Merge branch 'acpica'
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44
45 #include <asm/uaccess.h>
46 #include <asm/cacheflush.h>
47 #include <asm/tlb.h>
48 #include <asm/mmu_context.h>
49
50 #include "internal.h"
51
52 #ifndef arch_mmap_check
53 #define arch_mmap_check(addr, len, flags) (0)
54 #endif
55
56 #ifndef arch_rebalance_pgtables
57 #define arch_rebalance_pgtables(addr, len) (addr)
58 #endif
59
60 static void unmap_region(struct mm_struct *mm,
61 struct vm_area_struct *vma, struct vm_area_struct *prev,
62 unsigned long start, unsigned long end);
63
64 /* description of effects of mapping type and prot in current implementation.
65 * this is due to the limited x86 page protection hardware. The expected
66 * behavior is in parens:
67 *
68 * map_type prot
69 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
70 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (yes) yes w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
75 * w: (no) no w: (no) no w: (copy) copy w: (no) no
76 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
77 *
78 */
79 pgprot_t protection_map[16] = {
80 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
81 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
82 };
83
84 pgprot_t vm_get_page_prot(unsigned long vm_flags)
85 {
86 return __pgprot(pgprot_val(protection_map[vm_flags &
87 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
88 pgprot_val(arch_vm_get_page_prot(vm_flags)));
89 }
90 EXPORT_SYMBOL(vm_get_page_prot);
91
92 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
93 {
94 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
95 }
96
97 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
98 void vma_set_page_prot(struct vm_area_struct *vma)
99 {
100 unsigned long vm_flags = vma->vm_flags;
101
102 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
103 if (vma_wants_writenotify(vma)) {
104 vm_flags &= ~VM_SHARED;
105 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
106 vm_flags);
107 }
108 }
109
110
111 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
112 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
113 unsigned long sysctl_overcommit_kbytes __read_mostly;
114 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
115 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
116 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
117 /*
118 * Make sure vm_committed_as in one cacheline and not cacheline shared with
119 * other variables. It can be updated by several CPUs frequently.
120 */
121 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
122
123 /*
124 * The global memory commitment made in the system can be a metric
125 * that can be used to drive ballooning decisions when Linux is hosted
126 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
127 * balancing memory across competing virtual machines that are hosted.
128 * Several metrics drive this policy engine including the guest reported
129 * memory commitment.
130 */
131 unsigned long vm_memory_committed(void)
132 {
133 return percpu_counter_read_positive(&vm_committed_as);
134 }
135 EXPORT_SYMBOL_GPL(vm_memory_committed);
136
137 /*
138 * Check that a process has enough memory to allocate a new virtual
139 * mapping. 0 means there is enough memory for the allocation to
140 * succeed and -ENOMEM implies there is not.
141 *
142 * We currently support three overcommit policies, which are set via the
143 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
144 *
145 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
146 * Additional code 2002 Jul 20 by Robert Love.
147 *
148 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
149 *
150 * Note this is a helper function intended to be used by LSMs which
151 * wish to use this logic.
152 */
153 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
154 {
155 unsigned long free, allowed, reserve;
156
157 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
158 -(s64)vm_committed_as_batch * num_online_cpus(),
159 "memory commitment underflow");
160
161 vm_acct_memory(pages);
162
163 /*
164 * Sometimes we want to use more memory than we have
165 */
166 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
167 return 0;
168
169 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
170 free = global_page_state(NR_FREE_PAGES);
171 free += global_page_state(NR_FILE_PAGES);
172
173 /*
174 * shmem pages shouldn't be counted as free in this
175 * case, they can't be purged, only swapped out, and
176 * that won't affect the overall amount of available
177 * memory in the system.
178 */
179 free -= global_page_state(NR_SHMEM);
180
181 free += get_nr_swap_pages();
182
183 /*
184 * Any slabs which are created with the
185 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
186 * which are reclaimable, under pressure. The dentry
187 * cache and most inode caches should fall into this
188 */
189 free += global_page_state(NR_SLAB_RECLAIMABLE);
190
191 /*
192 * Leave reserved pages. The pages are not for anonymous pages.
193 */
194 if (free <= totalreserve_pages)
195 goto error;
196 else
197 free -= totalreserve_pages;
198
199 /*
200 * Reserve some for root
201 */
202 if (!cap_sys_admin)
203 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
204
205 if (free > pages)
206 return 0;
207
208 goto error;
209 }
210
211 allowed = vm_commit_limit();
212 /*
213 * Reserve some for root
214 */
215 if (!cap_sys_admin)
216 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
217
218 /*
219 * Don't let a single process grow so big a user can't recover
220 */
221 if (mm) {
222 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
223 allowed -= min(mm->total_vm / 32, reserve);
224 }
225
226 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
227 return 0;
228 error:
229 vm_unacct_memory(pages);
230
231 return -ENOMEM;
232 }
233
234 /*
235 * Requires inode->i_mapping->i_mmap_mutex
236 */
237 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
238 struct file *file, struct address_space *mapping)
239 {
240 if (vma->vm_flags & VM_DENYWRITE)
241 atomic_inc(&file_inode(file)->i_writecount);
242 if (vma->vm_flags & VM_SHARED)
243 mapping_unmap_writable(mapping);
244
245 flush_dcache_mmap_lock(mapping);
246 if (unlikely(vma->vm_flags & VM_NONLINEAR))
247 list_del_init(&vma->shared.nonlinear);
248 else
249 vma_interval_tree_remove(vma, &mapping->i_mmap);
250 flush_dcache_mmap_unlock(mapping);
251 }
252
253 /*
254 * Unlink a file-based vm structure from its interval tree, to hide
255 * vma from rmap and vmtruncate before freeing its page tables.
256 */
257 void unlink_file_vma(struct vm_area_struct *vma)
258 {
259 struct file *file = vma->vm_file;
260
261 if (file) {
262 struct address_space *mapping = file->f_mapping;
263 mutex_lock(&mapping->i_mmap_mutex);
264 __remove_shared_vm_struct(vma, file, mapping);
265 mutex_unlock(&mapping->i_mmap_mutex);
266 }
267 }
268
269 /*
270 * Close a vm structure and free it, returning the next.
271 */
272 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
273 {
274 struct vm_area_struct *next = vma->vm_next;
275
276 might_sleep();
277 if (vma->vm_ops && vma->vm_ops->close)
278 vma->vm_ops->close(vma);
279 if (vma->vm_file)
280 fput(vma->vm_file);
281 mpol_put(vma_policy(vma));
282 kmem_cache_free(vm_area_cachep, vma);
283 return next;
284 }
285
286 static unsigned long do_brk(unsigned long addr, unsigned long len);
287
288 SYSCALL_DEFINE1(brk, unsigned long, brk)
289 {
290 unsigned long retval;
291 unsigned long newbrk, oldbrk;
292 struct mm_struct *mm = current->mm;
293 unsigned long min_brk;
294 bool populate;
295
296 down_write(&mm->mmap_sem);
297
298 #ifdef CONFIG_COMPAT_BRK
299 /*
300 * CONFIG_COMPAT_BRK can still be overridden by setting
301 * randomize_va_space to 2, which will still cause mm->start_brk
302 * to be arbitrarily shifted
303 */
304 if (current->brk_randomized)
305 min_brk = mm->start_brk;
306 else
307 min_brk = mm->end_data;
308 #else
309 min_brk = mm->start_brk;
310 #endif
311 if (brk < min_brk)
312 goto out;
313
314 /*
315 * Check against rlimit here. If this check is done later after the test
316 * of oldbrk with newbrk then it can escape the test and let the data
317 * segment grow beyond its set limit the in case where the limit is
318 * not page aligned -Ram Gupta
319 */
320 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
321 mm->end_data, mm->start_data))
322 goto out;
323
324 newbrk = PAGE_ALIGN(brk);
325 oldbrk = PAGE_ALIGN(mm->brk);
326 if (oldbrk == newbrk)
327 goto set_brk;
328
329 /* Always allow shrinking brk. */
330 if (brk <= mm->brk) {
331 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
332 goto set_brk;
333 goto out;
334 }
335
336 /* Check against existing mmap mappings. */
337 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
338 goto out;
339
340 /* Ok, looks good - let it rip. */
341 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
342 goto out;
343
344 set_brk:
345 mm->brk = brk;
346 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
347 up_write(&mm->mmap_sem);
348 if (populate)
349 mm_populate(oldbrk, newbrk - oldbrk);
350 return brk;
351
352 out:
353 retval = mm->brk;
354 up_write(&mm->mmap_sem);
355 return retval;
356 }
357
358 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
359 {
360 unsigned long max, subtree_gap;
361 max = vma->vm_start;
362 if (vma->vm_prev)
363 max -= vma->vm_prev->vm_end;
364 if (vma->vm_rb.rb_left) {
365 subtree_gap = rb_entry(vma->vm_rb.rb_left,
366 struct vm_area_struct, vm_rb)->rb_subtree_gap;
367 if (subtree_gap > max)
368 max = subtree_gap;
369 }
370 if (vma->vm_rb.rb_right) {
371 subtree_gap = rb_entry(vma->vm_rb.rb_right,
372 struct vm_area_struct, vm_rb)->rb_subtree_gap;
373 if (subtree_gap > max)
374 max = subtree_gap;
375 }
376 return max;
377 }
378
379 #ifdef CONFIG_DEBUG_VM_RB
380 static int browse_rb(struct rb_root *root)
381 {
382 int i = 0, j, bug = 0;
383 struct rb_node *nd, *pn = NULL;
384 unsigned long prev = 0, pend = 0;
385
386 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
387 struct vm_area_struct *vma;
388 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
389 if (vma->vm_start < prev) {
390 pr_emerg("vm_start %lx < prev %lx\n",
391 vma->vm_start, prev);
392 bug = 1;
393 }
394 if (vma->vm_start < pend) {
395 pr_emerg("vm_start %lx < pend %lx\n",
396 vma->vm_start, pend);
397 bug = 1;
398 }
399 if (vma->vm_start > vma->vm_end) {
400 pr_emerg("vm_start %lx > vm_end %lx\n",
401 vma->vm_start, vma->vm_end);
402 bug = 1;
403 }
404 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
405 pr_emerg("free gap %lx, correct %lx\n",
406 vma->rb_subtree_gap,
407 vma_compute_subtree_gap(vma));
408 bug = 1;
409 }
410 i++;
411 pn = nd;
412 prev = vma->vm_start;
413 pend = vma->vm_end;
414 }
415 j = 0;
416 for (nd = pn; nd; nd = rb_prev(nd))
417 j++;
418 if (i != j) {
419 pr_emerg("backwards %d, forwards %d\n", j, i);
420 bug = 1;
421 }
422 return bug ? -1 : i;
423 }
424
425 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
426 {
427 struct rb_node *nd;
428
429 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
430 struct vm_area_struct *vma;
431 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
432 VM_BUG_ON_VMA(vma != ignore &&
433 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
434 vma);
435 }
436 }
437
438 static void validate_mm(struct mm_struct *mm)
439 {
440 int bug = 0;
441 int i = 0;
442 unsigned long highest_address = 0;
443 struct vm_area_struct *vma = mm->mmap;
444
445 while (vma) {
446 struct anon_vma_chain *avc;
447
448 vma_lock_anon_vma(vma);
449 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
450 anon_vma_interval_tree_verify(avc);
451 vma_unlock_anon_vma(vma);
452 highest_address = vma->vm_end;
453 vma = vma->vm_next;
454 i++;
455 }
456 if (i != mm->map_count) {
457 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
458 bug = 1;
459 }
460 if (highest_address != mm->highest_vm_end) {
461 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
462 mm->highest_vm_end, highest_address);
463 bug = 1;
464 }
465 i = browse_rb(&mm->mm_rb);
466 if (i != mm->map_count) {
467 if (i != -1)
468 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
469 bug = 1;
470 }
471 VM_BUG_ON_MM(bug, mm);
472 }
473 #else
474 #define validate_mm_rb(root, ignore) do { } while (0)
475 #define validate_mm(mm) do { } while (0)
476 #endif
477
478 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
479 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
480
481 /*
482 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
483 * vma->vm_prev->vm_end values changed, without modifying the vma's position
484 * in the rbtree.
485 */
486 static void vma_gap_update(struct vm_area_struct *vma)
487 {
488 /*
489 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
490 * function that does exacltly what we want.
491 */
492 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
493 }
494
495 static inline void vma_rb_insert(struct vm_area_struct *vma,
496 struct rb_root *root)
497 {
498 /* All rb_subtree_gap values must be consistent prior to insertion */
499 validate_mm_rb(root, NULL);
500
501 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
502 }
503
504 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
505 {
506 /*
507 * All rb_subtree_gap values must be consistent prior to erase,
508 * with the possible exception of the vma being erased.
509 */
510 validate_mm_rb(root, vma);
511
512 /*
513 * Note rb_erase_augmented is a fairly large inline function,
514 * so make sure we instantiate it only once with our desired
515 * augmented rbtree callbacks.
516 */
517 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
518 }
519
520 /*
521 * vma has some anon_vma assigned, and is already inserted on that
522 * anon_vma's interval trees.
523 *
524 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
525 * vma must be removed from the anon_vma's interval trees using
526 * anon_vma_interval_tree_pre_update_vma().
527 *
528 * After the update, the vma will be reinserted using
529 * anon_vma_interval_tree_post_update_vma().
530 *
531 * The entire update must be protected by exclusive mmap_sem and by
532 * the root anon_vma's mutex.
533 */
534 static inline void
535 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
536 {
537 struct anon_vma_chain *avc;
538
539 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
540 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
541 }
542
543 static inline void
544 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
545 {
546 struct anon_vma_chain *avc;
547
548 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
549 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
550 }
551
552 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
553 unsigned long end, struct vm_area_struct **pprev,
554 struct rb_node ***rb_link, struct rb_node **rb_parent)
555 {
556 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
557
558 __rb_link = &mm->mm_rb.rb_node;
559 rb_prev = __rb_parent = NULL;
560
561 while (*__rb_link) {
562 struct vm_area_struct *vma_tmp;
563
564 __rb_parent = *__rb_link;
565 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
566
567 if (vma_tmp->vm_end > addr) {
568 /* Fail if an existing vma overlaps the area */
569 if (vma_tmp->vm_start < end)
570 return -ENOMEM;
571 __rb_link = &__rb_parent->rb_left;
572 } else {
573 rb_prev = __rb_parent;
574 __rb_link = &__rb_parent->rb_right;
575 }
576 }
577
578 *pprev = NULL;
579 if (rb_prev)
580 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
581 *rb_link = __rb_link;
582 *rb_parent = __rb_parent;
583 return 0;
584 }
585
586 static unsigned long count_vma_pages_range(struct mm_struct *mm,
587 unsigned long addr, unsigned long end)
588 {
589 unsigned long nr_pages = 0;
590 struct vm_area_struct *vma;
591
592 /* Find first overlaping mapping */
593 vma = find_vma_intersection(mm, addr, end);
594 if (!vma)
595 return 0;
596
597 nr_pages = (min(end, vma->vm_end) -
598 max(addr, vma->vm_start)) >> PAGE_SHIFT;
599
600 /* Iterate over the rest of the overlaps */
601 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
602 unsigned long overlap_len;
603
604 if (vma->vm_start > end)
605 break;
606
607 overlap_len = min(end, vma->vm_end) - vma->vm_start;
608 nr_pages += overlap_len >> PAGE_SHIFT;
609 }
610
611 return nr_pages;
612 }
613
614 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
615 struct rb_node **rb_link, struct rb_node *rb_parent)
616 {
617 /* Update tracking information for the gap following the new vma. */
618 if (vma->vm_next)
619 vma_gap_update(vma->vm_next);
620 else
621 mm->highest_vm_end = vma->vm_end;
622
623 /*
624 * vma->vm_prev wasn't known when we followed the rbtree to find the
625 * correct insertion point for that vma. As a result, we could not
626 * update the vma vm_rb parents rb_subtree_gap values on the way down.
627 * So, we first insert the vma with a zero rb_subtree_gap value
628 * (to be consistent with what we did on the way down), and then
629 * immediately update the gap to the correct value. Finally we
630 * rebalance the rbtree after all augmented values have been set.
631 */
632 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
633 vma->rb_subtree_gap = 0;
634 vma_gap_update(vma);
635 vma_rb_insert(vma, &mm->mm_rb);
636 }
637
638 static void __vma_link_file(struct vm_area_struct *vma)
639 {
640 struct file *file;
641
642 file = vma->vm_file;
643 if (file) {
644 struct address_space *mapping = file->f_mapping;
645
646 if (vma->vm_flags & VM_DENYWRITE)
647 atomic_dec(&file_inode(file)->i_writecount);
648 if (vma->vm_flags & VM_SHARED)
649 atomic_inc(&mapping->i_mmap_writable);
650
651 flush_dcache_mmap_lock(mapping);
652 if (unlikely(vma->vm_flags & VM_NONLINEAR))
653 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
654 else
655 vma_interval_tree_insert(vma, &mapping->i_mmap);
656 flush_dcache_mmap_unlock(mapping);
657 }
658 }
659
660 static void
661 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
662 struct vm_area_struct *prev, struct rb_node **rb_link,
663 struct rb_node *rb_parent)
664 {
665 __vma_link_list(mm, vma, prev, rb_parent);
666 __vma_link_rb(mm, vma, rb_link, rb_parent);
667 }
668
669 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
670 struct vm_area_struct *prev, struct rb_node **rb_link,
671 struct rb_node *rb_parent)
672 {
673 struct address_space *mapping = NULL;
674
675 if (vma->vm_file) {
676 mapping = vma->vm_file->f_mapping;
677 mutex_lock(&mapping->i_mmap_mutex);
678 }
679
680 __vma_link(mm, vma, prev, rb_link, rb_parent);
681 __vma_link_file(vma);
682
683 if (mapping)
684 mutex_unlock(&mapping->i_mmap_mutex);
685
686 mm->map_count++;
687 validate_mm(mm);
688 }
689
690 /*
691 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
692 * mm's list and rbtree. It has already been inserted into the interval tree.
693 */
694 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
695 {
696 struct vm_area_struct *prev;
697 struct rb_node **rb_link, *rb_parent;
698
699 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
700 &prev, &rb_link, &rb_parent))
701 BUG();
702 __vma_link(mm, vma, prev, rb_link, rb_parent);
703 mm->map_count++;
704 }
705
706 static inline void
707 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
708 struct vm_area_struct *prev)
709 {
710 struct vm_area_struct *next;
711
712 vma_rb_erase(vma, &mm->mm_rb);
713 prev->vm_next = next = vma->vm_next;
714 if (next)
715 next->vm_prev = prev;
716
717 /* Kill the cache */
718 vmacache_invalidate(mm);
719 }
720
721 /*
722 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
723 * is already present in an i_mmap tree without adjusting the tree.
724 * The following helper function should be used when such adjustments
725 * are necessary. The "insert" vma (if any) is to be inserted
726 * before we drop the necessary locks.
727 */
728 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
729 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
730 {
731 struct mm_struct *mm = vma->vm_mm;
732 struct vm_area_struct *next = vma->vm_next;
733 struct vm_area_struct *importer = NULL;
734 struct address_space *mapping = NULL;
735 struct rb_root *root = NULL;
736 struct anon_vma *anon_vma = NULL;
737 struct file *file = vma->vm_file;
738 bool start_changed = false, end_changed = false;
739 long adjust_next = 0;
740 int remove_next = 0;
741
742 if (next && !insert) {
743 struct vm_area_struct *exporter = NULL;
744
745 if (end >= next->vm_end) {
746 /*
747 * vma expands, overlapping all the next, and
748 * perhaps the one after too (mprotect case 6).
749 */
750 again: remove_next = 1 + (end > next->vm_end);
751 end = next->vm_end;
752 exporter = next;
753 importer = vma;
754 } else if (end > next->vm_start) {
755 /*
756 * vma expands, overlapping part of the next:
757 * mprotect case 5 shifting the boundary up.
758 */
759 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
760 exporter = next;
761 importer = vma;
762 } else if (end < vma->vm_end) {
763 /*
764 * vma shrinks, and !insert tells it's not
765 * split_vma inserting another: so it must be
766 * mprotect case 4 shifting the boundary down.
767 */
768 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
769 exporter = vma;
770 importer = next;
771 }
772
773 /*
774 * Easily overlooked: when mprotect shifts the boundary,
775 * make sure the expanding vma has anon_vma set if the
776 * shrinking vma had, to cover any anon pages imported.
777 */
778 if (exporter && exporter->anon_vma && !importer->anon_vma) {
779 int error;
780
781 error = anon_vma_clone(importer, exporter);
782 if (error)
783 return error;
784 importer->anon_vma = exporter->anon_vma;
785 }
786 }
787
788 if (file) {
789 mapping = file->f_mapping;
790 if (!(vma->vm_flags & VM_NONLINEAR)) {
791 root = &mapping->i_mmap;
792 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
793
794 if (adjust_next)
795 uprobe_munmap(next, next->vm_start,
796 next->vm_end);
797 }
798
799 mutex_lock(&mapping->i_mmap_mutex);
800 if (insert) {
801 /*
802 * Put into interval tree now, so instantiated pages
803 * are visible to arm/parisc __flush_dcache_page
804 * throughout; but we cannot insert into address
805 * space until vma start or end is updated.
806 */
807 __vma_link_file(insert);
808 }
809 }
810
811 vma_adjust_trans_huge(vma, start, end, adjust_next);
812
813 anon_vma = vma->anon_vma;
814 if (!anon_vma && adjust_next)
815 anon_vma = next->anon_vma;
816 if (anon_vma) {
817 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
818 anon_vma != next->anon_vma, next);
819 anon_vma_lock_write(anon_vma);
820 anon_vma_interval_tree_pre_update_vma(vma);
821 if (adjust_next)
822 anon_vma_interval_tree_pre_update_vma(next);
823 }
824
825 if (root) {
826 flush_dcache_mmap_lock(mapping);
827 vma_interval_tree_remove(vma, root);
828 if (adjust_next)
829 vma_interval_tree_remove(next, root);
830 }
831
832 if (start != vma->vm_start) {
833 vma->vm_start = start;
834 start_changed = true;
835 }
836 if (end != vma->vm_end) {
837 vma->vm_end = end;
838 end_changed = true;
839 }
840 vma->vm_pgoff = pgoff;
841 if (adjust_next) {
842 next->vm_start += adjust_next << PAGE_SHIFT;
843 next->vm_pgoff += adjust_next;
844 }
845
846 if (root) {
847 if (adjust_next)
848 vma_interval_tree_insert(next, root);
849 vma_interval_tree_insert(vma, root);
850 flush_dcache_mmap_unlock(mapping);
851 }
852
853 if (remove_next) {
854 /*
855 * vma_merge has merged next into vma, and needs
856 * us to remove next before dropping the locks.
857 */
858 __vma_unlink(mm, next, vma);
859 if (file)
860 __remove_shared_vm_struct(next, file, mapping);
861 } else if (insert) {
862 /*
863 * split_vma has split insert from vma, and needs
864 * us to insert it before dropping the locks
865 * (it may either follow vma or precede it).
866 */
867 __insert_vm_struct(mm, insert);
868 } else {
869 if (start_changed)
870 vma_gap_update(vma);
871 if (end_changed) {
872 if (!next)
873 mm->highest_vm_end = end;
874 else if (!adjust_next)
875 vma_gap_update(next);
876 }
877 }
878
879 if (anon_vma) {
880 anon_vma_interval_tree_post_update_vma(vma);
881 if (adjust_next)
882 anon_vma_interval_tree_post_update_vma(next);
883 anon_vma_unlock_write(anon_vma);
884 }
885 if (mapping)
886 mutex_unlock(&mapping->i_mmap_mutex);
887
888 if (root) {
889 uprobe_mmap(vma);
890
891 if (adjust_next)
892 uprobe_mmap(next);
893 }
894
895 if (remove_next) {
896 if (file) {
897 uprobe_munmap(next, next->vm_start, next->vm_end);
898 fput(file);
899 }
900 if (next->anon_vma)
901 anon_vma_merge(vma, next);
902 mm->map_count--;
903 mpol_put(vma_policy(next));
904 kmem_cache_free(vm_area_cachep, next);
905 /*
906 * In mprotect's case 6 (see comments on vma_merge),
907 * we must remove another next too. It would clutter
908 * up the code too much to do both in one go.
909 */
910 next = vma->vm_next;
911 if (remove_next == 2)
912 goto again;
913 else if (next)
914 vma_gap_update(next);
915 else
916 mm->highest_vm_end = end;
917 }
918 if (insert && file)
919 uprobe_mmap(insert);
920
921 validate_mm(mm);
922
923 return 0;
924 }
925
926 /*
927 * If the vma has a ->close operation then the driver probably needs to release
928 * per-vma resources, so we don't attempt to merge those.
929 */
930 static inline int is_mergeable_vma(struct vm_area_struct *vma,
931 struct file *file, unsigned long vm_flags)
932 {
933 /*
934 * VM_SOFTDIRTY should not prevent from VMA merging, if we
935 * match the flags but dirty bit -- the caller should mark
936 * merged VMA as dirty. If dirty bit won't be excluded from
937 * comparison, we increase pressue on the memory system forcing
938 * the kernel to generate new VMAs when old one could be
939 * extended instead.
940 */
941 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
942 return 0;
943 if (vma->vm_file != file)
944 return 0;
945 if (vma->vm_ops && vma->vm_ops->close)
946 return 0;
947 return 1;
948 }
949
950 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
951 struct anon_vma *anon_vma2,
952 struct vm_area_struct *vma)
953 {
954 /*
955 * The list_is_singular() test is to avoid merging VMA cloned from
956 * parents. This can improve scalability caused by anon_vma lock.
957 */
958 if ((!anon_vma1 || !anon_vma2) && (!vma ||
959 list_is_singular(&vma->anon_vma_chain)))
960 return 1;
961 return anon_vma1 == anon_vma2;
962 }
963
964 /*
965 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
966 * in front of (at a lower virtual address and file offset than) the vma.
967 *
968 * We cannot merge two vmas if they have differently assigned (non-NULL)
969 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
970 *
971 * We don't check here for the merged mmap wrapping around the end of pagecache
972 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
973 * wrap, nor mmaps which cover the final page at index -1UL.
974 */
975 static int
976 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
977 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
978 {
979 if (is_mergeable_vma(vma, file, vm_flags) &&
980 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
981 if (vma->vm_pgoff == vm_pgoff)
982 return 1;
983 }
984 return 0;
985 }
986
987 /*
988 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
989 * beyond (at a higher virtual address and file offset than) the vma.
990 *
991 * We cannot merge two vmas if they have differently assigned (non-NULL)
992 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
993 */
994 static int
995 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
996 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
997 {
998 if (is_mergeable_vma(vma, file, vm_flags) &&
999 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1000 pgoff_t vm_pglen;
1001 vm_pglen = vma_pages(vma);
1002 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1003 return 1;
1004 }
1005 return 0;
1006 }
1007
1008 /*
1009 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1010 * whether that can be merged with its predecessor or its successor.
1011 * Or both (it neatly fills a hole).
1012 *
1013 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1014 * certain not to be mapped by the time vma_merge is called; but when
1015 * called for mprotect, it is certain to be already mapped (either at
1016 * an offset within prev, or at the start of next), and the flags of
1017 * this area are about to be changed to vm_flags - and the no-change
1018 * case has already been eliminated.
1019 *
1020 * The following mprotect cases have to be considered, where AAAA is
1021 * the area passed down from mprotect_fixup, never extending beyond one
1022 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1023 *
1024 * AAAA AAAA AAAA AAAA
1025 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1026 * cannot merge might become might become might become
1027 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1028 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1029 * mremap move: PPPPNNNNNNNN 8
1030 * AAAA
1031 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1032 * might become case 1 below case 2 below case 3 below
1033 *
1034 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1035 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1036 */
1037 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1038 struct vm_area_struct *prev, unsigned long addr,
1039 unsigned long end, unsigned long vm_flags,
1040 struct anon_vma *anon_vma, struct file *file,
1041 pgoff_t pgoff, struct mempolicy *policy)
1042 {
1043 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1044 struct vm_area_struct *area, *next;
1045 int err;
1046
1047 /*
1048 * We later require that vma->vm_flags == vm_flags,
1049 * so this tests vma->vm_flags & VM_SPECIAL, too.
1050 */
1051 if (vm_flags & VM_SPECIAL)
1052 return NULL;
1053
1054 if (prev)
1055 next = prev->vm_next;
1056 else
1057 next = mm->mmap;
1058 area = next;
1059 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1060 next = next->vm_next;
1061
1062 /*
1063 * Can it merge with the predecessor?
1064 */
1065 if (prev && prev->vm_end == addr &&
1066 mpol_equal(vma_policy(prev), policy) &&
1067 can_vma_merge_after(prev, vm_flags,
1068 anon_vma, file, pgoff)) {
1069 /*
1070 * OK, it can. Can we now merge in the successor as well?
1071 */
1072 if (next && end == next->vm_start &&
1073 mpol_equal(policy, vma_policy(next)) &&
1074 can_vma_merge_before(next, vm_flags,
1075 anon_vma, file, pgoff+pglen) &&
1076 is_mergeable_anon_vma(prev->anon_vma,
1077 next->anon_vma, NULL)) {
1078 /* cases 1, 6 */
1079 err = vma_adjust(prev, prev->vm_start,
1080 next->vm_end, prev->vm_pgoff, NULL);
1081 } else /* cases 2, 5, 7 */
1082 err = vma_adjust(prev, prev->vm_start,
1083 end, prev->vm_pgoff, NULL);
1084 if (err)
1085 return NULL;
1086 khugepaged_enter_vma_merge(prev, vm_flags);
1087 return prev;
1088 }
1089
1090 /*
1091 * Can this new request be merged in front of next?
1092 */
1093 if (next && end == next->vm_start &&
1094 mpol_equal(policy, vma_policy(next)) &&
1095 can_vma_merge_before(next, vm_flags,
1096 anon_vma, file, pgoff+pglen)) {
1097 if (prev && addr < prev->vm_end) /* case 4 */
1098 err = vma_adjust(prev, prev->vm_start,
1099 addr, prev->vm_pgoff, NULL);
1100 else /* cases 3, 8 */
1101 err = vma_adjust(area, addr, next->vm_end,
1102 next->vm_pgoff - pglen, NULL);
1103 if (err)
1104 return NULL;
1105 khugepaged_enter_vma_merge(area, vm_flags);
1106 return area;
1107 }
1108
1109 return NULL;
1110 }
1111
1112 /*
1113 * Rough compatbility check to quickly see if it's even worth looking
1114 * at sharing an anon_vma.
1115 *
1116 * They need to have the same vm_file, and the flags can only differ
1117 * in things that mprotect may change.
1118 *
1119 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1120 * we can merge the two vma's. For example, we refuse to merge a vma if
1121 * there is a vm_ops->close() function, because that indicates that the
1122 * driver is doing some kind of reference counting. But that doesn't
1123 * really matter for the anon_vma sharing case.
1124 */
1125 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1126 {
1127 return a->vm_end == b->vm_start &&
1128 mpol_equal(vma_policy(a), vma_policy(b)) &&
1129 a->vm_file == b->vm_file &&
1130 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1131 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1132 }
1133
1134 /*
1135 * Do some basic sanity checking to see if we can re-use the anon_vma
1136 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1137 * the same as 'old', the other will be the new one that is trying
1138 * to share the anon_vma.
1139 *
1140 * NOTE! This runs with mm_sem held for reading, so it is possible that
1141 * the anon_vma of 'old' is concurrently in the process of being set up
1142 * by another page fault trying to merge _that_. But that's ok: if it
1143 * is being set up, that automatically means that it will be a singleton
1144 * acceptable for merging, so we can do all of this optimistically. But
1145 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1146 *
1147 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1148 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1149 * is to return an anon_vma that is "complex" due to having gone through
1150 * a fork).
1151 *
1152 * We also make sure that the two vma's are compatible (adjacent,
1153 * and with the same memory policies). That's all stable, even with just
1154 * a read lock on the mm_sem.
1155 */
1156 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1157 {
1158 if (anon_vma_compatible(a, b)) {
1159 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1160
1161 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1162 return anon_vma;
1163 }
1164 return NULL;
1165 }
1166
1167 /*
1168 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1169 * neighbouring vmas for a suitable anon_vma, before it goes off
1170 * to allocate a new anon_vma. It checks because a repetitive
1171 * sequence of mprotects and faults may otherwise lead to distinct
1172 * anon_vmas being allocated, preventing vma merge in subsequent
1173 * mprotect.
1174 */
1175 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1176 {
1177 struct anon_vma *anon_vma;
1178 struct vm_area_struct *near;
1179
1180 near = vma->vm_next;
1181 if (!near)
1182 goto try_prev;
1183
1184 anon_vma = reusable_anon_vma(near, vma, near);
1185 if (anon_vma)
1186 return anon_vma;
1187 try_prev:
1188 near = vma->vm_prev;
1189 if (!near)
1190 goto none;
1191
1192 anon_vma = reusable_anon_vma(near, near, vma);
1193 if (anon_vma)
1194 return anon_vma;
1195 none:
1196 /*
1197 * There's no absolute need to look only at touching neighbours:
1198 * we could search further afield for "compatible" anon_vmas.
1199 * But it would probably just be a waste of time searching,
1200 * or lead to too many vmas hanging off the same anon_vma.
1201 * We're trying to allow mprotect remerging later on,
1202 * not trying to minimize memory used for anon_vmas.
1203 */
1204 return NULL;
1205 }
1206
1207 #ifdef CONFIG_PROC_FS
1208 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1209 struct file *file, long pages)
1210 {
1211 const unsigned long stack_flags
1212 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1213
1214 mm->total_vm += pages;
1215
1216 if (file) {
1217 mm->shared_vm += pages;
1218 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1219 mm->exec_vm += pages;
1220 } else if (flags & stack_flags)
1221 mm->stack_vm += pages;
1222 }
1223 #endif /* CONFIG_PROC_FS */
1224
1225 /*
1226 * If a hint addr is less than mmap_min_addr change hint to be as
1227 * low as possible but still greater than mmap_min_addr
1228 */
1229 static inline unsigned long round_hint_to_min(unsigned long hint)
1230 {
1231 hint &= PAGE_MASK;
1232 if (((void *)hint != NULL) &&
1233 (hint < mmap_min_addr))
1234 return PAGE_ALIGN(mmap_min_addr);
1235 return hint;
1236 }
1237
1238 static inline int mlock_future_check(struct mm_struct *mm,
1239 unsigned long flags,
1240 unsigned long len)
1241 {
1242 unsigned long locked, lock_limit;
1243
1244 /* mlock MCL_FUTURE? */
1245 if (flags & VM_LOCKED) {
1246 locked = len >> PAGE_SHIFT;
1247 locked += mm->locked_vm;
1248 lock_limit = rlimit(RLIMIT_MEMLOCK);
1249 lock_limit >>= PAGE_SHIFT;
1250 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1251 return -EAGAIN;
1252 }
1253 return 0;
1254 }
1255
1256 /*
1257 * The caller must hold down_write(&current->mm->mmap_sem).
1258 */
1259
1260 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1261 unsigned long len, unsigned long prot,
1262 unsigned long flags, unsigned long pgoff,
1263 unsigned long *populate)
1264 {
1265 struct mm_struct *mm = current->mm;
1266 vm_flags_t vm_flags;
1267
1268 *populate = 0;
1269
1270 /*
1271 * Does the application expect PROT_READ to imply PROT_EXEC?
1272 *
1273 * (the exception is when the underlying filesystem is noexec
1274 * mounted, in which case we dont add PROT_EXEC.)
1275 */
1276 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1277 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1278 prot |= PROT_EXEC;
1279
1280 if (!len)
1281 return -EINVAL;
1282
1283 if (!(flags & MAP_FIXED))
1284 addr = round_hint_to_min(addr);
1285
1286 /* Careful about overflows.. */
1287 len = PAGE_ALIGN(len);
1288 if (!len)
1289 return -ENOMEM;
1290
1291 /* offset overflow? */
1292 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1293 return -EOVERFLOW;
1294
1295 /* Too many mappings? */
1296 if (mm->map_count > sysctl_max_map_count)
1297 return -ENOMEM;
1298
1299 /* Obtain the address to map to. we verify (or select) it and ensure
1300 * that it represents a valid section of the address space.
1301 */
1302 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1303 if (addr & ~PAGE_MASK)
1304 return addr;
1305
1306 /* Do simple checking here so the lower-level routines won't have
1307 * to. we assume access permissions have been handled by the open
1308 * of the memory object, so we don't do any here.
1309 */
1310 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1311 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1312
1313 if (flags & MAP_LOCKED)
1314 if (!can_do_mlock())
1315 return -EPERM;
1316
1317 if (mlock_future_check(mm, vm_flags, len))
1318 return -EAGAIN;
1319
1320 if (file) {
1321 struct inode *inode = file_inode(file);
1322
1323 switch (flags & MAP_TYPE) {
1324 case MAP_SHARED:
1325 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1326 return -EACCES;
1327
1328 /*
1329 * Make sure we don't allow writing to an append-only
1330 * file..
1331 */
1332 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1333 return -EACCES;
1334
1335 /*
1336 * Make sure there are no mandatory locks on the file.
1337 */
1338 if (locks_verify_locked(file))
1339 return -EAGAIN;
1340
1341 vm_flags |= VM_SHARED | VM_MAYSHARE;
1342 if (!(file->f_mode & FMODE_WRITE))
1343 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1344
1345 /* fall through */
1346 case MAP_PRIVATE:
1347 if (!(file->f_mode & FMODE_READ))
1348 return -EACCES;
1349 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1350 if (vm_flags & VM_EXEC)
1351 return -EPERM;
1352 vm_flags &= ~VM_MAYEXEC;
1353 }
1354
1355 if (!file->f_op->mmap)
1356 return -ENODEV;
1357 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1358 return -EINVAL;
1359 break;
1360
1361 default:
1362 return -EINVAL;
1363 }
1364 } else {
1365 switch (flags & MAP_TYPE) {
1366 case MAP_SHARED:
1367 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1368 return -EINVAL;
1369 /*
1370 * Ignore pgoff.
1371 */
1372 pgoff = 0;
1373 vm_flags |= VM_SHARED | VM_MAYSHARE;
1374 break;
1375 case MAP_PRIVATE:
1376 /*
1377 * Set pgoff according to addr for anon_vma.
1378 */
1379 pgoff = addr >> PAGE_SHIFT;
1380 break;
1381 default:
1382 return -EINVAL;
1383 }
1384 }
1385
1386 /*
1387 * Set 'VM_NORESERVE' if we should not account for the
1388 * memory use of this mapping.
1389 */
1390 if (flags & MAP_NORESERVE) {
1391 /* We honor MAP_NORESERVE if allowed to overcommit */
1392 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1393 vm_flags |= VM_NORESERVE;
1394
1395 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1396 if (file && is_file_hugepages(file))
1397 vm_flags |= VM_NORESERVE;
1398 }
1399
1400 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1401 if (!IS_ERR_VALUE(addr) &&
1402 ((vm_flags & VM_LOCKED) ||
1403 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1404 *populate = len;
1405 return addr;
1406 }
1407
1408 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1409 unsigned long, prot, unsigned long, flags,
1410 unsigned long, fd, unsigned long, pgoff)
1411 {
1412 struct file *file = NULL;
1413 unsigned long retval = -EBADF;
1414
1415 if (!(flags & MAP_ANONYMOUS)) {
1416 audit_mmap_fd(fd, flags);
1417 file = fget(fd);
1418 if (!file)
1419 goto out;
1420 if (is_file_hugepages(file))
1421 len = ALIGN(len, huge_page_size(hstate_file(file)));
1422 retval = -EINVAL;
1423 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1424 goto out_fput;
1425 } else if (flags & MAP_HUGETLB) {
1426 struct user_struct *user = NULL;
1427 struct hstate *hs;
1428
1429 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1430 if (!hs)
1431 return -EINVAL;
1432
1433 len = ALIGN(len, huge_page_size(hs));
1434 /*
1435 * VM_NORESERVE is used because the reservations will be
1436 * taken when vm_ops->mmap() is called
1437 * A dummy user value is used because we are not locking
1438 * memory so no accounting is necessary
1439 */
1440 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1441 VM_NORESERVE,
1442 &user, HUGETLB_ANONHUGE_INODE,
1443 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1444 if (IS_ERR(file))
1445 return PTR_ERR(file);
1446 }
1447
1448 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1449
1450 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1451 out_fput:
1452 if (file)
1453 fput(file);
1454 out:
1455 return retval;
1456 }
1457
1458 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1459 struct mmap_arg_struct {
1460 unsigned long addr;
1461 unsigned long len;
1462 unsigned long prot;
1463 unsigned long flags;
1464 unsigned long fd;
1465 unsigned long offset;
1466 };
1467
1468 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1469 {
1470 struct mmap_arg_struct a;
1471
1472 if (copy_from_user(&a, arg, sizeof(a)))
1473 return -EFAULT;
1474 if (a.offset & ~PAGE_MASK)
1475 return -EINVAL;
1476
1477 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1478 a.offset >> PAGE_SHIFT);
1479 }
1480 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1481
1482 /*
1483 * Some shared mappigns will want the pages marked read-only
1484 * to track write events. If so, we'll downgrade vm_page_prot
1485 * to the private version (using protection_map[] without the
1486 * VM_SHARED bit).
1487 */
1488 int vma_wants_writenotify(struct vm_area_struct *vma)
1489 {
1490 vm_flags_t vm_flags = vma->vm_flags;
1491
1492 /* If it was private or non-writable, the write bit is already clear */
1493 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1494 return 0;
1495
1496 /* The backer wishes to know when pages are first written to? */
1497 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1498 return 1;
1499
1500 /* The open routine did something to the protections that pgprot_modify
1501 * won't preserve? */
1502 if (pgprot_val(vma->vm_page_prot) !=
1503 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1504 return 0;
1505
1506 /* Do we need to track softdirty? */
1507 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1508 return 1;
1509
1510 /* Specialty mapping? */
1511 if (vm_flags & VM_PFNMAP)
1512 return 0;
1513
1514 /* Can the mapping track the dirty pages? */
1515 return vma->vm_file && vma->vm_file->f_mapping &&
1516 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1517 }
1518
1519 /*
1520 * We account for memory if it's a private writeable mapping,
1521 * not hugepages and VM_NORESERVE wasn't set.
1522 */
1523 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1524 {
1525 /*
1526 * hugetlb has its own accounting separate from the core VM
1527 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1528 */
1529 if (file && is_file_hugepages(file))
1530 return 0;
1531
1532 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1533 }
1534
1535 unsigned long mmap_region(struct file *file, unsigned long addr,
1536 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1537 {
1538 struct mm_struct *mm = current->mm;
1539 struct vm_area_struct *vma, *prev;
1540 int error;
1541 struct rb_node **rb_link, *rb_parent;
1542 unsigned long charged = 0;
1543
1544 /* Check against address space limit. */
1545 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1546 unsigned long nr_pages;
1547
1548 /*
1549 * MAP_FIXED may remove pages of mappings that intersects with
1550 * requested mapping. Account for the pages it would unmap.
1551 */
1552 if (!(vm_flags & MAP_FIXED))
1553 return -ENOMEM;
1554
1555 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1556
1557 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1558 return -ENOMEM;
1559 }
1560
1561 /* Clear old maps */
1562 error = -ENOMEM;
1563 munmap_back:
1564 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1565 if (do_munmap(mm, addr, len))
1566 return -ENOMEM;
1567 goto munmap_back;
1568 }
1569
1570 /*
1571 * Private writable mapping: check memory availability
1572 */
1573 if (accountable_mapping(file, vm_flags)) {
1574 charged = len >> PAGE_SHIFT;
1575 if (security_vm_enough_memory_mm(mm, charged))
1576 return -ENOMEM;
1577 vm_flags |= VM_ACCOUNT;
1578 }
1579
1580 /*
1581 * Can we just expand an old mapping?
1582 */
1583 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1584 if (vma)
1585 goto out;
1586
1587 /*
1588 * Determine the object being mapped and call the appropriate
1589 * specific mapper. the address has already been validated, but
1590 * not unmapped, but the maps are removed from the list.
1591 */
1592 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1593 if (!vma) {
1594 error = -ENOMEM;
1595 goto unacct_error;
1596 }
1597
1598 vma->vm_mm = mm;
1599 vma->vm_start = addr;
1600 vma->vm_end = addr + len;
1601 vma->vm_flags = vm_flags;
1602 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1603 vma->vm_pgoff = pgoff;
1604 INIT_LIST_HEAD(&vma->anon_vma_chain);
1605
1606 if (file) {
1607 if (vm_flags & VM_DENYWRITE) {
1608 error = deny_write_access(file);
1609 if (error)
1610 goto free_vma;
1611 }
1612 if (vm_flags & VM_SHARED) {
1613 error = mapping_map_writable(file->f_mapping);
1614 if (error)
1615 goto allow_write_and_free_vma;
1616 }
1617
1618 /* ->mmap() can change vma->vm_file, but must guarantee that
1619 * vma_link() below can deny write-access if VM_DENYWRITE is set
1620 * and map writably if VM_SHARED is set. This usually means the
1621 * new file must not have been exposed to user-space, yet.
1622 */
1623 vma->vm_file = get_file(file);
1624 error = file->f_op->mmap(file, vma);
1625 if (error)
1626 goto unmap_and_free_vma;
1627
1628 /* Can addr have changed??
1629 *
1630 * Answer: Yes, several device drivers can do it in their
1631 * f_op->mmap method. -DaveM
1632 * Bug: If addr is changed, prev, rb_link, rb_parent should
1633 * be updated for vma_link()
1634 */
1635 WARN_ON_ONCE(addr != vma->vm_start);
1636
1637 addr = vma->vm_start;
1638 vm_flags = vma->vm_flags;
1639 } else if (vm_flags & VM_SHARED) {
1640 error = shmem_zero_setup(vma);
1641 if (error)
1642 goto free_vma;
1643 }
1644
1645 vma_link(mm, vma, prev, rb_link, rb_parent);
1646 /* Once vma denies write, undo our temporary denial count */
1647 if (file) {
1648 if (vm_flags & VM_SHARED)
1649 mapping_unmap_writable(file->f_mapping);
1650 if (vm_flags & VM_DENYWRITE)
1651 allow_write_access(file);
1652 }
1653 file = vma->vm_file;
1654 out:
1655 perf_event_mmap(vma);
1656
1657 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1658 if (vm_flags & VM_LOCKED) {
1659 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1660 vma == get_gate_vma(current->mm)))
1661 mm->locked_vm += (len >> PAGE_SHIFT);
1662 else
1663 vma->vm_flags &= ~VM_LOCKED;
1664 }
1665
1666 if (file)
1667 uprobe_mmap(vma);
1668
1669 /*
1670 * New (or expanded) vma always get soft dirty status.
1671 * Otherwise user-space soft-dirty page tracker won't
1672 * be able to distinguish situation when vma area unmapped,
1673 * then new mapped in-place (which must be aimed as
1674 * a completely new data area).
1675 */
1676 vma->vm_flags |= VM_SOFTDIRTY;
1677
1678 vma_set_page_prot(vma);
1679
1680 return addr;
1681
1682 unmap_and_free_vma:
1683 vma->vm_file = NULL;
1684 fput(file);
1685
1686 /* Undo any partial mapping done by a device driver. */
1687 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1688 charged = 0;
1689 if (vm_flags & VM_SHARED)
1690 mapping_unmap_writable(file->f_mapping);
1691 allow_write_and_free_vma:
1692 if (vm_flags & VM_DENYWRITE)
1693 allow_write_access(file);
1694 free_vma:
1695 kmem_cache_free(vm_area_cachep, vma);
1696 unacct_error:
1697 if (charged)
1698 vm_unacct_memory(charged);
1699 return error;
1700 }
1701
1702 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1703 {
1704 /*
1705 * We implement the search by looking for an rbtree node that
1706 * immediately follows a suitable gap. That is,
1707 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1708 * - gap_end = vma->vm_start >= info->low_limit + length;
1709 * - gap_end - gap_start >= length
1710 */
1711
1712 struct mm_struct *mm = current->mm;
1713 struct vm_area_struct *vma;
1714 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1715
1716 /* Adjust search length to account for worst case alignment overhead */
1717 length = info->length + info->align_mask;
1718 if (length < info->length)
1719 return -ENOMEM;
1720
1721 /* Adjust search limits by the desired length */
1722 if (info->high_limit < length)
1723 return -ENOMEM;
1724 high_limit = info->high_limit - length;
1725
1726 if (info->low_limit > high_limit)
1727 return -ENOMEM;
1728 low_limit = info->low_limit + length;
1729
1730 /* Check if rbtree root looks promising */
1731 if (RB_EMPTY_ROOT(&mm->mm_rb))
1732 goto check_highest;
1733 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1734 if (vma->rb_subtree_gap < length)
1735 goto check_highest;
1736
1737 while (true) {
1738 /* Visit left subtree if it looks promising */
1739 gap_end = vma->vm_start;
1740 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1741 struct vm_area_struct *left =
1742 rb_entry(vma->vm_rb.rb_left,
1743 struct vm_area_struct, vm_rb);
1744 if (left->rb_subtree_gap >= length) {
1745 vma = left;
1746 continue;
1747 }
1748 }
1749
1750 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1751 check_current:
1752 /* Check if current node has a suitable gap */
1753 if (gap_start > high_limit)
1754 return -ENOMEM;
1755 if (gap_end >= low_limit && gap_end - gap_start >= length)
1756 goto found;
1757
1758 /* Visit right subtree if it looks promising */
1759 if (vma->vm_rb.rb_right) {
1760 struct vm_area_struct *right =
1761 rb_entry(vma->vm_rb.rb_right,
1762 struct vm_area_struct, vm_rb);
1763 if (right->rb_subtree_gap >= length) {
1764 vma = right;
1765 continue;
1766 }
1767 }
1768
1769 /* Go back up the rbtree to find next candidate node */
1770 while (true) {
1771 struct rb_node *prev = &vma->vm_rb;
1772 if (!rb_parent(prev))
1773 goto check_highest;
1774 vma = rb_entry(rb_parent(prev),
1775 struct vm_area_struct, vm_rb);
1776 if (prev == vma->vm_rb.rb_left) {
1777 gap_start = vma->vm_prev->vm_end;
1778 gap_end = vma->vm_start;
1779 goto check_current;
1780 }
1781 }
1782 }
1783
1784 check_highest:
1785 /* Check highest gap, which does not precede any rbtree node */
1786 gap_start = mm->highest_vm_end;
1787 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1788 if (gap_start > high_limit)
1789 return -ENOMEM;
1790
1791 found:
1792 /* We found a suitable gap. Clip it with the original low_limit. */
1793 if (gap_start < info->low_limit)
1794 gap_start = info->low_limit;
1795
1796 /* Adjust gap address to the desired alignment */
1797 gap_start += (info->align_offset - gap_start) & info->align_mask;
1798
1799 VM_BUG_ON(gap_start + info->length > info->high_limit);
1800 VM_BUG_ON(gap_start + info->length > gap_end);
1801 return gap_start;
1802 }
1803
1804 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1805 {
1806 struct mm_struct *mm = current->mm;
1807 struct vm_area_struct *vma;
1808 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1809
1810 /* Adjust search length to account for worst case alignment overhead */
1811 length = info->length + info->align_mask;
1812 if (length < info->length)
1813 return -ENOMEM;
1814
1815 /*
1816 * Adjust search limits by the desired length.
1817 * See implementation comment at top of unmapped_area().
1818 */
1819 gap_end = info->high_limit;
1820 if (gap_end < length)
1821 return -ENOMEM;
1822 high_limit = gap_end - length;
1823
1824 if (info->low_limit > high_limit)
1825 return -ENOMEM;
1826 low_limit = info->low_limit + length;
1827
1828 /* Check highest gap, which does not precede any rbtree node */
1829 gap_start = mm->highest_vm_end;
1830 if (gap_start <= high_limit)
1831 goto found_highest;
1832
1833 /* Check if rbtree root looks promising */
1834 if (RB_EMPTY_ROOT(&mm->mm_rb))
1835 return -ENOMEM;
1836 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1837 if (vma->rb_subtree_gap < length)
1838 return -ENOMEM;
1839
1840 while (true) {
1841 /* Visit right subtree if it looks promising */
1842 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1843 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1844 struct vm_area_struct *right =
1845 rb_entry(vma->vm_rb.rb_right,
1846 struct vm_area_struct, vm_rb);
1847 if (right->rb_subtree_gap >= length) {
1848 vma = right;
1849 continue;
1850 }
1851 }
1852
1853 check_current:
1854 /* Check if current node has a suitable gap */
1855 gap_end = vma->vm_start;
1856 if (gap_end < low_limit)
1857 return -ENOMEM;
1858 if (gap_start <= high_limit && gap_end - gap_start >= length)
1859 goto found;
1860
1861 /* Visit left subtree if it looks promising */
1862 if (vma->vm_rb.rb_left) {
1863 struct vm_area_struct *left =
1864 rb_entry(vma->vm_rb.rb_left,
1865 struct vm_area_struct, vm_rb);
1866 if (left->rb_subtree_gap >= length) {
1867 vma = left;
1868 continue;
1869 }
1870 }
1871
1872 /* Go back up the rbtree to find next candidate node */
1873 while (true) {
1874 struct rb_node *prev = &vma->vm_rb;
1875 if (!rb_parent(prev))
1876 return -ENOMEM;
1877 vma = rb_entry(rb_parent(prev),
1878 struct vm_area_struct, vm_rb);
1879 if (prev == vma->vm_rb.rb_right) {
1880 gap_start = vma->vm_prev ?
1881 vma->vm_prev->vm_end : 0;
1882 goto check_current;
1883 }
1884 }
1885 }
1886
1887 found:
1888 /* We found a suitable gap. Clip it with the original high_limit. */
1889 if (gap_end > info->high_limit)
1890 gap_end = info->high_limit;
1891
1892 found_highest:
1893 /* Compute highest gap address at the desired alignment */
1894 gap_end -= info->length;
1895 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1896
1897 VM_BUG_ON(gap_end < info->low_limit);
1898 VM_BUG_ON(gap_end < gap_start);
1899 return gap_end;
1900 }
1901
1902 /* Get an address range which is currently unmapped.
1903 * For shmat() with addr=0.
1904 *
1905 * Ugly calling convention alert:
1906 * Return value with the low bits set means error value,
1907 * ie
1908 * if (ret & ~PAGE_MASK)
1909 * error = ret;
1910 *
1911 * This function "knows" that -ENOMEM has the bits set.
1912 */
1913 #ifndef HAVE_ARCH_UNMAPPED_AREA
1914 unsigned long
1915 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1916 unsigned long len, unsigned long pgoff, unsigned long flags)
1917 {
1918 struct mm_struct *mm = current->mm;
1919 struct vm_area_struct *vma;
1920 struct vm_unmapped_area_info info;
1921
1922 if (len > TASK_SIZE - mmap_min_addr)
1923 return -ENOMEM;
1924
1925 if (flags & MAP_FIXED)
1926 return addr;
1927
1928 if (addr) {
1929 addr = PAGE_ALIGN(addr);
1930 vma = find_vma(mm, addr);
1931 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1932 (!vma || addr + len <= vma->vm_start))
1933 return addr;
1934 }
1935
1936 info.flags = 0;
1937 info.length = len;
1938 info.low_limit = mm->mmap_base;
1939 info.high_limit = TASK_SIZE;
1940 info.align_mask = 0;
1941 return vm_unmapped_area(&info);
1942 }
1943 #endif
1944
1945 /*
1946 * This mmap-allocator allocates new areas top-down from below the
1947 * stack's low limit (the base):
1948 */
1949 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1950 unsigned long
1951 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1952 const unsigned long len, const unsigned long pgoff,
1953 const unsigned long flags)
1954 {
1955 struct vm_area_struct *vma;
1956 struct mm_struct *mm = current->mm;
1957 unsigned long addr = addr0;
1958 struct vm_unmapped_area_info info;
1959
1960 /* requested length too big for entire address space */
1961 if (len > TASK_SIZE - mmap_min_addr)
1962 return -ENOMEM;
1963
1964 if (flags & MAP_FIXED)
1965 return addr;
1966
1967 /* requesting a specific address */
1968 if (addr) {
1969 addr = PAGE_ALIGN(addr);
1970 vma = find_vma(mm, addr);
1971 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1972 (!vma || addr + len <= vma->vm_start))
1973 return addr;
1974 }
1975
1976 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1977 info.length = len;
1978 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1979 info.high_limit = mm->mmap_base;
1980 info.align_mask = 0;
1981 addr = vm_unmapped_area(&info);
1982
1983 /*
1984 * A failed mmap() very likely causes application failure,
1985 * so fall back to the bottom-up function here. This scenario
1986 * can happen with large stack limits and large mmap()
1987 * allocations.
1988 */
1989 if (addr & ~PAGE_MASK) {
1990 VM_BUG_ON(addr != -ENOMEM);
1991 info.flags = 0;
1992 info.low_limit = TASK_UNMAPPED_BASE;
1993 info.high_limit = TASK_SIZE;
1994 addr = vm_unmapped_area(&info);
1995 }
1996
1997 return addr;
1998 }
1999 #endif
2000
2001 unsigned long
2002 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2003 unsigned long pgoff, unsigned long flags)
2004 {
2005 unsigned long (*get_area)(struct file *, unsigned long,
2006 unsigned long, unsigned long, unsigned long);
2007
2008 unsigned long error = arch_mmap_check(addr, len, flags);
2009 if (error)
2010 return error;
2011
2012 /* Careful about overflows.. */
2013 if (len > TASK_SIZE)
2014 return -ENOMEM;
2015
2016 get_area = current->mm->get_unmapped_area;
2017 if (file && file->f_op->get_unmapped_area)
2018 get_area = file->f_op->get_unmapped_area;
2019 addr = get_area(file, addr, len, pgoff, flags);
2020 if (IS_ERR_VALUE(addr))
2021 return addr;
2022
2023 if (addr > TASK_SIZE - len)
2024 return -ENOMEM;
2025 if (addr & ~PAGE_MASK)
2026 return -EINVAL;
2027
2028 addr = arch_rebalance_pgtables(addr, len);
2029 error = security_mmap_addr(addr);
2030 return error ? error : addr;
2031 }
2032
2033 EXPORT_SYMBOL(get_unmapped_area);
2034
2035 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2036 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2037 {
2038 struct rb_node *rb_node;
2039 struct vm_area_struct *vma;
2040
2041 /* Check the cache first. */
2042 vma = vmacache_find(mm, addr);
2043 if (likely(vma))
2044 return vma;
2045
2046 rb_node = mm->mm_rb.rb_node;
2047 vma = NULL;
2048
2049 while (rb_node) {
2050 struct vm_area_struct *tmp;
2051
2052 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2053
2054 if (tmp->vm_end > addr) {
2055 vma = tmp;
2056 if (tmp->vm_start <= addr)
2057 break;
2058 rb_node = rb_node->rb_left;
2059 } else
2060 rb_node = rb_node->rb_right;
2061 }
2062
2063 if (vma)
2064 vmacache_update(addr, vma);
2065 return vma;
2066 }
2067
2068 EXPORT_SYMBOL(find_vma);
2069
2070 /*
2071 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2072 */
2073 struct vm_area_struct *
2074 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2075 struct vm_area_struct **pprev)
2076 {
2077 struct vm_area_struct *vma;
2078
2079 vma = find_vma(mm, addr);
2080 if (vma) {
2081 *pprev = vma->vm_prev;
2082 } else {
2083 struct rb_node *rb_node = mm->mm_rb.rb_node;
2084 *pprev = NULL;
2085 while (rb_node) {
2086 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2087 rb_node = rb_node->rb_right;
2088 }
2089 }
2090 return vma;
2091 }
2092
2093 /*
2094 * Verify that the stack growth is acceptable and
2095 * update accounting. This is shared with both the
2096 * grow-up and grow-down cases.
2097 */
2098 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2099 {
2100 struct mm_struct *mm = vma->vm_mm;
2101 struct rlimit *rlim = current->signal->rlim;
2102 unsigned long new_start;
2103
2104 /* address space limit tests */
2105 if (!may_expand_vm(mm, grow))
2106 return -ENOMEM;
2107
2108 /* Stack limit test */
2109 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2110 return -ENOMEM;
2111
2112 /* mlock limit tests */
2113 if (vma->vm_flags & VM_LOCKED) {
2114 unsigned long locked;
2115 unsigned long limit;
2116 locked = mm->locked_vm + grow;
2117 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2118 limit >>= PAGE_SHIFT;
2119 if (locked > limit && !capable(CAP_IPC_LOCK))
2120 return -ENOMEM;
2121 }
2122
2123 /* Check to ensure the stack will not grow into a hugetlb-only region */
2124 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2125 vma->vm_end - size;
2126 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2127 return -EFAULT;
2128
2129 /*
2130 * Overcommit.. This must be the final test, as it will
2131 * update security statistics.
2132 */
2133 if (security_vm_enough_memory_mm(mm, grow))
2134 return -ENOMEM;
2135
2136 /* Ok, everything looks good - let it rip */
2137 if (vma->vm_flags & VM_LOCKED)
2138 mm->locked_vm += grow;
2139 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2140 return 0;
2141 }
2142
2143 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2144 /*
2145 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2146 * vma is the last one with address > vma->vm_end. Have to extend vma.
2147 */
2148 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2149 {
2150 int error;
2151
2152 if (!(vma->vm_flags & VM_GROWSUP))
2153 return -EFAULT;
2154
2155 /*
2156 * We must make sure the anon_vma is allocated
2157 * so that the anon_vma locking is not a noop.
2158 */
2159 if (unlikely(anon_vma_prepare(vma)))
2160 return -ENOMEM;
2161 vma_lock_anon_vma(vma);
2162
2163 /*
2164 * vma->vm_start/vm_end cannot change under us because the caller
2165 * is required to hold the mmap_sem in read mode. We need the
2166 * anon_vma lock to serialize against concurrent expand_stacks.
2167 * Also guard against wrapping around to address 0.
2168 */
2169 if (address < PAGE_ALIGN(address+4))
2170 address = PAGE_ALIGN(address+4);
2171 else {
2172 vma_unlock_anon_vma(vma);
2173 return -ENOMEM;
2174 }
2175 error = 0;
2176
2177 /* Somebody else might have raced and expanded it already */
2178 if (address > vma->vm_end) {
2179 unsigned long size, grow;
2180
2181 size = address - vma->vm_start;
2182 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2183
2184 error = -ENOMEM;
2185 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2186 error = acct_stack_growth(vma, size, grow);
2187 if (!error) {
2188 /*
2189 * vma_gap_update() doesn't support concurrent
2190 * updates, but we only hold a shared mmap_sem
2191 * lock here, so we need to protect against
2192 * concurrent vma expansions.
2193 * vma_lock_anon_vma() doesn't help here, as
2194 * we don't guarantee that all growable vmas
2195 * in a mm share the same root anon vma.
2196 * So, we reuse mm->page_table_lock to guard
2197 * against concurrent vma expansions.
2198 */
2199 spin_lock(&vma->vm_mm->page_table_lock);
2200 anon_vma_interval_tree_pre_update_vma(vma);
2201 vma->vm_end = address;
2202 anon_vma_interval_tree_post_update_vma(vma);
2203 if (vma->vm_next)
2204 vma_gap_update(vma->vm_next);
2205 else
2206 vma->vm_mm->highest_vm_end = address;
2207 spin_unlock(&vma->vm_mm->page_table_lock);
2208
2209 perf_event_mmap(vma);
2210 }
2211 }
2212 }
2213 vma_unlock_anon_vma(vma);
2214 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2215 validate_mm(vma->vm_mm);
2216 return error;
2217 }
2218 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2219
2220 /*
2221 * vma is the first one with address < vma->vm_start. Have to extend vma.
2222 */
2223 int expand_downwards(struct vm_area_struct *vma,
2224 unsigned long address)
2225 {
2226 int error;
2227
2228 /*
2229 * We must make sure the anon_vma is allocated
2230 * so that the anon_vma locking is not a noop.
2231 */
2232 if (unlikely(anon_vma_prepare(vma)))
2233 return -ENOMEM;
2234
2235 address &= PAGE_MASK;
2236 error = security_mmap_addr(address);
2237 if (error)
2238 return error;
2239
2240 vma_lock_anon_vma(vma);
2241
2242 /*
2243 * vma->vm_start/vm_end cannot change under us because the caller
2244 * is required to hold the mmap_sem in read mode. We need the
2245 * anon_vma lock to serialize against concurrent expand_stacks.
2246 */
2247
2248 /* Somebody else might have raced and expanded it already */
2249 if (address < vma->vm_start) {
2250 unsigned long size, grow;
2251
2252 size = vma->vm_end - address;
2253 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2254
2255 error = -ENOMEM;
2256 if (grow <= vma->vm_pgoff) {
2257 error = acct_stack_growth(vma, size, grow);
2258 if (!error) {
2259 /*
2260 * vma_gap_update() doesn't support concurrent
2261 * updates, but we only hold a shared mmap_sem
2262 * lock here, so we need to protect against
2263 * concurrent vma expansions.
2264 * vma_lock_anon_vma() doesn't help here, as
2265 * we don't guarantee that all growable vmas
2266 * in a mm share the same root anon vma.
2267 * So, we reuse mm->page_table_lock to guard
2268 * against concurrent vma expansions.
2269 */
2270 spin_lock(&vma->vm_mm->page_table_lock);
2271 anon_vma_interval_tree_pre_update_vma(vma);
2272 vma->vm_start = address;
2273 vma->vm_pgoff -= grow;
2274 anon_vma_interval_tree_post_update_vma(vma);
2275 vma_gap_update(vma);
2276 spin_unlock(&vma->vm_mm->page_table_lock);
2277
2278 perf_event_mmap(vma);
2279 }
2280 }
2281 }
2282 vma_unlock_anon_vma(vma);
2283 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2284 validate_mm(vma->vm_mm);
2285 return error;
2286 }
2287
2288 /*
2289 * Note how expand_stack() refuses to expand the stack all the way to
2290 * abut the next virtual mapping, *unless* that mapping itself is also
2291 * a stack mapping. We want to leave room for a guard page, after all
2292 * (the guard page itself is not added here, that is done by the
2293 * actual page faulting logic)
2294 *
2295 * This matches the behavior of the guard page logic (see mm/memory.c:
2296 * check_stack_guard_page()), which only allows the guard page to be
2297 * removed under these circumstances.
2298 */
2299 #ifdef CONFIG_STACK_GROWSUP
2300 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2301 {
2302 struct vm_area_struct *next;
2303
2304 address &= PAGE_MASK;
2305 next = vma->vm_next;
2306 if (next && next->vm_start == address + PAGE_SIZE) {
2307 if (!(next->vm_flags & VM_GROWSUP))
2308 return -ENOMEM;
2309 }
2310 return expand_upwards(vma, address);
2311 }
2312
2313 struct vm_area_struct *
2314 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2315 {
2316 struct vm_area_struct *vma, *prev;
2317
2318 addr &= PAGE_MASK;
2319 vma = find_vma_prev(mm, addr, &prev);
2320 if (vma && (vma->vm_start <= addr))
2321 return vma;
2322 if (!prev || expand_stack(prev, addr))
2323 return NULL;
2324 if (prev->vm_flags & VM_LOCKED)
2325 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2326 return prev;
2327 }
2328 #else
2329 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2330 {
2331 struct vm_area_struct *prev;
2332
2333 address &= PAGE_MASK;
2334 prev = vma->vm_prev;
2335 if (prev && prev->vm_end == address) {
2336 if (!(prev->vm_flags & VM_GROWSDOWN))
2337 return -ENOMEM;
2338 }
2339 return expand_downwards(vma, address);
2340 }
2341
2342 struct vm_area_struct *
2343 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2344 {
2345 struct vm_area_struct *vma;
2346 unsigned long start;
2347
2348 addr &= PAGE_MASK;
2349 vma = find_vma(mm, addr);
2350 if (!vma)
2351 return NULL;
2352 if (vma->vm_start <= addr)
2353 return vma;
2354 if (!(vma->vm_flags & VM_GROWSDOWN))
2355 return NULL;
2356 start = vma->vm_start;
2357 if (expand_stack(vma, addr))
2358 return NULL;
2359 if (vma->vm_flags & VM_LOCKED)
2360 __mlock_vma_pages_range(vma, addr, start, NULL);
2361 return vma;
2362 }
2363 #endif
2364
2365 /*
2366 * Ok - we have the memory areas we should free on the vma list,
2367 * so release them, and do the vma updates.
2368 *
2369 * Called with the mm semaphore held.
2370 */
2371 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2372 {
2373 unsigned long nr_accounted = 0;
2374
2375 /* Update high watermark before we lower total_vm */
2376 update_hiwater_vm(mm);
2377 do {
2378 long nrpages = vma_pages(vma);
2379
2380 if (vma->vm_flags & VM_ACCOUNT)
2381 nr_accounted += nrpages;
2382 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2383 vma = remove_vma(vma);
2384 } while (vma);
2385 vm_unacct_memory(nr_accounted);
2386 validate_mm(mm);
2387 }
2388
2389 /*
2390 * Get rid of page table information in the indicated region.
2391 *
2392 * Called with the mm semaphore held.
2393 */
2394 static void unmap_region(struct mm_struct *mm,
2395 struct vm_area_struct *vma, struct vm_area_struct *prev,
2396 unsigned long start, unsigned long end)
2397 {
2398 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2399 struct mmu_gather tlb;
2400
2401 lru_add_drain();
2402 tlb_gather_mmu(&tlb, mm, start, end);
2403 update_hiwater_rss(mm);
2404 unmap_vmas(&tlb, vma, start, end);
2405 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2406 next ? next->vm_start : USER_PGTABLES_CEILING);
2407 tlb_finish_mmu(&tlb, start, end);
2408 }
2409
2410 /*
2411 * Create a list of vma's touched by the unmap, removing them from the mm's
2412 * vma list as we go..
2413 */
2414 static void
2415 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2416 struct vm_area_struct *prev, unsigned long end)
2417 {
2418 struct vm_area_struct **insertion_point;
2419 struct vm_area_struct *tail_vma = NULL;
2420
2421 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2422 vma->vm_prev = NULL;
2423 do {
2424 vma_rb_erase(vma, &mm->mm_rb);
2425 mm->map_count--;
2426 tail_vma = vma;
2427 vma = vma->vm_next;
2428 } while (vma && vma->vm_start < end);
2429 *insertion_point = vma;
2430 if (vma) {
2431 vma->vm_prev = prev;
2432 vma_gap_update(vma);
2433 } else
2434 mm->highest_vm_end = prev ? prev->vm_end : 0;
2435 tail_vma->vm_next = NULL;
2436
2437 /* Kill the cache */
2438 vmacache_invalidate(mm);
2439 }
2440
2441 /*
2442 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2443 * munmap path where it doesn't make sense to fail.
2444 */
2445 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2446 unsigned long addr, int new_below)
2447 {
2448 struct vm_area_struct *new;
2449 int err = -ENOMEM;
2450
2451 if (is_vm_hugetlb_page(vma) && (addr &
2452 ~(huge_page_mask(hstate_vma(vma)))))
2453 return -EINVAL;
2454
2455 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2456 if (!new)
2457 goto out_err;
2458
2459 /* most fields are the same, copy all, and then fixup */
2460 *new = *vma;
2461
2462 INIT_LIST_HEAD(&new->anon_vma_chain);
2463
2464 if (new_below)
2465 new->vm_end = addr;
2466 else {
2467 new->vm_start = addr;
2468 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2469 }
2470
2471 err = vma_dup_policy(vma, new);
2472 if (err)
2473 goto out_free_vma;
2474
2475 err = anon_vma_clone(new, vma);
2476 if (err)
2477 goto out_free_mpol;
2478
2479 if (new->vm_file)
2480 get_file(new->vm_file);
2481
2482 if (new->vm_ops && new->vm_ops->open)
2483 new->vm_ops->open(new);
2484
2485 if (new_below)
2486 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2487 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2488 else
2489 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2490
2491 /* Success. */
2492 if (!err)
2493 return 0;
2494
2495 /* Clean everything up if vma_adjust failed. */
2496 if (new->vm_ops && new->vm_ops->close)
2497 new->vm_ops->close(new);
2498 if (new->vm_file)
2499 fput(new->vm_file);
2500 unlink_anon_vmas(new);
2501 out_free_mpol:
2502 mpol_put(vma_policy(new));
2503 out_free_vma:
2504 kmem_cache_free(vm_area_cachep, new);
2505 out_err:
2506 return err;
2507 }
2508
2509 /*
2510 * Split a vma into two pieces at address 'addr', a new vma is allocated
2511 * either for the first part or the tail.
2512 */
2513 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2514 unsigned long addr, int new_below)
2515 {
2516 if (mm->map_count >= sysctl_max_map_count)
2517 return -ENOMEM;
2518
2519 return __split_vma(mm, vma, addr, new_below);
2520 }
2521
2522 /* Munmap is split into 2 main parts -- this part which finds
2523 * what needs doing, and the areas themselves, which do the
2524 * work. This now handles partial unmappings.
2525 * Jeremy Fitzhardinge <jeremy@goop.org>
2526 */
2527 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2528 {
2529 unsigned long end;
2530 struct vm_area_struct *vma, *prev, *last;
2531
2532 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2533 return -EINVAL;
2534
2535 len = PAGE_ALIGN(len);
2536 if (len == 0)
2537 return -EINVAL;
2538
2539 /* Find the first overlapping VMA */
2540 vma = find_vma(mm, start);
2541 if (!vma)
2542 return 0;
2543 prev = vma->vm_prev;
2544 /* we have start < vma->vm_end */
2545
2546 /* if it doesn't overlap, we have nothing.. */
2547 end = start + len;
2548 if (vma->vm_start >= end)
2549 return 0;
2550
2551 /*
2552 * If we need to split any vma, do it now to save pain later.
2553 *
2554 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 * places tmp vma above, and higher split_vma places tmp vma below.
2557 */
2558 if (start > vma->vm_start) {
2559 int error;
2560
2561 /*
2562 * Make sure that map_count on return from munmap() will
2563 * not exceed its limit; but let map_count go just above
2564 * its limit temporarily, to help free resources as expected.
2565 */
2566 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2567 return -ENOMEM;
2568
2569 error = __split_vma(mm, vma, start, 0);
2570 if (error)
2571 return error;
2572 prev = vma;
2573 }
2574
2575 /* Does it split the last one? */
2576 last = find_vma(mm, end);
2577 if (last && end > last->vm_start) {
2578 int error = __split_vma(mm, last, end, 1);
2579 if (error)
2580 return error;
2581 }
2582 vma = prev ? prev->vm_next : mm->mmap;
2583
2584 /*
2585 * unlock any mlock()ed ranges before detaching vmas
2586 */
2587 if (mm->locked_vm) {
2588 struct vm_area_struct *tmp = vma;
2589 while (tmp && tmp->vm_start < end) {
2590 if (tmp->vm_flags & VM_LOCKED) {
2591 mm->locked_vm -= vma_pages(tmp);
2592 munlock_vma_pages_all(tmp);
2593 }
2594 tmp = tmp->vm_next;
2595 }
2596 }
2597
2598 /*
2599 * Remove the vma's, and unmap the actual pages
2600 */
2601 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2602 unmap_region(mm, vma, prev, start, end);
2603
2604 /* Fix up all other VM information */
2605 remove_vma_list(mm, vma);
2606
2607 return 0;
2608 }
2609
2610 int vm_munmap(unsigned long start, size_t len)
2611 {
2612 int ret;
2613 struct mm_struct *mm = current->mm;
2614
2615 down_write(&mm->mmap_sem);
2616 ret = do_munmap(mm, start, len);
2617 up_write(&mm->mmap_sem);
2618 return ret;
2619 }
2620 EXPORT_SYMBOL(vm_munmap);
2621
2622 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2623 {
2624 profile_munmap(addr);
2625 return vm_munmap(addr, len);
2626 }
2627
2628 static inline void verify_mm_writelocked(struct mm_struct *mm)
2629 {
2630 #ifdef CONFIG_DEBUG_VM
2631 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2632 WARN_ON(1);
2633 up_read(&mm->mmap_sem);
2634 }
2635 #endif
2636 }
2637
2638 /*
2639 * this is really a simplified "do_mmap". it only handles
2640 * anonymous maps. eventually we may be able to do some
2641 * brk-specific accounting here.
2642 */
2643 static unsigned long do_brk(unsigned long addr, unsigned long len)
2644 {
2645 struct mm_struct *mm = current->mm;
2646 struct vm_area_struct *vma, *prev;
2647 unsigned long flags;
2648 struct rb_node **rb_link, *rb_parent;
2649 pgoff_t pgoff = addr >> PAGE_SHIFT;
2650 int error;
2651
2652 len = PAGE_ALIGN(len);
2653 if (!len)
2654 return addr;
2655
2656 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2657
2658 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2659 if (error & ~PAGE_MASK)
2660 return error;
2661
2662 error = mlock_future_check(mm, mm->def_flags, len);
2663 if (error)
2664 return error;
2665
2666 /*
2667 * mm->mmap_sem is required to protect against another thread
2668 * changing the mappings in case we sleep.
2669 */
2670 verify_mm_writelocked(mm);
2671
2672 /*
2673 * Clear old maps. this also does some error checking for us
2674 */
2675 munmap_back:
2676 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2677 if (do_munmap(mm, addr, len))
2678 return -ENOMEM;
2679 goto munmap_back;
2680 }
2681
2682 /* Check against address space limits *after* clearing old maps... */
2683 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2684 return -ENOMEM;
2685
2686 if (mm->map_count > sysctl_max_map_count)
2687 return -ENOMEM;
2688
2689 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2690 return -ENOMEM;
2691
2692 /* Can we just expand an old private anonymous mapping? */
2693 vma = vma_merge(mm, prev, addr, addr + len, flags,
2694 NULL, NULL, pgoff, NULL);
2695 if (vma)
2696 goto out;
2697
2698 /*
2699 * create a vma struct for an anonymous mapping
2700 */
2701 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2702 if (!vma) {
2703 vm_unacct_memory(len >> PAGE_SHIFT);
2704 return -ENOMEM;
2705 }
2706
2707 INIT_LIST_HEAD(&vma->anon_vma_chain);
2708 vma->vm_mm = mm;
2709 vma->vm_start = addr;
2710 vma->vm_end = addr + len;
2711 vma->vm_pgoff = pgoff;
2712 vma->vm_flags = flags;
2713 vma->vm_page_prot = vm_get_page_prot(flags);
2714 vma_link(mm, vma, prev, rb_link, rb_parent);
2715 out:
2716 perf_event_mmap(vma);
2717 mm->total_vm += len >> PAGE_SHIFT;
2718 if (flags & VM_LOCKED)
2719 mm->locked_vm += (len >> PAGE_SHIFT);
2720 vma->vm_flags |= VM_SOFTDIRTY;
2721 return addr;
2722 }
2723
2724 unsigned long vm_brk(unsigned long addr, unsigned long len)
2725 {
2726 struct mm_struct *mm = current->mm;
2727 unsigned long ret;
2728 bool populate;
2729
2730 down_write(&mm->mmap_sem);
2731 ret = do_brk(addr, len);
2732 populate = ((mm->def_flags & VM_LOCKED) != 0);
2733 up_write(&mm->mmap_sem);
2734 if (populate)
2735 mm_populate(addr, len);
2736 return ret;
2737 }
2738 EXPORT_SYMBOL(vm_brk);
2739
2740 /* Release all mmaps. */
2741 void exit_mmap(struct mm_struct *mm)
2742 {
2743 struct mmu_gather tlb;
2744 struct vm_area_struct *vma;
2745 unsigned long nr_accounted = 0;
2746
2747 /* mm's last user has gone, and its about to be pulled down */
2748 mmu_notifier_release(mm);
2749
2750 if (mm->locked_vm) {
2751 vma = mm->mmap;
2752 while (vma) {
2753 if (vma->vm_flags & VM_LOCKED)
2754 munlock_vma_pages_all(vma);
2755 vma = vma->vm_next;
2756 }
2757 }
2758
2759 arch_exit_mmap(mm);
2760
2761 vma = mm->mmap;
2762 if (!vma) /* Can happen if dup_mmap() received an OOM */
2763 return;
2764
2765 lru_add_drain();
2766 flush_cache_mm(mm);
2767 tlb_gather_mmu(&tlb, mm, 0, -1);
2768 /* update_hiwater_rss(mm) here? but nobody should be looking */
2769 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2770 unmap_vmas(&tlb, vma, 0, -1);
2771
2772 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2773 tlb_finish_mmu(&tlb, 0, -1);
2774
2775 /*
2776 * Walk the list again, actually closing and freeing it,
2777 * with preemption enabled, without holding any MM locks.
2778 */
2779 while (vma) {
2780 if (vma->vm_flags & VM_ACCOUNT)
2781 nr_accounted += vma_pages(vma);
2782 vma = remove_vma(vma);
2783 }
2784 vm_unacct_memory(nr_accounted);
2785
2786 WARN_ON(atomic_long_read(&mm->nr_ptes) >
2787 (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2788 }
2789
2790 /* Insert vm structure into process list sorted by address
2791 * and into the inode's i_mmap tree. If vm_file is non-NULL
2792 * then i_mmap_mutex is taken here.
2793 */
2794 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2795 {
2796 struct vm_area_struct *prev;
2797 struct rb_node **rb_link, *rb_parent;
2798
2799 /*
2800 * The vm_pgoff of a purely anonymous vma should be irrelevant
2801 * until its first write fault, when page's anon_vma and index
2802 * are set. But now set the vm_pgoff it will almost certainly
2803 * end up with (unless mremap moves it elsewhere before that
2804 * first wfault), so /proc/pid/maps tells a consistent story.
2805 *
2806 * By setting it to reflect the virtual start address of the
2807 * vma, merges and splits can happen in a seamless way, just
2808 * using the existing file pgoff checks and manipulations.
2809 * Similarly in do_mmap_pgoff and in do_brk.
2810 */
2811 if (!vma->vm_file) {
2812 BUG_ON(vma->anon_vma);
2813 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2814 }
2815 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2816 &prev, &rb_link, &rb_parent))
2817 return -ENOMEM;
2818 if ((vma->vm_flags & VM_ACCOUNT) &&
2819 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2820 return -ENOMEM;
2821
2822 vma_link(mm, vma, prev, rb_link, rb_parent);
2823 return 0;
2824 }
2825
2826 /*
2827 * Copy the vma structure to a new location in the same mm,
2828 * prior to moving page table entries, to effect an mremap move.
2829 */
2830 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2831 unsigned long addr, unsigned long len, pgoff_t pgoff,
2832 bool *need_rmap_locks)
2833 {
2834 struct vm_area_struct *vma = *vmap;
2835 unsigned long vma_start = vma->vm_start;
2836 struct mm_struct *mm = vma->vm_mm;
2837 struct vm_area_struct *new_vma, *prev;
2838 struct rb_node **rb_link, *rb_parent;
2839 bool faulted_in_anon_vma = true;
2840
2841 /*
2842 * If anonymous vma has not yet been faulted, update new pgoff
2843 * to match new location, to increase its chance of merging.
2844 */
2845 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2846 pgoff = addr >> PAGE_SHIFT;
2847 faulted_in_anon_vma = false;
2848 }
2849
2850 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2851 return NULL; /* should never get here */
2852 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2853 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2854 if (new_vma) {
2855 /*
2856 * Source vma may have been merged into new_vma
2857 */
2858 if (unlikely(vma_start >= new_vma->vm_start &&
2859 vma_start < new_vma->vm_end)) {
2860 /*
2861 * The only way we can get a vma_merge with
2862 * self during an mremap is if the vma hasn't
2863 * been faulted in yet and we were allowed to
2864 * reset the dst vma->vm_pgoff to the
2865 * destination address of the mremap to allow
2866 * the merge to happen. mremap must change the
2867 * vm_pgoff linearity between src and dst vmas
2868 * (in turn preventing a vma_merge) to be
2869 * safe. It is only safe to keep the vm_pgoff
2870 * linear if there are no pages mapped yet.
2871 */
2872 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2873 *vmap = vma = new_vma;
2874 }
2875 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2876 } else {
2877 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2878 if (new_vma) {
2879 *new_vma = *vma;
2880 new_vma->vm_start = addr;
2881 new_vma->vm_end = addr + len;
2882 new_vma->vm_pgoff = pgoff;
2883 if (vma_dup_policy(vma, new_vma))
2884 goto out_free_vma;
2885 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2886 if (anon_vma_clone(new_vma, vma))
2887 goto out_free_mempol;
2888 if (new_vma->vm_file)
2889 get_file(new_vma->vm_file);
2890 if (new_vma->vm_ops && new_vma->vm_ops->open)
2891 new_vma->vm_ops->open(new_vma);
2892 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2893 *need_rmap_locks = false;
2894 }
2895 }
2896 return new_vma;
2897
2898 out_free_mempol:
2899 mpol_put(vma_policy(new_vma));
2900 out_free_vma:
2901 kmem_cache_free(vm_area_cachep, new_vma);
2902 return NULL;
2903 }
2904
2905 /*
2906 * Return true if the calling process may expand its vm space by the passed
2907 * number of pages
2908 */
2909 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2910 {
2911 unsigned long cur = mm->total_vm; /* pages */
2912 unsigned long lim;
2913
2914 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2915
2916 if (cur + npages > lim)
2917 return 0;
2918 return 1;
2919 }
2920
2921 static int special_mapping_fault(struct vm_area_struct *vma,
2922 struct vm_fault *vmf);
2923
2924 /*
2925 * Having a close hook prevents vma merging regardless of flags.
2926 */
2927 static void special_mapping_close(struct vm_area_struct *vma)
2928 {
2929 }
2930
2931 static const char *special_mapping_name(struct vm_area_struct *vma)
2932 {
2933 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
2934 }
2935
2936 static const struct vm_operations_struct special_mapping_vmops = {
2937 .close = special_mapping_close,
2938 .fault = special_mapping_fault,
2939 .name = special_mapping_name,
2940 };
2941
2942 static const struct vm_operations_struct legacy_special_mapping_vmops = {
2943 .close = special_mapping_close,
2944 .fault = special_mapping_fault,
2945 };
2946
2947 static int special_mapping_fault(struct vm_area_struct *vma,
2948 struct vm_fault *vmf)
2949 {
2950 pgoff_t pgoff;
2951 struct page **pages;
2952
2953 /*
2954 * special mappings have no vm_file, and in that case, the mm
2955 * uses vm_pgoff internally. So we have to subtract it from here.
2956 * We are allowed to do this because we are the mm; do not copy
2957 * this code into drivers!
2958 */
2959 pgoff = vmf->pgoff - vma->vm_pgoff;
2960
2961 if (vma->vm_ops == &legacy_special_mapping_vmops)
2962 pages = vma->vm_private_data;
2963 else
2964 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
2965 pages;
2966
2967 for (; pgoff && *pages; ++pages)
2968 pgoff--;
2969
2970 if (*pages) {
2971 struct page *page = *pages;
2972 get_page(page);
2973 vmf->page = page;
2974 return 0;
2975 }
2976
2977 return VM_FAULT_SIGBUS;
2978 }
2979
2980 static struct vm_area_struct *__install_special_mapping(
2981 struct mm_struct *mm,
2982 unsigned long addr, unsigned long len,
2983 unsigned long vm_flags, const struct vm_operations_struct *ops,
2984 void *priv)
2985 {
2986 int ret;
2987 struct vm_area_struct *vma;
2988
2989 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2990 if (unlikely(vma == NULL))
2991 return ERR_PTR(-ENOMEM);
2992
2993 INIT_LIST_HEAD(&vma->anon_vma_chain);
2994 vma->vm_mm = mm;
2995 vma->vm_start = addr;
2996 vma->vm_end = addr + len;
2997
2998 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2999 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3000
3001 vma->vm_ops = ops;
3002 vma->vm_private_data = priv;
3003
3004 ret = insert_vm_struct(mm, vma);
3005 if (ret)
3006 goto out;
3007
3008 mm->total_vm += len >> PAGE_SHIFT;
3009
3010 perf_event_mmap(vma);
3011
3012 return vma;
3013
3014 out:
3015 kmem_cache_free(vm_area_cachep, vma);
3016 return ERR_PTR(ret);
3017 }
3018
3019 /*
3020 * Called with mm->mmap_sem held for writing.
3021 * Insert a new vma covering the given region, with the given flags.
3022 * Its pages are supplied by the given array of struct page *.
3023 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3024 * The region past the last page supplied will always produce SIGBUS.
3025 * The array pointer and the pages it points to are assumed to stay alive
3026 * for as long as this mapping might exist.
3027 */
3028 struct vm_area_struct *_install_special_mapping(
3029 struct mm_struct *mm,
3030 unsigned long addr, unsigned long len,
3031 unsigned long vm_flags, const struct vm_special_mapping *spec)
3032 {
3033 return __install_special_mapping(mm, addr, len, vm_flags,
3034 &special_mapping_vmops, (void *)spec);
3035 }
3036
3037 int install_special_mapping(struct mm_struct *mm,
3038 unsigned long addr, unsigned long len,
3039 unsigned long vm_flags, struct page **pages)
3040 {
3041 struct vm_area_struct *vma = __install_special_mapping(
3042 mm, addr, len, vm_flags, &legacy_special_mapping_vmops,
3043 (void *)pages);
3044
3045 return PTR_ERR_OR_ZERO(vma);
3046 }
3047
3048 static DEFINE_MUTEX(mm_all_locks_mutex);
3049
3050 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3051 {
3052 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3053 /*
3054 * The LSB of head.next can't change from under us
3055 * because we hold the mm_all_locks_mutex.
3056 */
3057 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3058 /*
3059 * We can safely modify head.next after taking the
3060 * anon_vma->root->rwsem. If some other vma in this mm shares
3061 * the same anon_vma we won't take it again.
3062 *
3063 * No need of atomic instructions here, head.next
3064 * can't change from under us thanks to the
3065 * anon_vma->root->rwsem.
3066 */
3067 if (__test_and_set_bit(0, (unsigned long *)
3068 &anon_vma->root->rb_root.rb_node))
3069 BUG();
3070 }
3071 }
3072
3073 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3074 {
3075 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3076 /*
3077 * AS_MM_ALL_LOCKS can't change from under us because
3078 * we hold the mm_all_locks_mutex.
3079 *
3080 * Operations on ->flags have to be atomic because
3081 * even if AS_MM_ALL_LOCKS is stable thanks to the
3082 * mm_all_locks_mutex, there may be other cpus
3083 * changing other bitflags in parallel to us.
3084 */
3085 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3086 BUG();
3087 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3088 }
3089 }
3090
3091 /*
3092 * This operation locks against the VM for all pte/vma/mm related
3093 * operations that could ever happen on a certain mm. This includes
3094 * vmtruncate, try_to_unmap, and all page faults.
3095 *
3096 * The caller must take the mmap_sem in write mode before calling
3097 * mm_take_all_locks(). The caller isn't allowed to release the
3098 * mmap_sem until mm_drop_all_locks() returns.
3099 *
3100 * mmap_sem in write mode is required in order to block all operations
3101 * that could modify pagetables and free pages without need of
3102 * altering the vma layout (for example populate_range() with
3103 * nonlinear vmas). It's also needed in write mode to avoid new
3104 * anon_vmas to be associated with existing vmas.
3105 *
3106 * A single task can't take more than one mm_take_all_locks() in a row
3107 * or it would deadlock.
3108 *
3109 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3110 * mapping->flags avoid to take the same lock twice, if more than one
3111 * vma in this mm is backed by the same anon_vma or address_space.
3112 *
3113 * We can take all the locks in random order because the VM code
3114 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3115 * takes more than one of them in a row. Secondly we're protected
3116 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3117 *
3118 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3119 * that may have to take thousand of locks.
3120 *
3121 * mm_take_all_locks() can fail if it's interrupted by signals.
3122 */
3123 int mm_take_all_locks(struct mm_struct *mm)
3124 {
3125 struct vm_area_struct *vma;
3126 struct anon_vma_chain *avc;
3127
3128 BUG_ON(down_read_trylock(&mm->mmap_sem));
3129
3130 mutex_lock(&mm_all_locks_mutex);
3131
3132 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3133 if (signal_pending(current))
3134 goto out_unlock;
3135 if (vma->vm_file && vma->vm_file->f_mapping)
3136 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3137 }
3138
3139 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3140 if (signal_pending(current))
3141 goto out_unlock;
3142 if (vma->anon_vma)
3143 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3144 vm_lock_anon_vma(mm, avc->anon_vma);
3145 }
3146
3147 return 0;
3148
3149 out_unlock:
3150 mm_drop_all_locks(mm);
3151 return -EINTR;
3152 }
3153
3154 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3155 {
3156 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3157 /*
3158 * The LSB of head.next can't change to 0 from under
3159 * us because we hold the mm_all_locks_mutex.
3160 *
3161 * We must however clear the bitflag before unlocking
3162 * the vma so the users using the anon_vma->rb_root will
3163 * never see our bitflag.
3164 *
3165 * No need of atomic instructions here, head.next
3166 * can't change from under us until we release the
3167 * anon_vma->root->rwsem.
3168 */
3169 if (!__test_and_clear_bit(0, (unsigned long *)
3170 &anon_vma->root->rb_root.rb_node))
3171 BUG();
3172 anon_vma_unlock_write(anon_vma);
3173 }
3174 }
3175
3176 static void vm_unlock_mapping(struct address_space *mapping)
3177 {
3178 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3179 /*
3180 * AS_MM_ALL_LOCKS can't change to 0 from under us
3181 * because we hold the mm_all_locks_mutex.
3182 */
3183 mutex_unlock(&mapping->i_mmap_mutex);
3184 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3185 &mapping->flags))
3186 BUG();
3187 }
3188 }
3189
3190 /*
3191 * The mmap_sem cannot be released by the caller until
3192 * mm_drop_all_locks() returns.
3193 */
3194 void mm_drop_all_locks(struct mm_struct *mm)
3195 {
3196 struct vm_area_struct *vma;
3197 struct anon_vma_chain *avc;
3198
3199 BUG_ON(down_read_trylock(&mm->mmap_sem));
3200 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3201
3202 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3203 if (vma->anon_vma)
3204 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3205 vm_unlock_anon_vma(avc->anon_vma);
3206 if (vma->vm_file && vma->vm_file->f_mapping)
3207 vm_unlock_mapping(vma->vm_file->f_mapping);
3208 }
3209
3210 mutex_unlock(&mm_all_locks_mutex);
3211 }
3212
3213 /*
3214 * initialise the VMA slab
3215 */
3216 void __init mmap_init(void)
3217 {
3218 int ret;
3219
3220 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3221 VM_BUG_ON(ret);
3222 }
3223
3224 /*
3225 * Initialise sysctl_user_reserve_kbytes.
3226 *
3227 * This is intended to prevent a user from starting a single memory hogging
3228 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3229 * mode.
3230 *
3231 * The default value is min(3% of free memory, 128MB)
3232 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3233 */
3234 static int init_user_reserve(void)
3235 {
3236 unsigned long free_kbytes;
3237
3238 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3239
3240 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3241 return 0;
3242 }
3243 subsys_initcall(init_user_reserve);
3244
3245 /*
3246 * Initialise sysctl_admin_reserve_kbytes.
3247 *
3248 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3249 * to log in and kill a memory hogging process.
3250 *
3251 * Systems with more than 256MB will reserve 8MB, enough to recover
3252 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3253 * only reserve 3% of free pages by default.
3254 */
3255 static int init_admin_reserve(void)
3256 {
3257 unsigned long free_kbytes;
3258
3259 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3260
3261 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3262 return 0;
3263 }
3264 subsys_initcall(init_admin_reserve);
3265
3266 /*
3267 * Reinititalise user and admin reserves if memory is added or removed.
3268 *
3269 * The default user reserve max is 128MB, and the default max for the
3270 * admin reserve is 8MB. These are usually, but not always, enough to
3271 * enable recovery from a memory hogging process using login/sshd, a shell,
3272 * and tools like top. It may make sense to increase or even disable the
3273 * reserve depending on the existence of swap or variations in the recovery
3274 * tools. So, the admin may have changed them.
3275 *
3276 * If memory is added and the reserves have been eliminated or increased above
3277 * the default max, then we'll trust the admin.
3278 *
3279 * If memory is removed and there isn't enough free memory, then we
3280 * need to reset the reserves.
3281 *
3282 * Otherwise keep the reserve set by the admin.
3283 */
3284 static int reserve_mem_notifier(struct notifier_block *nb,
3285 unsigned long action, void *data)
3286 {
3287 unsigned long tmp, free_kbytes;
3288
3289 switch (action) {
3290 case MEM_ONLINE:
3291 /* Default max is 128MB. Leave alone if modified by operator. */
3292 tmp = sysctl_user_reserve_kbytes;
3293 if (0 < tmp && tmp < (1UL << 17))
3294 init_user_reserve();
3295
3296 /* Default max is 8MB. Leave alone if modified by operator. */
3297 tmp = sysctl_admin_reserve_kbytes;
3298 if (0 < tmp && tmp < (1UL << 13))
3299 init_admin_reserve();
3300
3301 break;
3302 case MEM_OFFLINE:
3303 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3304
3305 if (sysctl_user_reserve_kbytes > free_kbytes) {
3306 init_user_reserve();
3307 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3308 sysctl_user_reserve_kbytes);
3309 }
3310
3311 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3312 init_admin_reserve();
3313 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3314 sysctl_admin_reserve_kbytes);
3315 }
3316 break;
3317 default:
3318 break;
3319 }
3320 return NOTIFY_OK;
3321 }
3322
3323 static struct notifier_block reserve_mem_nb = {
3324 .notifier_call = reserve_mem_notifier,
3325 };
3326
3327 static int __meminit init_reserve_notifier(void)
3328 {
3329 if (register_hotmemory_notifier(&reserve_mem_nb))
3330 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3331
3332 return 0;
3333 }
3334 subsys_initcall(init_reserve_notifier);
This page took 0.092839 seconds and 6 git commands to generate.