Merge tag 'firewire-updates' of git://git.kernel.org/pub/scm/linux/kernel/git/ieee139...
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.vm_set.list);
203 else
204 vma_prio_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file) {
235 fput(vma->vm_file);
236 if (vma->vm_flags & VM_EXECUTABLE)
237 removed_exe_file_vma(vma->vm_mm);
238 }
239 mpol_put(vma_policy(vma));
240 kmem_cache_free(vm_area_cachep, vma);
241 return next;
242 }
243
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256 /*
257 * CONFIG_COMPAT_BRK can still be overridden by setting
258 * randomize_va_space to 2, which will still cause mm->start_brk
259 * to be arbitrarily shifted
260 */
261 if (current->brk_randomized)
262 min_brk = mm->start_brk;
263 else
264 min_brk = mm->end_data;
265 #else
266 min_brk = mm->start_brk;
267 #endif
268 if (brk < min_brk)
269 goto out;
270
271 /*
272 * Check against rlimit here. If this check is done later after the test
273 * of oldbrk with newbrk then it can escape the test and let the data
274 * segment grow beyond its set limit the in case where the limit is
275 * not page aligned -Ram Gupta
276 */
277 rlim = rlimit(RLIMIT_DATA);
278 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 (mm->end_data - mm->start_data) > rlim)
280 goto out;
281
282 newbrk = PAGE_ALIGN(brk);
283 oldbrk = PAGE_ALIGN(mm->brk);
284 if (oldbrk == newbrk)
285 goto set_brk;
286
287 /* Always allow shrinking brk. */
288 if (brk <= mm->brk) {
289 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 goto set_brk;
291 goto out;
292 }
293
294 /* Check against existing mmap mappings. */
295 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 goto out;
297
298 /* Ok, looks good - let it rip. */
299 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 goto out;
301 set_brk:
302 mm->brk = brk;
303 out:
304 retval = mm->brk;
305 up_write(&mm->mmap_sem);
306 return retval;
307 }
308
309 #ifdef DEBUG_MM_RB
310 static int browse_rb(struct rb_root *root)
311 {
312 int i = 0, j;
313 struct rb_node *nd, *pn = NULL;
314 unsigned long prev = 0, pend = 0;
315
316 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 struct vm_area_struct *vma;
318 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 if (vma->vm_start < prev)
320 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 if (vma->vm_start < pend)
322 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 if (vma->vm_start > vma->vm_end)
324 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 i++;
326 pn = nd;
327 prev = vma->vm_start;
328 pend = vma->vm_end;
329 }
330 j = 0;
331 for (nd = pn; nd; nd = rb_prev(nd)) {
332 j++;
333 }
334 if (i != j)
335 printk("backwards %d, forwards %d\n", j, i), i = 0;
336 return i;
337 }
338
339 void validate_mm(struct mm_struct *mm)
340 {
341 int bug = 0;
342 int i = 0;
343 struct vm_area_struct *tmp = mm->mmap;
344 while (tmp) {
345 tmp = tmp->vm_next;
346 i++;
347 }
348 if (i != mm->map_count)
349 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 i = browse_rb(&mm->mm_rb);
351 if (i != mm->map_count)
352 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358
359 static struct vm_area_struct *
360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 struct rb_node ** rb_parent)
363 {
364 struct vm_area_struct * vma;
365 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366
367 __rb_link = &mm->mm_rb.rb_node;
368 rb_prev = __rb_parent = NULL;
369 vma = NULL;
370
371 while (*__rb_link) {
372 struct vm_area_struct *vma_tmp;
373
374 __rb_parent = *__rb_link;
375 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376
377 if (vma_tmp->vm_end > addr) {
378 vma = vma_tmp;
379 if (vma_tmp->vm_start <= addr)
380 break;
381 __rb_link = &__rb_parent->rb_left;
382 } else {
383 rb_prev = __rb_parent;
384 __rb_link = &__rb_parent->rb_right;
385 }
386 }
387
388 *pprev = NULL;
389 if (rb_prev)
390 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 *rb_link = __rb_link;
392 *rb_parent = __rb_parent;
393 return vma;
394 }
395
396 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
397 struct rb_node **rb_link, struct rb_node *rb_parent)
398 {
399 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
400 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
401 }
402
403 static void __vma_link_file(struct vm_area_struct *vma)
404 {
405 struct file *file;
406
407 file = vma->vm_file;
408 if (file) {
409 struct address_space *mapping = file->f_mapping;
410
411 if (vma->vm_flags & VM_DENYWRITE)
412 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
413 if (vma->vm_flags & VM_SHARED)
414 mapping->i_mmap_writable++;
415
416 flush_dcache_mmap_lock(mapping);
417 if (unlikely(vma->vm_flags & VM_NONLINEAR))
418 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
419 else
420 vma_prio_tree_insert(vma, &mapping->i_mmap);
421 flush_dcache_mmap_unlock(mapping);
422 }
423 }
424
425 static void
426 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
427 struct vm_area_struct *prev, struct rb_node **rb_link,
428 struct rb_node *rb_parent)
429 {
430 __vma_link_list(mm, vma, prev, rb_parent);
431 __vma_link_rb(mm, vma, rb_link, rb_parent);
432 }
433
434 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
435 struct vm_area_struct *prev, struct rb_node **rb_link,
436 struct rb_node *rb_parent)
437 {
438 struct address_space *mapping = NULL;
439
440 if (vma->vm_file)
441 mapping = vma->vm_file->f_mapping;
442
443 if (mapping)
444 mutex_lock(&mapping->i_mmap_mutex);
445
446 __vma_link(mm, vma, prev, rb_link, rb_parent);
447 __vma_link_file(vma);
448
449 if (mapping)
450 mutex_unlock(&mapping->i_mmap_mutex);
451
452 mm->map_count++;
453 validate_mm(mm);
454 }
455
456 /*
457 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
458 * mm's list and rbtree. It has already been inserted into the prio_tree.
459 */
460 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
461 {
462 struct vm_area_struct *__vma, *prev;
463 struct rb_node **rb_link, *rb_parent;
464
465 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
466 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
467 __vma_link(mm, vma, prev, rb_link, rb_parent);
468 mm->map_count++;
469 }
470
471 static inline void
472 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
473 struct vm_area_struct *prev)
474 {
475 struct vm_area_struct *next = vma->vm_next;
476
477 prev->vm_next = next;
478 if (next)
479 next->vm_prev = prev;
480 rb_erase(&vma->vm_rb, &mm->mm_rb);
481 if (mm->mmap_cache == vma)
482 mm->mmap_cache = prev;
483 }
484
485 /*
486 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
487 * is already present in an i_mmap tree without adjusting the tree.
488 * The following helper function should be used when such adjustments
489 * are necessary. The "insert" vma (if any) is to be inserted
490 * before we drop the necessary locks.
491 */
492 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
493 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
494 {
495 struct mm_struct *mm = vma->vm_mm;
496 struct vm_area_struct *next = vma->vm_next;
497 struct vm_area_struct *importer = NULL;
498 struct address_space *mapping = NULL;
499 struct prio_tree_root *root = NULL;
500 struct anon_vma *anon_vma = NULL;
501 struct file *file = vma->vm_file;
502 long adjust_next = 0;
503 int remove_next = 0;
504
505 if (next && !insert) {
506 struct vm_area_struct *exporter = NULL;
507
508 if (end >= next->vm_end) {
509 /*
510 * vma expands, overlapping all the next, and
511 * perhaps the one after too (mprotect case 6).
512 */
513 again: remove_next = 1 + (end > next->vm_end);
514 end = next->vm_end;
515 exporter = next;
516 importer = vma;
517 } else if (end > next->vm_start) {
518 /*
519 * vma expands, overlapping part of the next:
520 * mprotect case 5 shifting the boundary up.
521 */
522 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
523 exporter = next;
524 importer = vma;
525 } else if (end < vma->vm_end) {
526 /*
527 * vma shrinks, and !insert tells it's not
528 * split_vma inserting another: so it must be
529 * mprotect case 4 shifting the boundary down.
530 */
531 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
532 exporter = vma;
533 importer = next;
534 }
535
536 /*
537 * Easily overlooked: when mprotect shifts the boundary,
538 * make sure the expanding vma has anon_vma set if the
539 * shrinking vma had, to cover any anon pages imported.
540 */
541 if (exporter && exporter->anon_vma && !importer->anon_vma) {
542 if (anon_vma_clone(importer, exporter))
543 return -ENOMEM;
544 importer->anon_vma = exporter->anon_vma;
545 }
546 }
547
548 if (file) {
549 mapping = file->f_mapping;
550 if (!(vma->vm_flags & VM_NONLINEAR)) {
551 root = &mapping->i_mmap;
552 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
553
554 if (adjust_next)
555 uprobe_munmap(next, next->vm_start,
556 next->vm_end);
557 }
558
559 mutex_lock(&mapping->i_mmap_mutex);
560 if (insert) {
561 /*
562 * Put into prio_tree now, so instantiated pages
563 * are visible to arm/parisc __flush_dcache_page
564 * throughout; but we cannot insert into address
565 * space until vma start or end is updated.
566 */
567 __vma_link_file(insert);
568 }
569 }
570
571 vma_adjust_trans_huge(vma, start, end, adjust_next);
572
573 /*
574 * When changing only vma->vm_end, we don't really need anon_vma
575 * lock. This is a fairly rare case by itself, but the anon_vma
576 * lock may be shared between many sibling processes. Skipping
577 * the lock for brk adjustments makes a difference sometimes.
578 */
579 if (vma->anon_vma && (importer || start != vma->vm_start)) {
580 anon_vma = vma->anon_vma;
581 anon_vma_lock(anon_vma);
582 }
583
584 if (root) {
585 flush_dcache_mmap_lock(mapping);
586 vma_prio_tree_remove(vma, root);
587 if (adjust_next)
588 vma_prio_tree_remove(next, root);
589 }
590
591 vma->vm_start = start;
592 vma->vm_end = end;
593 vma->vm_pgoff = pgoff;
594 if (adjust_next) {
595 next->vm_start += adjust_next << PAGE_SHIFT;
596 next->vm_pgoff += adjust_next;
597 }
598
599 if (root) {
600 if (adjust_next)
601 vma_prio_tree_insert(next, root);
602 vma_prio_tree_insert(vma, root);
603 flush_dcache_mmap_unlock(mapping);
604 }
605
606 if (remove_next) {
607 /*
608 * vma_merge has merged next into vma, and needs
609 * us to remove next before dropping the locks.
610 */
611 __vma_unlink(mm, next, vma);
612 if (file)
613 __remove_shared_vm_struct(next, file, mapping);
614 } else if (insert) {
615 /*
616 * split_vma has split insert from vma, and needs
617 * us to insert it before dropping the locks
618 * (it may either follow vma or precede it).
619 */
620 __insert_vm_struct(mm, insert);
621 }
622
623 if (anon_vma)
624 anon_vma_unlock(anon_vma);
625 if (mapping)
626 mutex_unlock(&mapping->i_mmap_mutex);
627
628 if (root) {
629 uprobe_mmap(vma);
630
631 if (adjust_next)
632 uprobe_mmap(next);
633 }
634
635 if (remove_next) {
636 if (file) {
637 uprobe_munmap(next, next->vm_start, next->vm_end);
638 fput(file);
639 if (next->vm_flags & VM_EXECUTABLE)
640 removed_exe_file_vma(mm);
641 }
642 if (next->anon_vma)
643 anon_vma_merge(vma, next);
644 mm->map_count--;
645 mpol_put(vma_policy(next));
646 kmem_cache_free(vm_area_cachep, next);
647 /*
648 * In mprotect's case 6 (see comments on vma_merge),
649 * we must remove another next too. It would clutter
650 * up the code too much to do both in one go.
651 */
652 if (remove_next == 2) {
653 next = vma->vm_next;
654 goto again;
655 }
656 }
657 if (insert && file)
658 uprobe_mmap(insert);
659
660 validate_mm(mm);
661
662 return 0;
663 }
664
665 /*
666 * If the vma has a ->close operation then the driver probably needs to release
667 * per-vma resources, so we don't attempt to merge those.
668 */
669 static inline int is_mergeable_vma(struct vm_area_struct *vma,
670 struct file *file, unsigned long vm_flags)
671 {
672 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
673 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
674 return 0;
675 if (vma->vm_file != file)
676 return 0;
677 if (vma->vm_ops && vma->vm_ops->close)
678 return 0;
679 return 1;
680 }
681
682 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
683 struct anon_vma *anon_vma2,
684 struct vm_area_struct *vma)
685 {
686 /*
687 * The list_is_singular() test is to avoid merging VMA cloned from
688 * parents. This can improve scalability caused by anon_vma lock.
689 */
690 if ((!anon_vma1 || !anon_vma2) && (!vma ||
691 list_is_singular(&vma->anon_vma_chain)))
692 return 1;
693 return anon_vma1 == anon_vma2;
694 }
695
696 /*
697 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
698 * in front of (at a lower virtual address and file offset than) the vma.
699 *
700 * We cannot merge two vmas if they have differently assigned (non-NULL)
701 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
702 *
703 * We don't check here for the merged mmap wrapping around the end of pagecache
704 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
705 * wrap, nor mmaps which cover the final page at index -1UL.
706 */
707 static int
708 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
709 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
710 {
711 if (is_mergeable_vma(vma, file, vm_flags) &&
712 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
713 if (vma->vm_pgoff == vm_pgoff)
714 return 1;
715 }
716 return 0;
717 }
718
719 /*
720 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
721 * beyond (at a higher virtual address and file offset than) the vma.
722 *
723 * We cannot merge two vmas if they have differently assigned (non-NULL)
724 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
725 */
726 static int
727 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
728 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
729 {
730 if (is_mergeable_vma(vma, file, vm_flags) &&
731 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
732 pgoff_t vm_pglen;
733 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
734 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
735 return 1;
736 }
737 return 0;
738 }
739
740 /*
741 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
742 * whether that can be merged with its predecessor or its successor.
743 * Or both (it neatly fills a hole).
744 *
745 * In most cases - when called for mmap, brk or mremap - [addr,end) is
746 * certain not to be mapped by the time vma_merge is called; but when
747 * called for mprotect, it is certain to be already mapped (either at
748 * an offset within prev, or at the start of next), and the flags of
749 * this area are about to be changed to vm_flags - and the no-change
750 * case has already been eliminated.
751 *
752 * The following mprotect cases have to be considered, where AAAA is
753 * the area passed down from mprotect_fixup, never extending beyond one
754 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
755 *
756 * AAAA AAAA AAAA AAAA
757 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
758 * cannot merge might become might become might become
759 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
760 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
761 * mremap move: PPPPNNNNNNNN 8
762 * AAAA
763 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
764 * might become case 1 below case 2 below case 3 below
765 *
766 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
767 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
768 */
769 struct vm_area_struct *vma_merge(struct mm_struct *mm,
770 struct vm_area_struct *prev, unsigned long addr,
771 unsigned long end, unsigned long vm_flags,
772 struct anon_vma *anon_vma, struct file *file,
773 pgoff_t pgoff, struct mempolicy *policy)
774 {
775 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
776 struct vm_area_struct *area, *next;
777 int err;
778
779 /*
780 * We later require that vma->vm_flags == vm_flags,
781 * so this tests vma->vm_flags & VM_SPECIAL, too.
782 */
783 if (vm_flags & VM_SPECIAL)
784 return NULL;
785
786 if (prev)
787 next = prev->vm_next;
788 else
789 next = mm->mmap;
790 area = next;
791 if (next && next->vm_end == end) /* cases 6, 7, 8 */
792 next = next->vm_next;
793
794 /*
795 * Can it merge with the predecessor?
796 */
797 if (prev && prev->vm_end == addr &&
798 mpol_equal(vma_policy(prev), policy) &&
799 can_vma_merge_after(prev, vm_flags,
800 anon_vma, file, pgoff)) {
801 /*
802 * OK, it can. Can we now merge in the successor as well?
803 */
804 if (next && end == next->vm_start &&
805 mpol_equal(policy, vma_policy(next)) &&
806 can_vma_merge_before(next, vm_flags,
807 anon_vma, file, pgoff+pglen) &&
808 is_mergeable_anon_vma(prev->anon_vma,
809 next->anon_vma, NULL)) {
810 /* cases 1, 6 */
811 err = vma_adjust(prev, prev->vm_start,
812 next->vm_end, prev->vm_pgoff, NULL);
813 } else /* cases 2, 5, 7 */
814 err = vma_adjust(prev, prev->vm_start,
815 end, prev->vm_pgoff, NULL);
816 if (err)
817 return NULL;
818 khugepaged_enter_vma_merge(prev);
819 return prev;
820 }
821
822 /*
823 * Can this new request be merged in front of next?
824 */
825 if (next && end == next->vm_start &&
826 mpol_equal(policy, vma_policy(next)) &&
827 can_vma_merge_before(next, vm_flags,
828 anon_vma, file, pgoff+pglen)) {
829 if (prev && addr < prev->vm_end) /* case 4 */
830 err = vma_adjust(prev, prev->vm_start,
831 addr, prev->vm_pgoff, NULL);
832 else /* cases 3, 8 */
833 err = vma_adjust(area, addr, next->vm_end,
834 next->vm_pgoff - pglen, NULL);
835 if (err)
836 return NULL;
837 khugepaged_enter_vma_merge(area);
838 return area;
839 }
840
841 return NULL;
842 }
843
844 /*
845 * Rough compatbility check to quickly see if it's even worth looking
846 * at sharing an anon_vma.
847 *
848 * They need to have the same vm_file, and the flags can only differ
849 * in things that mprotect may change.
850 *
851 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
852 * we can merge the two vma's. For example, we refuse to merge a vma if
853 * there is a vm_ops->close() function, because that indicates that the
854 * driver is doing some kind of reference counting. But that doesn't
855 * really matter for the anon_vma sharing case.
856 */
857 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
858 {
859 return a->vm_end == b->vm_start &&
860 mpol_equal(vma_policy(a), vma_policy(b)) &&
861 a->vm_file == b->vm_file &&
862 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
863 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
864 }
865
866 /*
867 * Do some basic sanity checking to see if we can re-use the anon_vma
868 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
869 * the same as 'old', the other will be the new one that is trying
870 * to share the anon_vma.
871 *
872 * NOTE! This runs with mm_sem held for reading, so it is possible that
873 * the anon_vma of 'old' is concurrently in the process of being set up
874 * by another page fault trying to merge _that_. But that's ok: if it
875 * is being set up, that automatically means that it will be a singleton
876 * acceptable for merging, so we can do all of this optimistically. But
877 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
878 *
879 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
880 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
881 * is to return an anon_vma that is "complex" due to having gone through
882 * a fork).
883 *
884 * We also make sure that the two vma's are compatible (adjacent,
885 * and with the same memory policies). That's all stable, even with just
886 * a read lock on the mm_sem.
887 */
888 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
889 {
890 if (anon_vma_compatible(a, b)) {
891 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
892
893 if (anon_vma && list_is_singular(&old->anon_vma_chain))
894 return anon_vma;
895 }
896 return NULL;
897 }
898
899 /*
900 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
901 * neighbouring vmas for a suitable anon_vma, before it goes off
902 * to allocate a new anon_vma. It checks because a repetitive
903 * sequence of mprotects and faults may otherwise lead to distinct
904 * anon_vmas being allocated, preventing vma merge in subsequent
905 * mprotect.
906 */
907 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
908 {
909 struct anon_vma *anon_vma;
910 struct vm_area_struct *near;
911
912 near = vma->vm_next;
913 if (!near)
914 goto try_prev;
915
916 anon_vma = reusable_anon_vma(near, vma, near);
917 if (anon_vma)
918 return anon_vma;
919 try_prev:
920 near = vma->vm_prev;
921 if (!near)
922 goto none;
923
924 anon_vma = reusable_anon_vma(near, near, vma);
925 if (anon_vma)
926 return anon_vma;
927 none:
928 /*
929 * There's no absolute need to look only at touching neighbours:
930 * we could search further afield for "compatible" anon_vmas.
931 * But it would probably just be a waste of time searching,
932 * or lead to too many vmas hanging off the same anon_vma.
933 * We're trying to allow mprotect remerging later on,
934 * not trying to minimize memory used for anon_vmas.
935 */
936 return NULL;
937 }
938
939 #ifdef CONFIG_PROC_FS
940 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
941 struct file *file, long pages)
942 {
943 const unsigned long stack_flags
944 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
945
946 if (file) {
947 mm->shared_vm += pages;
948 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
949 mm->exec_vm += pages;
950 } else if (flags & stack_flags)
951 mm->stack_vm += pages;
952 if (flags & (VM_RESERVED|VM_IO))
953 mm->reserved_vm += pages;
954 }
955 #endif /* CONFIG_PROC_FS */
956
957 /*
958 * If a hint addr is less than mmap_min_addr change hint to be as
959 * low as possible but still greater than mmap_min_addr
960 */
961 static inline unsigned long round_hint_to_min(unsigned long hint)
962 {
963 hint &= PAGE_MASK;
964 if (((void *)hint != NULL) &&
965 (hint < mmap_min_addr))
966 return PAGE_ALIGN(mmap_min_addr);
967 return hint;
968 }
969
970 /*
971 * The caller must hold down_write(&current->mm->mmap_sem).
972 */
973
974 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
975 unsigned long len, unsigned long prot,
976 unsigned long flags, unsigned long pgoff)
977 {
978 struct mm_struct * mm = current->mm;
979 struct inode *inode;
980 vm_flags_t vm_flags;
981 int error;
982 unsigned long reqprot = prot;
983
984 /*
985 * Does the application expect PROT_READ to imply PROT_EXEC?
986 *
987 * (the exception is when the underlying filesystem is noexec
988 * mounted, in which case we dont add PROT_EXEC.)
989 */
990 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
991 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
992 prot |= PROT_EXEC;
993
994 if (!len)
995 return -EINVAL;
996
997 if (!(flags & MAP_FIXED))
998 addr = round_hint_to_min(addr);
999
1000 /* Careful about overflows.. */
1001 len = PAGE_ALIGN(len);
1002 if (!len)
1003 return -ENOMEM;
1004
1005 /* offset overflow? */
1006 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1007 return -EOVERFLOW;
1008
1009 /* Too many mappings? */
1010 if (mm->map_count > sysctl_max_map_count)
1011 return -ENOMEM;
1012
1013 /* Obtain the address to map to. we verify (or select) it and ensure
1014 * that it represents a valid section of the address space.
1015 */
1016 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1017 if (addr & ~PAGE_MASK)
1018 return addr;
1019
1020 /* Do simple checking here so the lower-level routines won't have
1021 * to. we assume access permissions have been handled by the open
1022 * of the memory object, so we don't do any here.
1023 */
1024 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1025 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1026
1027 if (flags & MAP_LOCKED)
1028 if (!can_do_mlock())
1029 return -EPERM;
1030
1031 /* mlock MCL_FUTURE? */
1032 if (vm_flags & VM_LOCKED) {
1033 unsigned long locked, lock_limit;
1034 locked = len >> PAGE_SHIFT;
1035 locked += mm->locked_vm;
1036 lock_limit = rlimit(RLIMIT_MEMLOCK);
1037 lock_limit >>= PAGE_SHIFT;
1038 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1039 return -EAGAIN;
1040 }
1041
1042 inode = file ? file->f_path.dentry->d_inode : NULL;
1043
1044 if (file) {
1045 switch (flags & MAP_TYPE) {
1046 case MAP_SHARED:
1047 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1048 return -EACCES;
1049
1050 /*
1051 * Make sure we don't allow writing to an append-only
1052 * file..
1053 */
1054 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1055 return -EACCES;
1056
1057 /*
1058 * Make sure there are no mandatory locks on the file.
1059 */
1060 if (locks_verify_locked(inode))
1061 return -EAGAIN;
1062
1063 vm_flags |= VM_SHARED | VM_MAYSHARE;
1064 if (!(file->f_mode & FMODE_WRITE))
1065 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1066
1067 /* fall through */
1068 case MAP_PRIVATE:
1069 if (!(file->f_mode & FMODE_READ))
1070 return -EACCES;
1071 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1072 if (vm_flags & VM_EXEC)
1073 return -EPERM;
1074 vm_flags &= ~VM_MAYEXEC;
1075 }
1076
1077 if (!file->f_op || !file->f_op->mmap)
1078 return -ENODEV;
1079 break;
1080
1081 default:
1082 return -EINVAL;
1083 }
1084 } else {
1085 switch (flags & MAP_TYPE) {
1086 case MAP_SHARED:
1087 /*
1088 * Ignore pgoff.
1089 */
1090 pgoff = 0;
1091 vm_flags |= VM_SHARED | VM_MAYSHARE;
1092 break;
1093 case MAP_PRIVATE:
1094 /*
1095 * Set pgoff according to addr for anon_vma.
1096 */
1097 pgoff = addr >> PAGE_SHIFT;
1098 break;
1099 default:
1100 return -EINVAL;
1101 }
1102 }
1103
1104 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1105 if (error)
1106 return error;
1107
1108 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1109 }
1110
1111 unsigned long do_mmap(struct file *file, unsigned long addr,
1112 unsigned long len, unsigned long prot,
1113 unsigned long flag, unsigned long offset)
1114 {
1115 if (unlikely(offset + PAGE_ALIGN(len) < offset))
1116 return -EINVAL;
1117 if (unlikely(offset & ~PAGE_MASK))
1118 return -EINVAL;
1119 return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1120 }
1121 EXPORT_SYMBOL(do_mmap);
1122
1123 unsigned long vm_mmap(struct file *file, unsigned long addr,
1124 unsigned long len, unsigned long prot,
1125 unsigned long flag, unsigned long offset)
1126 {
1127 unsigned long ret;
1128 struct mm_struct *mm = current->mm;
1129
1130 down_write(&mm->mmap_sem);
1131 ret = do_mmap(file, addr, len, prot, flag, offset);
1132 up_write(&mm->mmap_sem);
1133 return ret;
1134 }
1135 EXPORT_SYMBOL(vm_mmap);
1136
1137 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1138 unsigned long, prot, unsigned long, flags,
1139 unsigned long, fd, unsigned long, pgoff)
1140 {
1141 struct file *file = NULL;
1142 unsigned long retval = -EBADF;
1143
1144 if (!(flags & MAP_ANONYMOUS)) {
1145 audit_mmap_fd(fd, flags);
1146 if (unlikely(flags & MAP_HUGETLB))
1147 return -EINVAL;
1148 file = fget(fd);
1149 if (!file)
1150 goto out;
1151 } else if (flags & MAP_HUGETLB) {
1152 struct user_struct *user = NULL;
1153 /*
1154 * VM_NORESERVE is used because the reservations will be
1155 * taken when vm_ops->mmap() is called
1156 * A dummy user value is used because we are not locking
1157 * memory so no accounting is necessary
1158 */
1159 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1160 VM_NORESERVE, &user,
1161 HUGETLB_ANONHUGE_INODE);
1162 if (IS_ERR(file))
1163 return PTR_ERR(file);
1164 }
1165
1166 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1167
1168 down_write(&current->mm->mmap_sem);
1169 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1170 up_write(&current->mm->mmap_sem);
1171
1172 if (file)
1173 fput(file);
1174 out:
1175 return retval;
1176 }
1177
1178 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1179 struct mmap_arg_struct {
1180 unsigned long addr;
1181 unsigned long len;
1182 unsigned long prot;
1183 unsigned long flags;
1184 unsigned long fd;
1185 unsigned long offset;
1186 };
1187
1188 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1189 {
1190 struct mmap_arg_struct a;
1191
1192 if (copy_from_user(&a, arg, sizeof(a)))
1193 return -EFAULT;
1194 if (a.offset & ~PAGE_MASK)
1195 return -EINVAL;
1196
1197 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1198 a.offset >> PAGE_SHIFT);
1199 }
1200 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1201
1202 /*
1203 * Some shared mappigns will want the pages marked read-only
1204 * to track write events. If so, we'll downgrade vm_page_prot
1205 * to the private version (using protection_map[] without the
1206 * VM_SHARED bit).
1207 */
1208 int vma_wants_writenotify(struct vm_area_struct *vma)
1209 {
1210 vm_flags_t vm_flags = vma->vm_flags;
1211
1212 /* If it was private or non-writable, the write bit is already clear */
1213 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1214 return 0;
1215
1216 /* The backer wishes to know when pages are first written to? */
1217 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1218 return 1;
1219
1220 /* The open routine did something to the protections already? */
1221 if (pgprot_val(vma->vm_page_prot) !=
1222 pgprot_val(vm_get_page_prot(vm_flags)))
1223 return 0;
1224
1225 /* Specialty mapping? */
1226 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1227 return 0;
1228
1229 /* Can the mapping track the dirty pages? */
1230 return vma->vm_file && vma->vm_file->f_mapping &&
1231 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1232 }
1233
1234 /*
1235 * We account for memory if it's a private writeable mapping,
1236 * not hugepages and VM_NORESERVE wasn't set.
1237 */
1238 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1239 {
1240 /*
1241 * hugetlb has its own accounting separate from the core VM
1242 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1243 */
1244 if (file && is_file_hugepages(file))
1245 return 0;
1246
1247 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1248 }
1249
1250 unsigned long mmap_region(struct file *file, unsigned long addr,
1251 unsigned long len, unsigned long flags,
1252 vm_flags_t vm_flags, unsigned long pgoff)
1253 {
1254 struct mm_struct *mm = current->mm;
1255 struct vm_area_struct *vma, *prev;
1256 int correct_wcount = 0;
1257 int error;
1258 struct rb_node **rb_link, *rb_parent;
1259 unsigned long charged = 0;
1260 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1261
1262 /* Clear old maps */
1263 error = -ENOMEM;
1264 munmap_back:
1265 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1266 if (vma && vma->vm_start < addr + len) {
1267 if (do_munmap(mm, addr, len))
1268 return -ENOMEM;
1269 goto munmap_back;
1270 }
1271
1272 /* Check against address space limit. */
1273 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1274 return -ENOMEM;
1275
1276 /*
1277 * Set 'VM_NORESERVE' if we should not account for the
1278 * memory use of this mapping.
1279 */
1280 if ((flags & MAP_NORESERVE)) {
1281 /* We honor MAP_NORESERVE if allowed to overcommit */
1282 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1283 vm_flags |= VM_NORESERVE;
1284
1285 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1286 if (file && is_file_hugepages(file))
1287 vm_flags |= VM_NORESERVE;
1288 }
1289
1290 /*
1291 * Private writable mapping: check memory availability
1292 */
1293 if (accountable_mapping(file, vm_flags)) {
1294 charged = len >> PAGE_SHIFT;
1295 if (security_vm_enough_memory_mm(mm, charged))
1296 return -ENOMEM;
1297 vm_flags |= VM_ACCOUNT;
1298 }
1299
1300 /*
1301 * Can we just expand an old mapping?
1302 */
1303 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1304 if (vma)
1305 goto out;
1306
1307 /*
1308 * Determine the object being mapped and call the appropriate
1309 * specific mapper. the address has already been validated, but
1310 * not unmapped, but the maps are removed from the list.
1311 */
1312 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1313 if (!vma) {
1314 error = -ENOMEM;
1315 goto unacct_error;
1316 }
1317
1318 vma->vm_mm = mm;
1319 vma->vm_start = addr;
1320 vma->vm_end = addr + len;
1321 vma->vm_flags = vm_flags;
1322 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1323 vma->vm_pgoff = pgoff;
1324 INIT_LIST_HEAD(&vma->anon_vma_chain);
1325
1326 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1327
1328 if (file) {
1329 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1330 goto free_vma;
1331 if (vm_flags & VM_DENYWRITE) {
1332 error = deny_write_access(file);
1333 if (error)
1334 goto free_vma;
1335 correct_wcount = 1;
1336 }
1337 vma->vm_file = file;
1338 get_file(file);
1339 error = file->f_op->mmap(file, vma);
1340 if (error)
1341 goto unmap_and_free_vma;
1342 if (vm_flags & VM_EXECUTABLE)
1343 added_exe_file_vma(mm);
1344
1345 /* Can addr have changed??
1346 *
1347 * Answer: Yes, several device drivers can do it in their
1348 * f_op->mmap method. -DaveM
1349 */
1350 addr = vma->vm_start;
1351 pgoff = vma->vm_pgoff;
1352 vm_flags = vma->vm_flags;
1353 } else if (vm_flags & VM_SHARED) {
1354 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1355 goto free_vma;
1356 error = shmem_zero_setup(vma);
1357 if (error)
1358 goto free_vma;
1359 }
1360
1361 if (vma_wants_writenotify(vma)) {
1362 pgprot_t pprot = vma->vm_page_prot;
1363
1364 /* Can vma->vm_page_prot have changed??
1365 *
1366 * Answer: Yes, drivers may have changed it in their
1367 * f_op->mmap method.
1368 *
1369 * Ensures that vmas marked as uncached stay that way.
1370 */
1371 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1372 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1373 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1374 }
1375
1376 vma_link(mm, vma, prev, rb_link, rb_parent);
1377 file = vma->vm_file;
1378
1379 /* Once vma denies write, undo our temporary denial count */
1380 if (correct_wcount)
1381 atomic_inc(&inode->i_writecount);
1382 out:
1383 perf_event_mmap(vma);
1384
1385 mm->total_vm += len >> PAGE_SHIFT;
1386 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1387 if (vm_flags & VM_LOCKED) {
1388 if (!mlock_vma_pages_range(vma, addr, addr + len))
1389 mm->locked_vm += (len >> PAGE_SHIFT);
1390 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1391 make_pages_present(addr, addr + len);
1392
1393 if (file && uprobe_mmap(vma))
1394 /* matching probes but cannot insert */
1395 goto unmap_and_free_vma;
1396
1397 return addr;
1398
1399 unmap_and_free_vma:
1400 if (correct_wcount)
1401 atomic_inc(&inode->i_writecount);
1402 vma->vm_file = NULL;
1403 fput(file);
1404
1405 /* Undo any partial mapping done by a device driver. */
1406 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1407 charged = 0;
1408 free_vma:
1409 kmem_cache_free(vm_area_cachep, vma);
1410 unacct_error:
1411 if (charged)
1412 vm_unacct_memory(charged);
1413 return error;
1414 }
1415
1416 /* Get an address range which is currently unmapped.
1417 * For shmat() with addr=0.
1418 *
1419 * Ugly calling convention alert:
1420 * Return value with the low bits set means error value,
1421 * ie
1422 * if (ret & ~PAGE_MASK)
1423 * error = ret;
1424 *
1425 * This function "knows" that -ENOMEM has the bits set.
1426 */
1427 #ifndef HAVE_ARCH_UNMAPPED_AREA
1428 unsigned long
1429 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1430 unsigned long len, unsigned long pgoff, unsigned long flags)
1431 {
1432 struct mm_struct *mm = current->mm;
1433 struct vm_area_struct *vma;
1434 unsigned long start_addr;
1435
1436 if (len > TASK_SIZE)
1437 return -ENOMEM;
1438
1439 if (flags & MAP_FIXED)
1440 return addr;
1441
1442 if (addr) {
1443 addr = PAGE_ALIGN(addr);
1444 vma = find_vma(mm, addr);
1445 if (TASK_SIZE - len >= addr &&
1446 (!vma || addr + len <= vma->vm_start))
1447 return addr;
1448 }
1449 if (len > mm->cached_hole_size) {
1450 start_addr = addr = mm->free_area_cache;
1451 } else {
1452 start_addr = addr = TASK_UNMAPPED_BASE;
1453 mm->cached_hole_size = 0;
1454 }
1455
1456 full_search:
1457 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1458 /* At this point: (!vma || addr < vma->vm_end). */
1459 if (TASK_SIZE - len < addr) {
1460 /*
1461 * Start a new search - just in case we missed
1462 * some holes.
1463 */
1464 if (start_addr != TASK_UNMAPPED_BASE) {
1465 addr = TASK_UNMAPPED_BASE;
1466 start_addr = addr;
1467 mm->cached_hole_size = 0;
1468 goto full_search;
1469 }
1470 return -ENOMEM;
1471 }
1472 if (!vma || addr + len <= vma->vm_start) {
1473 /*
1474 * Remember the place where we stopped the search:
1475 */
1476 mm->free_area_cache = addr + len;
1477 return addr;
1478 }
1479 if (addr + mm->cached_hole_size < vma->vm_start)
1480 mm->cached_hole_size = vma->vm_start - addr;
1481 addr = vma->vm_end;
1482 }
1483 }
1484 #endif
1485
1486 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1487 {
1488 /*
1489 * Is this a new hole at the lowest possible address?
1490 */
1491 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1492 mm->free_area_cache = addr;
1493 }
1494
1495 /*
1496 * This mmap-allocator allocates new areas top-down from below the
1497 * stack's low limit (the base):
1498 */
1499 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1500 unsigned long
1501 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1502 const unsigned long len, const unsigned long pgoff,
1503 const unsigned long flags)
1504 {
1505 struct vm_area_struct *vma;
1506 struct mm_struct *mm = current->mm;
1507 unsigned long addr = addr0, start_addr;
1508
1509 /* requested length too big for entire address space */
1510 if (len > TASK_SIZE)
1511 return -ENOMEM;
1512
1513 if (flags & MAP_FIXED)
1514 return addr;
1515
1516 /* requesting a specific address */
1517 if (addr) {
1518 addr = PAGE_ALIGN(addr);
1519 vma = find_vma(mm, addr);
1520 if (TASK_SIZE - len >= addr &&
1521 (!vma || addr + len <= vma->vm_start))
1522 return addr;
1523 }
1524
1525 /* check if free_area_cache is useful for us */
1526 if (len <= mm->cached_hole_size) {
1527 mm->cached_hole_size = 0;
1528 mm->free_area_cache = mm->mmap_base;
1529 }
1530
1531 try_again:
1532 /* either no address requested or can't fit in requested address hole */
1533 start_addr = addr = mm->free_area_cache;
1534
1535 if (addr < len)
1536 goto fail;
1537
1538 addr -= len;
1539 do {
1540 /*
1541 * Lookup failure means no vma is above this address,
1542 * else if new region fits below vma->vm_start,
1543 * return with success:
1544 */
1545 vma = find_vma(mm, addr);
1546 if (!vma || addr+len <= vma->vm_start)
1547 /* remember the address as a hint for next time */
1548 return (mm->free_area_cache = addr);
1549
1550 /* remember the largest hole we saw so far */
1551 if (addr + mm->cached_hole_size < vma->vm_start)
1552 mm->cached_hole_size = vma->vm_start - addr;
1553
1554 /* try just below the current vma->vm_start */
1555 addr = vma->vm_start-len;
1556 } while (len < vma->vm_start);
1557
1558 fail:
1559 /*
1560 * if hint left us with no space for the requested
1561 * mapping then try again:
1562 *
1563 * Note: this is different with the case of bottomup
1564 * which does the fully line-search, but we use find_vma
1565 * here that causes some holes skipped.
1566 */
1567 if (start_addr != mm->mmap_base) {
1568 mm->free_area_cache = mm->mmap_base;
1569 mm->cached_hole_size = 0;
1570 goto try_again;
1571 }
1572
1573 /*
1574 * A failed mmap() very likely causes application failure,
1575 * so fall back to the bottom-up function here. This scenario
1576 * can happen with large stack limits and large mmap()
1577 * allocations.
1578 */
1579 mm->cached_hole_size = ~0UL;
1580 mm->free_area_cache = TASK_UNMAPPED_BASE;
1581 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1582 /*
1583 * Restore the topdown base:
1584 */
1585 mm->free_area_cache = mm->mmap_base;
1586 mm->cached_hole_size = ~0UL;
1587
1588 return addr;
1589 }
1590 #endif
1591
1592 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1593 {
1594 /*
1595 * Is this a new hole at the highest possible address?
1596 */
1597 if (addr > mm->free_area_cache)
1598 mm->free_area_cache = addr;
1599
1600 /* dont allow allocations above current base */
1601 if (mm->free_area_cache > mm->mmap_base)
1602 mm->free_area_cache = mm->mmap_base;
1603 }
1604
1605 unsigned long
1606 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1607 unsigned long pgoff, unsigned long flags)
1608 {
1609 unsigned long (*get_area)(struct file *, unsigned long,
1610 unsigned long, unsigned long, unsigned long);
1611
1612 unsigned long error = arch_mmap_check(addr, len, flags);
1613 if (error)
1614 return error;
1615
1616 /* Careful about overflows.. */
1617 if (len > TASK_SIZE)
1618 return -ENOMEM;
1619
1620 get_area = current->mm->get_unmapped_area;
1621 if (file && file->f_op && file->f_op->get_unmapped_area)
1622 get_area = file->f_op->get_unmapped_area;
1623 addr = get_area(file, addr, len, pgoff, flags);
1624 if (IS_ERR_VALUE(addr))
1625 return addr;
1626
1627 if (addr > TASK_SIZE - len)
1628 return -ENOMEM;
1629 if (addr & ~PAGE_MASK)
1630 return -EINVAL;
1631
1632 return arch_rebalance_pgtables(addr, len);
1633 }
1634
1635 EXPORT_SYMBOL(get_unmapped_area);
1636
1637 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1638 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1639 {
1640 struct vm_area_struct *vma = NULL;
1641
1642 if (mm) {
1643 /* Check the cache first. */
1644 /* (Cache hit rate is typically around 35%.) */
1645 vma = mm->mmap_cache;
1646 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1647 struct rb_node * rb_node;
1648
1649 rb_node = mm->mm_rb.rb_node;
1650 vma = NULL;
1651
1652 while (rb_node) {
1653 struct vm_area_struct * vma_tmp;
1654
1655 vma_tmp = rb_entry(rb_node,
1656 struct vm_area_struct, vm_rb);
1657
1658 if (vma_tmp->vm_end > addr) {
1659 vma = vma_tmp;
1660 if (vma_tmp->vm_start <= addr)
1661 break;
1662 rb_node = rb_node->rb_left;
1663 } else
1664 rb_node = rb_node->rb_right;
1665 }
1666 if (vma)
1667 mm->mmap_cache = vma;
1668 }
1669 }
1670 return vma;
1671 }
1672
1673 EXPORT_SYMBOL(find_vma);
1674
1675 /*
1676 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1677 */
1678 struct vm_area_struct *
1679 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1680 struct vm_area_struct **pprev)
1681 {
1682 struct vm_area_struct *vma;
1683
1684 vma = find_vma(mm, addr);
1685 if (vma) {
1686 *pprev = vma->vm_prev;
1687 } else {
1688 struct rb_node *rb_node = mm->mm_rb.rb_node;
1689 *pprev = NULL;
1690 while (rb_node) {
1691 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1692 rb_node = rb_node->rb_right;
1693 }
1694 }
1695 return vma;
1696 }
1697
1698 /*
1699 * Verify that the stack growth is acceptable and
1700 * update accounting. This is shared with both the
1701 * grow-up and grow-down cases.
1702 */
1703 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1704 {
1705 struct mm_struct *mm = vma->vm_mm;
1706 struct rlimit *rlim = current->signal->rlim;
1707 unsigned long new_start;
1708
1709 /* address space limit tests */
1710 if (!may_expand_vm(mm, grow))
1711 return -ENOMEM;
1712
1713 /* Stack limit test */
1714 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1715 return -ENOMEM;
1716
1717 /* mlock limit tests */
1718 if (vma->vm_flags & VM_LOCKED) {
1719 unsigned long locked;
1720 unsigned long limit;
1721 locked = mm->locked_vm + grow;
1722 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1723 limit >>= PAGE_SHIFT;
1724 if (locked > limit && !capable(CAP_IPC_LOCK))
1725 return -ENOMEM;
1726 }
1727
1728 /* Check to ensure the stack will not grow into a hugetlb-only region */
1729 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1730 vma->vm_end - size;
1731 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1732 return -EFAULT;
1733
1734 /*
1735 * Overcommit.. This must be the final test, as it will
1736 * update security statistics.
1737 */
1738 if (security_vm_enough_memory_mm(mm, grow))
1739 return -ENOMEM;
1740
1741 /* Ok, everything looks good - let it rip */
1742 mm->total_vm += grow;
1743 if (vma->vm_flags & VM_LOCKED)
1744 mm->locked_vm += grow;
1745 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1746 return 0;
1747 }
1748
1749 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1750 /*
1751 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1752 * vma is the last one with address > vma->vm_end. Have to extend vma.
1753 */
1754 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1755 {
1756 int error;
1757
1758 if (!(vma->vm_flags & VM_GROWSUP))
1759 return -EFAULT;
1760
1761 /*
1762 * We must make sure the anon_vma is allocated
1763 * so that the anon_vma locking is not a noop.
1764 */
1765 if (unlikely(anon_vma_prepare(vma)))
1766 return -ENOMEM;
1767 vma_lock_anon_vma(vma);
1768
1769 /*
1770 * vma->vm_start/vm_end cannot change under us because the caller
1771 * is required to hold the mmap_sem in read mode. We need the
1772 * anon_vma lock to serialize against concurrent expand_stacks.
1773 * Also guard against wrapping around to address 0.
1774 */
1775 if (address < PAGE_ALIGN(address+4))
1776 address = PAGE_ALIGN(address+4);
1777 else {
1778 vma_unlock_anon_vma(vma);
1779 return -ENOMEM;
1780 }
1781 error = 0;
1782
1783 /* Somebody else might have raced and expanded it already */
1784 if (address > vma->vm_end) {
1785 unsigned long size, grow;
1786
1787 size = address - vma->vm_start;
1788 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1789
1790 error = -ENOMEM;
1791 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1792 error = acct_stack_growth(vma, size, grow);
1793 if (!error) {
1794 vma->vm_end = address;
1795 perf_event_mmap(vma);
1796 }
1797 }
1798 }
1799 vma_unlock_anon_vma(vma);
1800 khugepaged_enter_vma_merge(vma);
1801 return error;
1802 }
1803 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1804
1805 /*
1806 * vma is the first one with address < vma->vm_start. Have to extend vma.
1807 */
1808 int expand_downwards(struct vm_area_struct *vma,
1809 unsigned long address)
1810 {
1811 int error;
1812
1813 /*
1814 * We must make sure the anon_vma is allocated
1815 * so that the anon_vma locking is not a noop.
1816 */
1817 if (unlikely(anon_vma_prepare(vma)))
1818 return -ENOMEM;
1819
1820 address &= PAGE_MASK;
1821 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1822 if (error)
1823 return error;
1824
1825 vma_lock_anon_vma(vma);
1826
1827 /*
1828 * vma->vm_start/vm_end cannot change under us because the caller
1829 * is required to hold the mmap_sem in read mode. We need the
1830 * anon_vma lock to serialize against concurrent expand_stacks.
1831 */
1832
1833 /* Somebody else might have raced and expanded it already */
1834 if (address < vma->vm_start) {
1835 unsigned long size, grow;
1836
1837 size = vma->vm_end - address;
1838 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1839
1840 error = -ENOMEM;
1841 if (grow <= vma->vm_pgoff) {
1842 error = acct_stack_growth(vma, size, grow);
1843 if (!error) {
1844 vma->vm_start = address;
1845 vma->vm_pgoff -= grow;
1846 perf_event_mmap(vma);
1847 }
1848 }
1849 }
1850 vma_unlock_anon_vma(vma);
1851 khugepaged_enter_vma_merge(vma);
1852 return error;
1853 }
1854
1855 #ifdef CONFIG_STACK_GROWSUP
1856 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1857 {
1858 return expand_upwards(vma, address);
1859 }
1860
1861 struct vm_area_struct *
1862 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1863 {
1864 struct vm_area_struct *vma, *prev;
1865
1866 addr &= PAGE_MASK;
1867 vma = find_vma_prev(mm, addr, &prev);
1868 if (vma && (vma->vm_start <= addr))
1869 return vma;
1870 if (!prev || expand_stack(prev, addr))
1871 return NULL;
1872 if (prev->vm_flags & VM_LOCKED) {
1873 mlock_vma_pages_range(prev, addr, prev->vm_end);
1874 }
1875 return prev;
1876 }
1877 #else
1878 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1879 {
1880 return expand_downwards(vma, address);
1881 }
1882
1883 struct vm_area_struct *
1884 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1885 {
1886 struct vm_area_struct * vma;
1887 unsigned long start;
1888
1889 addr &= PAGE_MASK;
1890 vma = find_vma(mm,addr);
1891 if (!vma)
1892 return NULL;
1893 if (vma->vm_start <= addr)
1894 return vma;
1895 if (!(vma->vm_flags & VM_GROWSDOWN))
1896 return NULL;
1897 start = vma->vm_start;
1898 if (expand_stack(vma, addr))
1899 return NULL;
1900 if (vma->vm_flags & VM_LOCKED) {
1901 mlock_vma_pages_range(vma, addr, start);
1902 }
1903 return vma;
1904 }
1905 #endif
1906
1907 /*
1908 * Ok - we have the memory areas we should free on the vma list,
1909 * so release them, and do the vma updates.
1910 *
1911 * Called with the mm semaphore held.
1912 */
1913 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1914 {
1915 unsigned long nr_accounted = 0;
1916
1917 /* Update high watermark before we lower total_vm */
1918 update_hiwater_vm(mm);
1919 do {
1920 long nrpages = vma_pages(vma);
1921
1922 if (vma->vm_flags & VM_ACCOUNT)
1923 nr_accounted += nrpages;
1924 mm->total_vm -= nrpages;
1925 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1926 vma = remove_vma(vma);
1927 } while (vma);
1928 vm_unacct_memory(nr_accounted);
1929 validate_mm(mm);
1930 }
1931
1932 /*
1933 * Get rid of page table information in the indicated region.
1934 *
1935 * Called with the mm semaphore held.
1936 */
1937 static void unmap_region(struct mm_struct *mm,
1938 struct vm_area_struct *vma, struct vm_area_struct *prev,
1939 unsigned long start, unsigned long end)
1940 {
1941 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1942 struct mmu_gather tlb;
1943
1944 lru_add_drain();
1945 tlb_gather_mmu(&tlb, mm, 0);
1946 update_hiwater_rss(mm);
1947 unmap_vmas(&tlb, vma, start, end);
1948 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1949 next ? next->vm_start : 0);
1950 tlb_finish_mmu(&tlb, start, end);
1951 }
1952
1953 /*
1954 * Create a list of vma's touched by the unmap, removing them from the mm's
1955 * vma list as we go..
1956 */
1957 static void
1958 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1959 struct vm_area_struct *prev, unsigned long end)
1960 {
1961 struct vm_area_struct **insertion_point;
1962 struct vm_area_struct *tail_vma = NULL;
1963 unsigned long addr;
1964
1965 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1966 vma->vm_prev = NULL;
1967 do {
1968 rb_erase(&vma->vm_rb, &mm->mm_rb);
1969 mm->map_count--;
1970 tail_vma = vma;
1971 vma = vma->vm_next;
1972 } while (vma && vma->vm_start < end);
1973 *insertion_point = vma;
1974 if (vma)
1975 vma->vm_prev = prev;
1976 tail_vma->vm_next = NULL;
1977 if (mm->unmap_area == arch_unmap_area)
1978 addr = prev ? prev->vm_end : mm->mmap_base;
1979 else
1980 addr = vma ? vma->vm_start : mm->mmap_base;
1981 mm->unmap_area(mm, addr);
1982 mm->mmap_cache = NULL; /* Kill the cache. */
1983 }
1984
1985 /*
1986 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1987 * munmap path where it doesn't make sense to fail.
1988 */
1989 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1990 unsigned long addr, int new_below)
1991 {
1992 struct mempolicy *pol;
1993 struct vm_area_struct *new;
1994 int err = -ENOMEM;
1995
1996 if (is_vm_hugetlb_page(vma) && (addr &
1997 ~(huge_page_mask(hstate_vma(vma)))))
1998 return -EINVAL;
1999
2000 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2001 if (!new)
2002 goto out_err;
2003
2004 /* most fields are the same, copy all, and then fixup */
2005 *new = *vma;
2006
2007 INIT_LIST_HEAD(&new->anon_vma_chain);
2008
2009 if (new_below)
2010 new->vm_end = addr;
2011 else {
2012 new->vm_start = addr;
2013 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2014 }
2015
2016 pol = mpol_dup(vma_policy(vma));
2017 if (IS_ERR(pol)) {
2018 err = PTR_ERR(pol);
2019 goto out_free_vma;
2020 }
2021 vma_set_policy(new, pol);
2022
2023 if (anon_vma_clone(new, vma))
2024 goto out_free_mpol;
2025
2026 if (new->vm_file) {
2027 get_file(new->vm_file);
2028 if (vma->vm_flags & VM_EXECUTABLE)
2029 added_exe_file_vma(mm);
2030 }
2031
2032 if (new->vm_ops && new->vm_ops->open)
2033 new->vm_ops->open(new);
2034
2035 if (new_below)
2036 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2037 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2038 else
2039 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2040
2041 /* Success. */
2042 if (!err)
2043 return 0;
2044
2045 /* Clean everything up if vma_adjust failed. */
2046 if (new->vm_ops && new->vm_ops->close)
2047 new->vm_ops->close(new);
2048 if (new->vm_file) {
2049 if (vma->vm_flags & VM_EXECUTABLE)
2050 removed_exe_file_vma(mm);
2051 fput(new->vm_file);
2052 }
2053 unlink_anon_vmas(new);
2054 out_free_mpol:
2055 mpol_put(pol);
2056 out_free_vma:
2057 kmem_cache_free(vm_area_cachep, new);
2058 out_err:
2059 return err;
2060 }
2061
2062 /*
2063 * Split a vma into two pieces at address 'addr', a new vma is allocated
2064 * either for the first part or the tail.
2065 */
2066 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2067 unsigned long addr, int new_below)
2068 {
2069 if (mm->map_count >= sysctl_max_map_count)
2070 return -ENOMEM;
2071
2072 return __split_vma(mm, vma, addr, new_below);
2073 }
2074
2075 /* Munmap is split into 2 main parts -- this part which finds
2076 * what needs doing, and the areas themselves, which do the
2077 * work. This now handles partial unmappings.
2078 * Jeremy Fitzhardinge <jeremy@goop.org>
2079 */
2080 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2081 {
2082 unsigned long end;
2083 struct vm_area_struct *vma, *prev, *last;
2084
2085 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2086 return -EINVAL;
2087
2088 if ((len = PAGE_ALIGN(len)) == 0)
2089 return -EINVAL;
2090
2091 /* Find the first overlapping VMA */
2092 vma = find_vma(mm, start);
2093 if (!vma)
2094 return 0;
2095 prev = vma->vm_prev;
2096 /* we have start < vma->vm_end */
2097
2098 /* if it doesn't overlap, we have nothing.. */
2099 end = start + len;
2100 if (vma->vm_start >= end)
2101 return 0;
2102
2103 /*
2104 * If we need to split any vma, do it now to save pain later.
2105 *
2106 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2107 * unmapped vm_area_struct will remain in use: so lower split_vma
2108 * places tmp vma above, and higher split_vma places tmp vma below.
2109 */
2110 if (start > vma->vm_start) {
2111 int error;
2112
2113 /*
2114 * Make sure that map_count on return from munmap() will
2115 * not exceed its limit; but let map_count go just above
2116 * its limit temporarily, to help free resources as expected.
2117 */
2118 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2119 return -ENOMEM;
2120
2121 error = __split_vma(mm, vma, start, 0);
2122 if (error)
2123 return error;
2124 prev = vma;
2125 }
2126
2127 /* Does it split the last one? */
2128 last = find_vma(mm, end);
2129 if (last && end > last->vm_start) {
2130 int error = __split_vma(mm, last, end, 1);
2131 if (error)
2132 return error;
2133 }
2134 vma = prev? prev->vm_next: mm->mmap;
2135
2136 /*
2137 * unlock any mlock()ed ranges before detaching vmas
2138 */
2139 if (mm->locked_vm) {
2140 struct vm_area_struct *tmp = vma;
2141 while (tmp && tmp->vm_start < end) {
2142 if (tmp->vm_flags & VM_LOCKED) {
2143 mm->locked_vm -= vma_pages(tmp);
2144 munlock_vma_pages_all(tmp);
2145 }
2146 tmp = tmp->vm_next;
2147 }
2148 }
2149
2150 /*
2151 * Remove the vma's, and unmap the actual pages
2152 */
2153 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2154 unmap_region(mm, vma, prev, start, end);
2155
2156 /* Fix up all other VM information */
2157 remove_vma_list(mm, vma);
2158
2159 return 0;
2160 }
2161 EXPORT_SYMBOL(do_munmap);
2162
2163 int vm_munmap(unsigned long start, size_t len)
2164 {
2165 int ret;
2166 struct mm_struct *mm = current->mm;
2167
2168 down_write(&mm->mmap_sem);
2169 ret = do_munmap(mm, start, len);
2170 up_write(&mm->mmap_sem);
2171 return ret;
2172 }
2173 EXPORT_SYMBOL(vm_munmap);
2174
2175 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2176 {
2177 profile_munmap(addr);
2178 return vm_munmap(addr, len);
2179 }
2180
2181 static inline void verify_mm_writelocked(struct mm_struct *mm)
2182 {
2183 #ifdef CONFIG_DEBUG_VM
2184 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2185 WARN_ON(1);
2186 up_read(&mm->mmap_sem);
2187 }
2188 #endif
2189 }
2190
2191 /*
2192 * this is really a simplified "do_mmap". it only handles
2193 * anonymous maps. eventually we may be able to do some
2194 * brk-specific accounting here.
2195 */
2196 static unsigned long do_brk(unsigned long addr, unsigned long len)
2197 {
2198 struct mm_struct * mm = current->mm;
2199 struct vm_area_struct * vma, * prev;
2200 unsigned long flags;
2201 struct rb_node ** rb_link, * rb_parent;
2202 pgoff_t pgoff = addr >> PAGE_SHIFT;
2203 int error;
2204
2205 len = PAGE_ALIGN(len);
2206 if (!len)
2207 return addr;
2208
2209 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2210 if (error)
2211 return error;
2212
2213 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2214
2215 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2216 if (error & ~PAGE_MASK)
2217 return error;
2218
2219 /*
2220 * mlock MCL_FUTURE?
2221 */
2222 if (mm->def_flags & VM_LOCKED) {
2223 unsigned long locked, lock_limit;
2224 locked = len >> PAGE_SHIFT;
2225 locked += mm->locked_vm;
2226 lock_limit = rlimit(RLIMIT_MEMLOCK);
2227 lock_limit >>= PAGE_SHIFT;
2228 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2229 return -EAGAIN;
2230 }
2231
2232 /*
2233 * mm->mmap_sem is required to protect against another thread
2234 * changing the mappings in case we sleep.
2235 */
2236 verify_mm_writelocked(mm);
2237
2238 /*
2239 * Clear old maps. this also does some error checking for us
2240 */
2241 munmap_back:
2242 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2243 if (vma && vma->vm_start < addr + len) {
2244 if (do_munmap(mm, addr, len))
2245 return -ENOMEM;
2246 goto munmap_back;
2247 }
2248
2249 /* Check against address space limits *after* clearing old maps... */
2250 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2251 return -ENOMEM;
2252
2253 if (mm->map_count > sysctl_max_map_count)
2254 return -ENOMEM;
2255
2256 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2257 return -ENOMEM;
2258
2259 /* Can we just expand an old private anonymous mapping? */
2260 vma = vma_merge(mm, prev, addr, addr + len, flags,
2261 NULL, NULL, pgoff, NULL);
2262 if (vma)
2263 goto out;
2264
2265 /*
2266 * create a vma struct for an anonymous mapping
2267 */
2268 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2269 if (!vma) {
2270 vm_unacct_memory(len >> PAGE_SHIFT);
2271 return -ENOMEM;
2272 }
2273
2274 INIT_LIST_HEAD(&vma->anon_vma_chain);
2275 vma->vm_mm = mm;
2276 vma->vm_start = addr;
2277 vma->vm_end = addr + len;
2278 vma->vm_pgoff = pgoff;
2279 vma->vm_flags = flags;
2280 vma->vm_page_prot = vm_get_page_prot(flags);
2281 vma_link(mm, vma, prev, rb_link, rb_parent);
2282 out:
2283 perf_event_mmap(vma);
2284 mm->total_vm += len >> PAGE_SHIFT;
2285 if (flags & VM_LOCKED) {
2286 if (!mlock_vma_pages_range(vma, addr, addr + len))
2287 mm->locked_vm += (len >> PAGE_SHIFT);
2288 }
2289 return addr;
2290 }
2291
2292 unsigned long vm_brk(unsigned long addr, unsigned long len)
2293 {
2294 struct mm_struct *mm = current->mm;
2295 unsigned long ret;
2296
2297 down_write(&mm->mmap_sem);
2298 ret = do_brk(addr, len);
2299 up_write(&mm->mmap_sem);
2300 return ret;
2301 }
2302 EXPORT_SYMBOL(vm_brk);
2303
2304 /* Release all mmaps. */
2305 void exit_mmap(struct mm_struct *mm)
2306 {
2307 struct mmu_gather tlb;
2308 struct vm_area_struct *vma;
2309 unsigned long nr_accounted = 0;
2310
2311 /* mm's last user has gone, and its about to be pulled down */
2312 mmu_notifier_release(mm);
2313
2314 if (mm->locked_vm) {
2315 vma = mm->mmap;
2316 while (vma) {
2317 if (vma->vm_flags & VM_LOCKED)
2318 munlock_vma_pages_all(vma);
2319 vma = vma->vm_next;
2320 }
2321 }
2322
2323 arch_exit_mmap(mm);
2324
2325 vma = mm->mmap;
2326 if (!vma) /* Can happen if dup_mmap() received an OOM */
2327 return;
2328
2329 lru_add_drain();
2330 flush_cache_mm(mm);
2331 tlb_gather_mmu(&tlb, mm, 1);
2332 /* update_hiwater_rss(mm) here? but nobody should be looking */
2333 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2334 unmap_vmas(&tlb, vma, 0, -1);
2335
2336 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2337 tlb_finish_mmu(&tlb, 0, -1);
2338
2339 /*
2340 * Walk the list again, actually closing and freeing it,
2341 * with preemption enabled, without holding any MM locks.
2342 */
2343 while (vma) {
2344 if (vma->vm_flags & VM_ACCOUNT)
2345 nr_accounted += vma_pages(vma);
2346 vma = remove_vma(vma);
2347 }
2348 vm_unacct_memory(nr_accounted);
2349
2350 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2351 }
2352
2353 /* Insert vm structure into process list sorted by address
2354 * and into the inode's i_mmap tree. If vm_file is non-NULL
2355 * then i_mmap_mutex is taken here.
2356 */
2357 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2358 {
2359 struct vm_area_struct * __vma, * prev;
2360 struct rb_node ** rb_link, * rb_parent;
2361
2362 /*
2363 * The vm_pgoff of a purely anonymous vma should be irrelevant
2364 * until its first write fault, when page's anon_vma and index
2365 * are set. But now set the vm_pgoff it will almost certainly
2366 * end up with (unless mremap moves it elsewhere before that
2367 * first wfault), so /proc/pid/maps tells a consistent story.
2368 *
2369 * By setting it to reflect the virtual start address of the
2370 * vma, merges and splits can happen in a seamless way, just
2371 * using the existing file pgoff checks and manipulations.
2372 * Similarly in do_mmap_pgoff and in do_brk.
2373 */
2374 if (!vma->vm_file) {
2375 BUG_ON(vma->anon_vma);
2376 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2377 }
2378 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2379 if (__vma && __vma->vm_start < vma->vm_end)
2380 return -ENOMEM;
2381 if ((vma->vm_flags & VM_ACCOUNT) &&
2382 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2383 return -ENOMEM;
2384
2385 if (vma->vm_file && uprobe_mmap(vma))
2386 return -EINVAL;
2387
2388 vma_link(mm, vma, prev, rb_link, rb_parent);
2389 return 0;
2390 }
2391
2392 /*
2393 * Copy the vma structure to a new location in the same mm,
2394 * prior to moving page table entries, to effect an mremap move.
2395 */
2396 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2397 unsigned long addr, unsigned long len, pgoff_t pgoff)
2398 {
2399 struct vm_area_struct *vma = *vmap;
2400 unsigned long vma_start = vma->vm_start;
2401 struct mm_struct *mm = vma->vm_mm;
2402 struct vm_area_struct *new_vma, *prev;
2403 struct rb_node **rb_link, *rb_parent;
2404 struct mempolicy *pol;
2405 bool faulted_in_anon_vma = true;
2406
2407 /*
2408 * If anonymous vma has not yet been faulted, update new pgoff
2409 * to match new location, to increase its chance of merging.
2410 */
2411 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2412 pgoff = addr >> PAGE_SHIFT;
2413 faulted_in_anon_vma = false;
2414 }
2415
2416 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2417 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2418 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2419 if (new_vma) {
2420 /*
2421 * Source vma may have been merged into new_vma
2422 */
2423 if (unlikely(vma_start >= new_vma->vm_start &&
2424 vma_start < new_vma->vm_end)) {
2425 /*
2426 * The only way we can get a vma_merge with
2427 * self during an mremap is if the vma hasn't
2428 * been faulted in yet and we were allowed to
2429 * reset the dst vma->vm_pgoff to the
2430 * destination address of the mremap to allow
2431 * the merge to happen. mremap must change the
2432 * vm_pgoff linearity between src and dst vmas
2433 * (in turn preventing a vma_merge) to be
2434 * safe. It is only safe to keep the vm_pgoff
2435 * linear if there are no pages mapped yet.
2436 */
2437 VM_BUG_ON(faulted_in_anon_vma);
2438 *vmap = new_vma;
2439 } else
2440 anon_vma_moveto_tail(new_vma);
2441 } else {
2442 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2443 if (new_vma) {
2444 *new_vma = *vma;
2445 pol = mpol_dup(vma_policy(vma));
2446 if (IS_ERR(pol))
2447 goto out_free_vma;
2448 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2449 if (anon_vma_clone(new_vma, vma))
2450 goto out_free_mempol;
2451 vma_set_policy(new_vma, pol);
2452 new_vma->vm_start = addr;
2453 new_vma->vm_end = addr + len;
2454 new_vma->vm_pgoff = pgoff;
2455 if (new_vma->vm_file) {
2456 get_file(new_vma->vm_file);
2457
2458 if (uprobe_mmap(new_vma))
2459 goto out_free_mempol;
2460
2461 if (vma->vm_flags & VM_EXECUTABLE)
2462 added_exe_file_vma(mm);
2463 }
2464 if (new_vma->vm_ops && new_vma->vm_ops->open)
2465 new_vma->vm_ops->open(new_vma);
2466 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2467 }
2468 }
2469 return new_vma;
2470
2471 out_free_mempol:
2472 mpol_put(pol);
2473 out_free_vma:
2474 kmem_cache_free(vm_area_cachep, new_vma);
2475 return NULL;
2476 }
2477
2478 /*
2479 * Return true if the calling process may expand its vm space by the passed
2480 * number of pages
2481 */
2482 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2483 {
2484 unsigned long cur = mm->total_vm; /* pages */
2485 unsigned long lim;
2486
2487 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2488
2489 if (cur + npages > lim)
2490 return 0;
2491 return 1;
2492 }
2493
2494
2495 static int special_mapping_fault(struct vm_area_struct *vma,
2496 struct vm_fault *vmf)
2497 {
2498 pgoff_t pgoff;
2499 struct page **pages;
2500
2501 /*
2502 * special mappings have no vm_file, and in that case, the mm
2503 * uses vm_pgoff internally. So we have to subtract it from here.
2504 * We are allowed to do this because we are the mm; do not copy
2505 * this code into drivers!
2506 */
2507 pgoff = vmf->pgoff - vma->vm_pgoff;
2508
2509 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2510 pgoff--;
2511
2512 if (*pages) {
2513 struct page *page = *pages;
2514 get_page(page);
2515 vmf->page = page;
2516 return 0;
2517 }
2518
2519 return VM_FAULT_SIGBUS;
2520 }
2521
2522 /*
2523 * Having a close hook prevents vma merging regardless of flags.
2524 */
2525 static void special_mapping_close(struct vm_area_struct *vma)
2526 {
2527 }
2528
2529 static const struct vm_operations_struct special_mapping_vmops = {
2530 .close = special_mapping_close,
2531 .fault = special_mapping_fault,
2532 };
2533
2534 /*
2535 * Called with mm->mmap_sem held for writing.
2536 * Insert a new vma covering the given region, with the given flags.
2537 * Its pages are supplied by the given array of struct page *.
2538 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2539 * The region past the last page supplied will always produce SIGBUS.
2540 * The array pointer and the pages it points to are assumed to stay alive
2541 * for as long as this mapping might exist.
2542 */
2543 int install_special_mapping(struct mm_struct *mm,
2544 unsigned long addr, unsigned long len,
2545 unsigned long vm_flags, struct page **pages)
2546 {
2547 int ret;
2548 struct vm_area_struct *vma;
2549
2550 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2551 if (unlikely(vma == NULL))
2552 return -ENOMEM;
2553
2554 INIT_LIST_HEAD(&vma->anon_vma_chain);
2555 vma->vm_mm = mm;
2556 vma->vm_start = addr;
2557 vma->vm_end = addr + len;
2558
2559 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2560 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2561
2562 vma->vm_ops = &special_mapping_vmops;
2563 vma->vm_private_data = pages;
2564
2565 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2566 if (ret)
2567 goto out;
2568
2569 ret = insert_vm_struct(mm, vma);
2570 if (ret)
2571 goto out;
2572
2573 mm->total_vm += len >> PAGE_SHIFT;
2574
2575 perf_event_mmap(vma);
2576
2577 return 0;
2578
2579 out:
2580 kmem_cache_free(vm_area_cachep, vma);
2581 return ret;
2582 }
2583
2584 static DEFINE_MUTEX(mm_all_locks_mutex);
2585
2586 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2587 {
2588 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2589 /*
2590 * The LSB of head.next can't change from under us
2591 * because we hold the mm_all_locks_mutex.
2592 */
2593 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2594 /*
2595 * We can safely modify head.next after taking the
2596 * anon_vma->root->mutex. If some other vma in this mm shares
2597 * the same anon_vma we won't take it again.
2598 *
2599 * No need of atomic instructions here, head.next
2600 * can't change from under us thanks to the
2601 * anon_vma->root->mutex.
2602 */
2603 if (__test_and_set_bit(0, (unsigned long *)
2604 &anon_vma->root->head.next))
2605 BUG();
2606 }
2607 }
2608
2609 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2610 {
2611 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2612 /*
2613 * AS_MM_ALL_LOCKS can't change from under us because
2614 * we hold the mm_all_locks_mutex.
2615 *
2616 * Operations on ->flags have to be atomic because
2617 * even if AS_MM_ALL_LOCKS is stable thanks to the
2618 * mm_all_locks_mutex, there may be other cpus
2619 * changing other bitflags in parallel to us.
2620 */
2621 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2622 BUG();
2623 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2624 }
2625 }
2626
2627 /*
2628 * This operation locks against the VM for all pte/vma/mm related
2629 * operations that could ever happen on a certain mm. This includes
2630 * vmtruncate, try_to_unmap, and all page faults.
2631 *
2632 * The caller must take the mmap_sem in write mode before calling
2633 * mm_take_all_locks(). The caller isn't allowed to release the
2634 * mmap_sem until mm_drop_all_locks() returns.
2635 *
2636 * mmap_sem in write mode is required in order to block all operations
2637 * that could modify pagetables and free pages without need of
2638 * altering the vma layout (for example populate_range() with
2639 * nonlinear vmas). It's also needed in write mode to avoid new
2640 * anon_vmas to be associated with existing vmas.
2641 *
2642 * A single task can't take more than one mm_take_all_locks() in a row
2643 * or it would deadlock.
2644 *
2645 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2646 * mapping->flags avoid to take the same lock twice, if more than one
2647 * vma in this mm is backed by the same anon_vma or address_space.
2648 *
2649 * We can take all the locks in random order because the VM code
2650 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2651 * takes more than one of them in a row. Secondly we're protected
2652 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2653 *
2654 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2655 * that may have to take thousand of locks.
2656 *
2657 * mm_take_all_locks() can fail if it's interrupted by signals.
2658 */
2659 int mm_take_all_locks(struct mm_struct *mm)
2660 {
2661 struct vm_area_struct *vma;
2662 struct anon_vma_chain *avc;
2663
2664 BUG_ON(down_read_trylock(&mm->mmap_sem));
2665
2666 mutex_lock(&mm_all_locks_mutex);
2667
2668 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2669 if (signal_pending(current))
2670 goto out_unlock;
2671 if (vma->vm_file && vma->vm_file->f_mapping)
2672 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2673 }
2674
2675 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2676 if (signal_pending(current))
2677 goto out_unlock;
2678 if (vma->anon_vma)
2679 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2680 vm_lock_anon_vma(mm, avc->anon_vma);
2681 }
2682
2683 return 0;
2684
2685 out_unlock:
2686 mm_drop_all_locks(mm);
2687 return -EINTR;
2688 }
2689
2690 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2691 {
2692 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2693 /*
2694 * The LSB of head.next can't change to 0 from under
2695 * us because we hold the mm_all_locks_mutex.
2696 *
2697 * We must however clear the bitflag before unlocking
2698 * the vma so the users using the anon_vma->head will
2699 * never see our bitflag.
2700 *
2701 * No need of atomic instructions here, head.next
2702 * can't change from under us until we release the
2703 * anon_vma->root->mutex.
2704 */
2705 if (!__test_and_clear_bit(0, (unsigned long *)
2706 &anon_vma->root->head.next))
2707 BUG();
2708 anon_vma_unlock(anon_vma);
2709 }
2710 }
2711
2712 static void vm_unlock_mapping(struct address_space *mapping)
2713 {
2714 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2715 /*
2716 * AS_MM_ALL_LOCKS can't change to 0 from under us
2717 * because we hold the mm_all_locks_mutex.
2718 */
2719 mutex_unlock(&mapping->i_mmap_mutex);
2720 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2721 &mapping->flags))
2722 BUG();
2723 }
2724 }
2725
2726 /*
2727 * The mmap_sem cannot be released by the caller until
2728 * mm_drop_all_locks() returns.
2729 */
2730 void mm_drop_all_locks(struct mm_struct *mm)
2731 {
2732 struct vm_area_struct *vma;
2733 struct anon_vma_chain *avc;
2734
2735 BUG_ON(down_read_trylock(&mm->mmap_sem));
2736 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2737
2738 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2739 if (vma->anon_vma)
2740 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2741 vm_unlock_anon_vma(avc->anon_vma);
2742 if (vma->vm_file && vma->vm_file->f_mapping)
2743 vm_unlock_mapping(vma->vm_file->f_mapping);
2744 }
2745
2746 mutex_unlock(&mm_all_locks_mutex);
2747 }
2748
2749 /*
2750 * initialise the VMA slab
2751 */
2752 void __init mmap_init(void)
2753 {
2754 int ret;
2755
2756 ret = percpu_counter_init(&vm_committed_as, 0);
2757 VM_BUG_ON(ret);
2758 }
This page took 0.121044 seconds and 6 git commands to generate.