ksm: remove VM_MERGEABLE_FLAGS
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/ksm.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
52
53 /*
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
56 */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 struct percpu_counter vm_committed_as;
91
92 /*
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
96 *
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 *
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
102 *
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 *
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
107 */
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 {
110 unsigned long free, allowed;
111
112 vm_acct_memory(pages);
113
114 /*
115 * Sometimes we want to use more memory than we have
116 */
117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 return 0;
119
120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 unsigned long n;
122
123 free = global_page_state(NR_FILE_PAGES);
124 free += nr_swap_pages;
125
126 /*
127 * Any slabs which are created with the
128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 * which are reclaimable, under pressure. The dentry
130 * cache and most inode caches should fall into this
131 */
132 free += global_page_state(NR_SLAB_RECLAIMABLE);
133
134 /*
135 * Leave the last 3% for root
136 */
137 if (!cap_sys_admin)
138 free -= free / 32;
139
140 if (free > pages)
141 return 0;
142
143 /*
144 * nr_free_pages() is very expensive on large systems,
145 * only call if we're about to fail.
146 */
147 n = nr_free_pages();
148
149 /*
150 * Leave reserved pages. The pages are not for anonymous pages.
151 */
152 if (n <= totalreserve_pages)
153 goto error;
154 else
155 n -= totalreserve_pages;
156
157 /*
158 * Leave the last 3% for root
159 */
160 if (!cap_sys_admin)
161 n -= n / 32;
162 free += n;
163
164 if (free > pages)
165 return 0;
166
167 goto error;
168 }
169
170 allowed = (totalram_pages - hugetlb_total_pages())
171 * sysctl_overcommit_ratio / 100;
172 /*
173 * Leave the last 3% for root
174 */
175 if (!cap_sys_admin)
176 allowed -= allowed / 32;
177 allowed += total_swap_pages;
178
179 /* Don't let a single process grow too big:
180 leave 3% of the size of this process for other processes */
181 if (mm)
182 allowed -= mm->total_vm / 32;
183
184 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
185 return 0;
186 error:
187 vm_unacct_memory(pages);
188
189 return -ENOMEM;
190 }
191
192 /*
193 * Requires inode->i_mapping->i_mmap_lock
194 */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196 struct file *file, struct address_space *mapping)
197 {
198 if (vma->vm_flags & VM_DENYWRITE)
199 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200 if (vma->vm_flags & VM_SHARED)
201 mapping->i_mmap_writable--;
202
203 flush_dcache_mmap_lock(mapping);
204 if (unlikely(vma->vm_flags & VM_NONLINEAR))
205 list_del_init(&vma->shared.vm_set.list);
206 else
207 vma_prio_tree_remove(vma, &mapping->i_mmap);
208 flush_dcache_mmap_unlock(mapping);
209 }
210
211 /*
212 * Unlink a file-based vm structure from its prio_tree, to hide
213 * vma from rmap and vmtruncate before freeing its page tables.
214 */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217 struct file *file = vma->vm_file;
218
219 if (file) {
220 struct address_space *mapping = file->f_mapping;
221 spin_lock(&mapping->i_mmap_lock);
222 __remove_shared_vm_struct(vma, file, mapping);
223 spin_unlock(&mapping->i_mmap_lock);
224 }
225 }
226
227 /*
228 * Close a vm structure and free it, returning the next.
229 */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232 struct vm_area_struct *next = vma->vm_next;
233
234 might_sleep();
235 if (vma->vm_ops && vma->vm_ops->close)
236 vma->vm_ops->close(vma);
237 if (vma->vm_file) {
238 fput(vma->vm_file);
239 if (vma->vm_flags & VM_EXECUTABLE)
240 removed_exe_file_vma(vma->vm_mm);
241 }
242 mpol_put(vma_policy(vma));
243 kmem_cache_free(vm_area_cachep, vma);
244 return next;
245 }
246
247 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 {
249 unsigned long rlim, retval;
250 unsigned long newbrk, oldbrk;
251 struct mm_struct *mm = current->mm;
252 unsigned long min_brk;
253
254 down_write(&mm->mmap_sem);
255
256 #ifdef CONFIG_COMPAT_BRK
257 min_brk = mm->end_code;
258 #else
259 min_brk = mm->start_brk;
260 #endif
261 if (brk < min_brk)
262 goto out;
263
264 /*
265 * Check against rlimit here. If this check is done later after the test
266 * of oldbrk with newbrk then it can escape the test and let the data
267 * segment grow beyond its set limit the in case where the limit is
268 * not page aligned -Ram Gupta
269 */
270 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272 (mm->end_data - mm->start_data) > rlim)
273 goto out;
274
275 newbrk = PAGE_ALIGN(brk);
276 oldbrk = PAGE_ALIGN(mm->brk);
277 if (oldbrk == newbrk)
278 goto set_brk;
279
280 /* Always allow shrinking brk. */
281 if (brk <= mm->brk) {
282 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283 goto set_brk;
284 goto out;
285 }
286
287 /* Check against existing mmap mappings. */
288 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289 goto out;
290
291 /* Ok, looks good - let it rip. */
292 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293 goto out;
294 set_brk:
295 mm->brk = brk;
296 out:
297 retval = mm->brk;
298 up_write(&mm->mmap_sem);
299 return retval;
300 }
301
302 #ifdef DEBUG_MM_RB
303 static int browse_rb(struct rb_root *root)
304 {
305 int i = 0, j;
306 struct rb_node *nd, *pn = NULL;
307 unsigned long prev = 0, pend = 0;
308
309 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310 struct vm_area_struct *vma;
311 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312 if (vma->vm_start < prev)
313 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314 if (vma->vm_start < pend)
315 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316 if (vma->vm_start > vma->vm_end)
317 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318 i++;
319 pn = nd;
320 prev = vma->vm_start;
321 pend = vma->vm_end;
322 }
323 j = 0;
324 for (nd = pn; nd; nd = rb_prev(nd)) {
325 j++;
326 }
327 if (i != j)
328 printk("backwards %d, forwards %d\n", j, i), i = 0;
329 return i;
330 }
331
332 void validate_mm(struct mm_struct *mm)
333 {
334 int bug = 0;
335 int i = 0;
336 struct vm_area_struct *tmp = mm->mmap;
337 while (tmp) {
338 tmp = tmp->vm_next;
339 i++;
340 }
341 if (i != mm->map_count)
342 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343 i = browse_rb(&mm->mm_rb);
344 if (i != mm->map_count)
345 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346 BUG_ON(bug);
347 }
348 #else
349 #define validate_mm(mm) do { } while (0)
350 #endif
351
352 static struct vm_area_struct *
353 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354 struct vm_area_struct **pprev, struct rb_node ***rb_link,
355 struct rb_node ** rb_parent)
356 {
357 struct vm_area_struct * vma;
358 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359
360 __rb_link = &mm->mm_rb.rb_node;
361 rb_prev = __rb_parent = NULL;
362 vma = NULL;
363
364 while (*__rb_link) {
365 struct vm_area_struct *vma_tmp;
366
367 __rb_parent = *__rb_link;
368 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369
370 if (vma_tmp->vm_end > addr) {
371 vma = vma_tmp;
372 if (vma_tmp->vm_start <= addr)
373 break;
374 __rb_link = &__rb_parent->rb_left;
375 } else {
376 rb_prev = __rb_parent;
377 __rb_link = &__rb_parent->rb_right;
378 }
379 }
380
381 *pprev = NULL;
382 if (rb_prev)
383 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384 *rb_link = __rb_link;
385 *rb_parent = __rb_parent;
386 return vma;
387 }
388
389 static inline void
390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 {
393 if (prev) {
394 vma->vm_next = prev->vm_next;
395 prev->vm_next = vma;
396 } else {
397 mm->mmap = vma;
398 if (rb_parent)
399 vma->vm_next = rb_entry(rb_parent,
400 struct vm_area_struct, vm_rb);
401 else
402 vma->vm_next = NULL;
403 }
404 }
405
406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407 struct rb_node **rb_link, struct rb_node *rb_parent)
408 {
409 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 }
412
413 static void __vma_link_file(struct vm_area_struct *vma)
414 {
415 struct file *file;
416
417 file = vma->vm_file;
418 if (file) {
419 struct address_space *mapping = file->f_mapping;
420
421 if (vma->vm_flags & VM_DENYWRITE)
422 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423 if (vma->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425
426 flush_dcache_mmap_lock(mapping);
427 if (unlikely(vma->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429 else
430 vma_prio_tree_insert(vma, &mapping->i_mmap);
431 flush_dcache_mmap_unlock(mapping);
432 }
433 }
434
435 static void
436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437 struct vm_area_struct *prev, struct rb_node **rb_link,
438 struct rb_node *rb_parent)
439 {
440 __vma_link_list(mm, vma, prev, rb_parent);
441 __vma_link_rb(mm, vma, rb_link, rb_parent);
442 __anon_vma_link(vma);
443 }
444
445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446 struct vm_area_struct *prev, struct rb_node **rb_link,
447 struct rb_node *rb_parent)
448 {
449 struct address_space *mapping = NULL;
450
451 if (vma->vm_file)
452 mapping = vma->vm_file->f_mapping;
453
454 if (mapping) {
455 spin_lock(&mapping->i_mmap_lock);
456 vma->vm_truncate_count = mapping->truncate_count;
457 }
458 anon_vma_lock(vma);
459
460 __vma_link(mm, vma, prev, rb_link, rb_parent);
461 __vma_link_file(vma);
462
463 anon_vma_unlock(vma);
464 if (mapping)
465 spin_unlock(&mapping->i_mmap_lock);
466
467 mm->map_count++;
468 validate_mm(mm);
469 }
470
471 /*
472 * Helper for vma_adjust in the split_vma insert case:
473 * insert vm structure into list and rbtree and anon_vma,
474 * but it has already been inserted into prio_tree earlier.
475 */
476 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
477 {
478 struct vm_area_struct *__vma, *prev;
479 struct rb_node **rb_link, *rb_parent;
480
481 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
482 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
483 __vma_link(mm, vma, prev, rb_link, rb_parent);
484 mm->map_count++;
485 }
486
487 static inline void
488 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
489 struct vm_area_struct *prev)
490 {
491 prev->vm_next = vma->vm_next;
492 rb_erase(&vma->vm_rb, &mm->mm_rb);
493 if (mm->mmap_cache == vma)
494 mm->mmap_cache = prev;
495 }
496
497 /*
498 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
499 * is already present in an i_mmap tree without adjusting the tree.
500 * The following helper function should be used when such adjustments
501 * are necessary. The "insert" vma (if any) is to be inserted
502 * before we drop the necessary locks.
503 */
504 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
505 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
506 {
507 struct mm_struct *mm = vma->vm_mm;
508 struct vm_area_struct *next = vma->vm_next;
509 struct vm_area_struct *importer = NULL;
510 struct address_space *mapping = NULL;
511 struct prio_tree_root *root = NULL;
512 struct file *file = vma->vm_file;
513 struct anon_vma *anon_vma = NULL;
514 long adjust_next = 0;
515 int remove_next = 0;
516
517 if (next && !insert) {
518 if (end >= next->vm_end) {
519 /*
520 * vma expands, overlapping all the next, and
521 * perhaps the one after too (mprotect case 6).
522 */
523 again: remove_next = 1 + (end > next->vm_end);
524 end = next->vm_end;
525 anon_vma = next->anon_vma;
526 importer = vma;
527 } else if (end > next->vm_start) {
528 /*
529 * vma expands, overlapping part of the next:
530 * mprotect case 5 shifting the boundary up.
531 */
532 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
533 anon_vma = next->anon_vma;
534 importer = vma;
535 } else if (end < vma->vm_end) {
536 /*
537 * vma shrinks, and !insert tells it's not
538 * split_vma inserting another: so it must be
539 * mprotect case 4 shifting the boundary down.
540 */
541 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
542 anon_vma = next->anon_vma;
543 importer = next;
544 }
545 }
546
547 if (file) {
548 mapping = file->f_mapping;
549 if (!(vma->vm_flags & VM_NONLINEAR))
550 root = &mapping->i_mmap;
551 spin_lock(&mapping->i_mmap_lock);
552 if (importer &&
553 vma->vm_truncate_count != next->vm_truncate_count) {
554 /*
555 * unmap_mapping_range might be in progress:
556 * ensure that the expanding vma is rescanned.
557 */
558 importer->vm_truncate_count = 0;
559 }
560 if (insert) {
561 insert->vm_truncate_count = vma->vm_truncate_count;
562 /*
563 * Put into prio_tree now, so instantiated pages
564 * are visible to arm/parisc __flush_dcache_page
565 * throughout; but we cannot insert into address
566 * space until vma start or end is updated.
567 */
568 __vma_link_file(insert);
569 }
570 }
571
572 /*
573 * When changing only vma->vm_end, we don't really need
574 * anon_vma lock: but is that case worth optimizing out?
575 */
576 if (vma->anon_vma)
577 anon_vma = vma->anon_vma;
578 if (anon_vma) {
579 spin_lock(&anon_vma->lock);
580 /*
581 * Easily overlooked: when mprotect shifts the boundary,
582 * make sure the expanding vma has anon_vma set if the
583 * shrinking vma had, to cover any anon pages imported.
584 */
585 if (importer && !importer->anon_vma) {
586 importer->anon_vma = anon_vma;
587 __anon_vma_link(importer);
588 }
589 }
590
591 if (root) {
592 flush_dcache_mmap_lock(mapping);
593 vma_prio_tree_remove(vma, root);
594 if (adjust_next)
595 vma_prio_tree_remove(next, root);
596 }
597
598 vma->vm_start = start;
599 vma->vm_end = end;
600 vma->vm_pgoff = pgoff;
601 if (adjust_next) {
602 next->vm_start += adjust_next << PAGE_SHIFT;
603 next->vm_pgoff += adjust_next;
604 }
605
606 if (root) {
607 if (adjust_next)
608 vma_prio_tree_insert(next, root);
609 vma_prio_tree_insert(vma, root);
610 flush_dcache_mmap_unlock(mapping);
611 }
612
613 if (remove_next) {
614 /*
615 * vma_merge has merged next into vma, and needs
616 * us to remove next before dropping the locks.
617 */
618 __vma_unlink(mm, next, vma);
619 if (file)
620 __remove_shared_vm_struct(next, file, mapping);
621 if (next->anon_vma)
622 __anon_vma_merge(vma, next);
623 } else if (insert) {
624 /*
625 * split_vma has split insert from vma, and needs
626 * us to insert it before dropping the locks
627 * (it may either follow vma or precede it).
628 */
629 __insert_vm_struct(mm, insert);
630 }
631
632 if (anon_vma)
633 spin_unlock(&anon_vma->lock);
634 if (mapping)
635 spin_unlock(&mapping->i_mmap_lock);
636
637 if (remove_next) {
638 if (file) {
639 fput(file);
640 if (next->vm_flags & VM_EXECUTABLE)
641 removed_exe_file_vma(mm);
642 }
643 mm->map_count--;
644 mpol_put(vma_policy(next));
645 kmem_cache_free(vm_area_cachep, next);
646 /*
647 * In mprotect's case 6 (see comments on vma_merge),
648 * we must remove another next too. It would clutter
649 * up the code too much to do both in one go.
650 */
651 if (remove_next == 2) {
652 next = vma->vm_next;
653 goto again;
654 }
655 }
656
657 validate_mm(mm);
658 }
659
660 /*
661 * If the vma has a ->close operation then the driver probably needs to release
662 * per-vma resources, so we don't attempt to merge those.
663 */
664 static inline int is_mergeable_vma(struct vm_area_struct *vma,
665 struct file *file, unsigned long vm_flags)
666 {
667 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
668 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
669 return 0;
670 if (vma->vm_file != file)
671 return 0;
672 if (vma->vm_ops && vma->vm_ops->close)
673 return 0;
674 return 1;
675 }
676
677 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
678 struct anon_vma *anon_vma2)
679 {
680 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
681 }
682
683 /*
684 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
685 * in front of (at a lower virtual address and file offset than) the vma.
686 *
687 * We cannot merge two vmas if they have differently assigned (non-NULL)
688 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 *
690 * We don't check here for the merged mmap wrapping around the end of pagecache
691 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
692 * wrap, nor mmaps which cover the final page at index -1UL.
693 */
694 static int
695 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
696 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
697 {
698 if (is_mergeable_vma(vma, file, vm_flags) &&
699 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
700 if (vma->vm_pgoff == vm_pgoff)
701 return 1;
702 }
703 return 0;
704 }
705
706 /*
707 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
708 * beyond (at a higher virtual address and file offset than) the vma.
709 *
710 * We cannot merge two vmas if they have differently assigned (non-NULL)
711 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
712 */
713 static int
714 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
715 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
716 {
717 if (is_mergeable_vma(vma, file, vm_flags) &&
718 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
719 pgoff_t vm_pglen;
720 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
721 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
722 return 1;
723 }
724 return 0;
725 }
726
727 /*
728 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
729 * whether that can be merged with its predecessor or its successor.
730 * Or both (it neatly fills a hole).
731 *
732 * In most cases - when called for mmap, brk or mremap - [addr,end) is
733 * certain not to be mapped by the time vma_merge is called; but when
734 * called for mprotect, it is certain to be already mapped (either at
735 * an offset within prev, or at the start of next), and the flags of
736 * this area are about to be changed to vm_flags - and the no-change
737 * case has already been eliminated.
738 *
739 * The following mprotect cases have to be considered, where AAAA is
740 * the area passed down from mprotect_fixup, never extending beyond one
741 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 *
743 * AAAA AAAA AAAA AAAA
744 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
745 * cannot merge might become might become might become
746 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
747 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
748 * mremap move: PPPPNNNNNNNN 8
749 * AAAA
750 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
751 * might become case 1 below case 2 below case 3 below
752 *
753 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
754 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 */
756 struct vm_area_struct *vma_merge(struct mm_struct *mm,
757 struct vm_area_struct *prev, unsigned long addr,
758 unsigned long end, unsigned long vm_flags,
759 struct anon_vma *anon_vma, struct file *file,
760 pgoff_t pgoff, struct mempolicy *policy)
761 {
762 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
763 struct vm_area_struct *area, *next;
764
765 /*
766 * We later require that vma->vm_flags == vm_flags,
767 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 */
769 if (vm_flags & VM_SPECIAL)
770 return NULL;
771
772 if (prev)
773 next = prev->vm_next;
774 else
775 next = mm->mmap;
776 area = next;
777 if (next && next->vm_end == end) /* cases 6, 7, 8 */
778 next = next->vm_next;
779
780 /*
781 * Can it merge with the predecessor?
782 */
783 if (prev && prev->vm_end == addr &&
784 mpol_equal(vma_policy(prev), policy) &&
785 can_vma_merge_after(prev, vm_flags,
786 anon_vma, file, pgoff)) {
787 /*
788 * OK, it can. Can we now merge in the successor as well?
789 */
790 if (next && end == next->vm_start &&
791 mpol_equal(policy, vma_policy(next)) &&
792 can_vma_merge_before(next, vm_flags,
793 anon_vma, file, pgoff+pglen) &&
794 is_mergeable_anon_vma(prev->anon_vma,
795 next->anon_vma)) {
796 /* cases 1, 6 */
797 vma_adjust(prev, prev->vm_start,
798 next->vm_end, prev->vm_pgoff, NULL);
799 } else /* cases 2, 5, 7 */
800 vma_adjust(prev, prev->vm_start,
801 end, prev->vm_pgoff, NULL);
802 return prev;
803 }
804
805 /*
806 * Can this new request be merged in front of next?
807 */
808 if (next && end == next->vm_start &&
809 mpol_equal(policy, vma_policy(next)) &&
810 can_vma_merge_before(next, vm_flags,
811 anon_vma, file, pgoff+pglen)) {
812 if (prev && addr < prev->vm_end) /* case 4 */
813 vma_adjust(prev, prev->vm_start,
814 addr, prev->vm_pgoff, NULL);
815 else /* cases 3, 8 */
816 vma_adjust(area, addr, next->vm_end,
817 next->vm_pgoff - pglen, NULL);
818 return area;
819 }
820
821 return NULL;
822 }
823
824 /*
825 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
826 * neighbouring vmas for a suitable anon_vma, before it goes off
827 * to allocate a new anon_vma. It checks because a repetitive
828 * sequence of mprotects and faults may otherwise lead to distinct
829 * anon_vmas being allocated, preventing vma merge in subsequent
830 * mprotect.
831 */
832 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
833 {
834 struct vm_area_struct *near;
835 unsigned long vm_flags;
836
837 near = vma->vm_next;
838 if (!near)
839 goto try_prev;
840
841 /*
842 * Since only mprotect tries to remerge vmas, match flags
843 * which might be mprotected into each other later on.
844 * Neither mlock nor madvise tries to remerge at present,
845 * so leave their flags as obstructing a merge.
846 */
847 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
848 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
849
850 if (near->anon_vma && vma->vm_end == near->vm_start &&
851 mpol_equal(vma_policy(vma), vma_policy(near)) &&
852 can_vma_merge_before(near, vm_flags,
853 NULL, vma->vm_file, vma->vm_pgoff +
854 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
855 return near->anon_vma;
856 try_prev:
857 /*
858 * It is potentially slow to have to call find_vma_prev here.
859 * But it's only on the first write fault on the vma, not
860 * every time, and we could devise a way to avoid it later
861 * (e.g. stash info in next's anon_vma_node when assigning
862 * an anon_vma, or when trying vma_merge). Another time.
863 */
864 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
865 if (!near)
866 goto none;
867
868 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
869 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
870
871 if (near->anon_vma && near->vm_end == vma->vm_start &&
872 mpol_equal(vma_policy(near), vma_policy(vma)) &&
873 can_vma_merge_after(near, vm_flags,
874 NULL, vma->vm_file, vma->vm_pgoff))
875 return near->anon_vma;
876 none:
877 /*
878 * There's no absolute need to look only at touching neighbours:
879 * we could search further afield for "compatible" anon_vmas.
880 * But it would probably just be a waste of time searching,
881 * or lead to too many vmas hanging off the same anon_vma.
882 * We're trying to allow mprotect remerging later on,
883 * not trying to minimize memory used for anon_vmas.
884 */
885 return NULL;
886 }
887
888 #ifdef CONFIG_PROC_FS
889 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
890 struct file *file, long pages)
891 {
892 const unsigned long stack_flags
893 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
894
895 if (file) {
896 mm->shared_vm += pages;
897 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
898 mm->exec_vm += pages;
899 } else if (flags & stack_flags)
900 mm->stack_vm += pages;
901 if (flags & (VM_RESERVED|VM_IO))
902 mm->reserved_vm += pages;
903 }
904 #endif /* CONFIG_PROC_FS */
905
906 /*
907 * The caller must hold down_write(&current->mm->mmap_sem).
908 */
909
910 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
911 unsigned long len, unsigned long prot,
912 unsigned long flags, unsigned long pgoff)
913 {
914 struct mm_struct * mm = current->mm;
915 struct inode *inode;
916 unsigned int vm_flags;
917 int error;
918 unsigned long reqprot = prot;
919
920 /*
921 * Does the application expect PROT_READ to imply PROT_EXEC?
922 *
923 * (the exception is when the underlying filesystem is noexec
924 * mounted, in which case we dont add PROT_EXEC.)
925 */
926 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
927 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
928 prot |= PROT_EXEC;
929
930 if (!len)
931 return -EINVAL;
932
933 if (!(flags & MAP_FIXED))
934 addr = round_hint_to_min(addr);
935
936 error = arch_mmap_check(addr, len, flags);
937 if (error)
938 return error;
939
940 /* Careful about overflows.. */
941 len = PAGE_ALIGN(len);
942 if (!len || len > TASK_SIZE)
943 return -ENOMEM;
944
945 /* offset overflow? */
946 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
947 return -EOVERFLOW;
948
949 /* Too many mappings? */
950 if (mm->map_count > sysctl_max_map_count)
951 return -ENOMEM;
952
953 /* Obtain the address to map to. we verify (or select) it and ensure
954 * that it represents a valid section of the address space.
955 */
956 addr = get_unmapped_area(file, addr, len, pgoff, flags);
957 if (addr & ~PAGE_MASK)
958 return addr;
959
960 /* Do simple checking here so the lower-level routines won't have
961 * to. we assume access permissions have been handled by the open
962 * of the memory object, so we don't do any here.
963 */
964 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
965 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
966
967 if (flags & MAP_LOCKED) {
968 if (!can_do_mlock())
969 return -EPERM;
970 vm_flags |= VM_LOCKED;
971 }
972
973 /* mlock MCL_FUTURE? */
974 if (vm_flags & VM_LOCKED) {
975 unsigned long locked, lock_limit;
976 locked = len >> PAGE_SHIFT;
977 locked += mm->locked_vm;
978 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
979 lock_limit >>= PAGE_SHIFT;
980 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
981 return -EAGAIN;
982 }
983
984 inode = file ? file->f_path.dentry->d_inode : NULL;
985
986 if (file) {
987 switch (flags & MAP_TYPE) {
988 case MAP_SHARED:
989 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
990 return -EACCES;
991
992 /*
993 * Make sure we don't allow writing to an append-only
994 * file..
995 */
996 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
997 return -EACCES;
998
999 /*
1000 * Make sure there are no mandatory locks on the file.
1001 */
1002 if (locks_verify_locked(inode))
1003 return -EAGAIN;
1004
1005 vm_flags |= VM_SHARED | VM_MAYSHARE;
1006 if (!(file->f_mode & FMODE_WRITE))
1007 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1008
1009 /* fall through */
1010 case MAP_PRIVATE:
1011 if (!(file->f_mode & FMODE_READ))
1012 return -EACCES;
1013 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1014 if (vm_flags & VM_EXEC)
1015 return -EPERM;
1016 vm_flags &= ~VM_MAYEXEC;
1017 }
1018
1019 if (!file->f_op || !file->f_op->mmap)
1020 return -ENODEV;
1021 break;
1022
1023 default:
1024 return -EINVAL;
1025 }
1026 } else {
1027 switch (flags & MAP_TYPE) {
1028 case MAP_SHARED:
1029 /*
1030 * Ignore pgoff.
1031 */
1032 pgoff = 0;
1033 vm_flags |= VM_SHARED | VM_MAYSHARE;
1034 break;
1035 case MAP_PRIVATE:
1036 /*
1037 * Set pgoff according to addr for anon_vma.
1038 */
1039 pgoff = addr >> PAGE_SHIFT;
1040 break;
1041 default:
1042 return -EINVAL;
1043 }
1044 }
1045
1046 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1047 if (error)
1048 return error;
1049 error = ima_file_mmap(file, prot);
1050 if (error)
1051 return error;
1052
1053 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1054 }
1055 EXPORT_SYMBOL(do_mmap_pgoff);
1056
1057 /*
1058 * Some shared mappigns will want the pages marked read-only
1059 * to track write events. If so, we'll downgrade vm_page_prot
1060 * to the private version (using protection_map[] without the
1061 * VM_SHARED bit).
1062 */
1063 int vma_wants_writenotify(struct vm_area_struct *vma)
1064 {
1065 unsigned int vm_flags = vma->vm_flags;
1066
1067 /* If it was private or non-writable, the write bit is already clear */
1068 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1069 return 0;
1070
1071 /* The backer wishes to know when pages are first written to? */
1072 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1073 return 1;
1074
1075 /* The open routine did something to the protections already? */
1076 if (pgprot_val(vma->vm_page_prot) !=
1077 pgprot_val(vm_get_page_prot(vm_flags)))
1078 return 0;
1079
1080 /* Specialty mapping? */
1081 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1082 return 0;
1083
1084 /* Can the mapping track the dirty pages? */
1085 return vma->vm_file && vma->vm_file->f_mapping &&
1086 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1087 }
1088
1089 /*
1090 * We account for memory if it's a private writeable mapping,
1091 * not hugepages and VM_NORESERVE wasn't set.
1092 */
1093 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1094 {
1095 /*
1096 * hugetlb has its own accounting separate from the core VM
1097 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1098 */
1099 if (file && is_file_hugepages(file))
1100 return 0;
1101
1102 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1103 }
1104
1105 unsigned long mmap_region(struct file *file, unsigned long addr,
1106 unsigned long len, unsigned long flags,
1107 unsigned int vm_flags, unsigned long pgoff)
1108 {
1109 struct mm_struct *mm = current->mm;
1110 struct vm_area_struct *vma, *prev;
1111 int correct_wcount = 0;
1112 int error;
1113 struct rb_node **rb_link, *rb_parent;
1114 unsigned long charged = 0;
1115 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1116
1117 /* Clear old maps */
1118 error = -ENOMEM;
1119 munmap_back:
1120 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1121 if (vma && vma->vm_start < addr + len) {
1122 if (do_munmap(mm, addr, len))
1123 return -ENOMEM;
1124 goto munmap_back;
1125 }
1126
1127 /* Check against address space limit. */
1128 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1129 return -ENOMEM;
1130
1131 /*
1132 * Set 'VM_NORESERVE' if we should not account for the
1133 * memory use of this mapping.
1134 */
1135 if ((flags & MAP_NORESERVE)) {
1136 /* We honor MAP_NORESERVE if allowed to overcommit */
1137 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1138 vm_flags |= VM_NORESERVE;
1139
1140 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1141 if (file && is_file_hugepages(file))
1142 vm_flags |= VM_NORESERVE;
1143 }
1144
1145 /*
1146 * Private writable mapping: check memory availability
1147 */
1148 if (accountable_mapping(file, vm_flags)) {
1149 charged = len >> PAGE_SHIFT;
1150 if (security_vm_enough_memory(charged))
1151 return -ENOMEM;
1152 vm_flags |= VM_ACCOUNT;
1153 }
1154
1155 /*
1156 * Can we just expand an old mapping?
1157 */
1158 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1159 if (vma)
1160 goto out;
1161
1162 /*
1163 * Determine the object being mapped and call the appropriate
1164 * specific mapper. the address has already been validated, but
1165 * not unmapped, but the maps are removed from the list.
1166 */
1167 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1168 if (!vma) {
1169 error = -ENOMEM;
1170 goto unacct_error;
1171 }
1172
1173 vma->vm_mm = mm;
1174 vma->vm_start = addr;
1175 vma->vm_end = addr + len;
1176 vma->vm_flags = vm_flags;
1177 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1178 vma->vm_pgoff = pgoff;
1179
1180 if (file) {
1181 error = -EINVAL;
1182 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1183 goto free_vma;
1184 if (vm_flags & VM_DENYWRITE) {
1185 error = deny_write_access(file);
1186 if (error)
1187 goto free_vma;
1188 correct_wcount = 1;
1189 }
1190 vma->vm_file = file;
1191 get_file(file);
1192 error = file->f_op->mmap(file, vma);
1193 if (error)
1194 goto unmap_and_free_vma;
1195 if (vm_flags & VM_EXECUTABLE)
1196 added_exe_file_vma(mm);
1197 } else if (vm_flags & VM_SHARED) {
1198 error = shmem_zero_setup(vma);
1199 if (error)
1200 goto free_vma;
1201 }
1202
1203 /* Can addr have changed??
1204 *
1205 * Answer: Yes, several device drivers can do it in their
1206 * f_op->mmap method. -DaveM
1207 */
1208 addr = vma->vm_start;
1209 pgoff = vma->vm_pgoff;
1210 vm_flags = vma->vm_flags;
1211
1212 if (vma_wants_writenotify(vma))
1213 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1214
1215 vma_link(mm, vma, prev, rb_link, rb_parent);
1216 file = vma->vm_file;
1217
1218 /* Once vma denies write, undo our temporary denial count */
1219 if (correct_wcount)
1220 atomic_inc(&inode->i_writecount);
1221 out:
1222 perf_event_mmap(vma);
1223
1224 mm->total_vm += len >> PAGE_SHIFT;
1225 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1226 if (vm_flags & VM_LOCKED) {
1227 /*
1228 * makes pages present; downgrades, drops, reacquires mmap_sem
1229 */
1230 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1231 if (nr_pages < 0)
1232 return nr_pages; /* vma gone! */
1233 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1234 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1235 make_pages_present(addr, addr + len);
1236 return addr;
1237
1238 unmap_and_free_vma:
1239 if (correct_wcount)
1240 atomic_inc(&inode->i_writecount);
1241 vma->vm_file = NULL;
1242 fput(file);
1243
1244 /* Undo any partial mapping done by a device driver. */
1245 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1246 charged = 0;
1247 free_vma:
1248 kmem_cache_free(vm_area_cachep, vma);
1249 unacct_error:
1250 if (charged)
1251 vm_unacct_memory(charged);
1252 return error;
1253 }
1254
1255 /* Get an address range which is currently unmapped.
1256 * For shmat() with addr=0.
1257 *
1258 * Ugly calling convention alert:
1259 * Return value with the low bits set means error value,
1260 * ie
1261 * if (ret & ~PAGE_MASK)
1262 * error = ret;
1263 *
1264 * This function "knows" that -ENOMEM has the bits set.
1265 */
1266 #ifndef HAVE_ARCH_UNMAPPED_AREA
1267 unsigned long
1268 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1269 unsigned long len, unsigned long pgoff, unsigned long flags)
1270 {
1271 struct mm_struct *mm = current->mm;
1272 struct vm_area_struct *vma;
1273 unsigned long start_addr;
1274
1275 if (len > TASK_SIZE)
1276 return -ENOMEM;
1277
1278 if (flags & MAP_FIXED)
1279 return addr;
1280
1281 if (addr) {
1282 addr = PAGE_ALIGN(addr);
1283 vma = find_vma(mm, addr);
1284 if (TASK_SIZE - len >= addr &&
1285 (!vma || addr + len <= vma->vm_start))
1286 return addr;
1287 }
1288 if (len > mm->cached_hole_size) {
1289 start_addr = addr = mm->free_area_cache;
1290 } else {
1291 start_addr = addr = TASK_UNMAPPED_BASE;
1292 mm->cached_hole_size = 0;
1293 }
1294
1295 full_search:
1296 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1297 /* At this point: (!vma || addr < vma->vm_end). */
1298 if (TASK_SIZE - len < addr) {
1299 /*
1300 * Start a new search - just in case we missed
1301 * some holes.
1302 */
1303 if (start_addr != TASK_UNMAPPED_BASE) {
1304 addr = TASK_UNMAPPED_BASE;
1305 start_addr = addr;
1306 mm->cached_hole_size = 0;
1307 goto full_search;
1308 }
1309 return -ENOMEM;
1310 }
1311 if (!vma || addr + len <= vma->vm_start) {
1312 /*
1313 * Remember the place where we stopped the search:
1314 */
1315 mm->free_area_cache = addr + len;
1316 return addr;
1317 }
1318 if (addr + mm->cached_hole_size < vma->vm_start)
1319 mm->cached_hole_size = vma->vm_start - addr;
1320 addr = vma->vm_end;
1321 }
1322 }
1323 #endif
1324
1325 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1326 {
1327 /*
1328 * Is this a new hole at the lowest possible address?
1329 */
1330 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1331 mm->free_area_cache = addr;
1332 mm->cached_hole_size = ~0UL;
1333 }
1334 }
1335
1336 /*
1337 * This mmap-allocator allocates new areas top-down from below the
1338 * stack's low limit (the base):
1339 */
1340 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1341 unsigned long
1342 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1343 const unsigned long len, const unsigned long pgoff,
1344 const unsigned long flags)
1345 {
1346 struct vm_area_struct *vma;
1347 struct mm_struct *mm = current->mm;
1348 unsigned long addr = addr0;
1349
1350 /* requested length too big for entire address space */
1351 if (len > TASK_SIZE)
1352 return -ENOMEM;
1353
1354 if (flags & MAP_FIXED)
1355 return addr;
1356
1357 /* requesting a specific address */
1358 if (addr) {
1359 addr = PAGE_ALIGN(addr);
1360 vma = find_vma(mm, addr);
1361 if (TASK_SIZE - len >= addr &&
1362 (!vma || addr + len <= vma->vm_start))
1363 return addr;
1364 }
1365
1366 /* check if free_area_cache is useful for us */
1367 if (len <= mm->cached_hole_size) {
1368 mm->cached_hole_size = 0;
1369 mm->free_area_cache = mm->mmap_base;
1370 }
1371
1372 /* either no address requested or can't fit in requested address hole */
1373 addr = mm->free_area_cache;
1374
1375 /* make sure it can fit in the remaining address space */
1376 if (addr > len) {
1377 vma = find_vma(mm, addr-len);
1378 if (!vma || addr <= vma->vm_start)
1379 /* remember the address as a hint for next time */
1380 return (mm->free_area_cache = addr-len);
1381 }
1382
1383 if (mm->mmap_base < len)
1384 goto bottomup;
1385
1386 addr = mm->mmap_base-len;
1387
1388 do {
1389 /*
1390 * Lookup failure means no vma is above this address,
1391 * else if new region fits below vma->vm_start,
1392 * return with success:
1393 */
1394 vma = find_vma(mm, addr);
1395 if (!vma || addr+len <= vma->vm_start)
1396 /* remember the address as a hint for next time */
1397 return (mm->free_area_cache = addr);
1398
1399 /* remember the largest hole we saw so far */
1400 if (addr + mm->cached_hole_size < vma->vm_start)
1401 mm->cached_hole_size = vma->vm_start - addr;
1402
1403 /* try just below the current vma->vm_start */
1404 addr = vma->vm_start-len;
1405 } while (len < vma->vm_start);
1406
1407 bottomup:
1408 /*
1409 * A failed mmap() very likely causes application failure,
1410 * so fall back to the bottom-up function here. This scenario
1411 * can happen with large stack limits and large mmap()
1412 * allocations.
1413 */
1414 mm->cached_hole_size = ~0UL;
1415 mm->free_area_cache = TASK_UNMAPPED_BASE;
1416 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1417 /*
1418 * Restore the topdown base:
1419 */
1420 mm->free_area_cache = mm->mmap_base;
1421 mm->cached_hole_size = ~0UL;
1422
1423 return addr;
1424 }
1425 #endif
1426
1427 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1428 {
1429 /*
1430 * Is this a new hole at the highest possible address?
1431 */
1432 if (addr > mm->free_area_cache)
1433 mm->free_area_cache = addr;
1434
1435 /* dont allow allocations above current base */
1436 if (mm->free_area_cache > mm->mmap_base)
1437 mm->free_area_cache = mm->mmap_base;
1438 }
1439
1440 unsigned long
1441 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1442 unsigned long pgoff, unsigned long flags)
1443 {
1444 unsigned long (*get_area)(struct file *, unsigned long,
1445 unsigned long, unsigned long, unsigned long);
1446
1447 get_area = current->mm->get_unmapped_area;
1448 if (file && file->f_op && file->f_op->get_unmapped_area)
1449 get_area = file->f_op->get_unmapped_area;
1450 addr = get_area(file, addr, len, pgoff, flags);
1451 if (IS_ERR_VALUE(addr))
1452 return addr;
1453
1454 if (addr > TASK_SIZE - len)
1455 return -ENOMEM;
1456 if (addr & ~PAGE_MASK)
1457 return -EINVAL;
1458
1459 return arch_rebalance_pgtables(addr, len);
1460 }
1461
1462 EXPORT_SYMBOL(get_unmapped_area);
1463
1464 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1465 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1466 {
1467 struct vm_area_struct *vma = NULL;
1468
1469 if (mm) {
1470 /* Check the cache first. */
1471 /* (Cache hit rate is typically around 35%.) */
1472 vma = mm->mmap_cache;
1473 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1474 struct rb_node * rb_node;
1475
1476 rb_node = mm->mm_rb.rb_node;
1477 vma = NULL;
1478
1479 while (rb_node) {
1480 struct vm_area_struct * vma_tmp;
1481
1482 vma_tmp = rb_entry(rb_node,
1483 struct vm_area_struct, vm_rb);
1484
1485 if (vma_tmp->vm_end > addr) {
1486 vma = vma_tmp;
1487 if (vma_tmp->vm_start <= addr)
1488 break;
1489 rb_node = rb_node->rb_left;
1490 } else
1491 rb_node = rb_node->rb_right;
1492 }
1493 if (vma)
1494 mm->mmap_cache = vma;
1495 }
1496 }
1497 return vma;
1498 }
1499
1500 EXPORT_SYMBOL(find_vma);
1501
1502 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1503 struct vm_area_struct *
1504 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1505 struct vm_area_struct **pprev)
1506 {
1507 struct vm_area_struct *vma = NULL, *prev = NULL;
1508 struct rb_node *rb_node;
1509 if (!mm)
1510 goto out;
1511
1512 /* Guard against addr being lower than the first VMA */
1513 vma = mm->mmap;
1514
1515 /* Go through the RB tree quickly. */
1516 rb_node = mm->mm_rb.rb_node;
1517
1518 while (rb_node) {
1519 struct vm_area_struct *vma_tmp;
1520 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1521
1522 if (addr < vma_tmp->vm_end) {
1523 rb_node = rb_node->rb_left;
1524 } else {
1525 prev = vma_tmp;
1526 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1527 break;
1528 rb_node = rb_node->rb_right;
1529 }
1530 }
1531
1532 out:
1533 *pprev = prev;
1534 return prev ? prev->vm_next : vma;
1535 }
1536
1537 /*
1538 * Verify that the stack growth is acceptable and
1539 * update accounting. This is shared with both the
1540 * grow-up and grow-down cases.
1541 */
1542 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1543 {
1544 struct mm_struct *mm = vma->vm_mm;
1545 struct rlimit *rlim = current->signal->rlim;
1546 unsigned long new_start;
1547
1548 /* address space limit tests */
1549 if (!may_expand_vm(mm, grow))
1550 return -ENOMEM;
1551
1552 /* Stack limit test */
1553 if (size > rlim[RLIMIT_STACK].rlim_cur)
1554 return -ENOMEM;
1555
1556 /* mlock limit tests */
1557 if (vma->vm_flags & VM_LOCKED) {
1558 unsigned long locked;
1559 unsigned long limit;
1560 locked = mm->locked_vm + grow;
1561 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1562 if (locked > limit && !capable(CAP_IPC_LOCK))
1563 return -ENOMEM;
1564 }
1565
1566 /* Check to ensure the stack will not grow into a hugetlb-only region */
1567 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1568 vma->vm_end - size;
1569 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1570 return -EFAULT;
1571
1572 /*
1573 * Overcommit.. This must be the final test, as it will
1574 * update security statistics.
1575 */
1576 if (security_vm_enough_memory_mm(mm, grow))
1577 return -ENOMEM;
1578
1579 /* Ok, everything looks good - let it rip */
1580 mm->total_vm += grow;
1581 if (vma->vm_flags & VM_LOCKED)
1582 mm->locked_vm += grow;
1583 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1584 return 0;
1585 }
1586
1587 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1588 /*
1589 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1590 * vma is the last one with address > vma->vm_end. Have to extend vma.
1591 */
1592 #ifndef CONFIG_IA64
1593 static
1594 #endif
1595 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1596 {
1597 int error;
1598
1599 if (!(vma->vm_flags & VM_GROWSUP))
1600 return -EFAULT;
1601
1602 /*
1603 * We must make sure the anon_vma is allocated
1604 * so that the anon_vma locking is not a noop.
1605 */
1606 if (unlikely(anon_vma_prepare(vma)))
1607 return -ENOMEM;
1608 anon_vma_lock(vma);
1609
1610 /*
1611 * vma->vm_start/vm_end cannot change under us because the caller
1612 * is required to hold the mmap_sem in read mode. We need the
1613 * anon_vma lock to serialize against concurrent expand_stacks.
1614 * Also guard against wrapping around to address 0.
1615 */
1616 if (address < PAGE_ALIGN(address+4))
1617 address = PAGE_ALIGN(address+4);
1618 else {
1619 anon_vma_unlock(vma);
1620 return -ENOMEM;
1621 }
1622 error = 0;
1623
1624 /* Somebody else might have raced and expanded it already */
1625 if (address > vma->vm_end) {
1626 unsigned long size, grow;
1627
1628 size = address - vma->vm_start;
1629 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1630
1631 error = acct_stack_growth(vma, size, grow);
1632 if (!error)
1633 vma->vm_end = address;
1634 }
1635 anon_vma_unlock(vma);
1636 return error;
1637 }
1638 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1639
1640 /*
1641 * vma is the first one with address < vma->vm_start. Have to extend vma.
1642 */
1643 static int expand_downwards(struct vm_area_struct *vma,
1644 unsigned long address)
1645 {
1646 int error;
1647
1648 /*
1649 * We must make sure the anon_vma is allocated
1650 * so that the anon_vma locking is not a noop.
1651 */
1652 if (unlikely(anon_vma_prepare(vma)))
1653 return -ENOMEM;
1654
1655 address &= PAGE_MASK;
1656 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1657 if (error)
1658 return error;
1659
1660 anon_vma_lock(vma);
1661
1662 /*
1663 * vma->vm_start/vm_end cannot change under us because the caller
1664 * is required to hold the mmap_sem in read mode. We need the
1665 * anon_vma lock to serialize against concurrent expand_stacks.
1666 */
1667
1668 /* Somebody else might have raced and expanded it already */
1669 if (address < vma->vm_start) {
1670 unsigned long size, grow;
1671
1672 size = vma->vm_end - address;
1673 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1674
1675 error = acct_stack_growth(vma, size, grow);
1676 if (!error) {
1677 vma->vm_start = address;
1678 vma->vm_pgoff -= grow;
1679 }
1680 }
1681 anon_vma_unlock(vma);
1682 return error;
1683 }
1684
1685 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1686 {
1687 return expand_downwards(vma, address);
1688 }
1689
1690 #ifdef CONFIG_STACK_GROWSUP
1691 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1692 {
1693 return expand_upwards(vma, address);
1694 }
1695
1696 struct vm_area_struct *
1697 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1698 {
1699 struct vm_area_struct *vma, *prev;
1700
1701 addr &= PAGE_MASK;
1702 vma = find_vma_prev(mm, addr, &prev);
1703 if (vma && (vma->vm_start <= addr))
1704 return vma;
1705 if (!prev || expand_stack(prev, addr))
1706 return NULL;
1707 if (prev->vm_flags & VM_LOCKED) {
1708 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1709 return NULL; /* vma gone! */
1710 }
1711 return prev;
1712 }
1713 #else
1714 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1715 {
1716 return expand_downwards(vma, address);
1717 }
1718
1719 struct vm_area_struct *
1720 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1721 {
1722 struct vm_area_struct * vma;
1723 unsigned long start;
1724
1725 addr &= PAGE_MASK;
1726 vma = find_vma(mm,addr);
1727 if (!vma)
1728 return NULL;
1729 if (vma->vm_start <= addr)
1730 return vma;
1731 if (!(vma->vm_flags & VM_GROWSDOWN))
1732 return NULL;
1733 start = vma->vm_start;
1734 if (expand_stack(vma, addr))
1735 return NULL;
1736 if (vma->vm_flags & VM_LOCKED) {
1737 if (mlock_vma_pages_range(vma, addr, start) < 0)
1738 return NULL; /* vma gone! */
1739 }
1740 return vma;
1741 }
1742 #endif
1743
1744 /*
1745 * Ok - we have the memory areas we should free on the vma list,
1746 * so release them, and do the vma updates.
1747 *
1748 * Called with the mm semaphore held.
1749 */
1750 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1751 {
1752 /* Update high watermark before we lower total_vm */
1753 update_hiwater_vm(mm);
1754 do {
1755 long nrpages = vma_pages(vma);
1756
1757 mm->total_vm -= nrpages;
1758 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1759 vma = remove_vma(vma);
1760 } while (vma);
1761 validate_mm(mm);
1762 }
1763
1764 /*
1765 * Get rid of page table information in the indicated region.
1766 *
1767 * Called with the mm semaphore held.
1768 */
1769 static void unmap_region(struct mm_struct *mm,
1770 struct vm_area_struct *vma, struct vm_area_struct *prev,
1771 unsigned long start, unsigned long end)
1772 {
1773 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1774 struct mmu_gather *tlb;
1775 unsigned long nr_accounted = 0;
1776
1777 lru_add_drain();
1778 tlb = tlb_gather_mmu(mm, 0);
1779 update_hiwater_rss(mm);
1780 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1781 vm_unacct_memory(nr_accounted);
1782 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1783 next? next->vm_start: 0);
1784 tlb_finish_mmu(tlb, start, end);
1785 }
1786
1787 /*
1788 * Create a list of vma's touched by the unmap, removing them from the mm's
1789 * vma list as we go..
1790 */
1791 static void
1792 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1793 struct vm_area_struct *prev, unsigned long end)
1794 {
1795 struct vm_area_struct **insertion_point;
1796 struct vm_area_struct *tail_vma = NULL;
1797 unsigned long addr;
1798
1799 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1800 do {
1801 rb_erase(&vma->vm_rb, &mm->mm_rb);
1802 mm->map_count--;
1803 tail_vma = vma;
1804 vma = vma->vm_next;
1805 } while (vma && vma->vm_start < end);
1806 *insertion_point = vma;
1807 tail_vma->vm_next = NULL;
1808 if (mm->unmap_area == arch_unmap_area)
1809 addr = prev ? prev->vm_end : mm->mmap_base;
1810 else
1811 addr = vma ? vma->vm_start : mm->mmap_base;
1812 mm->unmap_area(mm, addr);
1813 mm->mmap_cache = NULL; /* Kill the cache. */
1814 }
1815
1816 /*
1817 * Split a vma into two pieces at address 'addr', a new vma is allocated
1818 * either for the first part or the tail.
1819 */
1820 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1821 unsigned long addr, int new_below)
1822 {
1823 struct mempolicy *pol;
1824 struct vm_area_struct *new;
1825
1826 if (is_vm_hugetlb_page(vma) && (addr &
1827 ~(huge_page_mask(hstate_vma(vma)))))
1828 return -EINVAL;
1829
1830 if (mm->map_count >= sysctl_max_map_count)
1831 return -ENOMEM;
1832
1833 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1834 if (!new)
1835 return -ENOMEM;
1836
1837 /* most fields are the same, copy all, and then fixup */
1838 *new = *vma;
1839
1840 if (new_below)
1841 new->vm_end = addr;
1842 else {
1843 new->vm_start = addr;
1844 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1845 }
1846
1847 pol = mpol_dup(vma_policy(vma));
1848 if (IS_ERR(pol)) {
1849 kmem_cache_free(vm_area_cachep, new);
1850 return PTR_ERR(pol);
1851 }
1852 vma_set_policy(new, pol);
1853
1854 if (new->vm_file) {
1855 get_file(new->vm_file);
1856 if (vma->vm_flags & VM_EXECUTABLE)
1857 added_exe_file_vma(mm);
1858 }
1859
1860 if (new->vm_ops && new->vm_ops->open)
1861 new->vm_ops->open(new);
1862
1863 if (new_below)
1864 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1865 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1866 else
1867 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1868
1869 return 0;
1870 }
1871
1872 /* Munmap is split into 2 main parts -- this part which finds
1873 * what needs doing, and the areas themselves, which do the
1874 * work. This now handles partial unmappings.
1875 * Jeremy Fitzhardinge <jeremy@goop.org>
1876 */
1877 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1878 {
1879 unsigned long end;
1880 struct vm_area_struct *vma, *prev, *last;
1881
1882 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1883 return -EINVAL;
1884
1885 if ((len = PAGE_ALIGN(len)) == 0)
1886 return -EINVAL;
1887
1888 /* Find the first overlapping VMA */
1889 vma = find_vma_prev(mm, start, &prev);
1890 if (!vma)
1891 return 0;
1892 /* we have start < vma->vm_end */
1893
1894 /* if it doesn't overlap, we have nothing.. */
1895 end = start + len;
1896 if (vma->vm_start >= end)
1897 return 0;
1898
1899 /*
1900 * If we need to split any vma, do it now to save pain later.
1901 *
1902 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1903 * unmapped vm_area_struct will remain in use: so lower split_vma
1904 * places tmp vma above, and higher split_vma places tmp vma below.
1905 */
1906 if (start > vma->vm_start) {
1907 int error = split_vma(mm, vma, start, 0);
1908 if (error)
1909 return error;
1910 prev = vma;
1911 }
1912
1913 /* Does it split the last one? */
1914 last = find_vma(mm, end);
1915 if (last && end > last->vm_start) {
1916 int error = split_vma(mm, last, end, 1);
1917 if (error)
1918 return error;
1919 }
1920 vma = prev? prev->vm_next: mm->mmap;
1921
1922 /*
1923 * unlock any mlock()ed ranges before detaching vmas
1924 */
1925 if (mm->locked_vm) {
1926 struct vm_area_struct *tmp = vma;
1927 while (tmp && tmp->vm_start < end) {
1928 if (tmp->vm_flags & VM_LOCKED) {
1929 mm->locked_vm -= vma_pages(tmp);
1930 munlock_vma_pages_all(tmp);
1931 }
1932 tmp = tmp->vm_next;
1933 }
1934 }
1935
1936 /*
1937 * Remove the vma's, and unmap the actual pages
1938 */
1939 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1940 unmap_region(mm, vma, prev, start, end);
1941
1942 /* Fix up all other VM information */
1943 remove_vma_list(mm, vma);
1944
1945 return 0;
1946 }
1947
1948 EXPORT_SYMBOL(do_munmap);
1949
1950 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1951 {
1952 int ret;
1953 struct mm_struct *mm = current->mm;
1954
1955 profile_munmap(addr);
1956
1957 down_write(&mm->mmap_sem);
1958 ret = do_munmap(mm, addr, len);
1959 up_write(&mm->mmap_sem);
1960 return ret;
1961 }
1962
1963 static inline void verify_mm_writelocked(struct mm_struct *mm)
1964 {
1965 #ifdef CONFIG_DEBUG_VM
1966 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1967 WARN_ON(1);
1968 up_read(&mm->mmap_sem);
1969 }
1970 #endif
1971 }
1972
1973 /*
1974 * this is really a simplified "do_mmap". it only handles
1975 * anonymous maps. eventually we may be able to do some
1976 * brk-specific accounting here.
1977 */
1978 unsigned long do_brk(unsigned long addr, unsigned long len)
1979 {
1980 struct mm_struct * mm = current->mm;
1981 struct vm_area_struct * vma, * prev;
1982 unsigned long flags;
1983 struct rb_node ** rb_link, * rb_parent;
1984 pgoff_t pgoff = addr >> PAGE_SHIFT;
1985 int error;
1986
1987 len = PAGE_ALIGN(len);
1988 if (!len)
1989 return addr;
1990
1991 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1992 return -EINVAL;
1993
1994 if (is_hugepage_only_range(mm, addr, len))
1995 return -EINVAL;
1996
1997 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
1998 if (error)
1999 return error;
2000
2001 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2002
2003 error = arch_mmap_check(addr, len, flags);
2004 if (error)
2005 return error;
2006
2007 /*
2008 * mlock MCL_FUTURE?
2009 */
2010 if (mm->def_flags & VM_LOCKED) {
2011 unsigned long locked, lock_limit;
2012 locked = len >> PAGE_SHIFT;
2013 locked += mm->locked_vm;
2014 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2015 lock_limit >>= PAGE_SHIFT;
2016 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2017 return -EAGAIN;
2018 }
2019
2020 /*
2021 * mm->mmap_sem is required to protect against another thread
2022 * changing the mappings in case we sleep.
2023 */
2024 verify_mm_writelocked(mm);
2025
2026 /*
2027 * Clear old maps. this also does some error checking for us
2028 */
2029 munmap_back:
2030 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2031 if (vma && vma->vm_start < addr + len) {
2032 if (do_munmap(mm, addr, len))
2033 return -ENOMEM;
2034 goto munmap_back;
2035 }
2036
2037 /* Check against address space limits *after* clearing old maps... */
2038 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2039 return -ENOMEM;
2040
2041 if (mm->map_count > sysctl_max_map_count)
2042 return -ENOMEM;
2043
2044 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2045 return -ENOMEM;
2046
2047 /* Can we just expand an old private anonymous mapping? */
2048 vma = vma_merge(mm, prev, addr, addr + len, flags,
2049 NULL, NULL, pgoff, NULL);
2050 if (vma)
2051 goto out;
2052
2053 /*
2054 * create a vma struct for an anonymous mapping
2055 */
2056 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2057 if (!vma) {
2058 vm_unacct_memory(len >> PAGE_SHIFT);
2059 return -ENOMEM;
2060 }
2061
2062 vma->vm_mm = mm;
2063 vma->vm_start = addr;
2064 vma->vm_end = addr + len;
2065 vma->vm_pgoff = pgoff;
2066 vma->vm_flags = flags;
2067 vma->vm_page_prot = vm_get_page_prot(flags);
2068 vma_link(mm, vma, prev, rb_link, rb_parent);
2069 out:
2070 mm->total_vm += len >> PAGE_SHIFT;
2071 if (flags & VM_LOCKED) {
2072 if (!mlock_vma_pages_range(vma, addr, addr + len))
2073 mm->locked_vm += (len >> PAGE_SHIFT);
2074 }
2075 return addr;
2076 }
2077
2078 EXPORT_SYMBOL(do_brk);
2079
2080 /* Release all mmaps. */
2081 void exit_mmap(struct mm_struct *mm)
2082 {
2083 struct mmu_gather *tlb;
2084 struct vm_area_struct *vma;
2085 unsigned long nr_accounted = 0;
2086 unsigned long end;
2087
2088 /* mm's last user has gone, and its about to be pulled down */
2089 mmu_notifier_release(mm);
2090
2091 if (mm->locked_vm) {
2092 vma = mm->mmap;
2093 while (vma) {
2094 if (vma->vm_flags & VM_LOCKED)
2095 munlock_vma_pages_all(vma);
2096 vma = vma->vm_next;
2097 }
2098 }
2099
2100 arch_exit_mmap(mm);
2101
2102 vma = mm->mmap;
2103 if (!vma) /* Can happen if dup_mmap() received an OOM */
2104 return;
2105
2106 lru_add_drain();
2107 flush_cache_mm(mm);
2108 tlb = tlb_gather_mmu(mm, 1);
2109 /* update_hiwater_rss(mm) here? but nobody should be looking */
2110 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2111 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2112 vm_unacct_memory(nr_accounted);
2113
2114 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2115 tlb_finish_mmu(tlb, 0, end);
2116
2117 /*
2118 * Walk the list again, actually closing and freeing it,
2119 * with preemption enabled, without holding any MM locks.
2120 */
2121 while (vma)
2122 vma = remove_vma(vma);
2123
2124 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2125 }
2126
2127 /* Insert vm structure into process list sorted by address
2128 * and into the inode's i_mmap tree. If vm_file is non-NULL
2129 * then i_mmap_lock is taken here.
2130 */
2131 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2132 {
2133 struct vm_area_struct * __vma, * prev;
2134 struct rb_node ** rb_link, * rb_parent;
2135
2136 /*
2137 * The vm_pgoff of a purely anonymous vma should be irrelevant
2138 * until its first write fault, when page's anon_vma and index
2139 * are set. But now set the vm_pgoff it will almost certainly
2140 * end up with (unless mremap moves it elsewhere before that
2141 * first wfault), so /proc/pid/maps tells a consistent story.
2142 *
2143 * By setting it to reflect the virtual start address of the
2144 * vma, merges and splits can happen in a seamless way, just
2145 * using the existing file pgoff checks and manipulations.
2146 * Similarly in do_mmap_pgoff and in do_brk.
2147 */
2148 if (!vma->vm_file) {
2149 BUG_ON(vma->anon_vma);
2150 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2151 }
2152 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2153 if (__vma && __vma->vm_start < vma->vm_end)
2154 return -ENOMEM;
2155 if ((vma->vm_flags & VM_ACCOUNT) &&
2156 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2157 return -ENOMEM;
2158 vma_link(mm, vma, prev, rb_link, rb_parent);
2159 return 0;
2160 }
2161
2162 /*
2163 * Copy the vma structure to a new location in the same mm,
2164 * prior to moving page table entries, to effect an mremap move.
2165 */
2166 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2167 unsigned long addr, unsigned long len, pgoff_t pgoff)
2168 {
2169 struct vm_area_struct *vma = *vmap;
2170 unsigned long vma_start = vma->vm_start;
2171 struct mm_struct *mm = vma->vm_mm;
2172 struct vm_area_struct *new_vma, *prev;
2173 struct rb_node **rb_link, *rb_parent;
2174 struct mempolicy *pol;
2175
2176 /*
2177 * If anonymous vma has not yet been faulted, update new pgoff
2178 * to match new location, to increase its chance of merging.
2179 */
2180 if (!vma->vm_file && !vma->anon_vma)
2181 pgoff = addr >> PAGE_SHIFT;
2182
2183 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2184 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2185 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2186 if (new_vma) {
2187 /*
2188 * Source vma may have been merged into new_vma
2189 */
2190 if (vma_start >= new_vma->vm_start &&
2191 vma_start < new_vma->vm_end)
2192 *vmap = new_vma;
2193 } else {
2194 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2195 if (new_vma) {
2196 *new_vma = *vma;
2197 pol = mpol_dup(vma_policy(vma));
2198 if (IS_ERR(pol)) {
2199 kmem_cache_free(vm_area_cachep, new_vma);
2200 return NULL;
2201 }
2202 vma_set_policy(new_vma, pol);
2203 new_vma->vm_start = addr;
2204 new_vma->vm_end = addr + len;
2205 new_vma->vm_pgoff = pgoff;
2206 if (new_vma->vm_file) {
2207 get_file(new_vma->vm_file);
2208 if (vma->vm_flags & VM_EXECUTABLE)
2209 added_exe_file_vma(mm);
2210 }
2211 if (new_vma->vm_ops && new_vma->vm_ops->open)
2212 new_vma->vm_ops->open(new_vma);
2213 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2214 }
2215 }
2216 return new_vma;
2217 }
2218
2219 /*
2220 * Return true if the calling process may expand its vm space by the passed
2221 * number of pages
2222 */
2223 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2224 {
2225 unsigned long cur = mm->total_vm; /* pages */
2226 unsigned long lim;
2227
2228 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2229
2230 if (cur + npages > lim)
2231 return 0;
2232 return 1;
2233 }
2234
2235
2236 static int special_mapping_fault(struct vm_area_struct *vma,
2237 struct vm_fault *vmf)
2238 {
2239 pgoff_t pgoff;
2240 struct page **pages;
2241
2242 /*
2243 * special mappings have no vm_file, and in that case, the mm
2244 * uses vm_pgoff internally. So we have to subtract it from here.
2245 * We are allowed to do this because we are the mm; do not copy
2246 * this code into drivers!
2247 */
2248 pgoff = vmf->pgoff - vma->vm_pgoff;
2249
2250 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2251 pgoff--;
2252
2253 if (*pages) {
2254 struct page *page = *pages;
2255 get_page(page);
2256 vmf->page = page;
2257 return 0;
2258 }
2259
2260 return VM_FAULT_SIGBUS;
2261 }
2262
2263 /*
2264 * Having a close hook prevents vma merging regardless of flags.
2265 */
2266 static void special_mapping_close(struct vm_area_struct *vma)
2267 {
2268 }
2269
2270 static struct vm_operations_struct special_mapping_vmops = {
2271 .close = special_mapping_close,
2272 .fault = special_mapping_fault,
2273 };
2274
2275 /*
2276 * Called with mm->mmap_sem held for writing.
2277 * Insert a new vma covering the given region, with the given flags.
2278 * Its pages are supplied by the given array of struct page *.
2279 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2280 * The region past the last page supplied will always produce SIGBUS.
2281 * The array pointer and the pages it points to are assumed to stay alive
2282 * for as long as this mapping might exist.
2283 */
2284 int install_special_mapping(struct mm_struct *mm,
2285 unsigned long addr, unsigned long len,
2286 unsigned long vm_flags, struct page **pages)
2287 {
2288 struct vm_area_struct *vma;
2289
2290 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2291 if (unlikely(vma == NULL))
2292 return -ENOMEM;
2293
2294 vma->vm_mm = mm;
2295 vma->vm_start = addr;
2296 vma->vm_end = addr + len;
2297
2298 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2299 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2300
2301 vma->vm_ops = &special_mapping_vmops;
2302 vma->vm_private_data = pages;
2303
2304 if (unlikely(insert_vm_struct(mm, vma))) {
2305 kmem_cache_free(vm_area_cachep, vma);
2306 return -ENOMEM;
2307 }
2308
2309 mm->total_vm += len >> PAGE_SHIFT;
2310
2311 perf_event_mmap(vma);
2312
2313 return 0;
2314 }
2315
2316 static DEFINE_MUTEX(mm_all_locks_mutex);
2317
2318 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2319 {
2320 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2321 /*
2322 * The LSB of head.next can't change from under us
2323 * because we hold the mm_all_locks_mutex.
2324 */
2325 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2326 /*
2327 * We can safely modify head.next after taking the
2328 * anon_vma->lock. If some other vma in this mm shares
2329 * the same anon_vma we won't take it again.
2330 *
2331 * No need of atomic instructions here, head.next
2332 * can't change from under us thanks to the
2333 * anon_vma->lock.
2334 */
2335 if (__test_and_set_bit(0, (unsigned long *)
2336 &anon_vma->head.next))
2337 BUG();
2338 }
2339 }
2340
2341 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2342 {
2343 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2344 /*
2345 * AS_MM_ALL_LOCKS can't change from under us because
2346 * we hold the mm_all_locks_mutex.
2347 *
2348 * Operations on ->flags have to be atomic because
2349 * even if AS_MM_ALL_LOCKS is stable thanks to the
2350 * mm_all_locks_mutex, there may be other cpus
2351 * changing other bitflags in parallel to us.
2352 */
2353 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2354 BUG();
2355 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2356 }
2357 }
2358
2359 /*
2360 * This operation locks against the VM for all pte/vma/mm related
2361 * operations that could ever happen on a certain mm. This includes
2362 * vmtruncate, try_to_unmap, and all page faults.
2363 *
2364 * The caller must take the mmap_sem in write mode before calling
2365 * mm_take_all_locks(). The caller isn't allowed to release the
2366 * mmap_sem until mm_drop_all_locks() returns.
2367 *
2368 * mmap_sem in write mode is required in order to block all operations
2369 * that could modify pagetables and free pages without need of
2370 * altering the vma layout (for example populate_range() with
2371 * nonlinear vmas). It's also needed in write mode to avoid new
2372 * anon_vmas to be associated with existing vmas.
2373 *
2374 * A single task can't take more than one mm_take_all_locks() in a row
2375 * or it would deadlock.
2376 *
2377 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2378 * mapping->flags avoid to take the same lock twice, if more than one
2379 * vma in this mm is backed by the same anon_vma or address_space.
2380 *
2381 * We can take all the locks in random order because the VM code
2382 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2383 * takes more than one of them in a row. Secondly we're protected
2384 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2385 *
2386 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2387 * that may have to take thousand of locks.
2388 *
2389 * mm_take_all_locks() can fail if it's interrupted by signals.
2390 */
2391 int mm_take_all_locks(struct mm_struct *mm)
2392 {
2393 struct vm_area_struct *vma;
2394 int ret = -EINTR;
2395
2396 BUG_ON(down_read_trylock(&mm->mmap_sem));
2397
2398 mutex_lock(&mm_all_locks_mutex);
2399
2400 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2401 if (signal_pending(current))
2402 goto out_unlock;
2403 if (vma->vm_file && vma->vm_file->f_mapping)
2404 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2405 }
2406
2407 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2408 if (signal_pending(current))
2409 goto out_unlock;
2410 if (vma->anon_vma)
2411 vm_lock_anon_vma(mm, vma->anon_vma);
2412 }
2413
2414 ret = 0;
2415
2416 out_unlock:
2417 if (ret)
2418 mm_drop_all_locks(mm);
2419
2420 return ret;
2421 }
2422
2423 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2424 {
2425 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2426 /*
2427 * The LSB of head.next can't change to 0 from under
2428 * us because we hold the mm_all_locks_mutex.
2429 *
2430 * We must however clear the bitflag before unlocking
2431 * the vma so the users using the anon_vma->head will
2432 * never see our bitflag.
2433 *
2434 * No need of atomic instructions here, head.next
2435 * can't change from under us until we release the
2436 * anon_vma->lock.
2437 */
2438 if (!__test_and_clear_bit(0, (unsigned long *)
2439 &anon_vma->head.next))
2440 BUG();
2441 spin_unlock(&anon_vma->lock);
2442 }
2443 }
2444
2445 static void vm_unlock_mapping(struct address_space *mapping)
2446 {
2447 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2448 /*
2449 * AS_MM_ALL_LOCKS can't change to 0 from under us
2450 * because we hold the mm_all_locks_mutex.
2451 */
2452 spin_unlock(&mapping->i_mmap_lock);
2453 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2454 &mapping->flags))
2455 BUG();
2456 }
2457 }
2458
2459 /*
2460 * The mmap_sem cannot be released by the caller until
2461 * mm_drop_all_locks() returns.
2462 */
2463 void mm_drop_all_locks(struct mm_struct *mm)
2464 {
2465 struct vm_area_struct *vma;
2466
2467 BUG_ON(down_read_trylock(&mm->mmap_sem));
2468 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2469
2470 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2471 if (vma->anon_vma)
2472 vm_unlock_anon_vma(vma->anon_vma);
2473 if (vma->vm_file && vma->vm_file->f_mapping)
2474 vm_unlock_mapping(vma->vm_file->f_mapping);
2475 }
2476
2477 mutex_unlock(&mm_all_locks_mutex);
2478 }
2479
2480 /*
2481 * initialise the VMA slab
2482 */
2483 void __init mmap_init(void)
2484 {
2485 int ret;
2486
2487 ret = percpu_counter_init(&vm_committed_as, 0);
2488 VM_BUG_ON(ret);
2489 }
This page took 0.154638 seconds and 6 git commands to generate.