_flags |= VM_NORESERVE;
1309
1310 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1311 if (file && is_file_hugepages(file))
1312 vm_flags |= VM_NORESERVE;
1313 }
1314
1315 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1316 if (!IS_ERR_VALUE(addr) &&
1317 ((vm_flags & VM_LOCKED) ||
1318 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1319 *populate = len;
1320 return addr;
1321 }
1322
1323 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1324 unsigned long, prot, unsigned long, flags,
1325 unsigned long, fd, unsigned long, pgoff)
1326 {
1327 struct file *file = NULL;
1328 unsigned long retval = -EBADF;
1329
1330 if (!(flags & MAP_ANONYMOUS)) {
1331 audit_mmap_fd(fd, flags);
1332 if (unlikely(flags & MAP_HUGETLB))
1333 return -EINVAL;
1334 file = fget(fd);
1335 if (!file)
1336 goto out;
1337 } else if (flags & MAP_HUGETLB) {
1338 struct user_struct *user = NULL;
1339 /*
1340 * VM_NORESERVE is used because the reservations will be
1341 * taken when vm_ops->mmap() is called
1342 * A dummy user value is used because we are not locking
1343 * memory so no accounting is necessary
1344 */
1345 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1346 VM_NORESERVE,
1347 &user, HUGETLB_ANONHUGE_INODE,
1348 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1349 if (IS_ERR(file))
1350 return PTR_ERR(file);
1351 }
1352
1353 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1354
1355 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1356 if (file)
1357 fput(file);
1358 out:
1359 return retval;
1360 }
1361
1362 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1363 struct mmap_arg_struct {
1364 unsigned long addr;
1365 unsigned long len;
1366 unsigned long prot;
1367 unsigned long flags;
1368 unsigned long fd;
1369 unsigned long offset;
1370 };
1371
1372 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1373 {
1374 struct mmap_arg_struct a;
1375
1376 if (copy_from_user(&a, arg, sizeof(a)))
1377 return -EFAULT;
1378 if (a.offset & ~PAGE_MASK)
1379 return -EINVAL;
1380
1381 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1382 a.offset >> PAGE_SHIFT);
1383 }
1384 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1385
1386 /*
1387 * Some shared mappigns will want the pages marked read-only
1388 * to track write events. If so, we'll downgrade vm_page_prot
1389 * to the private version (using protection_map[] without the
1390 * VM_SHARED bit).
1391 */
1392 int vma_wants_writenotify(struct vm_area_struct *vma)
1393 {
1394 vm_flags_t vm_flags = vma->vm_flags;
1395
1396 /* If it was private or non-writable, the write bit is already clear */
1397 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1398 return 0;
1399
1400 /* The backer wishes to know when pages are first written to? */
1401 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1402 return 1;
1403
1404 /* The open routine did something to the protections already? */
1405 if (pgprot_val(vma->vm_page_prot) !=
1406 pgprot_val(vm_get_page_prot(vm_flags)))
1407 return 0;
1408
1409 /* Specialty mapping? */
1410 if (vm_flags & VM_PFNMAP)
1411 return 0;
1412
1413 /* Can the mapping track the dirty pages? */
1414 return vma->vm_file && vma->vm_file->f_mapping &&
1415 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1416 }
1417
1418 /*
1419 * We account for memory if it's a private writeable mapping,
1420 * not hugepages and VM_NORESERVE wasn't set.
1421 */
1422 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1423 {
1424 /*
1425 * hugetlb has its own accounting separate from the core VM
1426 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1427 */
1428 if (file && is_file_hugepages(file))
1429 return 0;
1430
1431 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1432 }
1433
1434 unsigned long mmap_region(struct file *file, unsigned long addr,
1435 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1436 {
1437 struct mm_struct *mm = current->mm;
1438 struct vm_area_struct *vma, *prev;
1439 int correct_wcount = 0;
1440 int error;
1441 struct rb_node **rb_link, *rb_parent;
1442 unsigned long charged = 0;
1443 struct inode *inode = file ? file_inode(file) : NULL;
1444
1445 /* Clear old maps */
1446 error = -ENOMEM;
1447 munmap_back:
1448 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1449 if (do_munmap(mm, addr, len))
1450 return -ENOMEM;
1451 goto munmap_back;
1452 }
1453
1454 /* Check against address space limit. */
1455 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1456 return -ENOMEM;
1457
1458 /*
1459 * Private writable mapping: check memory availability
1460 */
1461 if (accountable_mapping(file, vm_flags)) {
1462 charged = len >> PAGE_SHIFT;
1463 if (security_vm_enough_memory_mm(mm, charged))
1464 return -ENOMEM;
1465 vm_flags |= VM_ACCOUNT;
1466 }
1467
1468 /*
1469 * Can we just expand an old mapping?
1470 */
1471 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1472 if (vma)
1473 goto out;
1474
1475 /*
1476 * Determine the object being mapped and call the appropriate
1477 * specific mapper. the address has already been validated, but
1478 * not unmapped, but the maps are removed from the list.
1479 */
1480 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1481 if (!vma) {
1482 error = -ENOMEM;
1483 goto unacct_error;
1484 }
1485
1486 vma->vm_mm = mm;
1487 vma->vm_start = addr;
1488 vma->vm_end = addr + len;
1489 vma->vm_flags = vm_flags;
1490 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1491 vma->vm_pgoff = pgoff;
1492 INIT_LIST_HEAD(&vma->anon_vma_chain);
1493
1494 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1495
1496 if (file) {
1497 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1498 goto free_vma;
1499 if (vm_flags & VM_DENYWRITE) {
1500 error = deny_write_access(file);
1501 if (error)
1502 goto free_vma;
1503 correct_wcount = 1;
1504 }
1505 vma->vm_file = get_file(file);
1506 error = file->f_op->mmap(file, vma);
1507 if (error)
1508 goto unmap_and_free_vma;
1509
1510 /* Can addr have changed??
1511 *
1512 * Answer: Yes, several device drivers can do it in their
1513 * f_op->mmap method. -DaveM
1514 * Bug: If addr is changed, prev, rb_link, rb_parent should
1515 * be updated for vma_link()
1516 */
1517 WARN_ON_ONCE(addr != vma->vm_start);
1518
1519 addr = vma->vm_start;
1520 pgoff = vma->vm_pgoff;
1521 vm_flags = vma->vm_flags;
1522 } else if (vm_flags & VM_SHARED) {
1523 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1524 goto free_vma;
1525 error = shmem_zero_setup(vma);
1526 if (error)
1527 goto free_vma;
1528 }
1529
1530 if (vma_wants_writenotify(vma)) {
1531 pgprot_t pprot = vma->vm_page_prot;
1532
1533 /* Can vma->vm_page_prot have changed??
1534 *
1535 * Answer: Yes, drivers may have changed it in their
1536 * f_op->mmap method.
1537 *
1538 * Ensures that vmas marked as uncached stay that way.
1539 */
1540 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1541 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1542 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1543 }
1544
1545 vma_link(mm, vma, prev, rb_link, rb_parent);
1546 file = vma->vm_file;
1547
1548 /* Once vma denies write, undo our temporary denial count */
1549 if (correct_wcount)
1550 atomic_inc(&inode->i_writecount);
1551 out:
1552 perf_event_mmap(vma);
1553
1554 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1555 if (vm_flags & VM_LOCKED) {
1556 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1557 vma == get_gate_vma(current->mm)))
1558 mm->locked_vm += (len >> PAGE_SHIFT);
1559 else
1560 vma->vm_flags &= ~VM_LOCKED;
1561 }
1562
1563 if (file)
1564 uprobe_mmap(vma);
1565
1566 return addr;
1567
1568 unmap_and_free_vma:
1569 if (correct_wcount)
1570 atomic_inc(&inode->i_writecount);
1571 vma->vm_file = NULL;
1572 fput(file);
1573
1574 /* Undo any partial mapping done by a device driver. */
1575 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1576 charged = 0;
1577 free_vma:
1578 kmem_cache_free(vm_area_cachep, vma);
1579 unacct_error:
1580 if (charged)
1581 vm_unacct_memory(charged);
1582 return error;
1583 }
1584
1585 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1586 {
1587 /*
1588 * We implement the search by looking for an rbtree node that
1589 * immediately follows a suitable gap. That is,
1590 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1591 * - gap_end = vma->vm_start >= info->low_limit + length;
1592 * - gap_end - gap_start >= length
1593 */
1594
1595 struct mm_struct *mm = current->mm;
1596 struct vm_area_struct *vma;
1597 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1598
1599 /* Adjust search length to account for worst case alignment overhead */
1600 length = info->length + info->align_mask;
1601 if (length < info->length)
1602 return -ENOMEM;
1603
1604 /* Adjust search limits by the desired length */
1605 if (info->high_limit < length)
1606 return -ENOMEM;
1607 high_limit = info->high_limit - length;
1608
1609 if (info->low_limit > high_limit)
1610 return -ENOMEM;
1611 low_limit = info->low_limit + length;
1612
1613 /* Check if rbtree root looks promising */
1614 if (RB_EMPTY_ROOT(&mm->mm_rb))
1615 goto check_highest;
1616 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1617 if (vma->rb_subtree_gap < length)
1618 goto check_highest;
1619
1620 while (true) {
1621 /* Visit left subtree if it looks promising */
1622 gap_end = vma->vm_start;
1623 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1624 struct vm_area_struct *left =
1625 rb_entry(vma->vm_rb.rb_left,
1626 struct vm_area_struct, vm_rb);
1627 if (left->rb_subtree_gap >= length) {
1628 vma = left;
1629 continue;
1630 }
1631 }
1632
1633 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1634 check_current:
1635 /* Check if current node has a suitable gap */
1636 if (gap_start > high_limit)
1637 return -ENOMEM;
1638 if (gap_end >= low_limit && gap_end - gap_start >= length)
1639 goto found;
1640
1641 /* Visit right subtree if it looks promising */
1642 if (vma->vm_rb.rb_right) {
1643 struct vm_area_struct *right =
1644 rb_entry(vma->vm_rb.rb_right,
1645 struct vm_area_struct, vm_rb);
1646 if (right->rb_subtree_gap >= length) {
1647 vma = right;
1648 continue;
1649 }
1650 }
1651
1652 /* Go back up the rbtree to find next candidate node */
1653 while (true) {
1654 struct rb_node *prev = &vma->vm_rb;
1655 if (!rb_parent(prev))
1656 goto check_highest;
1657 vma = rb_entry(rb_parent(prev),
1658 struct vm_area_struct, vm_rb);
1659 if (prev == vma->vm_rb.rb_left) {
1660 gap_start = vma->vm_prev->vm_end;
1661 gap_end = vma->vm_start;
1662 goto check_current;
1663 }
1664 }
1665 }
1666
1667 check_highest:
1668 /* Check highest gap, which does not precede any rbtree node */
1669 gap_start = mm->highest_vm_end;
1670 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1671 if (gap_start > high_limit)
1672 return -ENOMEM;
1673
1674 found:
1675 /* We found a suitable gap. Clip it with the original low_limit. */
1676 if (gap_start < info->low_limit)
1677 gap_start = info->low_limit;
1678
1679 /* Adjust gap address to the desired alignment */
1680 gap_start += (info->align_offset - gap_start) & info->align_mask;
1681
1682 VM_BUG_ON(gap_start + info->length > info->high_limit);
1683 VM_BUG_ON(gap_start + info->length > gap_end);
1684 return gap_start;
1685 }
1686
1687 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1688 {
1689 struct mm_struct *mm = current->mm;
1690 struct vm_area_struct *vma;
1691 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1692
1693 /* Adjust search length to account for worst case alignment overhead */
1694 length = info->length + info->align_mask;
1695 if (length < info->length)
1696 return -ENOMEM;
1697
1698 /*
1699 * Adjust search limits by the desired length.
1700 * See implementation comment at top of unmapped_area().
1701 */
1702 gap_end = info->high_limit;
1703 if (gap_end < length)
1704 return -ENOMEM;
1705 high_limit = gap_end - length;
1706
1707 if (info->low_limit > high_limit)
1708 return -ENOMEM;
1709 low_limit = info->low_limit + length;
1710
1711 /* Check highest gap, which does not precede any rbtree node */
1712 gap_start = mm->highest_vm_end;
1713 if (gap_start <= high_limit)
1714 goto found_highest;
1715
1716 /* Check if rbtree root looks promising */
1717 if (RB_EMPTY_ROOT(&mm->mm_rb))
1718 return -ENOMEM;
1719 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1720 if (vma->rb_subtree_gap < length)
1721 return -ENOMEM;
1722
1723 while (true) {
1724 /* Visit right subtree if it looks promising */
1725 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1726 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1727 struct vm_area_struct *right =
1728 rb_entry(vma->vm_rb.rb_right,
1729 struct vm_area_struct, vm_rb);
1730 if (right->rb_subtree_gap >= length) {
1731 vma = right;
1732 continue;
1733 }
1734 }
1735
1736 check_current:
1737 /* Check if current node has a suitable gap */
1738 gap_end = vma->vm_start;
1739 if (gap_end < low_limit)
1740 return -ENOMEM;
1741 if (gap_start <= high_limit && gap_end - gap_start >= length)
1742 goto found;
1743
1744 /* Visit left subtree if it looks promising */
1745 if (vma->vm_rb.rb_left) {
1746 struct vm_area_struct *left =
1747 rb_entry(vma->vm_rb.rb_left,
1748 struct vm_area_struct, vm_rb);
1749 if (left->rb_subtree_gap >= length) {
1750 vma = left;
1751 continue;
1752 }
1753 }
1754
1755 /* Go back up the rbtree to find next candidate node */
1756 while (true) {
1757 struct rb_node *prev = &vma->vm_rb;
1758 if (!rb_parent(prev))
1759 return -ENOMEM;
1760 vma = rb_entry(rb_parent(prev),
1761 struct vm_area_struct, vm_rb);
1762 if (prev == vma->vm_rb.rb_right) {
1763 gap_start = vma->vm_prev ?
1764 vma->vm_prev->vm_end : 0;
1765 goto check_current;
1766 }
1767 }
1768 }
1769
1770 found:
1771 /* We found a suitable gap. Clip it with the original high_limit. */
1772 if (gap_end > info->high_limit)
1773 gap_end = info->high_limit;
1774
1775 found_highest:
1776 /* Compute highest gap address at the desired alignment */
1777 gap_end -= info->length;
1778 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1779
1780 VM_BUG_ON(gap_end < info->low_limit);
1781 VM_BUG_ON(gap_end < gap_start);
1782 return gap_end;
1783 }
1784
1785 /* Get an address range which is currently unmapped.
1786 * For shmat() with addr=0.
1787 *
1788 * Ugly calling convention alert:
1789 * Return value with the low bits set means error value,
1790 * ie
1791 * if (ret & ~PAGE_MASK)
1792 * error = ret;
1793 *
1794 * This function "knows" that -ENOMEM has the bits set.
1795 */
1796 #ifndef HAVE_ARCH_UNMAPPED_AREA
1797 unsigned long
1798 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1799 unsigned long len, unsigned long pgoff, unsigned long flags)
1800 {
1801 struct mm_struct *mm = current->mm;
1802 struct vm_area_struct *vma;
1803 struct vm_unmapped_area_info info;
1804
1805 if (len > TASK_SIZE)
1806 return -ENOMEM;
1807
1808 if (flags & MAP_FIXED)
1809 return addr;
1810
1811 if (addr) {
1812 addr = PAGE_ALIGN(addr);
1813 vma = find_vma(mm, addr);
1814 if (TASK_SIZE - len >= addr &&
1815 (!vma || addr + len <= vma->vm_start))
1816 return addr;
1817 }
1818
1819 info.flags = 0;
1820 info.length = len;
1821 info.low_limit = TASK_UNMAPPED_BASE;
1822 info.high_limit = TASK_SIZE;
1823 info.align_mask = 0;
1824 return vm_unmapped_area(&info);
1825 }
1826 #endif
1827
1828 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1829 {
1830 /*
1831 * Is this a new hole at the lowest possible address?
1832 */
1833 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1834 mm->free_area_cache = addr;
1835 }
1836
1837 /*
1838 * This mmap-allocator allocates new areas top-down from below the
1839 * stack's low limit (the base):
1840 */
1841 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1842 unsigned long
1843 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1844 const unsigned long len, const unsigned long pgoff,
1845 const unsigned long flags)
1846 {
1847 struct vm_area_struct *vma;
1848 struct mm_struct *mm = current->mm;
1849 unsigned long addr = addr0;
1850 struct vm_unmapped_area_info info;
1851
1852 /* requested length too big for entire address space */
1853 if (len > TASK_SIZE)
1854 return -ENOMEM;
1855
1856 if (flags & MAP_FIXED)
1857 return addr;
1858
1859 /* requesting a specific address */
1860 if (addr) {
1861 addr = PAGE_ALIGN(addr);
1862 vma = find_vma(mm, addr);
1863 if (TASK_SIZE - len >= addr &&
1864 (!vma || addr + len <= vma->vm_start))
1865 return addr;
1866 }
1867
1868 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1869 info.length = len;
1870 info.low_limit = PAGE_SIZE;
1871 info.high_limit = mm->mmap_base;
1872 info.align_mask = 0;
1873 addr = vm_unmapped_area(&info);
1874
1875 /*
1876 * A failed mmap() very likely causes application failure,
1877 * so fall back to the bottom-up function here. This scenario
1878 * can happen with large stack limits and large mmap()
1879 * allocations.
1880 */
1881 if (addr & ~PAGE_MASK) {
1882 VM_BUG_ON(addr != -ENOMEM);
1883 info.flags = 0;
1884 info.low_limit = TASK_UNMAPPED_BASE;
1885 info.high_limit = TASK_SIZE;
1886 addr = vm_unmapped_area(&info);
1887 }
1888
1889 return addr;
1890 }
1891 #endif
1892
1893 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1894 {
1895 /*
1896 * Is this a new hole at the highest possible address?
1897 */
1898 if (addr > mm->free_area_cache)
1899 mm->free_area_cache = addr;
1900
1901 /* dont allow allocations above current base */
1902 if (mm->free_area_cache > mm->mmap_base)
1903 mm->free_area_cache = mm->mmap_base;
1904 }
1905
1906 unsigned long
1907 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1908 unsigned long pgoff, unsigned long flags)
1909 {
1910 unsigned long (*get_area)(struct file *, unsigned long,
1911 unsigned long, unsigned long, unsigned long);
1912
1913 unsigned long error = arch_mmap_check(addr, len, flags);
1914 if (error)
1915 return error;
1916
1917 /* Careful about overflows.. */
1918 if (len > TASK_SIZE)
1919 return -ENOMEM;
1920
1921 get_area = current->mm->get_unmapped_area;
1922 if (file && file->f_op && file->f_op->get_unmapped_area)
1923 get_area = file->f_op->get_unmapped_area;
1924 addr = get_area(file, addr, len, pgoff, flags);
1925 if (IS_ERR_VALUE(addr))
1926 return addr;
1927
1928 if (addr > TASK_SIZE - len)
1929 return -ENOMEM;
1930 if (addr & ~PAGE_MASK)
1931 return -EINVAL;
1932
1933 addr = arch_rebalance_pgtables(addr, len);
1934 error = security_mmap_addr(addr);
1935 return error ? error : addr;
1936 }
1937
1938 EXPORT_SYMBOL(get_unmapped_area);
1939
1940 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1941 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1942 {
1943 struct vm_area_struct *vma = NULL;
1944
1945 /* Check the cache first. */
1946 /* (Cache hit rate is typically around 35%.) */
1947 vma = ACCESS_ONCE(mm->mmap_cache);
1948 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1949 struct rb_node *rb_node;
1950
1951 rb_node = mm->mm_rb.rb_node;
1952 vma = NULL;
1953
1954 while (rb_node) {
1955 struct vm_area_struct *vma_tmp;
1956
1957 vma_tmp = rb_entry(rb_node,
1958 struct vm_area_struct, vm_rb);
1959
1960 if (vma_tmp->vm_end > addr) {
1961 vma = vma_tmp;
1962 if (vma_tmp->vm_start <= addr)
1963 break;
1964 rb_node = rb_node->rb_left;
1965 } else
1966 rb_node = rb_node->rb_right;
1967 }
1968 if (vma)
1969 mm->mmap_cache = vma;
1970 }
1971 return vma;
1972 }
1973
1974 EXPORT_SYMBOL(find_vma);
1975
1976 /*
1977 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1978 */
1979 struct vm_area_struct *
1980 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1981 struct vm_area_struct **pprev)
1982 {
1983 struct vm_area_struct *vma;
1984
1985 vma = find_vma(mm, addr);
1986 if (vma) {
1987 *pprev = vma->vm_prev;
1988 } else {
1989 struct rb_node *rb_node = mm->mm_rb.rb_node;
1990 *pprev = NULL;
1991 while (rb_node) {
1992 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1993 rb_node = rb_node->rb_right;
1994 }
1995 }
1996 return vma;
1997 }
1998
1999 /*
2000 * Verify that the stack growth is acceptable and
2001 * update accounting. This is shared with both the
2002 * grow-up and grow-down cases.
2003 */
2004 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2005 {
2006 struct mm_struct *mm = vma->vm_mm;
2007 struct rlimit *rlim = current->signal->rlim;
2008 unsigned long new_start;
2009
2010 /* address space limit tests */
2011 if (!may_expand_vm(mm, grow))
2012 return -ENOMEM;
2013
2014 /* Stack limit test */
2015 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2016 return -ENOMEM;
2017
2018 /* mlock limit tests */
2019 if (vma->vm_flags & VM_LOCKED) {
2020 unsigned long locked;
2021 unsigned long limit;
2022 locked = mm->locked_vm + grow;
2023 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2024 limit >>= PAGE_SHIFT;
2025 if (locked > limit && !capable(CAP_IPC_LOCK))
2026 return -ENOMEM;
2027 }
2028
2029 /* Check to ensure the stack will not grow into a hugetlb-only region */
2030 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2031 vma->vm_end - size;
2032 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2033 return -EFAULT;
2034
2035 /*
2036 * Overcommit.. This must be the final test, as it will
2037 * update security statistics.
2038 */
2039 if (security_vm_enough_memory_mm(mm, grow))
2040 return -ENOMEM;
2041
2042 /* Ok, everything looks good - let it rip */
2043 if (vma->vm_flags & VM_LOCKED)
2044 mm->locked_vm += grow;
2045 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2046 return 0;
2047 }
2048
2049 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2050 /*
2051 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2052 * vma is the last one with address > vma->vm_end. Have to extend vma.
2053 */
2054 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2055 {
2056 int error;
2057
2058 if (!(vma->vm_flags & VM_GROWSUP))
2059 return -EFAULT;
2060
2061 /*
2062 * We must make sure the anon_vma is allocated
2063 * so that the anon_vma locking is not a noop.
2064 */
2065 if (unlikely(anon_vma_prepare(vma)))
2066 return -ENOMEM;
2067 vma_lock_anon_vma(vma);
2068
2069 /*
2070 * vma->vm_start/vm_end cannot change under us because the caller
2071 * is required to hold the mmap_sem in read mode. We need the
2072 * anon_vma lock to serialize against concurrent expand_stacks.
2073 * Also guard against wrapping around to address 0.
2074 */
2075 if (address < PAGE_ALIGN(address+4))
2076 address = PAGE_ALIGN(address+4);
2077 else {
2078 vma_unlock_anon_vma(vma);
2079 return -ENOMEM;
2080 }
2081 error = 0;
2082
2083 /* Somebody else might have raced and expanded it already */
2084 if (address > vma->vm_end) {
2085 unsigned long size, grow;
2086
2087 size = address - vma->vm_start;
2088 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2089
2090 error = -ENOMEM;
2091 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2092 error = acct_stack_growth(vma, size, grow);
2093 if (!error) {
2094 /*
2095 * vma_gap_update() doesn't support concurrent
2096 * updates, but we only hold a shared mmap_sem
2097 * lock here, so we need to protect against
2098 * concurrent vma expansions.
2099 * vma_lock_anon_vma() doesn't help here, as
2100 * we don't guarantee that all growable vmas
2101 * in a mm share the same root anon vma.
2102 * So, we reuse mm->page_table_lock to guard
2103 * against concurrent vma expansions.
2104 */
2105 spin_lock(&vma->vm_mm->page_table_lock);
2106 anon_vma_interval_tree_pre_update_vma(vma);
2107 vma->vm_end = address;
2108 anon_vma_interval_tree_post_update_vma(vma);
2109 if (vma->vm_next)
2110 vma_gap_update(vma->vm_next);
2111 else
2112 vma->vm_mm->highest_vm_end = address;
2113 spin_unlock(&vma->vm_mm->page_table_lock);
2114
2115 perf_event_mmap(vma);
2116 }
2117 }
2118 }
2119 vma_unlock_anon_vma(vma);
2120 khugepaged_enter_vma_merge(vma);
2121 validate_mm(vma->vm_mm);
2122 return error;
2123 }
2124 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2125
2126 /*
2127 * vma is the first one with address < vma->vm_start. Have to extend vma.
2128 */
2129 int expand_downwards(struct vm_area_struct *vma,
2130 unsigned long address)
2131 {
2132 int error;
2133
2134 /*
2135 * We must make sure the anon_vma is allocated
2136 * so that the anon_vma locking is not a noop.
2137 */
2138 if (unlikely(anon_vma_prepare(vma)))
2139 return -ENOMEM;
2140
2141 address &= PAGE_MASK;
2142 error = security_mmap_addr(address);
2143 if (error)
2144 return error;
2145
2146 vma_lock_anon_vma(vma);
2147
2148 /*
2149 * vma->vm_start/vm_end cannot change under us because the caller
2150 * is required to hold the mmap_sem in read mode. We need the
2151 * anon_vma lock to serialize against concurrent expand_stacks.
2152 */
2153
2154 /* Somebody else might have raced and expanded it already */
2155 if (address < vma->vm_start) {
2156 unsigned long size, grow;
2157
2158 size = vma->vm_end - address;
2159 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2160
2161 error = -ENOMEM;
2162 if (grow <= vma->vm_pgoff) {
2163 error = acct_stack_growth(vma, size, grow);
2164 if (!error) {
2165 /*
2166 * vma_gap_update() doesn't support concurrent
2167 * updates, but we only hold a shared mmap_sem
2168 * lock here, so we need to protect against
2169 * concurrent vma expansions.
2170 * vma_lock_anon_vma() doesn't help here, as
2171 * we don't guarantee that all growable vmas
2172 * in a mm share the same root anon vma.
2173 * So, we reuse mm->page_table_lock to guard
2174 * against concurrent vma expansions.
2175 */
2176 spin_lock(&vma->vm_mm->page_table_lock);
2177 anon_vma_interval_tree_pre_update_vma(vma);
2178 vma->vm_start = address;
2179 vma->vm_pgoff -= grow;
2180 anon_vma_interval_tree_post_update_vma(vma);
2181 vma_gap_update(vma);
2182 spin_unlock(&vma->vm_mm->page_table_lock);
2183
2184 perf_event_mmap(vma);
2185 }
2186 }
2187 }
2188 vma_unlock_anon_vma(vma);
2189 khugepaged_enter_vma_merge(vma);
2190 validate_mm(vma->vm_mm);
2191 return error;
2192 }
2193
2194 /*
2195 * Note how expand_stack() refuses to expand the stack all the way to
2196 * abut the next virtual mapping, *unless* that mapping itself is also
2197 * a stack mapping. We want to leave room for a guard page, after all
2198 * (the guard page itself is not added here, that is done by the
2199 * actual page faulting logic)
2200 *
2201 * This matches the behavior of the guard page logic (see mm/memory.c:
2202 * check_stack_guard_page()), which only allows the guard page to be
2203 * removed under these circumstances.
2204 */
2205 #ifdef CONFIG_STACK_GROWSUP
2206 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2207 {
2208 struct vm_area_struct *next;
2209
2210 address &= PAGE_MASK;
2211 next = vma->vm_next;
2212 if (next && next->vm_start == address + PAGE_SIZE) {
2213 if (!(next->vm_flags & VM_GROWSUP))
2214 return -ENOMEM;
2215 }
2216 return expand_upwards(vma, address);
2217 }
2218
2219 struct vm_area_struct *
2220 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2221 {
2222 struct vm_area_struct *vma, *prev;
2223
2224 addr &= PAGE_MASK;
2225 vma = find_vma_prev(mm, addr, &prev);
2226 if (vma && (vma->vm_start <= addr))
2227 return vma;
2228 if (!prev || expand_stack(prev, addr))
2229 return NULL;
2230 if (prev->vm_flags & VM_LOCKED)
2231 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2232 return prev;
2233 }
2234 #else
2235 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2236 {
2237 struct vm_area_struct *prev;
2238
2239 address &= PAGE_MASK;
2240 prev = vma->vm_prev;
2241 if (prev && prev->vm_end == address) {
2242 if (!(prev->vm_flags & VM_GROWSDOWN))
2243 return -ENOMEM;
2244 }
2245 return expand_downwards(vma, address);
2246 }
2247
2248 struct vm_area_struct *
2249 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2250 {
2251 struct vm_area_struct * vma;
2252 unsigned long start;
2253
2254 addr &= PAGE_MASK;
2255 vma = find_vma(mm,addr);
2256 if (!vma)
2257 return NULL;
2258 if (vma->vm_start <= addr)
2259 return vma;
2260 if (!(vma->vm_flags & VM_GROWSDOWN))
2261 return NULL;
2262 start = vma->vm_start;
2263 if (expand_stack(vma, addr))
2264 return NULL;
2265 if (vma->vm_flags & VM_LOCKED)
2266 __mlock_vma_pages_range(vma, addr, start, NULL);
2267 return vma;
2268 }
2269 #endif
2270
2271 /*
2272 * Ok - we have the memory areas we should free on the vma list,
2273 * so release them, and do the vma updates.
2274 *
2275 * Called with the mm semaphore held.
2276 */
2277 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2278 {
2279 unsigned long nr_accounted = 0;
2280
2281 /* Update high watermark before we lower total_vm */
2282 update_hiwater_vm(mm);
2283 do {
2284 long nrpages = vma_pages(vma);
2285
2286 if (vma->vm_flags & VM_ACCOUNT)
2287 nr_accounted += nrpages;
2288 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2289 vma = remove_vma(vma);
2290 } while (vma);
2291 vm_unacct_memory(nr_accounted);
2292 validate_mm(mm);
2293 }
2294
2295 /*
2296 * Get rid of page table information in the indicated region.
2297 *
2298 * Called with the mm semaphore held.
2299 */
2300 static void unmap_region(struct mm_struct *mm,
2301 struct vm_area_struct *vma, struct vm_area_struct *prev,
2302 unsigned long start, unsigned long end)
2303 {
2304 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2305 struct mmu_gather tlb;
2306
2307 lru_add_drain();
2308 tlb_gather_mmu(&tlb, mm, 0);
2309 update_hiwater_rss(mm);
2310 unmap_vmas(&tlb, vma, start, end);
2311 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2312 next ? next->vm_start : USER_PGTABLES_CEILING);
2313 tlb_finish_mmu(&tlb, start, end);
2314 }
2315
2316 /*
2317 * Create a list of vma's touched by the unmap, removing them from the mm's
2318 * vma list as we go..
2319 */
2320 static void
2321 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2322 struct vm_area_struct *prev, unsigned long end)
2323 {
2324 struct vm_area_struct **insertion_point;
2325 struct vm_area_struct *tail_vma = NULL;
2326 unsigned long addr;
2327
2328 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2329 vma->vm_prev = NULL;
2330 do {
2331 vma_rb_erase(vma, &mm->mm_rb);
2332 mm->map_count--;
2333 tail_vma = vma;
2334 vma = vma->vm_next;
2335 } while (vma && vma->vm_start < end);
2336 *insertion_point = vma;
2337 if (vma) {
2338 vma->vm_prev = prev;
2339 vma_gap_update(vma);
2340 } else
2341 mm->highest_vm_end = prev ? prev->vm_end : 0;
2342 tail_vma->vm_next = NULL;
2343 if (mm->unmap_area == arch_unmap_area)
2344 addr = prev ? prev->vm_end : mm->mmap_base;
2345 else
2346 addr = vma ? vma->vm_start : mm->mmap_base;
2347 mm->unmap_area(mm, addr);
2348 mm->mmap_cache = NULL; /* Kill the cache. */
2349 }
2350
2351 /*
2352 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2353 * munmap path where it doesn't make sense to fail.
2354 */
2355 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2356 unsigned long addr, int new_below)
2357 {
2358 struct mempolicy *pol;
2359 struct vm_area_struct *new;
2360 int err = -ENOMEM;
2361
2362 if (is_vm_hugetlb_page(vma) && (addr &
2363 ~(huge_page_mask(hstate_vma(vma)))))
2364 return -EINVAL;
2365
2366 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2367 if (!new)
2368 goto out_err;
2369
2370 /* most fields are the same, copy all, and then fixup */
2371 *new = *vma;
2372
2373 INIT_LIST_HEAD(&new->anon_vma_chain);
2374
2375 if (new_below)
2376 new->vm_end = addr;
2377 else {
2378 new->vm_start = addr;
2379 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2380 }
2381
2382 pol = mpol_dup(vma_policy(vma));
2383 if (IS_ERR(pol)) {
2384 err = PTR_ERR(pol);
2385 goto out_free_vma;
2386 }
2387 vma_set_policy(new, pol);
2388
2389 if (anon_vma_clone(new, vma))
2390 goto out_free_mpol;
2391
2392 if (new->vm_file)
2393 get_file(new->vm_file);
2394
2395 if (new->vm_ops && new->vm_ops->open)
2396 new->vm_ops->open(new);
2397
2398 if (new_below)
2399 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2400 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2401 else
2402 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2403
2404 /* Success. */
2405 if (!err)
2406 return 0;
2407
2408 /* Clean everything up if vma_adjust failed. */
2409 if (new->vm_ops && new->vm_ops->close)
2410 new->vm_ops->close(new);
2411 if (new->vm_file)
2412 fput(new->vm_file);
2413 unlink_anon_vmas(new);
2414 out_free_mpol:
2415 mpol_put(pol);
2416 out_free_vma:
2417 kmem_cache_free(vm_area_cachep, new);
2418 out_err:
2419 return err;
2420 }
2421
2422 /*
2423 * Split a vma into two pieces at address 'addr', a new vma is allocated
2424 * either for the first part or the tail.
2425 */
2426 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2427 unsigned long addr, int new_below)
2428 {
2429 if (mm->map_count >= sysctl_max_map_count)
2430 return -ENOMEM;
2431
2432 return __split_vma(mm, vma, addr, new_below);
2433 }
2434
2435 /* Munmap is split into 2 main parts -- this part which finds
2436 * what needs doing, and the areas themselves, which do the
2437 * work. This now handles partial unmappings.
2438 * Jeremy Fitzhardinge <jeremy@goop.org>
2439 */
2440 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2441 {
2442 unsigned long end;
2443 struct vm_area_struct *vma, *prev, *last;
2444
2445 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2446 return -EINVAL;
2447
2448 if ((len = PAGE_ALIGN(len)) == 0)
2449 return -EINVAL;
2450
2451 /* Find the first overlapping VMA */
2452 vma = find_vma(mm, start);
2453 if (!vma)
2454 return 0;
2455 prev = vma->vm_prev;
2456 /* we have start < vma->vm_end */
2457
2458 /* if it doesn't overlap, we have nothing.. */
2459 end = start + len;
2460 if (vma->vm_start >= end)
2461 return 0;
2462
2463 /*
2464 * If we need to split any vma, do it now to save pain later.
2465 *
2466 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2467 * unmapped vm_area_struct will remain in use: so lower split_vma
2468 * places tmp vma above, and higher split_vma places tmp vma below.
2469 */
2470 if (start > vma->vm_start) {
2471 int error;
2472
2473 /*
2474 * Make sure that map_count on return from munmap() will
2475 * not exceed its limit; but let map_count go just above
2476 * its limit temporarily, to help free resources as expected.
2477 */
2478 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2479 return -ENOMEM;
2480
2481 error = __split_vma(mm, vma, start, 0);
2482 if (error)
2483 return error;
2484 prev = vma;
2485 }
2486
2487 /* Does it split the last one? */
2488 last = find_vma(mm, end);
2489 if (last && end > last->vm_start) {
2490 int error = __split_vma(mm, last, end, 1);
2491 if (error)
2492 return error;
2493 }
2494 vma = prev? prev->vm_next: mm->mmap;
2495
2496 /*
2497 * unlock any mlock()ed ranges before detaching vmas
2498 */
2499 if (mm->locked_vm) {
2500 struct vm_area_struct *tmp = vma;
2501 while (tmp && tmp->vm_start < end) {
2502 if (tmp->vm_flags & VM_LOCKED) {
2503 mm->locked_vm -= vma_pages(tmp);
2504 munlock_vma_pages_all(tmp);
2505 }
2506 tmp = tmp->vm_next;
2507 }
2508 }
2509
2510 /*
2511 * Remove the vma's, and unmap the actual pages
2512 */
2513 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2514 unmap_region(mm, vma, prev, start, end);
2515
2516 /* Fix up all other VM information */
2517 remove_vma_list(mm, vma);
2518
2519 return 0;
2520 }
2521
2522 int vm_munmap(unsigned long start, size_t len)
2523 {
2524 int ret;
2525 struct mm_struct *mm = current->mm;
2526
2527 down_write(&mm->mmap_sem);
2528 ret = do_munmap(mm, start, len);
2529 up_write(&mm->mmap_sem);
2530 return ret;
2531 }
2532 EXPORT_SYMBOL(vm_munmap);
2533
2534 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2535 {
2536 profile_munmap(addr);
2537 return vm_munmap(addr, len);
2538 }
2539
2540 static inline void verify_mm_writelocked(struct mm_struct *mm)
2541 {
2542 #ifdef CONFIG_DEBUG_VM
2543 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2544 WARN_ON(1);
2545 up_read(&mm->mmap_sem);
2546 }
2547 #endif
2548 }
2549
2550 /*
2551 * this is really a simplified "do_mmap". it only handles
2552 * anonymous maps. eventually we may be able to do some
2553 * brk-specific accounting here.
2554 */
2555 static unsigned long do_brk(unsigned long addr, unsigned long len)
2556 {
2557 struct mm_struct * mm = current->mm;
2558 struct vm_area_struct * vma, * prev;
2559 unsigned long flags;
2560 struct rb_node ** rb_link, * rb_parent;
2561 pgoff_t pgoff = addr >> PAGE_SHIFT;
2562 int error;
2563
2564 len = PAGE_ALIGN(len);
2565 if (!len)
2566 return addr;
2567
2568 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2569
2570 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2571 if (error & ~PAGE_MASK)
2572 return error;
2573
2574 /*
2575 * mlock MCL_FUTURE?
2576 */
2577 if (mm->def_flags & VM_LOCKED) {
2578 unsigned long locked, lock_limit;
2579 locked = len >> PAGE_SHIFT;
2580 locked += mm->locked_vm;
2581 lock_limit = rlimit(RLIMIT_MEMLOCK);
2582 lock_limit >>= PAGE_SHIFT;
2583 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2584 return -EAGAIN;
2585 }
2586
2587 /*
2588 * mm->mmap_sem is required to protect against another thread
2589 * changing the mappings in case we sleep.
2590 */
2591 verify_mm_writelocked(mm);
2592
2593 /*
2594 * Clear old maps. this also does some error checking for us
2595 */
2596 munmap_back:
2597 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2598 if (do_munmap(mm, addr, len))
2599 return -ENOMEM;
2600 goto munmap_back;
2601 }
2602
2603 /* Check against address space limits *after* clearing old maps... */
2604 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2605 return -ENOMEM;
2606
2607 if (mm->map_count > sysctl_max_map_count)
2608 return -ENOMEM;
2609
2610 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2611 return -ENOMEM;
2612
2613 /* Can we just expand an old private anonymous mapping? */
2614 vma = vma_merge(mm, prev, addr, addr + len, flags,
2615 NULL, NULL, pgoff, NULL);
2616 if (vma)
2617 goto out;
2618
2619 /*
2620 * create a vma struct for an anonymous mapping
2621 */
2622 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2623 if (!vma) {
2624 vm_unacct_memory(len >> PAGE_SHIFT);
2625 return -ENOMEM;
2626 }
2627
2628 INIT_LIST_HEAD(&vma->anon_vma_chain);
2629 vma->vm_mm = mm;
2630 vma->vm_start = addr;
2631 vma->vm_end = addr + len;
2632 vma->vm_pgoff = pgoff;
2633 vma->vm_flags = flags;
2634 vma->vm_page_prot = vm_get_page_prot(flags);
2635 vma_link(mm, vma, prev, rb_link, rb_parent);
2636 out:
2637 perf_event_mmap(vma);
2638 mm->total_vm += len >> PAGE_SHIFT;
2639 if (flags & VM_LOCKED)
2640 mm->locked_vm += (len >> PAGE_SHIFT);
2641 return addr;
2642 }
2643
2644 unsigned long vm_brk(unsigned long addr, unsigned long len)
2645 {
2646 struct mm_struct *mm = current->mm;
2647 unsigned long ret;
2648 bool populate;
2649
2650 down_write(&mm->mmap_sem);
2651 ret = do_brk(addr, len);
2652 populate = ((mm->def_flags & VM_LOCKED) != 0);
2653 up_write(&mm->mmap_sem);
2654 if (populate)
2655 mm_populate(addr, len);
2656 return ret;
2657 }
2658 EXPORT_SYMBOL(vm_brk);
2659
2660 /* Release all mmaps. */
2661 void exit_mmap(struct mm_struct *mm)
2662 {
2663 struct mmu_gather tlb;
2664 struct vm_area_struct *vma;
2665 unsigned long nr_accounted = 0;
2666
2667 /* mm's last user has gone, and its about to be pulled down */
2668 mmu_notifier_release(mm);
2669
2670 if (mm->locked_vm) {
2671 vma = mm->mmap;
2672 while (vma) {
2673 if (vma->vm_flags & VM_LOCKED)
2674 munlock_vma_pages_all(vma);
2675 vma = vma->vm_next;
2676 }
2677 }
2678
2679 arch_exit_mmap(mm);
2680
2681 vma = mm->mmap;
2682 if (!vma) /* Can happen if dup_mmap() received an OOM */
2683 return;
2684
2685 lru_add_drain();
2686 flush_cache_mm(mm);
2687 tlb_gather_mmu(&tlb, mm, 1);
2688 /* update_hiwater_rss(mm) here? but nobody should be looking */
2689 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2690 unmap_vmas(&tlb, vma, 0, -1);
2691
2692 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2693 tlb_finish_mmu(&tlb, 0, -1);
2694
2695 /*
2696 * Walk the list again, actually closing and freeing it,
2697 * with preemption enabled, without holding any MM locks.
2698 */
2699 while (vma) {
2700 if (vma->vm_flags & VM_ACCOUNT)
2701 nr_accounted += vma_pages(vma);
2702 vma = remove_vma(vma);
2703 }
2704 vm_unacct_memory(nr_accounted);
2705
2706 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2707 }
2708
2709 /* Insert vm structure into process list sorted by address
2710 * and into the inode's i_mmap tree. If vm_file is non-NULL
2711 * then i_mmap_mutex is taken here.
2712 */
2713 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2714 {
2715 struct vm_area_struct *prev;
2716 struct rb_node **rb_link, *rb_parent;
2717
2718 /*
2719 * The vm_pgoff of a purely anonymous vma should be irrelevant
2720 * until its first write fault, when page's anon_vma and index
2721 * are set. But now set the vm_pgoff it will almost certainly
2722 * end up with (unless mremap moves it elsewhere before that
2723 * first wfault), so /proc/pid/maps tells a consistent story.
2724 *
2725 * By setting it to reflect the virtual start address of the
2726 * vma, merges and splits can happen in a seamless way, just
2727 * using the existing file pgoff checks and manipulations.
2728 * Similarly in do_mmap_pgoff and in do_brk.
2729 */
2730 if (!vma->vm_file) {
2731 BUG_ON(vma->anon_vma);
2732 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2733 }
2734 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2735 &prev, &rb_link, &rb_parent))
2736 return -ENOMEM;
2737 if ((vma->vm_flags & VM_ACCOUNT) &&
2738 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2739 return -ENOMEM;
2740
2741 vma_link(mm, vma, prev, rb_link, rb_parent);
2742 return 0;
2743 }
2744
2745 /*
2746 * Copy the vma structure to a new location in the same mm,
2747 * prior to moving page table entries, to effect an mremap move.
2748 */
2749 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2750 unsigned long addr, unsigned long len, pgoff_t pgoff,
2751 bool *need_rmap_locks)
2752 {
2753 struct vm_area_struct *vma = *vmap;
2754 unsigned long vma_start = vma->vm_start;
2755 struct mm_struct *mm = vma->vm_mm;
2756 struct vm_area_struct *new_vma, *prev;
2757 struct rb_node **rb_link, *rb_parent;
2758 struct mempolicy *pol;
2759 bool faulted_in_anon_vma = true;
2760
2761 /*
2762 * If anonymous vma has not yet been faulted, update new pgoff
2763 * to match new location, to increase its chance of merging.
2764 */
2765 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2766 pgoff = addr >> PAGE_SHIFT;
2767 faulted_in_anon_vma = false;
2768 }
2769
2770 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2771 return NULL; /* should never get here */
2772 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2773 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2774 if (new_vma) {
2775 /*
2776 * Source vma may have been merged into new_vma
2777 */
2778 if (unlikely(vma_start >= new_vma->vm_start &&
2779 vma_start < new_vma->vm_end)) {
2780 /*
2781 * The only way we can get a vma_merge with
2782 * self during an mremap is if the vma hasn't
2783 * been faulted in yet and we were allowed to
2784 * reset the dst vma->vm_pgoff to the
2785 * destination address of the mremap to allow
2786 * the merge to happen. mremap must change the
2787 * vm_pgoff linearity between src and dst vmas
2788 * (in turn preventing a vma_merge) to be
2789 * safe. It is only safe to keep the vm_pgoff
2790 * linear if there are no pages mapped yet.
2791 */
2792 VM_BUG_ON(faulted_in_anon_vma);
2793 *vmap = vma = new_vma;
2794 }
2795 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2796 } else {
2797 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2798 if (new_vma) {
2799 *new_vma = *vma;
2800 new_vma->vm_start = addr;
2801 new_vma->vm_end = addr + len;
2802 new_vma->vm_pgoff = pgoff;
2803 pol = mpol_dup(vma_policy(vma));
2804 if (IS_ERR(pol))
2805 goto out_free_vma;
2806 vma_set_policy(new_vma, pol);
2807 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2808 if (anon_vma_clone(new_vma, vma))
2809 goto out_free_mempol;
2810 if (new_vma->vm_file)
2811 get_file(new_vma->vm_file);
2812 if (new_vma->vm_ops && new_vma->vm_ops->open)
2813 new_vma->vm_ops->open(new_vma);
2814 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2815 *need_rmap_locks = false;
2816 }
2817 }
2818 return new_vma;
2819
2820 out_free_mempol:
2821 mpol_put(pol);
2822 out_free_vma:
2823 kmem_cache_free(vm_area_cachep, new_vma);
2824 return NULL;
2825 }
2826
2827 /*
2828 * Return true if the calling process may expand its vm space by the passed
2829 * number of pages
2830 */
2831 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2832 {
2833 unsigned long cur = mm->total_vm; /* pages */
2834 unsigned long lim;
2835
2836 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2837
2838 if (cur + npages > lim)
2839 return 0;
2840 return 1;
2841 }
2842
2843
2844 static int special_mapping_fault(struct vm_area_struct *vma,
2845 struct vm_fault *vmf)
2846 {
2847 pgoff_t pgoff;
2848 struct page **pages;
2849
2850 /*
2851 * special mappings have no vm_file, and in that case, the mm
2852 * uses vm_pgoff internally. So we have to subtract it from here.
2853 * We are allowed to do this because we are the mm; do not copy
2854 * this code into drivers!
2855 */
2856 pgoff = vmf->pgoff - vma->vm_pgoff;
2857
2858 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2859 pgoff--;
2860
2861 if (*pages) {
2862 struct page *page = *pages;
2863 get_page(page);
2864 vmf->page = page;
2865 return 0;
2866 }
2867
2868 return VM_FAULT_SIGBUS;
2869 }
2870
2871 /*
2872 * Having a close hook prevents vma merging regardless of flags.
2873 */
2874 static void special_mapping_close(struct vm_area_struct *vma)
2875 {
2876 }
2877
2878 static const struct vm_operations_struct special_mapping_vmops = {
2879 .close = special_mapping_close,
2880 .fault = special_mapping_fault,
2881 };
2882
2883 /*
2884 * Called with mm->mmap_sem held for writing.
2885 * Insert a new vma covering the given region, with the given flags.
2886 * Its pages are supplied by the given array of struct page *.
2887 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2888 * The region past the last page supplied will always produce SIGBUS.
2889 * The array pointer and the pages it points to are assumed to stay alive
2890 * for as long as this mapping might exist.
2891 */
2892 int install_special_mapping(struct mm_struct *mm,
2893 unsigned long addr, unsigned long len,
2894 unsigned long vm_flags, struct page **pages)
2895 {
2896 int ret;
2897 struct vm_area_struct *vma;
2898
2899 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2900 if (unlikely(vma == NULL))
2901 return -ENOMEM;
2902
2903 INIT_LIST_HEAD(&vma->anon_vma_chain);
2904 vma->vm_mm = mm;
2905 vma->vm_start = addr;
2906 vma->vm_end = addr + len;
2907
2908 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2909 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2910
2911 vma->vm_ops = &special_mapping_vmops;
2912 vma->vm_private_data = pages;
2913
2914 ret = insert_vm_struct(mm, vma);
2915 if (ret)
2916 goto out;
2917
2918 mm->total_vm += len >> PAGE_SHIFT;
2919
2920 perf_event_mmap(vma);
2921
2922 return 0;
2923
2924 out:
2925 kmem_cache_free(vm_area_cachep, vma);
2926 return ret;
2927 }
2928
2929 static DEFINE_MUTEX(mm_all_locks_mutex);
2930
2931 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2932 {
2933 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2934 /*
2935 * The LSB of head.next can't change from under us
2936 * because we hold the mm_all_locks_mutex.
2937 */
2938 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2939 /*
2940 * We can safely modify head.next after taking the
2941 * anon_vma->root->rwsem. If some other vma in this mm shares
2942 * the same anon_vma we won't take it again.
2943 *
2944 * No need of atomic instructions here, head.next
2945 * can't change from under us thanks to the
2946 * anon_vma->root->rwsem.
2947 */
2948 if (__test_and_set_bit(0, (unsigned long *)
2949 &anon_vma->root->rb_root.rb_node))
2950 BUG();
2951 }
2952 }
2953
2954 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2955 {
2956 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2957 /*
2958 * AS_MM_ALL_LOCKS can't change from under us because
2959 * we hold the mm_all_locks_mutex.
2960 *
2961 * Operations on ->flags have to be atomic because
2962 * even if AS_MM_ALL_LOCKS is stable thanks to the
2963 * mm_all_locks_mutex, there may be other cpus
2964 * changing other bitflags in parallel to us.
2965 */
2966 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2967 BUG();
2968 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2969 }
2970 }
2971
2972 /*
2973 * This operation locks against the VM for all pte/vma/mm related
2974 * operations that could ever happen on a certain mm. This includes
2975 * vmtruncate, try_to_unmap, and all page faults.
2976 *
2977 * The caller must take the mmap_sem in write mode before calling
2978 * mm_take_all_locks(). The caller isn't allowed to release the
2979 * mmap_sem until mm_drop_all_locks() returns.
2980 *
2981 * mmap_sem in write mode is required in order to block all operations
2982 * that could modify pagetables and free pages without need of
2983 * altering the vma layout (for example populate_range() with
2984 * nonlinear vmas). It's also needed in write mode to avoid new
2985 * anon_vmas to be associated with existing vmas.
2986 *
2987 * A single task can't take more than one mm_take_all_locks() in a row
2988 * or it would deadlock.
2989 *
2990 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2991 * mapping->flags avoid to take the same lock twice, if more than one
2992 * vma in this mm is backed by the same anon_vma or address_space.
2993 *
2994 * We can take all the locks in random order because the VM code
2995 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
2996 * takes more than one of them in a row. Secondly we're protected
2997 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2998 *
2999 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3000 * that may have to take thousand of locks.
3001 *
3002 * mm_take_all_locks() can fail if it's interrupted by signals.
3003 */
3004 int mm_take_all_locks(struct mm_struct *mm)
3005 {
3006 struct vm_area_struct *vma;
3007 struct anon_vma_chain *avc;
3008
3009 BUG_ON(down_read_trylock(&mm->mmap_sem));
3010
3011 mutex_lock(&mm_all_locks_mutex);
3012
3013 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3014 if (signal_pending(current))
3015 goto out_unlock;
3016 if (vma->vm_file && vma->vm_file->f_mapping)
3017 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3018 }
3019
3020 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3021 if (signal_pending(current))
3022 goto out_unlock;
3023 if (vma->anon_vma)
3024 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3025 vm_lock_anon_vma(mm, avc->anon_vma);
3026 }
3027
3028 return 0;
3029
3030 out_unlock:
3031 mm_drop_all_locks(mm);
3032 return -EINTR;
3033 }
3034
3035 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3036 {
3037 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3038 /*
3039 * The LSB of head.next can't change to 0 from under
3040 * us because we hold the mm_all_locks_mutex.
3041 *
3042 * We must however clear the bitflag before unlocking
3043 * the vma so the users using the anon_vma->rb_root will
3044 * never see our bitflag.
3045 *
3046 * No need of atomic instructions here, head.next
3047 * can't change from under us until we release the
3048 * anon_vma->root->rwsem.
3049 */
3050 if (!__test_and_clear_bit(0, (unsigned long *)
3051 &anon_vma->root->rb_root.rb_node))
3052 BUG();
3053 anon_vma_unlock_write(anon_vma);
3054 }
3055 }
3056
3057 static void vm_unlock_mapping(struct address_space *mapping)
3058 {
3059 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3060 /*
3061 * AS_MM_ALL_LOCKS can't change to 0 from under us
3062 * because we hold the mm_all_locks_mutex.
3063 */
3064 mutex_unlock(&mapping->i_mmap_mutex);
3065 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3066 &mapping->flags))
3067 BUG();
3068 }
3069 }
3070
3071 /*
3072 * The mmap_sem cannot be released by the caller until
3073 * mm_drop_all_locks() returns.
3074 */
3075 void mm_drop_all_locks(struct mm_struct *mm)
3076 {
3077 struct vm_area_struct *vma;
3078 struct anon_vma_chain *avc;
3079
3080 BUG_ON(down_read_trylock(&mm->mmap_sem));
3081 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3082
3083 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3084 if (vma->anon_vma)
3085 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3086 vm_unlock_anon_vma(avc->anon_vma);
3087 if (vma->vm_file && vma->vm_file->f_mapping)
3088 vm_unlock_mapping(vma->vm_file->f_mapping);
3089 }
3090
3091 mutex_unlock(&mm_all_locks_mutex);
3092 }
3093
3094 /*
3095 * initialise the VMA slab
3096 */
3097 void __init mmap_init(void)
3098 {
3099 int ret;
3100
3101 ret = percpu_counter_init(&vm_committed_as, 0);
3102 VM_BUG_ON(ret);
3103 }
3104
3105 /*
3106 * Initialise sysctl_user_reserve_kbytes.
3107 *
3108 * This is intended to prevent a user from starting a single memory hogging
3109 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3110 * mode.
3111 *
3112 * The default value is min(3% of free memory, 128MB)
3113 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3114 */
3115 static int init_user_reserve(void)
3116 {
3117 unsigned long free_kbytes;
3118
3119 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3120
3121 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3122 return 0;
3123 }
3124 module_init(init_user_reserve)
3125
3126 /*
3127 * Initialise sysctl_admin_reserve_kbytes.
3128 *
3129 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3130 * to log in and kill a memory hogging process.
3131 *
3132 * Systems with more than 256MB will reserve 8MB, enough to recover
3133 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3134 * only reserve 3% of free pages by default.
3135 */
3136 static int init_admin_reserve(void)
3137 {
3138 unsigned long free_kbytes;
3139
3140 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3141
3142 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3143 return 0;
3144 }
3145 module_init(init_admin_reserve)
3146
3147 /*
3148 * Reinititalise user and admin reserves if memory is added or removed.
3149 *
3150 * The default user reserve max is 128MB, and the default max for the
3151 * admin reserve is 8MB. These are usually, but not always, enough to
3152 * enable recovery from a memory hogging process using login/sshd, a shell,
3153 * and tools like top. It may make sense to increase or even disable the
3154 * reserve depending on the existence of swap or variations in the recovery
3155 * tools. So, the admin may have changed them.
3156 *
3157 * If memory is added and the reserves have been eliminated or increased above
3158 * the default max, then we'll trust the admin.
3159 *
3160 * If memory is removed and there isn't enough free memory, then we
3161 * need to reset the reserves.
3162 *
3163 * Otherwise keep the reserve set by the admin.
3164 */
3165 static int reserve_mem_notifier(struct notifier_block *nb,
3166 unsigned long action, void *data)
3167 {
3168 unsigned long tmp, free_kbytes;
3169
3170 switch (action) {
3171 case MEM_ONLINE:
3172 /* Default max is 128MB. Leave alone if modified by operator. */
3173 tmp = sysctl_user_reserve_kbytes;
3174 if (0 < tmp && tmp < (1UL << 17))
3175 init_user_reserve();
3176
3177 /* Default max is 8MB. Leave alone if modified by operator. */
3178 tmp = sysctl_admin_reserve_kbytes;
3179 if (0 < tmp && tmp < (1UL << 13))
3180 init_admin_reserve();
3181
3182 break;
3183 case MEM_OFFLINE:
3184 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186 if (sysctl_user_reserve_kbytes > free_kbytes) {
3187 init_user_reserve();
3188 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3189 sysctl_user_reserve_kbytes);
3190 }
3191
3192 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3193 init_admin_reserve();
3194 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3195 sysctl_admin_reserve_kbytes);
3196 }
3197 break;
3198 default:
3199 break;
3200 }
3201 return NOTIFY_OK;
3202 }
3203
3204 static struct notifier_block reserve_mem_nb = {
3205 .notifier_call = reserve_mem_notifier,
3206 };
3207
3208 static int __meminit init_reserve_notifier(void)
3209 {
3210 if (register_hotmemory_notifier(&reserve_mem_nb))
3211 printk("Failed registering memory add/remove notifier for admin reserve");
3212
3213 return 0;
3214 }
3215 module_init(init_reserve_notifier)
This page took 0.116606 seconds and 6 git commands to generate.