Merge tag 'gpio-for-linus' of git://git.secretlab.ca/git/linux
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 #include <linux/uprobes.h>
35 #include <linux/rbtree_augmented.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/notifier.h>
38 #include <linux/memory.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/cacheflush.h>
42 #include <asm/tlb.h>
43 #include <asm/mmu_context.h>
44
45 #include "internal.h"
46
47 #ifndef arch_mmap_check
48 #define arch_mmap_check(addr, len, flags) (0)
49 #endif
50
51 #ifndef arch_rebalance_pgtables
52 #define arch_rebalance_pgtables(addr, len) (addr)
53 #endif
54
55 static void unmap_region(struct mm_struct *mm,
56 struct vm_area_struct *vma, struct vm_area_struct *prev,
57 unsigned long start, unsigned long end);
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
91 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
92 /*
93 * Make sure vm_committed_as in one cacheline and not cacheline shared with
94 * other variables. It can be updated by several CPUs frequently.
95 */
96 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
97
98 /*
99 * The global memory commitment made in the system can be a metric
100 * that can be used to drive ballooning decisions when Linux is hosted
101 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
102 * balancing memory across competing virtual machines that are hosted.
103 * Several metrics drive this policy engine including the guest reported
104 * memory commitment.
105 */
106 unsigned long vm_memory_committed(void)
107 {
108 return percpu_counter_read_positive(&vm_committed_as);
109 }
110 EXPORT_SYMBOL_GPL(vm_memory_committed);
111
112 /*
113 * Check that a process has enough memory to allocate a new virtual
114 * mapping. 0 means there is enough memory for the allocation to
115 * succeed and -ENOMEM implies there is not.
116 *
117 * We currently support three overcommit policies, which are set via the
118 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
119 *
120 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
121 * Additional code 2002 Jul 20 by Robert Love.
122 *
123 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
124 *
125 * Note this is a helper function intended to be used by LSMs which
126 * wish to use this logic.
127 */
128 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
129 {
130 unsigned long free, allowed, reserve;
131
132 vm_acct_memory(pages);
133
134 /*
135 * Sometimes we want to use more memory than we have
136 */
137 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
138 return 0;
139
140 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
141 free = global_page_state(NR_FREE_PAGES);
142 free += global_page_state(NR_FILE_PAGES);
143
144 /*
145 * shmem pages shouldn't be counted as free in this
146 * case, they can't be purged, only swapped out, and
147 * that won't affect the overall amount of available
148 * memory in the system.
149 */
150 free -= global_page_state(NR_SHMEM);
151
152 free += get_nr_swap_pages();
153
154 /*
155 * Any slabs which are created with the
156 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
157 * which are reclaimable, under pressure. The dentry
158 * cache and most inode caches should fall into this
159 */
160 free += global_page_state(NR_SLAB_RECLAIMABLE);
161
162 /*
163 * Leave reserved pages. The pages are not for anonymous pages.
164 */
165 if (free <= totalreserve_pages)
166 goto error;
167 else
168 free -= totalreserve_pages;
169
170 /*
171 * Reserve some for root
172 */
173 if (!cap_sys_admin)
174 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
175
176 if (free > pages)
177 return 0;
178
179 goto error;
180 }
181
182 allowed = (totalram_pages - hugetlb_total_pages())
183 * sysctl_overcommit_ratio / 100;
184 /*
185 * Reserve some for root
186 */
187 if (!cap_sys_admin)
188 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
189 allowed += total_swap_pages;
190
191 /*
192 * Don't let a single process grow so big a user can't recover
193 */
194 if (mm) {
195 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
196 allowed -= min(mm->total_vm / 32, reserve);
197 }
198
199 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
200 return 0;
201 error:
202 vm_unacct_memory(pages);
203
204 return -ENOMEM;
205 }
206
207 /*
208 * Requires inode->i_mapping->i_mmap_mutex
209 */
210 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
211 struct file *file, struct address_space *mapping)
212 {
213 if (vma->vm_flags & VM_DENYWRITE)
214 atomic_inc(&file_inode(file)->i_writecount);
215 if (vma->vm_flags & VM_SHARED)
216 mapping->i_mmap_writable--;
217
218 flush_dcache_mmap_lock(mapping);
219 if (unlikely(vma->vm_flags & VM_NONLINEAR))
220 list_del_init(&vma->shared.nonlinear);
221 else
222 vma_interval_tree_remove(vma, &mapping->i_mmap);
223 flush_dcache_mmap_unlock(mapping);
224 }
225
226 /*
227 * Unlink a file-based vm structure from its interval tree, to hide
228 * vma from rmap and vmtruncate before freeing its page tables.
229 */
230 void unlink_file_vma(struct vm_area_struct *vma)
231 {
232 struct file *file = vma->vm_file;
233
234 if (file) {
235 struct address_space *mapping = file->f_mapping;
236 mutex_lock(&mapping->i_mmap_mutex);
237 __remove_shared_vm_struct(vma, file, mapping);
238 mutex_unlock(&mapping->i_mmap_mutex);
239 }
240 }
241
242 /*
243 * Close a vm structure and free it, returning the next.
244 */
245 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
246 {
247 struct vm_area_struct *next = vma->vm_next;
248
249 might_sleep();
250 if (vma->vm_ops && vma->vm_ops->close)
251 vma->vm_ops->close(vma);
252 if (vma->vm_file)
253 fput(vma->vm_file);
254 mpol_put(vma_policy(vma));
255 kmem_cache_free(vm_area_cachep, vma);
256 return next;
257 }
258
259 static unsigned long do_brk(unsigned long addr, unsigned long len);
260
261 SYSCALL_DEFINE1(brk, unsigned long, brk)
262 {
263 unsigned long rlim, retval;
264 unsigned long newbrk, oldbrk;
265 struct mm_struct *mm = current->mm;
266 unsigned long min_brk;
267 bool populate;
268
269 down_write(&mm->mmap_sem);
270
271 #ifdef CONFIG_COMPAT_BRK
272 /*
273 * CONFIG_COMPAT_BRK can still be overridden by setting
274 * randomize_va_space to 2, which will still cause mm->start_brk
275 * to be arbitrarily shifted
276 */
277 if (current->brk_randomized)
278 min_brk = mm->start_brk;
279 else
280 min_brk = mm->end_data;
281 #else
282 min_brk = mm->start_brk;
283 #endif
284 if (brk < min_brk)
285 goto out;
286
287 /*
288 * Check against rlimit here. If this check is done later after the test
289 * of oldbrk with newbrk then it can escape the test and let the data
290 * segment grow beyond its set limit the in case where the limit is
291 * not page aligned -Ram Gupta
292 */
293 rlim = rlimit(RLIMIT_DATA);
294 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
295 (mm->end_data - mm->start_data) > rlim)
296 goto out;
297
298 newbrk = PAGE_ALIGN(brk);
299 oldbrk = PAGE_ALIGN(mm->brk);
300 if (oldbrk == newbrk)
301 goto set_brk;
302
303 /* Always allow shrinking brk. */
304 if (brk <= mm->brk) {
305 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
306 goto set_brk;
307 goto out;
308 }
309
310 /* Check against existing mmap mappings. */
311 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
312 goto out;
313
314 /* Ok, looks good - let it rip. */
315 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
316 goto out;
317
318 set_brk:
319 mm->brk = brk;
320 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
321 up_write(&mm->mmap_sem);
322 if (populate)
323 mm_populate(oldbrk, newbrk - oldbrk);
324 return brk;
325
326 out:
327 retval = mm->brk;
328 up_write(&mm->mmap_sem);
329 return retval;
330 }
331
332 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
333 {
334 unsigned long max, subtree_gap;
335 max = vma->vm_start;
336 if (vma->vm_prev)
337 max -= vma->vm_prev->vm_end;
338 if (vma->vm_rb.rb_left) {
339 subtree_gap = rb_entry(vma->vm_rb.rb_left,
340 struct vm_area_struct, vm_rb)->rb_subtree_gap;
341 if (subtree_gap > max)
342 max = subtree_gap;
343 }
344 if (vma->vm_rb.rb_right) {
345 subtree_gap = rb_entry(vma->vm_rb.rb_right,
346 struct vm_area_struct, vm_rb)->rb_subtree_gap;
347 if (subtree_gap > max)
348 max = subtree_gap;
349 }
350 return max;
351 }
352
353 #ifdef CONFIG_DEBUG_VM_RB
354 static int browse_rb(struct rb_root *root)
355 {
356 int i = 0, j, bug = 0;
357 struct rb_node *nd, *pn = NULL;
358 unsigned long prev = 0, pend = 0;
359
360 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
361 struct vm_area_struct *vma;
362 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
363 if (vma->vm_start < prev) {
364 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
365 bug = 1;
366 }
367 if (vma->vm_start < pend) {
368 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
369 bug = 1;
370 }
371 if (vma->vm_start > vma->vm_end) {
372 printk("vm_end %lx < vm_start %lx\n",
373 vma->vm_end, vma->vm_start);
374 bug = 1;
375 }
376 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
377 printk("free gap %lx, correct %lx\n",
378 vma->rb_subtree_gap,
379 vma_compute_subtree_gap(vma));
380 bug = 1;
381 }
382 i++;
383 pn = nd;
384 prev = vma->vm_start;
385 pend = vma->vm_end;
386 }
387 j = 0;
388 for (nd = pn; nd; nd = rb_prev(nd))
389 j++;
390 if (i != j) {
391 printk("backwards %d, forwards %d\n", j, i);
392 bug = 1;
393 }
394 return bug ? -1 : i;
395 }
396
397 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
398 {
399 struct rb_node *nd;
400
401 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
402 struct vm_area_struct *vma;
403 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
404 BUG_ON(vma != ignore &&
405 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
406 }
407 }
408
409 void validate_mm(struct mm_struct *mm)
410 {
411 int bug = 0;
412 int i = 0;
413 unsigned long highest_address = 0;
414 struct vm_area_struct *vma = mm->mmap;
415 while (vma) {
416 struct anon_vma_chain *avc;
417 vma_lock_anon_vma(vma);
418 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
419 anon_vma_interval_tree_verify(avc);
420 vma_unlock_anon_vma(vma);
421 highest_address = vma->vm_end;
422 vma = vma->vm_next;
423 i++;
424 }
425 if (i != mm->map_count) {
426 printk("map_count %d vm_next %d\n", mm->map_count, i);
427 bug = 1;
428 }
429 if (highest_address != mm->highest_vm_end) {
430 printk("mm->highest_vm_end %lx, found %lx\n",
431 mm->highest_vm_end, highest_address);
432 bug = 1;
433 }
434 i = browse_rb(&mm->mm_rb);
435 if (i != mm->map_count) {
436 printk("map_count %d rb %d\n", mm->map_count, i);
437 bug = 1;
438 }
439 BUG_ON(bug);
440 }
441 #else
442 #define validate_mm_rb(root, ignore) do { } while (0)
443 #define validate_mm(mm) do { } while (0)
444 #endif
445
446 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
447 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
448
449 /*
450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
452 * in the rbtree.
453 */
454 static void vma_gap_update(struct vm_area_struct *vma)
455 {
456 /*
457 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
458 * function that does exacltly what we want.
459 */
460 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
461 }
462
463 static inline void vma_rb_insert(struct vm_area_struct *vma,
464 struct rb_root *root)
465 {
466 /* All rb_subtree_gap values must be consistent prior to insertion */
467 validate_mm_rb(root, NULL);
468
469 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
470 }
471
472 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
473 {
474 /*
475 * All rb_subtree_gap values must be consistent prior to erase,
476 * with the possible exception of the vma being erased.
477 */
478 validate_mm_rb(root, vma);
479
480 /*
481 * Note rb_erase_augmented is a fairly large inline function,
482 * so make sure we instantiate it only once with our desired
483 * augmented rbtree callbacks.
484 */
485 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
486 }
487
488 /*
489 * vma has some anon_vma assigned, and is already inserted on that
490 * anon_vma's interval trees.
491 *
492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
493 * vma must be removed from the anon_vma's interval trees using
494 * anon_vma_interval_tree_pre_update_vma().
495 *
496 * After the update, the vma will be reinserted using
497 * anon_vma_interval_tree_post_update_vma().
498 *
499 * The entire update must be protected by exclusive mmap_sem and by
500 * the root anon_vma's mutex.
501 */
502 static inline void
503 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
504 {
505 struct anon_vma_chain *avc;
506
507 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
508 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
509 }
510
511 static inline void
512 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
513 {
514 struct anon_vma_chain *avc;
515
516 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
517 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
518 }
519
520 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
521 unsigned long end, struct vm_area_struct **pprev,
522 struct rb_node ***rb_link, struct rb_node **rb_parent)
523 {
524 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
525
526 __rb_link = &mm->mm_rb.rb_node;
527 rb_prev = __rb_parent = NULL;
528
529 while (*__rb_link) {
530 struct vm_area_struct *vma_tmp;
531
532 __rb_parent = *__rb_link;
533 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
534
535 if (vma_tmp->vm_end > addr) {
536 /* Fail if an existing vma overlaps the area */
537 if (vma_tmp->vm_start < end)
538 return -ENOMEM;
539 __rb_link = &__rb_parent->rb_left;
540 } else {
541 rb_prev = __rb_parent;
542 __rb_link = &__rb_parent->rb_right;
543 }
544 }
545
546 *pprev = NULL;
547 if (rb_prev)
548 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
549 *rb_link = __rb_link;
550 *rb_parent = __rb_parent;
551 return 0;
552 }
553
554 static unsigned long count_vma_pages_range(struct mm_struct *mm,
555 unsigned long addr, unsigned long end)
556 {
557 unsigned long nr_pages = 0;
558 struct vm_area_struct *vma;
559
560 /* Find first overlaping mapping */
561 vma = find_vma_intersection(mm, addr, end);
562 if (!vma)
563 return 0;
564
565 nr_pages = (min(end, vma->vm_end) -
566 max(addr, vma->vm_start)) >> PAGE_SHIFT;
567
568 /* Iterate over the rest of the overlaps */
569 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
570 unsigned long overlap_len;
571
572 if (vma->vm_start > end)
573 break;
574
575 overlap_len = min(end, vma->vm_end) - vma->vm_start;
576 nr_pages += overlap_len >> PAGE_SHIFT;
577 }
578
579 return nr_pages;
580 }
581
582 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
583 struct rb_node **rb_link, struct rb_node *rb_parent)
584 {
585 /* Update tracking information for the gap following the new vma. */
586 if (vma->vm_next)
587 vma_gap_update(vma->vm_next);
588 else
589 mm->highest_vm_end = vma->vm_end;
590
591 /*
592 * vma->vm_prev wasn't known when we followed the rbtree to find the
593 * correct insertion point for that vma. As a result, we could not
594 * update the vma vm_rb parents rb_subtree_gap values on the way down.
595 * So, we first insert the vma with a zero rb_subtree_gap value
596 * (to be consistent with what we did on the way down), and then
597 * immediately update the gap to the correct value. Finally we
598 * rebalance the rbtree after all augmented values have been set.
599 */
600 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
601 vma->rb_subtree_gap = 0;
602 vma_gap_update(vma);
603 vma_rb_insert(vma, &mm->mm_rb);
604 }
605
606 static void __vma_link_file(struct vm_area_struct *vma)
607 {
608 struct file *file;
609
610 file = vma->vm_file;
611 if (file) {
612 struct address_space *mapping = file->f_mapping;
613
614 if (vma->vm_flags & VM_DENYWRITE)
615 atomic_dec(&file_inode(file)->i_writecount);
616 if (vma->vm_flags & VM_SHARED)
617 mapping->i_mmap_writable++;
618
619 flush_dcache_mmap_lock(mapping);
620 if (unlikely(vma->vm_flags & VM_NONLINEAR))
621 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
622 else
623 vma_interval_tree_insert(vma, &mapping->i_mmap);
624 flush_dcache_mmap_unlock(mapping);
625 }
626 }
627
628 static void
629 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
630 struct vm_area_struct *prev, struct rb_node **rb_link,
631 struct rb_node *rb_parent)
632 {
633 __vma_link_list(mm, vma, prev, rb_parent);
634 __vma_link_rb(mm, vma, rb_link, rb_parent);
635 }
636
637 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
638 struct vm_area_struct *prev, struct rb_node **rb_link,
639 struct rb_node *rb_parent)
640 {
641 struct address_space *mapping = NULL;
642
643 if (vma->vm_file)
644 mapping = vma->vm_file->f_mapping;
645
646 if (mapping)
647 mutex_lock(&mapping->i_mmap_mutex);
648
649 __vma_link(mm, vma, prev, rb_link, rb_parent);
650 __vma_link_file(vma);
651
652 if (mapping)
653 mutex_unlock(&mapping->i_mmap_mutex);
654
655 mm->map_count++;
656 validate_mm(mm);
657 }
658
659 /*
660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
661 * mm's list and rbtree. It has already been inserted into the interval tree.
662 */
663 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
664 {
665 struct vm_area_struct *prev;
666 struct rb_node **rb_link, *rb_parent;
667
668 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
669 &prev, &rb_link, &rb_parent))
670 BUG();
671 __vma_link(mm, vma, prev, rb_link, rb_parent);
672 mm->map_count++;
673 }
674
675 static inline void
676 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
677 struct vm_area_struct *prev)
678 {
679 struct vm_area_struct *next;
680
681 vma_rb_erase(vma, &mm->mm_rb);
682 prev->vm_next = next = vma->vm_next;
683 if (next)
684 next->vm_prev = prev;
685 if (mm->mmap_cache == vma)
686 mm->mmap_cache = prev;
687 }
688
689 /*
690 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
691 * is already present in an i_mmap tree without adjusting the tree.
692 * The following helper function should be used when such adjustments
693 * are necessary. The "insert" vma (if any) is to be inserted
694 * before we drop the necessary locks.
695 */
696 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
697 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
698 {
699 struct mm_struct *mm = vma->vm_mm;
700 struct vm_area_struct *next = vma->vm_next;
701 struct vm_area_struct *importer = NULL;
702 struct address_space *mapping = NULL;
703 struct rb_root *root = NULL;
704 struct anon_vma *anon_vma = NULL;
705 struct file *file = vma->vm_file;
706 bool start_changed = false, end_changed = false;
707 long adjust_next = 0;
708 int remove_next = 0;
709
710 if (next && !insert) {
711 struct vm_area_struct *exporter = NULL;
712
713 if (end >= next->vm_end) {
714 /*
715 * vma expands, overlapping all the next, and
716 * perhaps the one after too (mprotect case 6).
717 */
718 again: remove_next = 1 + (end > next->vm_end);
719 end = next->vm_end;
720 exporter = next;
721 importer = vma;
722 } else if (end > next->vm_start) {
723 /*
724 * vma expands, overlapping part of the next:
725 * mprotect case 5 shifting the boundary up.
726 */
727 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
728 exporter = next;
729 importer = vma;
730 } else if (end < vma->vm_end) {
731 /*
732 * vma shrinks, and !insert tells it's not
733 * split_vma inserting another: so it must be
734 * mprotect case 4 shifting the boundary down.
735 */
736 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
737 exporter = vma;
738 importer = next;
739 }
740
741 /*
742 * Easily overlooked: when mprotect shifts the boundary,
743 * make sure the expanding vma has anon_vma set if the
744 * shrinking vma had, to cover any anon pages imported.
745 */
746 if (exporter && exporter->anon_vma && !importer->anon_vma) {
747 if (anon_vma_clone(importer, exporter))
748 return -ENOMEM;
749 importer->anon_vma = exporter->anon_vma;
750 }
751 }
752
753 if (file) {
754 mapping = file->f_mapping;
755 if (!(vma->vm_flags & VM_NONLINEAR)) {
756 root = &mapping->i_mmap;
757 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
758
759 if (adjust_next)
760 uprobe_munmap(next, next->vm_start,
761 next->vm_end);
762 }
763
764 mutex_lock(&mapping->i_mmap_mutex);
765 if (insert) {
766 /*
767 * Put into interval tree now, so instantiated pages
768 * are visible to arm/parisc __flush_dcache_page
769 * throughout; but we cannot insert into address
770 * space until vma start or end is updated.
771 */
772 __vma_link_file(insert);
773 }
774 }
775
776 vma_adjust_trans_huge(vma, start, end, adjust_next);
777
778 anon_vma = vma->anon_vma;
779 if (!anon_vma && adjust_next)
780 anon_vma = next->anon_vma;
781 if (anon_vma) {
782 VM_BUG_ON(adjust_next && next->anon_vma &&
783 anon_vma != next->anon_vma);
784 anon_vma_lock_write(anon_vma);
785 anon_vma_interval_tree_pre_update_vma(vma);
786 if (adjust_next)
787 anon_vma_interval_tree_pre_update_vma(next);
788 }
789
790 if (root) {
791 flush_dcache_mmap_lock(mapping);
792 vma_interval_tree_remove(vma, root);
793 if (adjust_next)
794 vma_interval_tree_remove(next, root);
795 }
796
797 if (start != vma->vm_start) {
798 vma->vm_start = start;
799 start_changed = true;
800 }
801 if (end != vma->vm_end) {
802 vma->vm_end = end;
803 end_changed = true;
804 }
805 vma->vm_pgoff = pgoff;
806 if (adjust_next) {
807 next->vm_start += adjust_next << PAGE_SHIFT;
808 next->vm_pgoff += adjust_next;
809 }
810
811 if (root) {
812 if (adjust_next)
813 vma_interval_tree_insert(next, root);
814 vma_interval_tree_insert(vma, root);
815 flush_dcache_mmap_unlock(mapping);
816 }
817
818 if (remove_next) {
819 /*
820 * vma_merge has merged next into vma, and needs
821 * us to remove next before dropping the locks.
822 */
823 __vma_unlink(mm, next, vma);
824 if (file)
825 __remove_shared_vm_struct(next, file, mapping);
826 } else if (insert) {
827 /*
828 * split_vma has split insert from vma, and needs
829 * us to insert it before dropping the locks
830 * (it may either follow vma or precede it).
831 */
832 __insert_vm_struct(mm, insert);
833 } else {
834 if (start_changed)
835 vma_gap_update(vma);
836 if (end_changed) {
837 if (!next)
838 mm->highest_vm_end = end;
839 else if (!adjust_next)
840 vma_gap_update(next);
841 }
842 }
843
844 if (anon_vma) {
845 anon_vma_interval_tree_post_update_vma(vma);
846 if (adjust_next)
847 anon_vma_interval_tree_post_update_vma(next);
848 anon_vma_unlock_write(anon_vma);
849 }
850 if (mapping)
851 mutex_unlock(&mapping->i_mmap_mutex);
852
853 if (root) {
854 uprobe_mmap(vma);
855
856 if (adjust_next)
857 uprobe_mmap(next);
858 }
859
860 if (remove_next) {
861 if (file) {
862 uprobe_munmap(next, next->vm_start, next->vm_end);
863 fput(file);
864 }
865 if (next->anon_vma)
866 anon_vma_merge(vma, next);
867 mm->map_count--;
868 vma_set_policy(vma, vma_policy(next));
869 kmem_cache_free(vm_area_cachep, next);
870 /*
871 * In mprotect's case 6 (see comments on vma_merge),
872 * we must remove another next too. It would clutter
873 * up the code too much to do both in one go.
874 */
875 next = vma->vm_next;
876 if (remove_next == 2)
877 goto again;
878 else if (next)
879 vma_gap_update(next);
880 else
881 mm->highest_vm_end = end;
882 }
883 if (insert && file)
884 uprobe_mmap(insert);
885
886 validate_mm(mm);
887
888 return 0;
889 }
890
891 /*
892 * If the vma has a ->close operation then the driver probably needs to release
893 * per-vma resources, so we don't attempt to merge those.
894 */
895 static inline int is_mergeable_vma(struct vm_area_struct *vma,
896 struct file *file, unsigned long vm_flags)
897 {
898 if (vma->vm_flags ^ vm_flags)
899 return 0;
900 if (vma->vm_file != file)
901 return 0;
902 if (vma->vm_ops && vma->vm_ops->close)
903 return 0;
904 return 1;
905 }
906
907 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
908 struct anon_vma *anon_vma2,
909 struct vm_area_struct *vma)
910 {
911 /*
912 * The list_is_singular() test is to avoid merging VMA cloned from
913 * parents. This can improve scalability caused by anon_vma lock.
914 */
915 if ((!anon_vma1 || !anon_vma2) && (!vma ||
916 list_is_singular(&vma->anon_vma_chain)))
917 return 1;
918 return anon_vma1 == anon_vma2;
919 }
920
921 /*
922 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
923 * in front of (at a lower virtual address and file offset than) the vma.
924 *
925 * We cannot merge two vmas if they have differently assigned (non-NULL)
926 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
927 *
928 * We don't check here for the merged mmap wrapping around the end of pagecache
929 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
930 * wrap, nor mmaps which cover the final page at index -1UL.
931 */
932 static int
933 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
934 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
935 {
936 if (is_mergeable_vma(vma, file, vm_flags) &&
937 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
938 if (vma->vm_pgoff == vm_pgoff)
939 return 1;
940 }
941 return 0;
942 }
943
944 /*
945 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
946 * beyond (at a higher virtual address and file offset than) the vma.
947 *
948 * We cannot merge two vmas if they have differently assigned (non-NULL)
949 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
950 */
951 static int
952 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
953 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
954 {
955 if (is_mergeable_vma(vma, file, vm_flags) &&
956 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
957 pgoff_t vm_pglen;
958 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
959 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
960 return 1;
961 }
962 return 0;
963 }
964
965 /*
966 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
967 * whether that can be merged with its predecessor or its successor.
968 * Or both (it neatly fills a hole).
969 *
970 * In most cases - when called for mmap, brk or mremap - [addr,end) is
971 * certain not to be mapped by the time vma_merge is called; but when
972 * called for mprotect, it is certain to be already mapped (either at
973 * an offset within prev, or at the start of next), and the flags of
974 * this area are about to be changed to vm_flags - and the no-change
975 * case has already been eliminated.
976 *
977 * The following mprotect cases have to be considered, where AAAA is
978 * the area passed down from mprotect_fixup, never extending beyond one
979 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
980 *
981 * AAAA AAAA AAAA AAAA
982 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
983 * cannot merge might become might become might become
984 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
985 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
986 * mremap move: PPPPNNNNNNNN 8
987 * AAAA
988 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
989 * might become case 1 below case 2 below case 3 below
990 *
991 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
992 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
993 */
994 struct vm_area_struct *vma_merge(struct mm_struct *mm,
995 struct vm_area_struct *prev, unsigned long addr,
996 unsigned long end, unsigned long vm_flags,
997 struct anon_vma *anon_vma, struct file *file,
998 pgoff_t pgoff, struct mempolicy *policy)
999 {
1000 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1001 struct vm_area_struct *area, *next;
1002 int err;
1003
1004 /*
1005 * We later require that vma->vm_flags == vm_flags,
1006 * so this tests vma->vm_flags & VM_SPECIAL, too.
1007 */
1008 if (vm_flags & VM_SPECIAL)
1009 return NULL;
1010
1011 if (prev)
1012 next = prev->vm_next;
1013 else
1014 next = mm->mmap;
1015 area = next;
1016 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1017 next = next->vm_next;
1018
1019 /*
1020 * Can it merge with the predecessor?
1021 */
1022 if (prev && prev->vm_end == addr &&
1023 mpol_equal(vma_policy(prev), policy) &&
1024 can_vma_merge_after(prev, vm_flags,
1025 anon_vma, file, pgoff)) {
1026 /*
1027 * OK, it can. Can we now merge in the successor as well?
1028 */
1029 if (next && end == next->vm_start &&
1030 mpol_equal(policy, vma_policy(next)) &&
1031 can_vma_merge_before(next, vm_flags,
1032 anon_vma, file, pgoff+pglen) &&
1033 is_mergeable_anon_vma(prev->anon_vma,
1034 next->anon_vma, NULL)) {
1035 /* cases 1, 6 */
1036 err = vma_adjust(prev, prev->vm_start,
1037 next->vm_end, prev->vm_pgoff, NULL);
1038 } else /* cases 2, 5, 7 */
1039 err = vma_adjust(prev, prev->vm_start,
1040 end, prev->vm_pgoff, NULL);
1041 if (err)
1042 return NULL;
1043 khugepaged_enter_vma_merge(prev);
1044 return prev;
1045 }
1046
1047 /*
1048 * Can this new request be merged in front of next?
1049 */
1050 if (next && end == next->vm_start &&
1051 mpol_equal(policy, vma_policy(next)) &&
1052 can_vma_merge_before(next, vm_flags,
1053 anon_vma, file, pgoff+pglen)) {
1054 if (prev && addr < prev->vm_end) /* case 4 */
1055 err = vma_adjust(prev, prev->vm_start,
1056 addr, prev->vm_pgoff, NULL);
1057 else /* cases 3, 8 */
1058 err = vma_adjust(area, addr, next->vm_end,
1059 next->vm_pgoff - pglen, NULL);
1060 if (err)
1061 return NULL;
1062 khugepaged_enter_vma_merge(area);
1063 return area;
1064 }
1065
1066 return NULL;
1067 }
1068
1069 /*
1070 * Rough compatbility check to quickly see if it's even worth looking
1071 * at sharing an anon_vma.
1072 *
1073 * They need to have the same vm_file, and the flags can only differ
1074 * in things that mprotect may change.
1075 *
1076 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1077 * we can merge the two vma's. For example, we refuse to merge a vma if
1078 * there is a vm_ops->close() function, because that indicates that the
1079 * driver is doing some kind of reference counting. But that doesn't
1080 * really matter for the anon_vma sharing case.
1081 */
1082 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1083 {
1084 return a->vm_end == b->vm_start &&
1085 mpol_equal(vma_policy(a), vma_policy(b)) &&
1086 a->vm_file == b->vm_file &&
1087 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1088 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1089 }
1090
1091 /*
1092 * Do some basic sanity checking to see if we can re-use the anon_vma
1093 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1094 * the same as 'old', the other will be the new one that is trying
1095 * to share the anon_vma.
1096 *
1097 * NOTE! This runs with mm_sem held for reading, so it is possible that
1098 * the anon_vma of 'old' is concurrently in the process of being set up
1099 * by another page fault trying to merge _that_. But that's ok: if it
1100 * is being set up, that automatically means that it will be a singleton
1101 * acceptable for merging, so we can do all of this optimistically. But
1102 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1103 *
1104 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1105 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1106 * is to return an anon_vma that is "complex" due to having gone through
1107 * a fork).
1108 *
1109 * We also make sure that the two vma's are compatible (adjacent,
1110 * and with the same memory policies). That's all stable, even with just
1111 * a read lock on the mm_sem.
1112 */
1113 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1114 {
1115 if (anon_vma_compatible(a, b)) {
1116 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1117
1118 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1119 return anon_vma;
1120 }
1121 return NULL;
1122 }
1123
1124 /*
1125 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1126 * neighbouring vmas for a suitable anon_vma, before it goes off
1127 * to allocate a new anon_vma. It checks because a repetitive
1128 * sequence of mprotects and faults may otherwise lead to distinct
1129 * anon_vmas being allocated, preventing vma merge in subsequent
1130 * mprotect.
1131 */
1132 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1133 {
1134 struct anon_vma *anon_vma;
1135 struct vm_area_struct *near;
1136
1137 near = vma->vm_next;
1138 if (!near)
1139 goto try_prev;
1140
1141 anon_vma = reusable_anon_vma(near, vma, near);
1142 if (anon_vma)
1143 return anon_vma;
1144 try_prev:
1145 near = vma->vm_prev;
1146 if (!near)
1147 goto none;
1148
1149 anon_vma = reusable_anon_vma(near, near, vma);
1150 if (anon_vma)
1151 return anon_vma;
1152 none:
1153 /*
1154 * There's no absolute need to look only at touching neighbours:
1155 * we could search further afield for "compatible" anon_vmas.
1156 * But it would probably just be a waste of time searching,
1157 * or lead to too many vmas hanging off the same anon_vma.
1158 * We're trying to allow mprotect remerging later on,
1159 * not trying to minimize memory used for anon_vmas.
1160 */
1161 return NULL;
1162 }
1163
1164 #ifdef CONFIG_PROC_FS
1165 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1166 struct file *file, long pages)
1167 {
1168 const unsigned long stack_flags
1169 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1170
1171 mm->total_vm += pages;
1172
1173 if (file) {
1174 mm->shared_vm += pages;
1175 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1176 mm->exec_vm += pages;
1177 } else if (flags & stack_flags)
1178 mm->stack_vm += pages;
1179 }
1180 #endif /* CONFIG_PROC_FS */
1181
1182 /*
1183 * If a hint addr is less than mmap_min_addr change hint to be as
1184 * low as possible but still greater than mmap_min_addr
1185 */
1186 static inline unsigned long round_hint_to_min(unsigned long hint)
1187 {
1188 hint &= PAGE_MASK;
1189 if (((void *)hint != NULL) &&
1190 (hint < mmap_min_addr))
1191 return PAGE_ALIGN(mmap_min_addr);
1192 return hint;
1193 }
1194
1195 /*
1196 * The caller must hold down_write(&current->mm->mmap_sem).
1197 */
1198
1199 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1200 unsigned long len, unsigned long prot,
1201 unsigned long flags, unsigned long pgoff,
1202 unsigned long *populate)
1203 {
1204 struct mm_struct * mm = current->mm;
1205 struct inode *inode;
1206 vm_flags_t vm_flags;
1207
1208 *populate = 0;
1209
1210 /*
1211 * Does the application expect PROT_READ to imply PROT_EXEC?
1212 *
1213 * (the exception is when the underlying filesystem is noexec
1214 * mounted, in which case we dont add PROT_EXEC.)
1215 */
1216 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1217 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1218 prot |= PROT_EXEC;
1219
1220 if (!len)
1221 return -EINVAL;
1222
1223 if (!(flags & MAP_FIXED))
1224 addr = round_hint_to_min(addr);
1225
1226 /* Careful about overflows.. */
1227 len = PAGE_ALIGN(len);
1228 if (!len)
1229 return -ENOMEM;
1230
1231 /* offset overflow? */
1232 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1233 return -EOVERFLOW;
1234
1235 /* Too many mappings? */
1236 if (mm->map_count > sysctl_max_map_count)
1237 return -ENOMEM;
1238
1239 /* Obtain the address to map to. we verify (or select) it and ensure
1240 * that it represents a valid section of the address space.
1241 */
1242 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1243 if (addr & ~PAGE_MASK)
1244 return addr;
1245
1246 /* Do simple checking here so the lower-level routines won't have
1247 * to. we assume access permissions have been handled by the open
1248 * of the memory object, so we don't do any here.
1249 */
1250 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1251 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1252
1253 if (flags & MAP_LOCKED)
1254 if (!can_do_mlock())
1255 return -EPERM;
1256
1257 /* mlock MCL_FUTURE? */
1258 if (vm_flags & VM_LOCKED) {
1259 unsigned long locked, lock_limit;
1260 locked = len >> PAGE_SHIFT;
1261 locked += mm->locked_vm;
1262 lock_limit = rlimit(RLIMIT_MEMLOCK);
1263 lock_limit >>= PAGE_SHIFT;
1264 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1265 return -EAGAIN;
1266 }
1267
1268 inode = file ? file_inode(file) : NULL;
1269
1270 if (file) {
1271 switch (flags & MAP_TYPE) {
1272 case MAP_SHARED:
1273 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1274 return -EACCES;
1275
1276 /*
1277 * Make sure we don't allow writing to an append-only
1278 * file..
1279 */
1280 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1281 return -EACCES;
1282
1283 /*
1284 * Make sure there are no mandatory locks on the file.
1285 */
1286 if (locks_verify_locked(inode))
1287 return -EAGAIN;
1288
1289 vm_flags |= VM_SHARED | VM_MAYSHARE;
1290 if (!(file->f_mode & FMODE_WRITE))
1291 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1292
1293 /* fall through */
1294 case MAP_PRIVATE:
1295 if (!(file->f_mode & FMODE_READ))
1296 return -EACCES;
1297 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1298 if (vm_flags & VM_EXEC)
1299 return -EPERM;
1300 vm_flags &= ~VM_MAYEXEC;
1301 }
1302
1303 if (!file->f_op || !file->f_op->mmap)
1304 return -ENODEV;
1305 break;
1306
1307 default:
1308 return -EINVAL;
1309 }
1310 } else {
1311 switch (flags & MAP_TYPE) {
1312 case MAP_SHARED:
1313 /*
1314 * Ignore pgoff.
1315 */
1316 pgoff = 0;
1317 vm_flags |= VM_SHARED | VM_MAYSHARE;
1318 break;
1319 case MAP_PRIVATE:
1320 /*
1321 * Set pgoff according to addr for anon_vma.
1322 */
1323 pgoff = addr >> PAGE_SHIFT;
1324 break;
1325 default:
1326 return -EINVAL;
1327 }
1328 }
1329
1330 /*
1331 * Set 'VM_NORESERVE' if we should not account for the
1332 * memory use of this mapping.
1333 */
1334 if (flags & MAP_NORESERVE) {
1335 /* We honor MAP_NORESERVE if allowed to overcommit */
1336 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1337 vm_flags |= VM_NORESERVE;
1338
1339 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1340 if (file && is_file_hugepages(file))
1341 vm_flags |= VM_NORESERVE;
1342 }
1343
1344 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1345 if (!IS_ERR_VALUE(addr) &&
1346 ((vm_flags & VM_LOCKED) ||
1347 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1348 *populate = len;
1349 return addr;
1350 }
1351
1352 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1353 unsigned long, prot, unsigned long, flags,
1354 unsigned long, fd, unsigned long, pgoff)
1355 {
1356 struct file *file = NULL;
1357 unsigned long retval = -EBADF;
1358
1359 if (!(flags & MAP_ANONYMOUS)) {
1360 audit_mmap_fd(fd, flags);
1361 if (unlikely(flags & MAP_HUGETLB))
1362 return -EINVAL;
1363 file = fget(fd);
1364 if (!file)
1365 goto out;
1366 if (is_file_hugepages(file))
1367 len = ALIGN(len, huge_page_size(hstate_file(file)));
1368 } else if (flags & MAP_HUGETLB) {
1369 struct user_struct *user = NULL;
1370
1371 len = ALIGN(len, huge_page_size(hstate_sizelog(
1372 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK)));
1373 /*
1374 * VM_NORESERVE is used because the reservations will be
1375 * taken when vm_ops->mmap() is called
1376 * A dummy user value is used because we are not locking
1377 * memory so no accounting is necessary
1378 */
1379 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1380 VM_NORESERVE,
1381 &user, HUGETLB_ANONHUGE_INODE,
1382 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1383 if (IS_ERR(file))
1384 return PTR_ERR(file);
1385 }
1386
1387 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1388
1389 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1390 if (file)
1391 fput(file);
1392 out:
1393 return retval;
1394 }
1395
1396 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1397 struct mmap_arg_struct {
1398 unsigned long addr;
1399 unsigned long len;
1400 unsigned long prot;
1401 unsigned long flags;
1402 unsigned long fd;
1403 unsigned long offset;
1404 };
1405
1406 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1407 {
1408 struct mmap_arg_struct a;
1409
1410 if (copy_from_user(&a, arg, sizeof(a)))
1411 return -EFAULT;
1412 if (a.offset & ~PAGE_MASK)
1413 return -EINVAL;
1414
1415 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1416 a.offset >> PAGE_SHIFT);
1417 }
1418 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1419
1420 /*
1421 * Some shared mappigns will want the pages marked read-only
1422 * to track write events. If so, we'll downgrade vm_page_prot
1423 * to the private version (using protection_map[] without the
1424 * VM_SHARED bit).
1425 */
1426 int vma_wants_writenotify(struct vm_area_struct *vma)
1427 {
1428 vm_flags_t vm_flags = vma->vm_flags;
1429
1430 /* If it was private or non-writable, the write bit is already clear */
1431 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1432 return 0;
1433
1434 /* The backer wishes to know when pages are first written to? */
1435 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1436 return 1;
1437
1438 /* The open routine did something to the protections already? */
1439 if (pgprot_val(vma->vm_page_prot) !=
1440 pgprot_val(vm_get_page_prot(vm_flags)))
1441 return 0;
1442
1443 /* Specialty mapping? */
1444 if (vm_flags & VM_PFNMAP)
1445 return 0;
1446
1447 /* Can the mapping track the dirty pages? */
1448 return vma->vm_file && vma->vm_file->f_mapping &&
1449 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1450 }
1451
1452 /*
1453 * We account for memory if it's a private writeable mapping,
1454 * not hugepages and VM_NORESERVE wasn't set.
1455 */
1456 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1457 {
1458 /*
1459 * hugetlb has its own accounting separate from the core VM
1460 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1461 */
1462 if (file && is_file_hugepages(file))
1463 return 0;
1464
1465 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1466 }
1467
1468 unsigned long mmap_region(struct file *file, unsigned long addr,
1469 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1470 {
1471 struct mm_struct *mm = current->mm;
1472 struct vm_area_struct *vma, *prev;
1473 int correct_wcount = 0;
1474 int error;
1475 struct rb_node **rb_link, *rb_parent;
1476 unsigned long charged = 0;
1477 struct inode *inode = file ? file_inode(file) : NULL;
1478
1479 /* Check against address space limit. */
1480 if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1481 unsigned long nr_pages;
1482
1483 /*
1484 * MAP_FIXED may remove pages of mappings that intersects with
1485 * requested mapping. Account for the pages it would unmap.
1486 */
1487 if (!(vm_flags & MAP_FIXED))
1488 return -ENOMEM;
1489
1490 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1491
1492 if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1493 return -ENOMEM;
1494 }
1495
1496 /* Clear old maps */
1497 error = -ENOMEM;
1498 munmap_back:
1499 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1500 if (do_munmap(mm, addr, len))
1501 return -ENOMEM;
1502 goto munmap_back;
1503 }
1504
1505 /*
1506 * Private writable mapping: check memory availability
1507 */
1508 if (accountable_mapping(file, vm_flags)) {
1509 charged = len >> PAGE_SHIFT;
1510 if (security_vm_enough_memory_mm(mm, charged))
1511 return -ENOMEM;
1512 vm_flags |= VM_ACCOUNT;
1513 }
1514
1515 /*
1516 * Can we just expand an old mapping?
1517 */
1518 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1519 if (vma)
1520 goto out;
1521
1522 /*
1523 * Determine the object being mapped and call the appropriate
1524 * specific mapper. the address has already been validated, but
1525 * not unmapped, but the maps are removed from the list.
1526 */
1527 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1528 if (!vma) {
1529 error = -ENOMEM;
1530 goto unacct_error;
1531 }
1532
1533 vma->vm_mm = mm;
1534 vma->vm_start = addr;
1535 vma->vm_end = addr + len;
1536 vma->vm_flags = vm_flags;
1537 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1538 vma->vm_pgoff = pgoff;
1539 INIT_LIST_HEAD(&vma->anon_vma_chain);
1540
1541 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1542
1543 if (file) {
1544 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1545 goto free_vma;
1546 if (vm_flags & VM_DENYWRITE) {
1547 error = deny_write_access(file);
1548 if (error)
1549 goto free_vma;
1550 correct_wcount = 1;
1551 }
1552 vma->vm_file = get_file(file);
1553 error = file->f_op->mmap(file, vma);
1554 if (error)
1555 goto unmap_and_free_vma;
1556
1557 /* Can addr have changed??
1558 *
1559 * Answer: Yes, several device drivers can do it in their
1560 * f_op->mmap method. -DaveM
1561 * Bug: If addr is changed, prev, rb_link, rb_parent should
1562 * be updated for vma_link()
1563 */
1564 WARN_ON_ONCE(addr != vma->vm_start);
1565
1566 addr = vma->vm_start;
1567 pgoff = vma->vm_pgoff;
1568 vm_flags = vma->vm_flags;
1569 } else if (vm_flags & VM_SHARED) {
1570 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1571 goto free_vma;
1572 error = shmem_zero_setup(vma);
1573 if (error)
1574 goto free_vma;
1575 }
1576
1577 if (vma_wants_writenotify(vma)) {
1578 pgprot_t pprot = vma->vm_page_prot;
1579
1580 /* Can vma->vm_page_prot have changed??
1581 *
1582 * Answer: Yes, drivers may have changed it in their
1583 * f_op->mmap method.
1584 *
1585 * Ensures that vmas marked as uncached stay that way.
1586 */
1587 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1588 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1589 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1590 }
1591
1592 vma_link(mm, vma, prev, rb_link, rb_parent);
1593 file = vma->vm_file;
1594
1595 /* Once vma denies write, undo our temporary denial count */
1596 if (correct_wcount)
1597 atomic_inc(&inode->i_writecount);
1598 out:
1599 perf_event_mmap(vma);
1600
1601 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1602 if (vm_flags & VM_LOCKED) {
1603 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1604 vma == get_gate_vma(current->mm)))
1605 mm->locked_vm += (len >> PAGE_SHIFT);
1606 else
1607 vma->vm_flags &= ~VM_LOCKED;
1608 }
1609
1610 if (file)
1611 uprobe_mmap(vma);
1612
1613 return addr;
1614
1615 unmap_and_free_vma:
1616 if (correct_wcount)
1617 atomic_inc(&inode->i_writecount);
1618 vma->vm_file = NULL;
1619 fput(file);
1620
1621 /* Undo any partial mapping done by a device driver. */
1622 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1623 charged = 0;
1624 free_vma:
1625 kmem_cache_free(vm_area_cachep, vma);
1626 unacct_error:
1627 if (charged)
1628 vm_unacct_memory(charged);
1629 return error;
1630 }
1631
1632 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1633 {
1634 /*
1635 * We implement the search by looking for an rbtree node that
1636 * immediately follows a suitable gap. That is,
1637 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1638 * - gap_end = vma->vm_start >= info->low_limit + length;
1639 * - gap_end - gap_start >= length
1640 */
1641
1642 struct mm_struct *mm = current->mm;
1643 struct vm_area_struct *vma;
1644 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1645
1646 /* Adjust search length to account for worst case alignment overhead */
1647 length = info->length + info->align_mask;
1648 if (length < info->length)
1649 return -ENOMEM;
1650
1651 /* Adjust search limits by the desired length */
1652 if (info->high_limit < length)
1653 return -ENOMEM;
1654 high_limit = info->high_limit - length;
1655
1656 if (info->low_limit > high_limit)
1657 return -ENOMEM;
1658 low_limit = info->low_limit + length;
1659
1660 /* Check if rbtree root looks promising */
1661 if (RB_EMPTY_ROOT(&mm->mm_rb))
1662 goto check_highest;
1663 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1664 if (vma->rb_subtree_gap < length)
1665 goto check_highest;
1666
1667 while (true) {
1668 /* Visit left subtree if it looks promising */
1669 gap_end = vma->vm_start;
1670 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1671 struct vm_area_struct *left =
1672 rb_entry(vma->vm_rb.rb_left,
1673 struct vm_area_struct, vm_rb);
1674 if (left->rb_subtree_gap >= length) {
1675 vma = left;
1676 continue;
1677 }
1678 }
1679
1680 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1681 check_current:
1682 /* Check if current node has a suitable gap */
1683 if (gap_start > high_limit)
1684 return -ENOMEM;
1685 if (gap_end >= low_limit && gap_end - gap_start >= length)
1686 goto found;
1687
1688 /* Visit right subtree if it looks promising */
1689 if (vma->vm_rb.rb_right) {
1690 struct vm_area_struct *right =
1691 rb_entry(vma->vm_rb.rb_right,
1692 struct vm_area_struct, vm_rb);
1693 if (right->rb_subtree_gap >= length) {
1694 vma = right;
1695 continue;
1696 }
1697 }
1698
1699 /* Go back up the rbtree to find next candidate node */
1700 while (true) {
1701 struct rb_node *prev = &vma->vm_rb;
1702 if (!rb_parent(prev))
1703 goto check_highest;
1704 vma = rb_entry(rb_parent(prev),
1705 struct vm_area_struct, vm_rb);
1706 if (prev == vma->vm_rb.rb_left) {
1707 gap_start = vma->vm_prev->vm_end;
1708 gap_end = vma->vm_start;
1709 goto check_current;
1710 }
1711 }
1712 }
1713
1714 check_highest:
1715 /* Check highest gap, which does not precede any rbtree node */
1716 gap_start = mm->highest_vm_end;
1717 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1718 if (gap_start > high_limit)
1719 return -ENOMEM;
1720
1721 found:
1722 /* We found a suitable gap. Clip it with the original low_limit. */
1723 if (gap_start < info->low_limit)
1724 gap_start = info->low_limit;
1725
1726 /* Adjust gap address to the desired alignment */
1727 gap_start += (info->align_offset - gap_start) & info->align_mask;
1728
1729 VM_BUG_ON(gap_start + info->length > info->high_limit);
1730 VM_BUG_ON(gap_start + info->length > gap_end);
1731 return gap_start;
1732 }
1733
1734 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1735 {
1736 struct mm_struct *mm = current->mm;
1737 struct vm_area_struct *vma;
1738 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1739
1740 /* Adjust search length to account for worst case alignment overhead */
1741 length = info->length + info->align_mask;
1742 if (length < info->length)
1743 return -ENOMEM;
1744
1745 /*
1746 * Adjust search limits by the desired length.
1747 * See implementation comment at top of unmapped_area().
1748 */
1749 gap_end = info->high_limit;
1750 if (gap_end < length)
1751 return -ENOMEM;
1752 high_limit = gap_end - length;
1753
1754 if (info->low_limit > high_limit)
1755 return -ENOMEM;
1756 low_limit = info->low_limit + length;
1757
1758 /* Check highest gap, which does not precede any rbtree node */
1759 gap_start = mm->highest_vm_end;
1760 if (gap_start <= high_limit)
1761 goto found_highest;
1762
1763 /* Check if rbtree root looks promising */
1764 if (RB_EMPTY_ROOT(&mm->mm_rb))
1765 return -ENOMEM;
1766 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1767 if (vma->rb_subtree_gap < length)
1768 return -ENOMEM;
1769
1770 while (true) {
1771 /* Visit right subtree if it looks promising */
1772 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1773 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1774 struct vm_area_struct *right =
1775 rb_entry(vma->vm_rb.rb_right,
1776 struct vm_area_struct, vm_rb);
1777 if (right->rb_subtree_gap >= length) {
1778 vma = right;
1779 continue;
1780 }
1781 }
1782
1783 check_current:
1784 /* Check if current node has a suitable gap */
1785 gap_end = vma->vm_start;
1786 if (gap_end < low_limit)
1787 return -ENOMEM;
1788 if (gap_start <= high_limit && gap_end - gap_start >= length)
1789 goto found;
1790
1791 /* Visit left subtree if it looks promising */
1792 if (vma->vm_rb.rb_left) {
1793 struct vm_area_struct *left =
1794 rb_entry(vma->vm_rb.rb_left,
1795 struct vm_area_struct, vm_rb);
1796 if (left->rb_subtree_gap >= length) {
1797 vma = left;
1798 continue;
1799 }
1800 }
1801
1802 /* Go back up the rbtree to find next candidate node */
1803 while (true) {
1804 struct rb_node *prev = &vma->vm_rb;
1805 if (!rb_parent(prev))
1806 return -ENOMEM;
1807 vma = rb_entry(rb_parent(prev),
1808 struct vm_area_struct, vm_rb);
1809 if (prev == vma->vm_rb.rb_right) {
1810 gap_start = vma->vm_prev ?
1811 vma->vm_prev->vm_end : 0;
1812 goto check_current;
1813 }
1814 }
1815 }
1816
1817 found:
1818 /* We found a suitable gap. Clip it with the original high_limit. */
1819 if (gap_end > info->high_limit)
1820 gap_end = info->high_limit;
1821
1822 found_highest:
1823 /* Compute highest gap address at the desired alignment */
1824 gap_end -= info->length;
1825 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1826
1827 VM_BUG_ON(gap_end < info->low_limit);
1828 VM_BUG_ON(gap_end < gap_start);
1829 return gap_end;
1830 }
1831
1832 /* Get an address range which is currently unmapped.
1833 * For shmat() with addr=0.
1834 *
1835 * Ugly calling convention alert:
1836 * Return value with the low bits set means error value,
1837 * ie
1838 * if (ret & ~PAGE_MASK)
1839 * error = ret;
1840 *
1841 * This function "knows" that -ENOMEM has the bits set.
1842 */
1843 #ifndef HAVE_ARCH_UNMAPPED_AREA
1844 unsigned long
1845 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1846 unsigned long len, unsigned long pgoff, unsigned long flags)
1847 {
1848 struct mm_struct *mm = current->mm;
1849 struct vm_area_struct *vma;
1850 struct vm_unmapped_area_info info;
1851
1852 if (len > TASK_SIZE)
1853 return -ENOMEM;
1854
1855 if (flags & MAP_FIXED)
1856 return addr;
1857
1858 if (addr) {
1859 addr = PAGE_ALIGN(addr);
1860 vma = find_vma(mm, addr);
1861 if (TASK_SIZE - len >= addr &&
1862 (!vma || addr + len <= vma->vm_start))
1863 return addr;
1864 }
1865
1866 info.flags = 0;
1867 info.length = len;
1868 info.low_limit = TASK_UNMAPPED_BASE;
1869 info.high_limit = TASK_SIZE;
1870 info.align_mask = 0;
1871 return vm_unmapped_area(&info);
1872 }
1873 #endif
1874
1875 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1876 {
1877 /*
1878 * Is this a new hole at the lowest possible address?
1879 */
1880 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1881 mm->free_area_cache = addr;
1882 }
1883
1884 /*
1885 * This mmap-allocator allocates new areas top-down from below the
1886 * stack's low limit (the base):
1887 */
1888 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1889 unsigned long
1890 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1891 const unsigned long len, const unsigned long pgoff,
1892 const unsigned long flags)
1893 {
1894 struct vm_area_struct *vma;
1895 struct mm_struct *mm = current->mm;
1896 unsigned long addr = addr0;
1897 struct vm_unmapped_area_info info;
1898
1899 /* requested length too big for entire address space */
1900 if (len > TASK_SIZE)
1901 return -ENOMEM;
1902
1903 if (flags & MAP_FIXED)
1904 return addr;
1905
1906 /* requesting a specific address */
1907 if (addr) {
1908 addr = PAGE_ALIGN(addr);
1909 vma = find_vma(mm, addr);
1910 if (TASK_SIZE - len >= addr &&
1911 (!vma || addr + len <= vma->vm_start))
1912 return addr;
1913 }
1914
1915 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1916 info.length = len;
1917 info.low_limit = PAGE_SIZE;
1918 info.high_limit = mm->mmap_base;
1919 info.align_mask = 0;
1920 addr = vm_unmapped_area(&info);
1921
1922 /*
1923 * A failed mmap() very likely causes application failure,
1924 * so fall back to the bottom-up function here. This scenario
1925 * can happen with large stack limits and large mmap()
1926 * allocations.
1927 */
1928 if (addr & ~PAGE_MASK) {
1929 VM_BUG_ON(addr != -ENOMEM);
1930 info.flags = 0;
1931 info.low_limit = TASK_UNMAPPED_BASE;
1932 info.high_limit = TASK_SIZE;
1933 addr = vm_unmapped_area(&info);
1934 }
1935
1936 return addr;
1937 }
1938 #endif
1939
1940 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1941 {
1942 /*
1943 * Is this a new hole at the highest possible address?
1944 */
1945 if (addr > mm->free_area_cache)
1946 mm->free_area_cache = addr;
1947
1948 /* dont allow allocations above current base */
1949 if (mm->free_area_cache > mm->mmap_base)
1950 mm->free_area_cache = mm->mmap_base;
1951 }
1952
1953 unsigned long
1954 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1955 unsigned long pgoff, unsigned long flags)
1956 {
1957 unsigned long (*get_area)(struct file *, unsigned long,
1958 unsigned long, unsigned long, unsigned long);
1959
1960 unsigned long error = arch_mmap_check(addr, len, flags);
1961 if (error)
1962 return error;
1963
1964 /* Careful about overflows.. */
1965 if (len > TASK_SIZE)
1966 return -ENOMEM;
1967
1968 get_area = current->mm->get_unmapped_area;
1969 if (file && file->f_op && file->f_op->get_unmapped_area)
1970 get_area = file->f_op->get_unmapped_area;
1971 addr = get_area(file, addr, len, pgoff, flags);
1972 if (IS_ERR_VALUE(addr))
1973 return addr;
1974
1975 if (addr > TASK_SIZE - len)
1976 return -ENOMEM;
1977 if (addr & ~PAGE_MASK)
1978 return -EINVAL;
1979
1980 addr = arch_rebalance_pgtables(addr, len);
1981 error = security_mmap_addr(addr);
1982 return error ? error : addr;
1983 }
1984
1985 EXPORT_SYMBOL(get_unmapped_area);
1986
1987 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1988 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1989 {
1990 struct vm_area_struct *vma = NULL;
1991
1992 /* Check the cache first. */
1993 /* (Cache hit rate is typically around 35%.) */
1994 vma = ACCESS_ONCE(mm->mmap_cache);
1995 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1996 struct rb_node *rb_node;
1997
1998 rb_node = mm->mm_rb.rb_node;
1999 vma = NULL;
2000
2001 while (rb_node) {
2002 struct vm_area_struct *vma_tmp;
2003
2004 vma_tmp = rb_entry(rb_node,
2005 struct vm_area_struct, vm_rb);
2006
2007 if (vma_tmp->vm_end > addr) {
2008 vma = vma_tmp;
2009 if (vma_tmp->vm_start <= addr)
2010 break;
2011 rb_node = rb_node->rb_left;
2012 } else
2013 rb_node = rb_node->rb_right;
2014 }
2015 if (vma)
2016 mm->mmap_cache = vma;
2017 }
2018 return vma;
2019 }
2020
2021 EXPORT_SYMBOL(find_vma);
2022
2023 /*
2024 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2025 */
2026 struct vm_area_struct *
2027 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2028 struct vm_area_struct **pprev)
2029 {
2030 struct vm_area_struct *vma;
2031
2032 vma = find_vma(mm, addr);
2033 if (vma) {
2034 *pprev = vma->vm_prev;
2035 } else {
2036 struct rb_node *rb_node = mm->mm_rb.rb_node;
2037 *pprev = NULL;
2038 while (rb_node) {
2039 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2040 rb_node = rb_node->rb_right;
2041 }
2042 }
2043 return vma;
2044 }
2045
2046 /*
2047 * Verify that the stack growth is acceptable and
2048 * update accounting. This is shared with both the
2049 * grow-up and grow-down cases.
2050 */
2051 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2052 {
2053 struct mm_struct *mm = vma->vm_mm;
2054 struct rlimit *rlim = current->signal->rlim;
2055 unsigned long new_start;
2056
2057 /* address space limit tests */
2058 if (!may_expand_vm(mm, grow))
2059 return -ENOMEM;
2060
2061 /* Stack limit test */
2062 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2063 return -ENOMEM;
2064
2065 /* mlock limit tests */
2066 if (vma->vm_flags & VM_LOCKED) {
2067 unsigned long locked;
2068 unsigned long limit;
2069 locked = mm->locked_vm + grow;
2070 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2071 limit >>= PAGE_SHIFT;
2072 if (locked > limit && !capable(CAP_IPC_LOCK))
2073 return -ENOMEM;
2074 }
2075
2076 /* Check to ensure the stack will not grow into a hugetlb-only region */
2077 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2078 vma->vm_end - size;
2079 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2080 return -EFAULT;
2081
2082 /*
2083 * Overcommit.. This must be the final test, as it will
2084 * update security statistics.
2085 */
2086 if (security_vm_enough_memory_mm(mm, grow))
2087 return -ENOMEM;
2088
2089 /* Ok, everything looks good - let it rip */
2090 if (vma->vm_flags & VM_LOCKED)
2091 mm->locked_vm += grow;
2092 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2093 return 0;
2094 }
2095
2096 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2097 /*
2098 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2099 * vma is the last one with address > vma->vm_end. Have to extend vma.
2100 */
2101 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2102 {
2103 int error;
2104
2105 if (!(vma->vm_flags & VM_GROWSUP))
2106 return -EFAULT;
2107
2108 /*
2109 * We must make sure the anon_vma is allocated
2110 * so that the anon_vma locking is not a noop.
2111 */
2112 if (unlikely(anon_vma_prepare(vma)))
2113 return -ENOMEM;
2114 vma_lock_anon_vma(vma);
2115
2116 /*
2117 * vma->vm_start/vm_end cannot change under us because the caller
2118 * is required to hold the mmap_sem in read mode. We need the
2119 * anon_vma lock to serialize against concurrent expand_stacks.
2120 * Also guard against wrapping around to address 0.
2121 */
2122 if (address < PAGE_ALIGN(address+4))
2123 address = PAGE_ALIGN(address+4);
2124 else {
2125 vma_unlock_anon_vma(vma);
2126 return -ENOMEM;
2127 }
2128 error = 0;
2129
2130 /* Somebody else might have raced and expanded it already */
2131 if (address > vma->vm_end) {
2132 unsigned long size, grow;
2133
2134 size = address - vma->vm_start;
2135 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2136
2137 error = -ENOMEM;
2138 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2139 error = acct_stack_growth(vma, size, grow);
2140 if (!error) {
2141 /*
2142 * vma_gap_update() doesn't support concurrent
2143 * updates, but we only hold a shared mmap_sem
2144 * lock here, so we need to protect against
2145 * concurrent vma expansions.
2146 * vma_lock_anon_vma() doesn't help here, as
2147 * we don't guarantee that all growable vmas
2148 * in a mm share the same root anon vma.
2149 * So, we reuse mm->page_table_lock to guard
2150 * against concurrent vma expansions.
2151 */
2152 spin_lock(&vma->vm_mm->page_table_lock);
2153 anon_vma_interval_tree_pre_update_vma(vma);
2154 vma->vm_end = address;
2155 anon_vma_interval_tree_post_update_vma(vma);
2156 if (vma->vm_next)
2157 vma_gap_update(vma->vm_next);
2158 else
2159 vma->vm_mm->highest_vm_end = address;
2160 spin_unlock(&vma->vm_mm->page_table_lock);
2161
2162 perf_event_mmap(vma);
2163 }
2164 }
2165 }
2166 vma_unlock_anon_vma(vma);
2167 khugepaged_enter_vma_merge(vma);
2168 validate_mm(vma->vm_mm);
2169 return error;
2170 }
2171 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2172
2173 /*
2174 * vma is the first one with address < vma->vm_start. Have to extend vma.
2175 */
2176 int expand_downwards(struct vm_area_struct *vma,
2177 unsigned long address)
2178 {
2179 int error;
2180
2181 /*
2182 * We must make sure the anon_vma is allocated
2183 * so that the anon_vma locking is not a noop.
2184 */
2185 if (unlikely(anon_vma_prepare(vma)))
2186 return -ENOMEM;
2187
2188 address &= PAGE_MASK;
2189 error = security_mmap_addr(address);
2190 if (error)
2191 return error;
2192
2193 vma_lock_anon_vma(vma);
2194
2195 /*
2196 * vma->vm_start/vm_end cannot change under us because the caller
2197 * is required to hold the mmap_sem in read mode. We need the
2198 * anon_vma lock to serialize against concurrent expand_stacks.
2199 */
2200
2201 /* Somebody else might have raced and expanded it already */
2202 if (address < vma->vm_start) {
2203 unsigned long size, grow;
2204
2205 size = vma->vm_end - address;
2206 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2207
2208 error = -ENOMEM;
2209 if (grow <= vma->vm_pgoff) {
2210 error = acct_stack_growth(vma, size, grow);
2211 if (!error) {
2212 /*
2213 * vma_gap_update() doesn't support concurrent
2214 * updates, but we only hold a shared mmap_sem
2215 * lock here, so we need to protect against
2216 * concurrent vma expansions.
2217 * vma_lock_anon_vma() doesn't help here, as
2218 * we don't guarantee that all growable vmas
2219 * in a mm share the same root anon vma.
2220 * So, we reuse mm->page_table_lock to guard
2221 * against concurrent vma expansions.
2222 */
2223 spin_lock(&vma->vm_mm->page_table_lock);
2224 anon_vma_interval_tree_pre_update_vma(vma);
2225 vma->vm_start = address;
2226 vma->vm_pgoff -= grow;
2227 anon_vma_interval_tree_post_update_vma(vma);
2228 vma_gap_update(vma);
2229 spin_unlock(&vma->vm_mm->page_table_lock);
2230
2231 perf_event_mmap(vma);
2232 }
2233 }
2234 }
2235 vma_unlock_anon_vma(vma);
2236 khugepaged_enter_vma_merge(vma);
2237 validate_mm(vma->vm_mm);
2238 return error;
2239 }
2240
2241 /*
2242 * Note how expand_stack() refuses to expand the stack all the way to
2243 * abut the next virtual mapping, *unless* that mapping itself is also
2244 * a stack mapping. We want to leave room for a guard page, after all
2245 * (the guard page itself is not added here, that is done by the
2246 * actual page faulting logic)
2247 *
2248 * This matches the behavior of the guard page logic (see mm/memory.c:
2249 * check_stack_guard_page()), which only allows the guard page to be
2250 * removed under these circumstances.
2251 */
2252 #ifdef CONFIG_STACK_GROWSUP
2253 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2254 {
2255 struct vm_area_struct *next;
2256
2257 address &= PAGE_MASK;
2258 next = vma->vm_next;
2259 if (next && next->vm_start == address + PAGE_SIZE) {
2260 if (!(next->vm_flags & VM_GROWSUP))
2261 return -ENOMEM;
2262 }
2263 return expand_upwards(vma, address);
2264 }
2265
2266 struct vm_area_struct *
2267 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2268 {
2269 struct vm_area_struct *vma, *prev;
2270
2271 addr &= PAGE_MASK;
2272 vma = find_vma_prev(mm, addr, &prev);
2273 if (vma && (vma->vm_start <= addr))
2274 return vma;
2275 if (!prev || expand_stack(prev, addr))
2276 return NULL;
2277 if (prev->vm_flags & VM_LOCKED)
2278 __mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2279 return prev;
2280 }
2281 #else
2282 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2283 {
2284 struct vm_area_struct *prev;
2285
2286 address &= PAGE_MASK;
2287 prev = vma->vm_prev;
2288 if (prev && prev->vm_end == address) {
2289 if (!(prev->vm_flags & VM_GROWSDOWN))
2290 return -ENOMEM;
2291 }
2292 return expand_downwards(vma, address);
2293 }
2294
2295 struct vm_area_struct *
2296 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2297 {
2298 struct vm_area_struct * vma;
2299 unsigned long start;
2300
2301 addr &= PAGE_MASK;
2302 vma = find_vma(mm,addr);
2303 if (!vma)
2304 return NULL;
2305 if (vma->vm_start <= addr)
2306 return vma;
2307 if (!(vma->vm_flags & VM_GROWSDOWN))
2308 return NULL;
2309 start = vma->vm_start;
2310 if (expand_stack(vma, addr))
2311 return NULL;
2312 if (vma->vm_flags & VM_LOCKED)
2313 __mlock_vma_pages_range(vma, addr, start, NULL);
2314 return vma;
2315 }
2316 #endif
2317
2318 /*
2319 * Ok - we have the memory areas we should free on the vma list,
2320 * so release them, and do the vma updates.
2321 *
2322 * Called with the mm semaphore held.
2323 */
2324 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2325 {
2326 unsigned long nr_accounted = 0;
2327
2328 /* Update high watermark before we lower total_vm */
2329 update_hiwater_vm(mm);
2330 do {
2331 long nrpages = vma_pages(vma);
2332
2333 if (vma->vm_flags & VM_ACCOUNT)
2334 nr_accounted += nrpages;
2335 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2336 vma = remove_vma(vma);
2337 } while (vma);
2338 vm_unacct_memory(nr_accounted);
2339 validate_mm(mm);
2340 }
2341
2342 /*
2343 * Get rid of page table information in the indicated region.
2344 *
2345 * Called with the mm semaphore held.
2346 */
2347 static void unmap_region(struct mm_struct *mm,
2348 struct vm_area_struct *vma, struct vm_area_struct *prev,
2349 unsigned long start, unsigned long end)
2350 {
2351 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2352 struct mmu_gather tlb;
2353
2354 lru_add_drain();
2355 tlb_gather_mmu(&tlb, mm, 0);
2356 update_hiwater_rss(mm);
2357 unmap_vmas(&tlb, vma, start, end);
2358 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2359 next ? next->vm_start : USER_PGTABLES_CEILING);
2360 tlb_finish_mmu(&tlb, start, end);
2361 }
2362
2363 /*
2364 * Create a list of vma's touched by the unmap, removing them from the mm's
2365 * vma list as we go..
2366 */
2367 static void
2368 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2369 struct vm_area_struct *prev, unsigned long end)
2370 {
2371 struct vm_area_struct **insertion_point;
2372 struct vm_area_struct *tail_vma = NULL;
2373 unsigned long addr;
2374
2375 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2376 vma->vm_prev = NULL;
2377 do {
2378 vma_rb_erase(vma, &mm->mm_rb);
2379 mm->map_count--;
2380 tail_vma = vma;
2381 vma = vma->vm_next;
2382 } while (vma && vma->vm_start < end);
2383 *insertion_point = vma;
2384 if (vma) {
2385 vma->vm_prev = prev;
2386 vma_gap_update(vma);
2387 } else
2388 mm->highest_vm_end = prev ? prev->vm_end : 0;
2389 tail_vma->vm_next = NULL;
2390 if (mm->unmap_area == arch_unmap_area)
2391 addr = prev ? prev->vm_end : mm->mmap_base;
2392 else
2393 addr = vma ? vma->vm_start : mm->mmap_base;
2394 mm->unmap_area(mm, addr);
2395 mm->mmap_cache = NULL; /* Kill the cache. */
2396 }
2397
2398 /*
2399 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2400 * munmap path where it doesn't make sense to fail.
2401 */
2402 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2403 unsigned long addr, int new_below)
2404 {
2405 struct mempolicy *pol;
2406 struct vm_area_struct *new;
2407 int err = -ENOMEM;
2408
2409 if (is_vm_hugetlb_page(vma) && (addr &
2410 ~(huge_page_mask(hstate_vma(vma)))))
2411 return -EINVAL;
2412
2413 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2414 if (!new)
2415 goto out_err;
2416
2417 /* most fields are the same, copy all, and then fixup */
2418 *new = *vma;
2419
2420 INIT_LIST_HEAD(&new->anon_vma_chain);
2421
2422 if (new_below)
2423 new->vm_end = addr;
2424 else {
2425 new->vm_start = addr;
2426 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2427 }
2428
2429 pol = mpol_dup(vma_policy(vma));
2430 if (IS_ERR(pol)) {
2431 err = PTR_ERR(pol);
2432 goto out_free_vma;
2433 }
2434 vma_set_policy(new, pol);
2435
2436 if (anon_vma_clone(new, vma))
2437 goto out_free_mpol;
2438
2439 if (new->vm_file)
2440 get_file(new->vm_file);
2441
2442 if (new->vm_ops && new->vm_ops->open)
2443 new->vm_ops->open(new);
2444
2445 if (new_below)
2446 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2447 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2448 else
2449 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2450
2451 /* Success. */
2452 if (!err)
2453 return 0;
2454
2455 /* Clean everything up if vma_adjust failed. */
2456 if (new->vm_ops && new->vm_ops->close)
2457 new->vm_ops->close(new);
2458 if (new->vm_file)
2459 fput(new->vm_file);
2460 unlink_anon_vmas(new);
2461 out_free_mpol:
2462 mpol_put(pol);
2463 out_free_vma:
2464 kmem_cache_free(vm_area_cachep, new);
2465 out_err:
2466 return err;
2467 }
2468
2469 /*
2470 * Split a vma into two pieces at address 'addr', a new vma is allocated
2471 * either for the first part or the tail.
2472 */
2473 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2474 unsigned long addr, int new_below)
2475 {
2476 if (mm->map_count >= sysctl_max_map_count)
2477 return -ENOMEM;
2478
2479 return __split_vma(mm, vma, addr, new_below);
2480 }
2481
2482 /* Munmap is split into 2 main parts -- this part which finds
2483 * what needs doing, and the areas themselves, which do the
2484 * work. This now handles partial unmappings.
2485 * Jeremy Fitzhardinge <jeremy@goop.org>
2486 */
2487 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2488 {
2489 unsigned long end;
2490 struct vm_area_struct *vma, *prev, *last;
2491
2492 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2493 return -EINVAL;
2494
2495 if ((len = PAGE_ALIGN(len)) == 0)
2496 return -EINVAL;
2497
2498 /* Find the first overlapping VMA */
2499 vma = find_vma(mm, start);
2500 if (!vma)
2501 return 0;
2502 prev = vma->vm_prev;
2503 /* we have start < vma->vm_end */
2504
2505 /* if it doesn't overlap, we have nothing.. */
2506 end = start + len;
2507 if (vma->vm_start >= end)
2508 return 0;
2509
2510 /*
2511 * If we need to split any vma, do it now to save pain later.
2512 *
2513 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2514 * unmapped vm_area_struct will remain in use: so lower split_vma
2515 * places tmp vma above, and higher split_vma places tmp vma below.
2516 */
2517 if (start > vma->vm_start) {
2518 int error;
2519
2520 /*
2521 * Make sure that map_count on return from munmap() will
2522 * not exceed its limit; but let map_count go just above
2523 * its limit temporarily, to help free resources as expected.
2524 */
2525 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2526 return -ENOMEM;
2527
2528 error = __split_vma(mm, vma, start, 0);
2529 if (error)
2530 return error;
2531 prev = vma;
2532 }
2533
2534 /* Does it split the last one? */
2535 last = find_vma(mm, end);
2536 if (last && end > last->vm_start) {
2537 int error = __split_vma(mm, last, end, 1);
2538 if (error)
2539 return error;
2540 }
2541 vma = prev? prev->vm_next: mm->mmap;
2542
2543 /*
2544 * unlock any mlock()ed ranges before detaching vmas
2545 */
2546 if (mm->locked_vm) {
2547 struct vm_area_struct *tmp = vma;
2548 while (tmp && tmp->vm_start < end) {
2549 if (tmp->vm_flags & VM_LOCKED) {
2550 mm->locked_vm -= vma_pages(tmp);
2551 munlock_vma_pages_all(tmp);
2552 }
2553 tmp = tmp->vm_next;
2554 }
2555 }
2556
2557 /*
2558 * Remove the vma's, and unmap the actual pages
2559 */
2560 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2561 unmap_region(mm, vma, prev, start, end);
2562
2563 /* Fix up all other VM information */
2564 remove_vma_list(mm, vma);
2565
2566 return 0;
2567 }
2568
2569 int vm_munmap(unsigned long start, size_t len)
2570 {
2571 int ret;
2572 struct mm_struct *mm = current->mm;
2573
2574 down_write(&mm->mmap_sem);
2575 ret = do_munmap(mm, start, len);
2576 up_write(&mm->mmap_sem);
2577 return ret;
2578 }
2579 EXPORT_SYMBOL(vm_munmap);
2580
2581 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2582 {
2583 profile_munmap(addr);
2584 return vm_munmap(addr, len);
2585 }
2586
2587 static inline void verify_mm_writelocked(struct mm_struct *mm)
2588 {
2589 #ifdef CONFIG_DEBUG_VM
2590 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2591 WARN_ON(1);
2592 up_read(&mm->mmap_sem);
2593 }
2594 #endif
2595 }
2596
2597 /*
2598 * this is really a simplified "do_mmap". it only handles
2599 * anonymous maps. eventually we may be able to do some
2600 * brk-specific accounting here.
2601 */
2602 static unsigned long do_brk(unsigned long addr, unsigned long len)
2603 {
2604 struct mm_struct * mm = current->mm;
2605 struct vm_area_struct * vma, * prev;
2606 unsigned long flags;
2607 struct rb_node ** rb_link, * rb_parent;
2608 pgoff_t pgoff = addr >> PAGE_SHIFT;
2609 int error;
2610
2611 len = PAGE_ALIGN(len);
2612 if (!len)
2613 return addr;
2614
2615 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2616
2617 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2618 if (error & ~PAGE_MASK)
2619 return error;
2620
2621 /*
2622 * mlock MCL_FUTURE?
2623 */
2624 if (mm->def_flags & VM_LOCKED) {
2625 unsigned long locked, lock_limit;
2626 locked = len >> PAGE_SHIFT;
2627 locked += mm->locked_vm;
2628 lock_limit = rlimit(RLIMIT_MEMLOCK);
2629 lock_limit >>= PAGE_SHIFT;
2630 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2631 return -EAGAIN;
2632 }
2633
2634 /*
2635 * mm->mmap_sem is required to protect against another thread
2636 * changing the mappings in case we sleep.
2637 */
2638 verify_mm_writelocked(mm);
2639
2640 /*
2641 * Clear old maps. this also does some error checking for us
2642 */
2643 munmap_back:
2644 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2645 if (do_munmap(mm, addr, len))
2646 return -ENOMEM;
2647 goto munmap_back;
2648 }
2649
2650 /* Check against address space limits *after* clearing old maps... */
2651 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2652 return -ENOMEM;
2653
2654 if (mm->map_count > sysctl_max_map_count)
2655 return -ENOMEM;
2656
2657 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2658 return -ENOMEM;
2659
2660 /* Can we just expand an old private anonymous mapping? */
2661 vma = vma_merge(mm, prev, addr, addr + len, flags,
2662 NULL, NULL, pgoff, NULL);
2663 if (vma)
2664 goto out;
2665
2666 /*
2667 * create a vma struct for an anonymous mapping
2668 */
2669 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2670 if (!vma) {
2671 vm_unacct_memory(len >> PAGE_SHIFT);
2672 return -ENOMEM;
2673 }
2674
2675 INIT_LIST_HEAD(&vma->anon_vma_chain);
2676 vma->vm_mm = mm;
2677 vma->vm_start = addr;
2678 vma->vm_end = addr + len;
2679 vma->vm_pgoff = pgoff;
2680 vma->vm_flags = flags;
2681 vma->vm_page_prot = vm_get_page_prot(flags);
2682 vma_link(mm, vma, prev, rb_link, rb_parent);
2683 out:
2684 perf_event_mmap(vma);
2685 mm->total_vm += len >> PAGE_SHIFT;
2686 if (flags & VM_LOCKED)
2687 mm->locked_vm += (len >> PAGE_SHIFT);
2688 return addr;
2689 }
2690
2691 unsigned long vm_brk(unsigned long addr, unsigned long len)
2692 {
2693 struct mm_struct *mm = current->mm;
2694 unsigned long ret;
2695 bool populate;
2696
2697 down_write(&mm->mmap_sem);
2698 ret = do_brk(addr, len);
2699 populate = ((mm->def_flags & VM_LOCKED) != 0);
2700 up_write(&mm->mmap_sem);
2701 if (populate)
2702 mm_populate(addr, len);
2703 return ret;
2704 }
2705 EXPORT_SYMBOL(vm_brk);
2706
2707 /* Release all mmaps. */
2708 void exit_mmap(struct mm_struct *mm)
2709 {
2710 struct mmu_gather tlb;
2711 struct vm_area_struct *vma;
2712 unsigned long nr_accounted = 0;
2713
2714 /* mm's last user has gone, and its about to be pulled down */
2715 mmu_notifier_release(mm);
2716
2717 if (mm->locked_vm) {
2718 vma = mm->mmap;
2719 while (vma) {
2720 if (vma->vm_flags & VM_LOCKED)
2721 munlock_vma_pages_all(vma);
2722 vma = vma->vm_next;
2723 }
2724 }
2725
2726 arch_exit_mmap(mm);
2727
2728 vma = mm->mmap;
2729 if (!vma) /* Can happen if dup_mmap() received an OOM */
2730 return;
2731
2732 lru_add_drain();
2733 flush_cache_mm(mm);
2734 tlb_gather_mmu(&tlb, mm, 1);
2735 /* update_hiwater_rss(mm) here? but nobody should be looking */
2736 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2737 unmap_vmas(&tlb, vma, 0, -1);
2738
2739 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2740 tlb_finish_mmu(&tlb, 0, -1);
2741
2742 /*
2743 * Walk the list again, actually closing and freeing it,
2744 * with preemption enabled, without holding any MM locks.
2745 */
2746 while (vma) {
2747 if (vma->vm_flags & VM_ACCOUNT)
2748 nr_accounted += vma_pages(vma);
2749 vma = remove_vma(vma);
2750 }
2751 vm_unacct_memory(nr_accounted);
2752
2753 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2754 }
2755
2756 /* Insert vm structure into process list sorted by address
2757 * and into the inode's i_mmap tree. If vm_file is non-NULL
2758 * then i_mmap_mutex is taken here.
2759 */
2760 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2761 {
2762 struct vm_area_struct *prev;
2763 struct rb_node **rb_link, *rb_parent;
2764
2765 /*
2766 * The vm_pgoff of a purely anonymous vma should be irrelevant
2767 * until its first write fault, when page's anon_vma and index
2768 * are set. But now set the vm_pgoff it will almost certainly
2769 * end up with (unless mremap moves it elsewhere before that
2770 * first wfault), so /proc/pid/maps tells a consistent story.
2771 *
2772 * By setting it to reflect the virtual start address of the
2773 * vma, merges and splits can happen in a seamless way, just
2774 * using the existing file pgoff checks and manipulations.
2775 * Similarly in do_mmap_pgoff and in do_brk.
2776 */
2777 if (!vma->vm_file) {
2778 BUG_ON(vma->anon_vma);
2779 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2780 }
2781 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2782 &prev, &rb_link, &rb_parent))
2783 return -ENOMEM;
2784 if ((vma->vm_flags & VM_ACCOUNT) &&
2785 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2786 return -ENOMEM;
2787
2788 vma_link(mm, vma, prev, rb_link, rb_parent);
2789 return 0;
2790 }
2791
2792 /*
2793 * Copy the vma structure to a new location in the same mm,
2794 * prior to moving page table entries, to effect an mremap move.
2795 */
2796 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2797 unsigned long addr, unsigned long len, pgoff_t pgoff,
2798 bool *need_rmap_locks)
2799 {
2800 struct vm_area_struct *vma = *vmap;
2801 unsigned long vma_start = vma->vm_start;
2802 struct mm_struct *mm = vma->vm_mm;
2803 struct vm_area_struct *new_vma, *prev;
2804 struct rb_node **rb_link, *rb_parent;
2805 struct mempolicy *pol;
2806 bool faulted_in_anon_vma = true;
2807
2808 /*
2809 * If anonymous vma has not yet been faulted, update new pgoff
2810 * to match new location, to increase its chance of merging.
2811 */
2812 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2813 pgoff = addr >> PAGE_SHIFT;
2814 faulted_in_anon_vma = false;
2815 }
2816
2817 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2818 return NULL; /* should never get here */
2819 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2820 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2821 if (new_vma) {
2822 /*
2823 * Source vma may have been merged into new_vma
2824 */
2825 if (unlikely(vma_start >= new_vma->vm_start &&
2826 vma_start < new_vma->vm_end)) {
2827 /*
2828 * The only way we can get a vma_merge with
2829 * self during an mremap is if the vma hasn't
2830 * been faulted in yet and we were allowed to
2831 * reset the dst vma->vm_pgoff to the
2832 * destination address of the mremap to allow
2833 * the merge to happen. mremap must change the
2834 * vm_pgoff linearity between src and dst vmas
2835 * (in turn preventing a vma_merge) to be
2836 * safe. It is only safe to keep the vm_pgoff
2837 * linear if there are no pages mapped yet.
2838 */
2839 VM_BUG_ON(faulted_in_anon_vma);
2840 *vmap = vma = new_vma;
2841 }
2842 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2843 } else {
2844 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2845 if (new_vma) {
2846 *new_vma = *vma;
2847 new_vma->vm_start = addr;
2848 new_vma->vm_end = addr + len;
2849 new_vma->vm_pgoff = pgoff;
2850 pol = mpol_dup(vma_policy(vma));
2851 if (IS_ERR(pol))
2852 goto out_free_vma;
2853 vma_set_policy(new_vma, pol);
2854 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2855 if (anon_vma_clone(new_vma, vma))
2856 goto out_free_mempol;
2857 if (new_vma->vm_file)
2858 get_file(new_vma->vm_file);
2859 if (new_vma->vm_ops && new_vma->vm_ops->open)
2860 new_vma->vm_ops->open(new_vma);
2861 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2862 *need_rmap_locks = false;
2863 }
2864 }
2865 return new_vma;
2866
2867 out_free_mempol:
2868 mpol_put(pol);
2869 out_free_vma:
2870 kmem_cache_free(vm_area_cachep, new_vma);
2871 return NULL;
2872 }
2873
2874 /*
2875 * Return true if the calling process may expand its vm space by the passed
2876 * number of pages
2877 */
2878 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2879 {
2880 unsigned long cur = mm->total_vm; /* pages */
2881 unsigned long lim;
2882
2883 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2884
2885 if (cur + npages > lim)
2886 return 0;
2887 return 1;
2888 }
2889
2890
2891 static int special_mapping_fault(struct vm_area_struct *vma,
2892 struct vm_fault *vmf)
2893 {
2894 pgoff_t pgoff;
2895 struct page **pages;
2896
2897 /*
2898 * special mappings have no vm_file, and in that case, the mm
2899 * uses vm_pgoff internally. So we have to subtract it from here.
2900 * We are allowed to do this because we are the mm; do not copy
2901 * this code into drivers!
2902 */
2903 pgoff = vmf->pgoff - vma->vm_pgoff;
2904
2905 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2906 pgoff--;
2907
2908 if (*pages) {
2909 struct page *page = *pages;
2910 get_page(page);
2911 vmf->page = page;
2912 return 0;
2913 }
2914
2915 return VM_FAULT_SIGBUS;
2916 }
2917
2918 /*
2919 * Having a close hook prevents vma merging regardless of flags.
2920 */
2921 static void special_mapping_close(struct vm_area_struct *vma)
2922 {
2923 }
2924
2925 static const struct vm_operations_struct special_mapping_vmops = {
2926 .close = special_mapping_close,
2927 .fault = special_mapping_fault,
2928 };
2929
2930 /*
2931 * Called with mm->mmap_sem held for writing.
2932 * Insert a new vma covering the given region, with the given flags.
2933 * Its pages are supplied by the given array of struct page *.
2934 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2935 * The region past the last page supplied will always produce SIGBUS.
2936 * The array pointer and the pages it points to are assumed to stay alive
2937 * for as long as this mapping might exist.
2938 */
2939 int install_special_mapping(struct mm_struct *mm,
2940 unsigned long addr, unsigned long len,
2941 unsigned long vm_flags, struct page **pages)
2942 {
2943 int ret;
2944 struct vm_area_struct *vma;
2945
2946 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2947 if (unlikely(vma == NULL))
2948 return -ENOMEM;
2949
2950 INIT_LIST_HEAD(&vma->anon_vma_chain);
2951 vma->vm_mm = mm;
2952 vma->vm_start = addr;
2953 vma->vm_end = addr + len;
2954
2955 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2956 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2957
2958 vma->vm_ops = &special_mapping_vmops;
2959 vma->vm_private_data = pages;
2960
2961 ret = insert_vm_struct(mm, vma);
2962 if (ret)
2963 goto out;
2964
2965 mm->total_vm += len >> PAGE_SHIFT;
2966
2967 perf_event_mmap(vma);
2968
2969 return 0;
2970
2971 out:
2972 kmem_cache_free(vm_area_cachep, vma);
2973 return ret;
2974 }
2975
2976 static DEFINE_MUTEX(mm_all_locks_mutex);
2977
2978 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2979 {
2980 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2981 /*
2982 * The LSB of head.next can't change from under us
2983 * because we hold the mm_all_locks_mutex.
2984 */
2985 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2986 /*
2987 * We can safely modify head.next after taking the
2988 * anon_vma->root->rwsem. If some other vma in this mm shares
2989 * the same anon_vma we won't take it again.
2990 *
2991 * No need of atomic instructions here, head.next
2992 * can't change from under us thanks to the
2993 * anon_vma->root->rwsem.
2994 */
2995 if (__test_and_set_bit(0, (unsigned long *)
2996 &anon_vma->root->rb_root.rb_node))
2997 BUG();
2998 }
2999 }
3000
3001 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3002 {
3003 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3004 /*
3005 * AS_MM_ALL_LOCKS can't change from under us because
3006 * we hold the mm_all_locks_mutex.
3007 *
3008 * Operations on ->flags have to be atomic because
3009 * even if AS_MM_ALL_LOCKS is stable thanks to the
3010 * mm_all_locks_mutex, there may be other cpus
3011 * changing other bitflags in parallel to us.
3012 */
3013 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3014 BUG();
3015 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3016 }
3017 }
3018
3019 /*
3020 * This operation locks against the VM for all pte/vma/mm related
3021 * operations that could ever happen on a certain mm. This includes
3022 * vmtruncate, try_to_unmap, and all page faults.
3023 *
3024 * The caller must take the mmap_sem in write mode before calling
3025 * mm_take_all_locks(). The caller isn't allowed to release the
3026 * mmap_sem until mm_drop_all_locks() returns.
3027 *
3028 * mmap_sem in write mode is required in order to block all operations
3029 * that could modify pagetables and free pages without need of
3030 * altering the vma layout (for example populate_range() with
3031 * nonlinear vmas). It's also needed in write mode to avoid new
3032 * anon_vmas to be associated with existing vmas.
3033 *
3034 * A single task can't take more than one mm_take_all_locks() in a row
3035 * or it would deadlock.
3036 *
3037 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3038 * mapping->flags avoid to take the same lock twice, if more than one
3039 * vma in this mm is backed by the same anon_vma or address_space.
3040 *
3041 * We can take all the locks in random order because the VM code
3042 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3043 * takes more than one of them in a row. Secondly we're protected
3044 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3045 *
3046 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3047 * that may have to take thousand of locks.
3048 *
3049 * mm_take_all_locks() can fail if it's interrupted by signals.
3050 */
3051 int mm_take_all_locks(struct mm_struct *mm)
3052 {
3053 struct vm_area_struct *vma;
3054 struct anon_vma_chain *avc;
3055
3056 BUG_ON(down_read_trylock(&mm->mmap_sem));
3057
3058 mutex_lock(&mm_all_locks_mutex);
3059
3060 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3061 if (signal_pending(current))
3062 goto out_unlock;
3063 if (vma->vm_file && vma->vm_file->f_mapping)
3064 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3065 }
3066
3067 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3068 if (signal_pending(current))
3069 goto out_unlock;
3070 if (vma->anon_vma)
3071 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3072 vm_lock_anon_vma(mm, avc->anon_vma);
3073 }
3074
3075 return 0;
3076
3077 out_unlock:
3078 mm_drop_all_locks(mm);
3079 return -EINTR;
3080 }
3081
3082 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3083 {
3084 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3085 /*
3086 * The LSB of head.next can't change to 0 from under
3087 * us because we hold the mm_all_locks_mutex.
3088 *
3089 * We must however clear the bitflag before unlocking
3090 * the vma so the users using the anon_vma->rb_root will
3091 * never see our bitflag.
3092 *
3093 * No need of atomic instructions here, head.next
3094 * can't change from under us until we release the
3095 * anon_vma->root->rwsem.
3096 */
3097 if (!__test_and_clear_bit(0, (unsigned long *)
3098 &anon_vma->root->rb_root.rb_node))
3099 BUG();
3100 anon_vma_unlock_write(anon_vma);
3101 }
3102 }
3103
3104 static void vm_unlock_mapping(struct address_space *mapping)
3105 {
3106 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3107 /*
3108 * AS_MM_ALL_LOCKS can't change to 0 from under us
3109 * because we hold the mm_all_locks_mutex.
3110 */
3111 mutex_unlock(&mapping->i_mmap_mutex);
3112 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3113 &mapping->flags))
3114 BUG();
3115 }
3116 }
3117
3118 /*
3119 * The mmap_sem cannot be released by the caller until
3120 * mm_drop_all_locks() returns.
3121 */
3122 void mm_drop_all_locks(struct mm_struct *mm)
3123 {
3124 struct vm_area_struct *vma;
3125 struct anon_vma_chain *avc;
3126
3127 BUG_ON(down_read_trylock(&mm->mmap_sem));
3128 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3129
3130 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3131 if (vma->anon_vma)
3132 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3133 vm_unlock_anon_vma(avc->anon_vma);
3134 if (vma->vm_file && vma->vm_file->f_mapping)
3135 vm_unlock_mapping(vma->vm_file->f_mapping);
3136 }
3137
3138 mutex_unlock(&mm_all_locks_mutex);
3139 }
3140
3141 /*
3142 * initialise the VMA slab
3143 */
3144 void __init mmap_init(void)
3145 {
3146 int ret;
3147
3148 ret = percpu_counter_init(&vm_committed_as, 0);
3149 VM_BUG_ON(ret);
3150 }
3151
3152 /*
3153 * Initialise sysctl_user_reserve_kbytes.
3154 *
3155 * This is intended to prevent a user from starting a single memory hogging
3156 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3157 * mode.
3158 *
3159 * The default value is min(3% of free memory, 128MB)
3160 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3161 */
3162 static int init_user_reserve(void)
3163 {
3164 unsigned long free_kbytes;
3165
3166 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3167
3168 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3169 return 0;
3170 }
3171 module_init(init_user_reserve)
3172
3173 /*
3174 * Initialise sysctl_admin_reserve_kbytes.
3175 *
3176 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3177 * to log in and kill a memory hogging process.
3178 *
3179 * Systems with more than 256MB will reserve 8MB, enough to recover
3180 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3181 * only reserve 3% of free pages by default.
3182 */
3183 static int init_admin_reserve(void)
3184 {
3185 unsigned long free_kbytes;
3186
3187 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3188
3189 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3190 return 0;
3191 }
3192 module_init(init_admin_reserve)
3193
3194 /*
3195 * Reinititalise user and admin reserves if memory is added or removed.
3196 *
3197 * The default user reserve max is 128MB, and the default max for the
3198 * admin reserve is 8MB. These are usually, but not always, enough to
3199 * enable recovery from a memory hogging process using login/sshd, a shell,
3200 * and tools like top. It may make sense to increase or even disable the
3201 * reserve depending on the existence of swap or variations in the recovery
3202 * tools. So, the admin may have changed them.
3203 *
3204 * If memory is added and the reserves have been eliminated or increased above
3205 * the default max, then we'll trust the admin.
3206 *
3207 * If memory is removed and there isn't enough free memory, then we
3208 * need to reset the reserves.
3209 *
3210 * Otherwise keep the reserve set by the admin.
3211 */
3212 static int reserve_mem_notifier(struct notifier_block *nb,
3213 unsigned long action, void *data)
3214 {
3215 unsigned long tmp, free_kbytes;
3216
3217 switch (action) {
3218 case MEM_ONLINE:
3219 /* Default max is 128MB. Leave alone if modified by operator. */
3220 tmp = sysctl_user_reserve_kbytes;
3221 if (0 < tmp && tmp < (1UL << 17))
3222 init_user_reserve();
3223
3224 /* Default max is 8MB. Leave alone if modified by operator. */
3225 tmp = sysctl_admin_reserve_kbytes;
3226 if (0 < tmp && tmp < (1UL << 13))
3227 init_admin_reserve();
3228
3229 break;
3230 case MEM_OFFLINE:
3231 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3232
3233 if (sysctl_user_reserve_kbytes > free_kbytes) {
3234 init_user_reserve();
3235 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3236 sysctl_user_reserve_kbytes);
3237 }
3238
3239 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3240 init_admin_reserve();
3241 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3242 sysctl_admin_reserve_kbytes);
3243 }
3244 break;
3245 default:
3246 break;
3247 }
3248 return NOTIFY_OK;
3249 }
3250
3251 static struct notifier_block reserve_mem_nb = {
3252 .notifier_call = reserve_mem_notifier,
3253 };
3254
3255 static int __meminit init_reserve_notifier(void)
3256 {
3257 if (register_hotmemory_notifier(&reserve_mem_nb))
3258 printk("Failed registering memory add/remove notifier for admin reserve");
3259
3260 return 0;
3261 }
3262 module_init(init_reserve_notifier)
This page took 0.128183 seconds and 6 git commands to generate.