ksm: fix oom deadlock
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/ksm.h>
31 #include <linux/mmu_notifier.h>
32 #include <linux/perf_event.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
52
53 /*
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
56 */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 struct percpu_counter vm_committed_as;
91
92 /*
93 * Check that a process has enough memory to allocate a new virtual
94 * mapping. 0 means there is enough memory for the allocation to
95 * succeed and -ENOMEM implies there is not.
96 *
97 * We currently support three overcommit policies, which are set via the
98 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
99 *
100 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
101 * Additional code 2002 Jul 20 by Robert Love.
102 *
103 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
104 *
105 * Note this is a helper function intended to be used by LSMs which
106 * wish to use this logic.
107 */
108 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
109 {
110 unsigned long free, allowed;
111
112 vm_acct_memory(pages);
113
114 /*
115 * Sometimes we want to use more memory than we have
116 */
117 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
118 return 0;
119
120 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
121 unsigned long n;
122
123 free = global_page_state(NR_FILE_PAGES);
124 free += nr_swap_pages;
125
126 /*
127 * Any slabs which are created with the
128 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
129 * which are reclaimable, under pressure. The dentry
130 * cache and most inode caches should fall into this
131 */
132 free += global_page_state(NR_SLAB_RECLAIMABLE);
133
134 /*
135 * Leave the last 3% for root
136 */
137 if (!cap_sys_admin)
138 free -= free / 32;
139
140 if (free > pages)
141 return 0;
142
143 /*
144 * nr_free_pages() is very expensive on large systems,
145 * only call if we're about to fail.
146 */
147 n = nr_free_pages();
148
149 /*
150 * Leave reserved pages. The pages are not for anonymous pages.
151 */
152 if (n <= totalreserve_pages)
153 goto error;
154 else
155 n -= totalreserve_pages;
156
157 /*
158 * Leave the last 3% for root
159 */
160 if (!cap_sys_admin)
161 n -= n / 32;
162 free += n;
163
164 if (free > pages)
165 return 0;
166
167 goto error;
168 }
169
170 allowed = (totalram_pages - hugetlb_total_pages())
171 * sysctl_overcommit_ratio / 100;
172 /*
173 * Leave the last 3% for root
174 */
175 if (!cap_sys_admin)
176 allowed -= allowed / 32;
177 allowed += total_swap_pages;
178
179 /* Don't let a single process grow too big:
180 leave 3% of the size of this process for other processes */
181 if (mm)
182 allowed -= mm->total_vm / 32;
183
184 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
185 return 0;
186 error:
187 vm_unacct_memory(pages);
188
189 return -ENOMEM;
190 }
191
192 /*
193 * Requires inode->i_mapping->i_mmap_lock
194 */
195 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
196 struct file *file, struct address_space *mapping)
197 {
198 if (vma->vm_flags & VM_DENYWRITE)
199 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
200 if (vma->vm_flags & VM_SHARED)
201 mapping->i_mmap_writable--;
202
203 flush_dcache_mmap_lock(mapping);
204 if (unlikely(vma->vm_flags & VM_NONLINEAR))
205 list_del_init(&vma->shared.vm_set.list);
206 else
207 vma_prio_tree_remove(vma, &mapping->i_mmap);
208 flush_dcache_mmap_unlock(mapping);
209 }
210
211 /*
212 * Unlink a file-based vm structure from its prio_tree, to hide
213 * vma from rmap and vmtruncate before freeing its page tables.
214 */
215 void unlink_file_vma(struct vm_area_struct *vma)
216 {
217 struct file *file = vma->vm_file;
218
219 if (file) {
220 struct address_space *mapping = file->f_mapping;
221 spin_lock(&mapping->i_mmap_lock);
222 __remove_shared_vm_struct(vma, file, mapping);
223 spin_unlock(&mapping->i_mmap_lock);
224 }
225 }
226
227 /*
228 * Close a vm structure and free it, returning the next.
229 */
230 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
231 {
232 struct vm_area_struct *next = vma->vm_next;
233
234 might_sleep();
235 if (vma->vm_ops && vma->vm_ops->close)
236 vma->vm_ops->close(vma);
237 if (vma->vm_file) {
238 fput(vma->vm_file);
239 if (vma->vm_flags & VM_EXECUTABLE)
240 removed_exe_file_vma(vma->vm_mm);
241 }
242 mpol_put(vma_policy(vma));
243 kmem_cache_free(vm_area_cachep, vma);
244 return next;
245 }
246
247 SYSCALL_DEFINE1(brk, unsigned long, brk)
248 {
249 unsigned long rlim, retval;
250 unsigned long newbrk, oldbrk;
251 struct mm_struct *mm = current->mm;
252 unsigned long min_brk;
253
254 down_write(&mm->mmap_sem);
255
256 #ifdef CONFIG_COMPAT_BRK
257 min_brk = mm->end_code;
258 #else
259 min_brk = mm->start_brk;
260 #endif
261 if (brk < min_brk)
262 goto out;
263
264 /*
265 * Check against rlimit here. If this check is done later after the test
266 * of oldbrk with newbrk then it can escape the test and let the data
267 * segment grow beyond its set limit the in case where the limit is
268 * not page aligned -Ram Gupta
269 */
270 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
271 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
272 (mm->end_data - mm->start_data) > rlim)
273 goto out;
274
275 newbrk = PAGE_ALIGN(brk);
276 oldbrk = PAGE_ALIGN(mm->brk);
277 if (oldbrk == newbrk)
278 goto set_brk;
279
280 /* Always allow shrinking brk. */
281 if (brk <= mm->brk) {
282 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
283 goto set_brk;
284 goto out;
285 }
286
287 /* Check against existing mmap mappings. */
288 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
289 goto out;
290
291 /* Ok, looks good - let it rip. */
292 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
293 goto out;
294 set_brk:
295 mm->brk = brk;
296 out:
297 retval = mm->brk;
298 up_write(&mm->mmap_sem);
299 return retval;
300 }
301
302 #ifdef DEBUG_MM_RB
303 static int browse_rb(struct rb_root *root)
304 {
305 int i = 0, j;
306 struct rb_node *nd, *pn = NULL;
307 unsigned long prev = 0, pend = 0;
308
309 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
310 struct vm_area_struct *vma;
311 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
312 if (vma->vm_start < prev)
313 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
314 if (vma->vm_start < pend)
315 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
316 if (vma->vm_start > vma->vm_end)
317 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
318 i++;
319 pn = nd;
320 prev = vma->vm_start;
321 pend = vma->vm_end;
322 }
323 j = 0;
324 for (nd = pn; nd; nd = rb_prev(nd)) {
325 j++;
326 }
327 if (i != j)
328 printk("backwards %d, forwards %d\n", j, i), i = 0;
329 return i;
330 }
331
332 void validate_mm(struct mm_struct *mm)
333 {
334 int bug = 0;
335 int i = 0;
336 struct vm_area_struct *tmp = mm->mmap;
337 while (tmp) {
338 tmp = tmp->vm_next;
339 i++;
340 }
341 if (i != mm->map_count)
342 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
343 i = browse_rb(&mm->mm_rb);
344 if (i != mm->map_count)
345 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
346 BUG_ON(bug);
347 }
348 #else
349 #define validate_mm(mm) do { } while (0)
350 #endif
351
352 static struct vm_area_struct *
353 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
354 struct vm_area_struct **pprev, struct rb_node ***rb_link,
355 struct rb_node ** rb_parent)
356 {
357 struct vm_area_struct * vma;
358 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
359
360 __rb_link = &mm->mm_rb.rb_node;
361 rb_prev = __rb_parent = NULL;
362 vma = NULL;
363
364 while (*__rb_link) {
365 struct vm_area_struct *vma_tmp;
366
367 __rb_parent = *__rb_link;
368 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
369
370 if (vma_tmp->vm_end > addr) {
371 vma = vma_tmp;
372 if (vma_tmp->vm_start <= addr)
373 break;
374 __rb_link = &__rb_parent->rb_left;
375 } else {
376 rb_prev = __rb_parent;
377 __rb_link = &__rb_parent->rb_right;
378 }
379 }
380
381 *pprev = NULL;
382 if (rb_prev)
383 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
384 *rb_link = __rb_link;
385 *rb_parent = __rb_parent;
386 return vma;
387 }
388
389 static inline void
390 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
391 struct vm_area_struct *prev, struct rb_node *rb_parent)
392 {
393 if (prev) {
394 vma->vm_next = prev->vm_next;
395 prev->vm_next = vma;
396 } else {
397 mm->mmap = vma;
398 if (rb_parent)
399 vma->vm_next = rb_entry(rb_parent,
400 struct vm_area_struct, vm_rb);
401 else
402 vma->vm_next = NULL;
403 }
404 }
405
406 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
407 struct rb_node **rb_link, struct rb_node *rb_parent)
408 {
409 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
410 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
411 }
412
413 static void __vma_link_file(struct vm_area_struct *vma)
414 {
415 struct file *file;
416
417 file = vma->vm_file;
418 if (file) {
419 struct address_space *mapping = file->f_mapping;
420
421 if (vma->vm_flags & VM_DENYWRITE)
422 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
423 if (vma->vm_flags & VM_SHARED)
424 mapping->i_mmap_writable++;
425
426 flush_dcache_mmap_lock(mapping);
427 if (unlikely(vma->vm_flags & VM_NONLINEAR))
428 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
429 else
430 vma_prio_tree_insert(vma, &mapping->i_mmap);
431 flush_dcache_mmap_unlock(mapping);
432 }
433 }
434
435 static void
436 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
437 struct vm_area_struct *prev, struct rb_node **rb_link,
438 struct rb_node *rb_parent)
439 {
440 __vma_link_list(mm, vma, prev, rb_parent);
441 __vma_link_rb(mm, vma, rb_link, rb_parent);
442 __anon_vma_link(vma);
443 }
444
445 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
446 struct vm_area_struct *prev, struct rb_node **rb_link,
447 struct rb_node *rb_parent)
448 {
449 struct address_space *mapping = NULL;
450
451 if (vma->vm_file)
452 mapping = vma->vm_file->f_mapping;
453
454 if (mapping) {
455 spin_lock(&mapping->i_mmap_lock);
456 vma->vm_truncate_count = mapping->truncate_count;
457 }
458 anon_vma_lock(vma);
459
460 __vma_link(mm, vma, prev, rb_link, rb_parent);
461 __vma_link_file(vma);
462
463 anon_vma_unlock(vma);
464 if (mapping)
465 spin_unlock(&mapping->i_mmap_lock);
466
467 mm->map_count++;
468 validate_mm(mm);
469 }
470
471 /*
472 * Helper for vma_adjust in the split_vma insert case:
473 * insert vm structure into list and rbtree and anon_vma,
474 * but it has already been inserted into prio_tree earlier.
475 */
476 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
477 {
478 struct vm_area_struct *__vma, *prev;
479 struct rb_node **rb_link, *rb_parent;
480
481 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
482 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
483 __vma_link(mm, vma, prev, rb_link, rb_parent);
484 mm->map_count++;
485 }
486
487 static inline void
488 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
489 struct vm_area_struct *prev)
490 {
491 prev->vm_next = vma->vm_next;
492 rb_erase(&vma->vm_rb, &mm->mm_rb);
493 if (mm->mmap_cache == vma)
494 mm->mmap_cache = prev;
495 }
496
497 /*
498 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
499 * is already present in an i_mmap tree without adjusting the tree.
500 * The following helper function should be used when such adjustments
501 * are necessary. The "insert" vma (if any) is to be inserted
502 * before we drop the necessary locks.
503 */
504 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
505 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
506 {
507 struct mm_struct *mm = vma->vm_mm;
508 struct vm_area_struct *next = vma->vm_next;
509 struct vm_area_struct *importer = NULL;
510 struct address_space *mapping = NULL;
511 struct prio_tree_root *root = NULL;
512 struct file *file = vma->vm_file;
513 struct anon_vma *anon_vma = NULL;
514 long adjust_next = 0;
515 int remove_next = 0;
516
517 if (next && !insert) {
518 if (end >= next->vm_end) {
519 /*
520 * vma expands, overlapping all the next, and
521 * perhaps the one after too (mprotect case 6).
522 */
523 again: remove_next = 1 + (end > next->vm_end);
524 end = next->vm_end;
525 anon_vma = next->anon_vma;
526 importer = vma;
527 } else if (end > next->vm_start) {
528 /*
529 * vma expands, overlapping part of the next:
530 * mprotect case 5 shifting the boundary up.
531 */
532 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
533 anon_vma = next->anon_vma;
534 importer = vma;
535 } else if (end < vma->vm_end) {
536 /*
537 * vma shrinks, and !insert tells it's not
538 * split_vma inserting another: so it must be
539 * mprotect case 4 shifting the boundary down.
540 */
541 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
542 anon_vma = next->anon_vma;
543 importer = next;
544 }
545 }
546
547 if (file) {
548 mapping = file->f_mapping;
549 if (!(vma->vm_flags & VM_NONLINEAR))
550 root = &mapping->i_mmap;
551 spin_lock(&mapping->i_mmap_lock);
552 if (importer &&
553 vma->vm_truncate_count != next->vm_truncate_count) {
554 /*
555 * unmap_mapping_range might be in progress:
556 * ensure that the expanding vma is rescanned.
557 */
558 importer->vm_truncate_count = 0;
559 }
560 if (insert) {
561 insert->vm_truncate_count = vma->vm_truncate_count;
562 /*
563 * Put into prio_tree now, so instantiated pages
564 * are visible to arm/parisc __flush_dcache_page
565 * throughout; but we cannot insert into address
566 * space until vma start or end is updated.
567 */
568 __vma_link_file(insert);
569 }
570 }
571
572 /*
573 * When changing only vma->vm_end, we don't really need
574 * anon_vma lock: but is that case worth optimizing out?
575 */
576 if (vma->anon_vma)
577 anon_vma = vma->anon_vma;
578 if (anon_vma) {
579 spin_lock(&anon_vma->lock);
580 /*
581 * Easily overlooked: when mprotect shifts the boundary,
582 * make sure the expanding vma has anon_vma set if the
583 * shrinking vma had, to cover any anon pages imported.
584 */
585 if (importer && !importer->anon_vma) {
586 importer->anon_vma = anon_vma;
587 __anon_vma_link(importer);
588 }
589 }
590
591 if (root) {
592 flush_dcache_mmap_lock(mapping);
593 vma_prio_tree_remove(vma, root);
594 if (adjust_next)
595 vma_prio_tree_remove(next, root);
596 }
597
598 vma->vm_start = start;
599 vma->vm_end = end;
600 vma->vm_pgoff = pgoff;
601 if (adjust_next) {
602 next->vm_start += adjust_next << PAGE_SHIFT;
603 next->vm_pgoff += adjust_next;
604 }
605
606 if (root) {
607 if (adjust_next)
608 vma_prio_tree_insert(next, root);
609 vma_prio_tree_insert(vma, root);
610 flush_dcache_mmap_unlock(mapping);
611 }
612
613 if (remove_next) {
614 /*
615 * vma_merge has merged next into vma, and needs
616 * us to remove next before dropping the locks.
617 */
618 __vma_unlink(mm, next, vma);
619 if (file)
620 __remove_shared_vm_struct(next, file, mapping);
621 if (next->anon_vma)
622 __anon_vma_merge(vma, next);
623 } else if (insert) {
624 /*
625 * split_vma has split insert from vma, and needs
626 * us to insert it before dropping the locks
627 * (it may either follow vma or precede it).
628 */
629 __insert_vm_struct(mm, insert);
630 }
631
632 if (anon_vma)
633 spin_unlock(&anon_vma->lock);
634 if (mapping)
635 spin_unlock(&mapping->i_mmap_lock);
636
637 if (remove_next) {
638 if (file) {
639 fput(file);
640 if (next->vm_flags & VM_EXECUTABLE)
641 removed_exe_file_vma(mm);
642 }
643 mm->map_count--;
644 mpol_put(vma_policy(next));
645 kmem_cache_free(vm_area_cachep, next);
646 /*
647 * In mprotect's case 6 (see comments on vma_merge),
648 * we must remove another next too. It would clutter
649 * up the code too much to do both in one go.
650 */
651 if (remove_next == 2) {
652 next = vma->vm_next;
653 goto again;
654 }
655 }
656
657 validate_mm(mm);
658 }
659
660 /* Flags that can be inherited from an existing mapping when merging */
661 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
662
663 /*
664 * If the vma has a ->close operation then the driver probably needs to release
665 * per-vma resources, so we don't attempt to merge those.
666 */
667 static inline int is_mergeable_vma(struct vm_area_struct *vma,
668 struct file *file, unsigned long vm_flags)
669 {
670 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
671 return 0;
672 if (vma->vm_file != file)
673 return 0;
674 if (vma->vm_ops && vma->vm_ops->close)
675 return 0;
676 return 1;
677 }
678
679 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
680 struct anon_vma *anon_vma2)
681 {
682 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
683 }
684
685 /*
686 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
687 * in front of (at a lower virtual address and file offset than) the vma.
688 *
689 * We cannot merge two vmas if they have differently assigned (non-NULL)
690 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
691 *
692 * We don't check here for the merged mmap wrapping around the end of pagecache
693 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
694 * wrap, nor mmaps which cover the final page at index -1UL.
695 */
696 static int
697 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
698 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
699 {
700 if (is_mergeable_vma(vma, file, vm_flags) &&
701 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
702 if (vma->vm_pgoff == vm_pgoff)
703 return 1;
704 }
705 return 0;
706 }
707
708 /*
709 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
710 * beyond (at a higher virtual address and file offset than) the vma.
711 *
712 * We cannot merge two vmas if they have differently assigned (non-NULL)
713 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
714 */
715 static int
716 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
717 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
718 {
719 if (is_mergeable_vma(vma, file, vm_flags) &&
720 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
721 pgoff_t vm_pglen;
722 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
723 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
724 return 1;
725 }
726 return 0;
727 }
728
729 /*
730 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
731 * whether that can be merged with its predecessor or its successor.
732 * Or both (it neatly fills a hole).
733 *
734 * In most cases - when called for mmap, brk or mremap - [addr,end) is
735 * certain not to be mapped by the time vma_merge is called; but when
736 * called for mprotect, it is certain to be already mapped (either at
737 * an offset within prev, or at the start of next), and the flags of
738 * this area are about to be changed to vm_flags - and the no-change
739 * case has already been eliminated.
740 *
741 * The following mprotect cases have to be considered, where AAAA is
742 * the area passed down from mprotect_fixup, never extending beyond one
743 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
744 *
745 * AAAA AAAA AAAA AAAA
746 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
747 * cannot merge might become might become might become
748 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
749 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
750 * mremap move: PPPPNNNNNNNN 8
751 * AAAA
752 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
753 * might become case 1 below case 2 below case 3 below
754 *
755 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
756 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
757 */
758 struct vm_area_struct *vma_merge(struct mm_struct *mm,
759 struct vm_area_struct *prev, unsigned long addr,
760 unsigned long end, unsigned long vm_flags,
761 struct anon_vma *anon_vma, struct file *file,
762 pgoff_t pgoff, struct mempolicy *policy)
763 {
764 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
765 struct vm_area_struct *area, *next;
766
767 /*
768 * We later require that vma->vm_flags == vm_flags,
769 * so this tests vma->vm_flags & VM_SPECIAL, too.
770 */
771 if (vm_flags & VM_SPECIAL)
772 return NULL;
773
774 if (prev)
775 next = prev->vm_next;
776 else
777 next = mm->mmap;
778 area = next;
779 if (next && next->vm_end == end) /* cases 6, 7, 8 */
780 next = next->vm_next;
781
782 /*
783 * Can it merge with the predecessor?
784 */
785 if (prev && prev->vm_end == addr &&
786 mpol_equal(vma_policy(prev), policy) &&
787 can_vma_merge_after(prev, vm_flags,
788 anon_vma, file, pgoff)) {
789 /*
790 * OK, it can. Can we now merge in the successor as well?
791 */
792 if (next && end == next->vm_start &&
793 mpol_equal(policy, vma_policy(next)) &&
794 can_vma_merge_before(next, vm_flags,
795 anon_vma, file, pgoff+pglen) &&
796 is_mergeable_anon_vma(prev->anon_vma,
797 next->anon_vma)) {
798 /* cases 1, 6 */
799 vma_adjust(prev, prev->vm_start,
800 next->vm_end, prev->vm_pgoff, NULL);
801 } else /* cases 2, 5, 7 */
802 vma_adjust(prev, prev->vm_start,
803 end, prev->vm_pgoff, NULL);
804 return prev;
805 }
806
807 /*
808 * Can this new request be merged in front of next?
809 */
810 if (next && end == next->vm_start &&
811 mpol_equal(policy, vma_policy(next)) &&
812 can_vma_merge_before(next, vm_flags,
813 anon_vma, file, pgoff+pglen)) {
814 if (prev && addr < prev->vm_end) /* case 4 */
815 vma_adjust(prev, prev->vm_start,
816 addr, prev->vm_pgoff, NULL);
817 else /* cases 3, 8 */
818 vma_adjust(area, addr, next->vm_end,
819 next->vm_pgoff - pglen, NULL);
820 return area;
821 }
822
823 return NULL;
824 }
825
826 /*
827 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
828 * neighbouring vmas for a suitable anon_vma, before it goes off
829 * to allocate a new anon_vma. It checks because a repetitive
830 * sequence of mprotects and faults may otherwise lead to distinct
831 * anon_vmas being allocated, preventing vma merge in subsequent
832 * mprotect.
833 */
834 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
835 {
836 struct vm_area_struct *near;
837 unsigned long vm_flags;
838
839 near = vma->vm_next;
840 if (!near)
841 goto try_prev;
842
843 /*
844 * Since only mprotect tries to remerge vmas, match flags
845 * which might be mprotected into each other later on.
846 * Neither mlock nor madvise tries to remerge at present,
847 * so leave their flags as obstructing a merge.
848 */
849 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
850 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
851
852 if (near->anon_vma && vma->vm_end == near->vm_start &&
853 mpol_equal(vma_policy(vma), vma_policy(near)) &&
854 can_vma_merge_before(near, vm_flags,
855 NULL, vma->vm_file, vma->vm_pgoff +
856 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
857 return near->anon_vma;
858 try_prev:
859 /*
860 * It is potentially slow to have to call find_vma_prev here.
861 * But it's only on the first write fault on the vma, not
862 * every time, and we could devise a way to avoid it later
863 * (e.g. stash info in next's anon_vma_node when assigning
864 * an anon_vma, or when trying vma_merge). Another time.
865 */
866 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
867 if (!near)
868 goto none;
869
870 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
871 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
872
873 if (near->anon_vma && near->vm_end == vma->vm_start &&
874 mpol_equal(vma_policy(near), vma_policy(vma)) &&
875 can_vma_merge_after(near, vm_flags,
876 NULL, vma->vm_file, vma->vm_pgoff))
877 return near->anon_vma;
878 none:
879 /*
880 * There's no absolute need to look only at touching neighbours:
881 * we could search further afield for "compatible" anon_vmas.
882 * But it would probably just be a waste of time searching,
883 * or lead to too many vmas hanging off the same anon_vma.
884 * We're trying to allow mprotect remerging later on,
885 * not trying to minimize memory used for anon_vmas.
886 */
887 return NULL;
888 }
889
890 #ifdef CONFIG_PROC_FS
891 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
892 struct file *file, long pages)
893 {
894 const unsigned long stack_flags
895 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
896
897 if (file) {
898 mm->shared_vm += pages;
899 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
900 mm->exec_vm += pages;
901 } else if (flags & stack_flags)
902 mm->stack_vm += pages;
903 if (flags & (VM_RESERVED|VM_IO))
904 mm->reserved_vm += pages;
905 }
906 #endif /* CONFIG_PROC_FS */
907
908 /*
909 * The caller must hold down_write(&current->mm->mmap_sem).
910 */
911
912 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
913 unsigned long len, unsigned long prot,
914 unsigned long flags, unsigned long pgoff)
915 {
916 struct mm_struct * mm = current->mm;
917 struct inode *inode;
918 unsigned int vm_flags;
919 int error;
920 unsigned long reqprot = prot;
921
922 /*
923 * Does the application expect PROT_READ to imply PROT_EXEC?
924 *
925 * (the exception is when the underlying filesystem is noexec
926 * mounted, in which case we dont add PROT_EXEC.)
927 */
928 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
929 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
930 prot |= PROT_EXEC;
931
932 if (!len)
933 return -EINVAL;
934
935 if (!(flags & MAP_FIXED))
936 addr = round_hint_to_min(addr);
937
938 error = arch_mmap_check(addr, len, flags);
939 if (error)
940 return error;
941
942 /* Careful about overflows.. */
943 len = PAGE_ALIGN(len);
944 if (!len || len > TASK_SIZE)
945 return -ENOMEM;
946
947 /* offset overflow? */
948 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
949 return -EOVERFLOW;
950
951 /* Too many mappings? */
952 if (mm->map_count > sysctl_max_map_count)
953 return -ENOMEM;
954
955 /* Obtain the address to map to. we verify (or select) it and ensure
956 * that it represents a valid section of the address space.
957 */
958 addr = get_unmapped_area(file, addr, len, pgoff, flags);
959 if (addr & ~PAGE_MASK)
960 return addr;
961
962 /* Do simple checking here so the lower-level routines won't have
963 * to. we assume access permissions have been handled by the open
964 * of the memory object, so we don't do any here.
965 */
966 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
967 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
968
969 if (flags & MAP_LOCKED) {
970 if (!can_do_mlock())
971 return -EPERM;
972 vm_flags |= VM_LOCKED;
973 }
974
975 /* mlock MCL_FUTURE? */
976 if (vm_flags & VM_LOCKED) {
977 unsigned long locked, lock_limit;
978 locked = len >> PAGE_SHIFT;
979 locked += mm->locked_vm;
980 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
981 lock_limit >>= PAGE_SHIFT;
982 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
983 return -EAGAIN;
984 }
985
986 inode = file ? file->f_path.dentry->d_inode : NULL;
987
988 if (file) {
989 switch (flags & MAP_TYPE) {
990 case MAP_SHARED:
991 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
992 return -EACCES;
993
994 /*
995 * Make sure we don't allow writing to an append-only
996 * file..
997 */
998 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
999 return -EACCES;
1000
1001 /*
1002 * Make sure there are no mandatory locks on the file.
1003 */
1004 if (locks_verify_locked(inode))
1005 return -EAGAIN;
1006
1007 vm_flags |= VM_SHARED | VM_MAYSHARE;
1008 if (!(file->f_mode & FMODE_WRITE))
1009 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1010
1011 /* fall through */
1012 case MAP_PRIVATE:
1013 if (!(file->f_mode & FMODE_READ))
1014 return -EACCES;
1015 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1016 if (vm_flags & VM_EXEC)
1017 return -EPERM;
1018 vm_flags &= ~VM_MAYEXEC;
1019 }
1020
1021 if (!file->f_op || !file->f_op->mmap)
1022 return -ENODEV;
1023 break;
1024
1025 default:
1026 return -EINVAL;
1027 }
1028 } else {
1029 switch (flags & MAP_TYPE) {
1030 case MAP_SHARED:
1031 /*
1032 * Ignore pgoff.
1033 */
1034 pgoff = 0;
1035 vm_flags |= VM_SHARED | VM_MAYSHARE;
1036 break;
1037 case MAP_PRIVATE:
1038 /*
1039 * Set pgoff according to addr for anon_vma.
1040 */
1041 pgoff = addr >> PAGE_SHIFT;
1042 break;
1043 default:
1044 return -EINVAL;
1045 }
1046 }
1047
1048 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1049 if (error)
1050 return error;
1051 error = ima_file_mmap(file, prot);
1052 if (error)
1053 return error;
1054
1055 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1056 }
1057 EXPORT_SYMBOL(do_mmap_pgoff);
1058
1059 /*
1060 * Some shared mappigns will want the pages marked read-only
1061 * to track write events. If so, we'll downgrade vm_page_prot
1062 * to the private version (using protection_map[] without the
1063 * VM_SHARED bit).
1064 */
1065 int vma_wants_writenotify(struct vm_area_struct *vma)
1066 {
1067 unsigned int vm_flags = vma->vm_flags;
1068
1069 /* If it was private or non-writable, the write bit is already clear */
1070 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1071 return 0;
1072
1073 /* The backer wishes to know when pages are first written to? */
1074 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1075 return 1;
1076
1077 /* The open routine did something to the protections already? */
1078 if (pgprot_val(vma->vm_page_prot) !=
1079 pgprot_val(vm_get_page_prot(vm_flags)))
1080 return 0;
1081
1082 /* Specialty mapping? */
1083 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1084 return 0;
1085
1086 /* Can the mapping track the dirty pages? */
1087 return vma->vm_file && vma->vm_file->f_mapping &&
1088 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1089 }
1090
1091 /*
1092 * We account for memory if it's a private writeable mapping,
1093 * not hugepages and VM_NORESERVE wasn't set.
1094 */
1095 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1096 {
1097 /*
1098 * hugetlb has its own accounting separate from the core VM
1099 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1100 */
1101 if (file && is_file_hugepages(file))
1102 return 0;
1103
1104 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1105 }
1106
1107 unsigned long mmap_region(struct file *file, unsigned long addr,
1108 unsigned long len, unsigned long flags,
1109 unsigned int vm_flags, unsigned long pgoff)
1110 {
1111 struct mm_struct *mm = current->mm;
1112 struct vm_area_struct *vma, *prev;
1113 int correct_wcount = 0;
1114 int error;
1115 struct rb_node **rb_link, *rb_parent;
1116 unsigned long charged = 0;
1117 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1118
1119 /* Clear old maps */
1120 error = -ENOMEM;
1121 munmap_back:
1122 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1123 if (vma && vma->vm_start < addr + len) {
1124 if (do_munmap(mm, addr, len))
1125 return -ENOMEM;
1126 goto munmap_back;
1127 }
1128
1129 /* Check against address space limit. */
1130 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1131 return -ENOMEM;
1132
1133 /*
1134 * Set 'VM_NORESERVE' if we should not account for the
1135 * memory use of this mapping.
1136 */
1137 if ((flags & MAP_NORESERVE)) {
1138 /* We honor MAP_NORESERVE if allowed to overcommit */
1139 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1140 vm_flags |= VM_NORESERVE;
1141
1142 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1143 if (file && is_file_hugepages(file))
1144 vm_flags |= VM_NORESERVE;
1145 }
1146
1147 /*
1148 * Private writable mapping: check memory availability
1149 */
1150 if (accountable_mapping(file, vm_flags)) {
1151 charged = len >> PAGE_SHIFT;
1152 if (security_vm_enough_memory(charged))
1153 return -ENOMEM;
1154 vm_flags |= VM_ACCOUNT;
1155 }
1156
1157 /*
1158 * Can we just expand an old mapping?
1159 */
1160 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1161 if (vma)
1162 goto out;
1163
1164 /*
1165 * Determine the object being mapped and call the appropriate
1166 * specific mapper. the address has already been validated, but
1167 * not unmapped, but the maps are removed from the list.
1168 */
1169 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1170 if (!vma) {
1171 error = -ENOMEM;
1172 goto unacct_error;
1173 }
1174
1175 vma->vm_mm = mm;
1176 vma->vm_start = addr;
1177 vma->vm_end = addr + len;
1178 vma->vm_flags = vm_flags;
1179 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1180 vma->vm_pgoff = pgoff;
1181
1182 if (file) {
1183 error = -EINVAL;
1184 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1185 goto free_vma;
1186 if (vm_flags & VM_DENYWRITE) {
1187 error = deny_write_access(file);
1188 if (error)
1189 goto free_vma;
1190 correct_wcount = 1;
1191 }
1192 vma->vm_file = file;
1193 get_file(file);
1194 error = file->f_op->mmap(file, vma);
1195 if (error)
1196 goto unmap_and_free_vma;
1197 if (vm_flags & VM_EXECUTABLE)
1198 added_exe_file_vma(mm);
1199 } else if (vm_flags & VM_SHARED) {
1200 error = shmem_zero_setup(vma);
1201 if (error)
1202 goto free_vma;
1203 }
1204
1205 /* Can addr have changed??
1206 *
1207 * Answer: Yes, several device drivers can do it in their
1208 * f_op->mmap method. -DaveM
1209 */
1210 addr = vma->vm_start;
1211 pgoff = vma->vm_pgoff;
1212 vm_flags = vma->vm_flags;
1213
1214 if (vma_wants_writenotify(vma))
1215 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1216
1217 vma_link(mm, vma, prev, rb_link, rb_parent);
1218 file = vma->vm_file;
1219
1220 /* Once vma denies write, undo our temporary denial count */
1221 if (correct_wcount)
1222 atomic_inc(&inode->i_writecount);
1223 out:
1224 perf_event_mmap(vma);
1225
1226 mm->total_vm += len >> PAGE_SHIFT;
1227 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1228 if (vm_flags & VM_LOCKED) {
1229 /*
1230 * makes pages present; downgrades, drops, reacquires mmap_sem
1231 */
1232 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1233 if (nr_pages < 0)
1234 return nr_pages; /* vma gone! */
1235 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1236 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1237 make_pages_present(addr, addr + len);
1238 return addr;
1239
1240 unmap_and_free_vma:
1241 if (correct_wcount)
1242 atomic_inc(&inode->i_writecount);
1243 vma->vm_file = NULL;
1244 fput(file);
1245
1246 /* Undo any partial mapping done by a device driver. */
1247 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1248 charged = 0;
1249 free_vma:
1250 kmem_cache_free(vm_area_cachep, vma);
1251 unacct_error:
1252 if (charged)
1253 vm_unacct_memory(charged);
1254 return error;
1255 }
1256
1257 /* Get an address range which is currently unmapped.
1258 * For shmat() with addr=0.
1259 *
1260 * Ugly calling convention alert:
1261 * Return value with the low bits set means error value,
1262 * ie
1263 * if (ret & ~PAGE_MASK)
1264 * error = ret;
1265 *
1266 * This function "knows" that -ENOMEM has the bits set.
1267 */
1268 #ifndef HAVE_ARCH_UNMAPPED_AREA
1269 unsigned long
1270 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1271 unsigned long len, unsigned long pgoff, unsigned long flags)
1272 {
1273 struct mm_struct *mm = current->mm;
1274 struct vm_area_struct *vma;
1275 unsigned long start_addr;
1276
1277 if (len > TASK_SIZE)
1278 return -ENOMEM;
1279
1280 if (flags & MAP_FIXED)
1281 return addr;
1282
1283 if (addr) {
1284 addr = PAGE_ALIGN(addr);
1285 vma = find_vma(mm, addr);
1286 if (TASK_SIZE - len >= addr &&
1287 (!vma || addr + len <= vma->vm_start))
1288 return addr;
1289 }
1290 if (len > mm->cached_hole_size) {
1291 start_addr = addr = mm->free_area_cache;
1292 } else {
1293 start_addr = addr = TASK_UNMAPPED_BASE;
1294 mm->cached_hole_size = 0;
1295 }
1296
1297 full_search:
1298 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1299 /* At this point: (!vma || addr < vma->vm_end). */
1300 if (TASK_SIZE - len < addr) {
1301 /*
1302 * Start a new search - just in case we missed
1303 * some holes.
1304 */
1305 if (start_addr != TASK_UNMAPPED_BASE) {
1306 addr = TASK_UNMAPPED_BASE;
1307 start_addr = addr;
1308 mm->cached_hole_size = 0;
1309 goto full_search;
1310 }
1311 return -ENOMEM;
1312 }
1313 if (!vma || addr + len <= vma->vm_start) {
1314 /*
1315 * Remember the place where we stopped the search:
1316 */
1317 mm->free_area_cache = addr + len;
1318 return addr;
1319 }
1320 if (addr + mm->cached_hole_size < vma->vm_start)
1321 mm->cached_hole_size = vma->vm_start - addr;
1322 addr = vma->vm_end;
1323 }
1324 }
1325 #endif
1326
1327 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1328 {
1329 /*
1330 * Is this a new hole at the lowest possible address?
1331 */
1332 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1333 mm->free_area_cache = addr;
1334 mm->cached_hole_size = ~0UL;
1335 }
1336 }
1337
1338 /*
1339 * This mmap-allocator allocates new areas top-down from below the
1340 * stack's low limit (the base):
1341 */
1342 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1343 unsigned long
1344 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1345 const unsigned long len, const unsigned long pgoff,
1346 const unsigned long flags)
1347 {
1348 struct vm_area_struct *vma;
1349 struct mm_struct *mm = current->mm;
1350 unsigned long addr = addr0;
1351
1352 /* requested length too big for entire address space */
1353 if (len > TASK_SIZE)
1354 return -ENOMEM;
1355
1356 if (flags & MAP_FIXED)
1357 return addr;
1358
1359 /* requesting a specific address */
1360 if (addr) {
1361 addr = PAGE_ALIGN(addr);
1362 vma = find_vma(mm, addr);
1363 if (TASK_SIZE - len >= addr &&
1364 (!vma || addr + len <= vma->vm_start))
1365 return addr;
1366 }
1367
1368 /* check if free_area_cache is useful for us */
1369 if (len <= mm->cached_hole_size) {
1370 mm->cached_hole_size = 0;
1371 mm->free_area_cache = mm->mmap_base;
1372 }
1373
1374 /* either no address requested or can't fit in requested address hole */
1375 addr = mm->free_area_cache;
1376
1377 /* make sure it can fit in the remaining address space */
1378 if (addr > len) {
1379 vma = find_vma(mm, addr-len);
1380 if (!vma || addr <= vma->vm_start)
1381 /* remember the address as a hint for next time */
1382 return (mm->free_area_cache = addr-len);
1383 }
1384
1385 if (mm->mmap_base < len)
1386 goto bottomup;
1387
1388 addr = mm->mmap_base-len;
1389
1390 do {
1391 /*
1392 * Lookup failure means no vma is above this address,
1393 * else if new region fits below vma->vm_start,
1394 * return with success:
1395 */
1396 vma = find_vma(mm, addr);
1397 if (!vma || addr+len <= vma->vm_start)
1398 /* remember the address as a hint for next time */
1399 return (mm->free_area_cache = addr);
1400
1401 /* remember the largest hole we saw so far */
1402 if (addr + mm->cached_hole_size < vma->vm_start)
1403 mm->cached_hole_size = vma->vm_start - addr;
1404
1405 /* try just below the current vma->vm_start */
1406 addr = vma->vm_start-len;
1407 } while (len < vma->vm_start);
1408
1409 bottomup:
1410 /*
1411 * A failed mmap() very likely causes application failure,
1412 * so fall back to the bottom-up function here. This scenario
1413 * can happen with large stack limits and large mmap()
1414 * allocations.
1415 */
1416 mm->cached_hole_size = ~0UL;
1417 mm->free_area_cache = TASK_UNMAPPED_BASE;
1418 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1419 /*
1420 * Restore the topdown base:
1421 */
1422 mm->free_area_cache = mm->mmap_base;
1423 mm->cached_hole_size = ~0UL;
1424
1425 return addr;
1426 }
1427 #endif
1428
1429 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1430 {
1431 /*
1432 * Is this a new hole at the highest possible address?
1433 */
1434 if (addr > mm->free_area_cache)
1435 mm->free_area_cache = addr;
1436
1437 /* dont allow allocations above current base */
1438 if (mm->free_area_cache > mm->mmap_base)
1439 mm->free_area_cache = mm->mmap_base;
1440 }
1441
1442 unsigned long
1443 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1444 unsigned long pgoff, unsigned long flags)
1445 {
1446 unsigned long (*get_area)(struct file *, unsigned long,
1447 unsigned long, unsigned long, unsigned long);
1448
1449 get_area = current->mm->get_unmapped_area;
1450 if (file && file->f_op && file->f_op->get_unmapped_area)
1451 get_area = file->f_op->get_unmapped_area;
1452 addr = get_area(file, addr, len, pgoff, flags);
1453 if (IS_ERR_VALUE(addr))
1454 return addr;
1455
1456 if (addr > TASK_SIZE - len)
1457 return -ENOMEM;
1458 if (addr & ~PAGE_MASK)
1459 return -EINVAL;
1460
1461 return arch_rebalance_pgtables(addr, len);
1462 }
1463
1464 EXPORT_SYMBOL(get_unmapped_area);
1465
1466 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1467 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1468 {
1469 struct vm_area_struct *vma = NULL;
1470
1471 if (mm) {
1472 /* Check the cache first. */
1473 /* (Cache hit rate is typically around 35%.) */
1474 vma = mm->mmap_cache;
1475 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1476 struct rb_node * rb_node;
1477
1478 rb_node = mm->mm_rb.rb_node;
1479 vma = NULL;
1480
1481 while (rb_node) {
1482 struct vm_area_struct * vma_tmp;
1483
1484 vma_tmp = rb_entry(rb_node,
1485 struct vm_area_struct, vm_rb);
1486
1487 if (vma_tmp->vm_end > addr) {
1488 vma = vma_tmp;
1489 if (vma_tmp->vm_start <= addr)
1490 break;
1491 rb_node = rb_node->rb_left;
1492 } else
1493 rb_node = rb_node->rb_right;
1494 }
1495 if (vma)
1496 mm->mmap_cache = vma;
1497 }
1498 }
1499 return vma;
1500 }
1501
1502 EXPORT_SYMBOL(find_vma);
1503
1504 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1505 struct vm_area_struct *
1506 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1507 struct vm_area_struct **pprev)
1508 {
1509 struct vm_area_struct *vma = NULL, *prev = NULL;
1510 struct rb_node *rb_node;
1511 if (!mm)
1512 goto out;
1513
1514 /* Guard against addr being lower than the first VMA */
1515 vma = mm->mmap;
1516
1517 /* Go through the RB tree quickly. */
1518 rb_node = mm->mm_rb.rb_node;
1519
1520 while (rb_node) {
1521 struct vm_area_struct *vma_tmp;
1522 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1523
1524 if (addr < vma_tmp->vm_end) {
1525 rb_node = rb_node->rb_left;
1526 } else {
1527 prev = vma_tmp;
1528 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1529 break;
1530 rb_node = rb_node->rb_right;
1531 }
1532 }
1533
1534 out:
1535 *pprev = prev;
1536 return prev ? prev->vm_next : vma;
1537 }
1538
1539 /*
1540 * Verify that the stack growth is acceptable and
1541 * update accounting. This is shared with both the
1542 * grow-up and grow-down cases.
1543 */
1544 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1545 {
1546 struct mm_struct *mm = vma->vm_mm;
1547 struct rlimit *rlim = current->signal->rlim;
1548 unsigned long new_start;
1549
1550 /* address space limit tests */
1551 if (!may_expand_vm(mm, grow))
1552 return -ENOMEM;
1553
1554 /* Stack limit test */
1555 if (size > rlim[RLIMIT_STACK].rlim_cur)
1556 return -ENOMEM;
1557
1558 /* mlock limit tests */
1559 if (vma->vm_flags & VM_LOCKED) {
1560 unsigned long locked;
1561 unsigned long limit;
1562 locked = mm->locked_vm + grow;
1563 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1564 if (locked > limit && !capable(CAP_IPC_LOCK))
1565 return -ENOMEM;
1566 }
1567
1568 /* Check to ensure the stack will not grow into a hugetlb-only region */
1569 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1570 vma->vm_end - size;
1571 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1572 return -EFAULT;
1573
1574 /*
1575 * Overcommit.. This must be the final test, as it will
1576 * update security statistics.
1577 */
1578 if (security_vm_enough_memory_mm(mm, grow))
1579 return -ENOMEM;
1580
1581 /* Ok, everything looks good - let it rip */
1582 mm->total_vm += grow;
1583 if (vma->vm_flags & VM_LOCKED)
1584 mm->locked_vm += grow;
1585 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1586 return 0;
1587 }
1588
1589 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1590 /*
1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1592 * vma is the last one with address > vma->vm_end. Have to extend vma.
1593 */
1594 #ifndef CONFIG_IA64
1595 static
1596 #endif
1597 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1598 {
1599 int error;
1600
1601 if (!(vma->vm_flags & VM_GROWSUP))
1602 return -EFAULT;
1603
1604 /*
1605 * We must make sure the anon_vma is allocated
1606 * so that the anon_vma locking is not a noop.
1607 */
1608 if (unlikely(anon_vma_prepare(vma)))
1609 return -ENOMEM;
1610 anon_vma_lock(vma);
1611
1612 /*
1613 * vma->vm_start/vm_end cannot change under us because the caller
1614 * is required to hold the mmap_sem in read mode. We need the
1615 * anon_vma lock to serialize against concurrent expand_stacks.
1616 * Also guard against wrapping around to address 0.
1617 */
1618 if (address < PAGE_ALIGN(address+4))
1619 address = PAGE_ALIGN(address+4);
1620 else {
1621 anon_vma_unlock(vma);
1622 return -ENOMEM;
1623 }
1624 error = 0;
1625
1626 /* Somebody else might have raced and expanded it already */
1627 if (address > vma->vm_end) {
1628 unsigned long size, grow;
1629
1630 size = address - vma->vm_start;
1631 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1632
1633 error = acct_stack_growth(vma, size, grow);
1634 if (!error)
1635 vma->vm_end = address;
1636 }
1637 anon_vma_unlock(vma);
1638 return error;
1639 }
1640 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1641
1642 /*
1643 * vma is the first one with address < vma->vm_start. Have to extend vma.
1644 */
1645 static int expand_downwards(struct vm_area_struct *vma,
1646 unsigned long address)
1647 {
1648 int error;
1649
1650 /*
1651 * We must make sure the anon_vma is allocated
1652 * so that the anon_vma locking is not a noop.
1653 */
1654 if (unlikely(anon_vma_prepare(vma)))
1655 return -ENOMEM;
1656
1657 address &= PAGE_MASK;
1658 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1659 if (error)
1660 return error;
1661
1662 anon_vma_lock(vma);
1663
1664 /*
1665 * vma->vm_start/vm_end cannot change under us because the caller
1666 * is required to hold the mmap_sem in read mode. We need the
1667 * anon_vma lock to serialize against concurrent expand_stacks.
1668 */
1669
1670 /* Somebody else might have raced and expanded it already */
1671 if (address < vma->vm_start) {
1672 unsigned long size, grow;
1673
1674 size = vma->vm_end - address;
1675 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1676
1677 error = acct_stack_growth(vma, size, grow);
1678 if (!error) {
1679 vma->vm_start = address;
1680 vma->vm_pgoff -= grow;
1681 }
1682 }
1683 anon_vma_unlock(vma);
1684 return error;
1685 }
1686
1687 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1688 {
1689 return expand_downwards(vma, address);
1690 }
1691
1692 #ifdef CONFIG_STACK_GROWSUP
1693 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1694 {
1695 return expand_upwards(vma, address);
1696 }
1697
1698 struct vm_area_struct *
1699 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1700 {
1701 struct vm_area_struct *vma, *prev;
1702
1703 addr &= PAGE_MASK;
1704 vma = find_vma_prev(mm, addr, &prev);
1705 if (vma && (vma->vm_start <= addr))
1706 return vma;
1707 if (!prev || expand_stack(prev, addr))
1708 return NULL;
1709 if (prev->vm_flags & VM_LOCKED) {
1710 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1711 return NULL; /* vma gone! */
1712 }
1713 return prev;
1714 }
1715 #else
1716 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1717 {
1718 return expand_downwards(vma, address);
1719 }
1720
1721 struct vm_area_struct *
1722 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1723 {
1724 struct vm_area_struct * vma;
1725 unsigned long start;
1726
1727 addr &= PAGE_MASK;
1728 vma = find_vma(mm,addr);
1729 if (!vma)
1730 return NULL;
1731 if (vma->vm_start <= addr)
1732 return vma;
1733 if (!(vma->vm_flags & VM_GROWSDOWN))
1734 return NULL;
1735 start = vma->vm_start;
1736 if (expand_stack(vma, addr))
1737 return NULL;
1738 if (vma->vm_flags & VM_LOCKED) {
1739 if (mlock_vma_pages_range(vma, addr, start) < 0)
1740 return NULL; /* vma gone! */
1741 }
1742 return vma;
1743 }
1744 #endif
1745
1746 /*
1747 * Ok - we have the memory areas we should free on the vma list,
1748 * so release them, and do the vma updates.
1749 *
1750 * Called with the mm semaphore held.
1751 */
1752 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1753 {
1754 /* Update high watermark before we lower total_vm */
1755 update_hiwater_vm(mm);
1756 do {
1757 long nrpages = vma_pages(vma);
1758
1759 mm->total_vm -= nrpages;
1760 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1761 vma = remove_vma(vma);
1762 } while (vma);
1763 validate_mm(mm);
1764 }
1765
1766 /*
1767 * Get rid of page table information in the indicated region.
1768 *
1769 * Called with the mm semaphore held.
1770 */
1771 static void unmap_region(struct mm_struct *mm,
1772 struct vm_area_struct *vma, struct vm_area_struct *prev,
1773 unsigned long start, unsigned long end)
1774 {
1775 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1776 struct mmu_gather *tlb;
1777 unsigned long nr_accounted = 0;
1778
1779 lru_add_drain();
1780 tlb = tlb_gather_mmu(mm, 0);
1781 update_hiwater_rss(mm);
1782 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1783 vm_unacct_memory(nr_accounted);
1784 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1785 next? next->vm_start: 0);
1786 tlb_finish_mmu(tlb, start, end);
1787 }
1788
1789 /*
1790 * Create a list of vma's touched by the unmap, removing them from the mm's
1791 * vma list as we go..
1792 */
1793 static void
1794 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1795 struct vm_area_struct *prev, unsigned long end)
1796 {
1797 struct vm_area_struct **insertion_point;
1798 struct vm_area_struct *tail_vma = NULL;
1799 unsigned long addr;
1800
1801 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1802 do {
1803 rb_erase(&vma->vm_rb, &mm->mm_rb);
1804 mm->map_count--;
1805 tail_vma = vma;
1806 vma = vma->vm_next;
1807 } while (vma && vma->vm_start < end);
1808 *insertion_point = vma;
1809 tail_vma->vm_next = NULL;
1810 if (mm->unmap_area == arch_unmap_area)
1811 addr = prev ? prev->vm_end : mm->mmap_base;
1812 else
1813 addr = vma ? vma->vm_start : mm->mmap_base;
1814 mm->unmap_area(mm, addr);
1815 mm->mmap_cache = NULL; /* Kill the cache. */
1816 }
1817
1818 /*
1819 * Split a vma into two pieces at address 'addr', a new vma is allocated
1820 * either for the first part or the tail.
1821 */
1822 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1823 unsigned long addr, int new_below)
1824 {
1825 struct mempolicy *pol;
1826 struct vm_area_struct *new;
1827
1828 if (is_vm_hugetlb_page(vma) && (addr &
1829 ~(huge_page_mask(hstate_vma(vma)))))
1830 return -EINVAL;
1831
1832 if (mm->map_count >= sysctl_max_map_count)
1833 return -ENOMEM;
1834
1835 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1836 if (!new)
1837 return -ENOMEM;
1838
1839 /* most fields are the same, copy all, and then fixup */
1840 *new = *vma;
1841
1842 if (new_below)
1843 new->vm_end = addr;
1844 else {
1845 new->vm_start = addr;
1846 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1847 }
1848
1849 pol = mpol_dup(vma_policy(vma));
1850 if (IS_ERR(pol)) {
1851 kmem_cache_free(vm_area_cachep, new);
1852 return PTR_ERR(pol);
1853 }
1854 vma_set_policy(new, pol);
1855
1856 if (new->vm_file) {
1857 get_file(new->vm_file);
1858 if (vma->vm_flags & VM_EXECUTABLE)
1859 added_exe_file_vma(mm);
1860 }
1861
1862 if (new->vm_ops && new->vm_ops->open)
1863 new->vm_ops->open(new);
1864
1865 if (new_below)
1866 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1867 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1868 else
1869 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1870
1871 return 0;
1872 }
1873
1874 /* Munmap is split into 2 main parts -- this part which finds
1875 * what needs doing, and the areas themselves, which do the
1876 * work. This now handles partial unmappings.
1877 * Jeremy Fitzhardinge <jeremy@goop.org>
1878 */
1879 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1880 {
1881 unsigned long end;
1882 struct vm_area_struct *vma, *prev, *last;
1883
1884 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1885 return -EINVAL;
1886
1887 if ((len = PAGE_ALIGN(len)) == 0)
1888 return -EINVAL;
1889
1890 /* Find the first overlapping VMA */
1891 vma = find_vma_prev(mm, start, &prev);
1892 if (!vma)
1893 return 0;
1894 /* we have start < vma->vm_end */
1895
1896 /* if it doesn't overlap, we have nothing.. */
1897 end = start + len;
1898 if (vma->vm_start >= end)
1899 return 0;
1900
1901 /*
1902 * If we need to split any vma, do it now to save pain later.
1903 *
1904 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1905 * unmapped vm_area_struct will remain in use: so lower split_vma
1906 * places tmp vma above, and higher split_vma places tmp vma below.
1907 */
1908 if (start > vma->vm_start) {
1909 int error = split_vma(mm, vma, start, 0);
1910 if (error)
1911 return error;
1912 prev = vma;
1913 }
1914
1915 /* Does it split the last one? */
1916 last = find_vma(mm, end);
1917 if (last && end > last->vm_start) {
1918 int error = split_vma(mm, last, end, 1);
1919 if (error)
1920 return error;
1921 }
1922 vma = prev? prev->vm_next: mm->mmap;
1923
1924 /*
1925 * unlock any mlock()ed ranges before detaching vmas
1926 */
1927 if (mm->locked_vm) {
1928 struct vm_area_struct *tmp = vma;
1929 while (tmp && tmp->vm_start < end) {
1930 if (tmp->vm_flags & VM_LOCKED) {
1931 mm->locked_vm -= vma_pages(tmp);
1932 munlock_vma_pages_all(tmp);
1933 }
1934 tmp = tmp->vm_next;
1935 }
1936 }
1937
1938 /*
1939 * Remove the vma's, and unmap the actual pages
1940 */
1941 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1942 unmap_region(mm, vma, prev, start, end);
1943
1944 /* Fix up all other VM information */
1945 remove_vma_list(mm, vma);
1946
1947 return 0;
1948 }
1949
1950 EXPORT_SYMBOL(do_munmap);
1951
1952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1953 {
1954 int ret;
1955 struct mm_struct *mm = current->mm;
1956
1957 profile_munmap(addr);
1958
1959 down_write(&mm->mmap_sem);
1960 ret = do_munmap(mm, addr, len);
1961 up_write(&mm->mmap_sem);
1962 return ret;
1963 }
1964
1965 static inline void verify_mm_writelocked(struct mm_struct *mm)
1966 {
1967 #ifdef CONFIG_DEBUG_VM
1968 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1969 WARN_ON(1);
1970 up_read(&mm->mmap_sem);
1971 }
1972 #endif
1973 }
1974
1975 /*
1976 * this is really a simplified "do_mmap". it only handles
1977 * anonymous maps. eventually we may be able to do some
1978 * brk-specific accounting here.
1979 */
1980 unsigned long do_brk(unsigned long addr, unsigned long len)
1981 {
1982 struct mm_struct * mm = current->mm;
1983 struct vm_area_struct * vma, * prev;
1984 unsigned long flags;
1985 struct rb_node ** rb_link, * rb_parent;
1986 pgoff_t pgoff = addr >> PAGE_SHIFT;
1987 int error;
1988
1989 len = PAGE_ALIGN(len);
1990 if (!len)
1991 return addr;
1992
1993 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1994 return -EINVAL;
1995
1996 if (is_hugepage_only_range(mm, addr, len))
1997 return -EINVAL;
1998
1999 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2000 if (error)
2001 return error;
2002
2003 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2004
2005 error = arch_mmap_check(addr, len, flags);
2006 if (error)
2007 return error;
2008
2009 /*
2010 * mlock MCL_FUTURE?
2011 */
2012 if (mm->def_flags & VM_LOCKED) {
2013 unsigned long locked, lock_limit;
2014 locked = len >> PAGE_SHIFT;
2015 locked += mm->locked_vm;
2016 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2017 lock_limit >>= PAGE_SHIFT;
2018 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2019 return -EAGAIN;
2020 }
2021
2022 /*
2023 * mm->mmap_sem is required to protect against another thread
2024 * changing the mappings in case we sleep.
2025 */
2026 verify_mm_writelocked(mm);
2027
2028 /*
2029 * Clear old maps. this also does some error checking for us
2030 */
2031 munmap_back:
2032 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2033 if (vma && vma->vm_start < addr + len) {
2034 if (do_munmap(mm, addr, len))
2035 return -ENOMEM;
2036 goto munmap_back;
2037 }
2038
2039 /* Check against address space limits *after* clearing old maps... */
2040 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2041 return -ENOMEM;
2042
2043 if (mm->map_count > sysctl_max_map_count)
2044 return -ENOMEM;
2045
2046 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2047 return -ENOMEM;
2048
2049 /* Can we just expand an old private anonymous mapping? */
2050 vma = vma_merge(mm, prev, addr, addr + len, flags,
2051 NULL, NULL, pgoff, NULL);
2052 if (vma)
2053 goto out;
2054
2055 /*
2056 * create a vma struct for an anonymous mapping
2057 */
2058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2059 if (!vma) {
2060 vm_unacct_memory(len >> PAGE_SHIFT);
2061 return -ENOMEM;
2062 }
2063
2064 vma->vm_mm = mm;
2065 vma->vm_start = addr;
2066 vma->vm_end = addr + len;
2067 vma->vm_pgoff = pgoff;
2068 vma->vm_flags = flags;
2069 vma->vm_page_prot = vm_get_page_prot(flags);
2070 vma_link(mm, vma, prev, rb_link, rb_parent);
2071 out:
2072 mm->total_vm += len >> PAGE_SHIFT;
2073 if (flags & VM_LOCKED) {
2074 if (!mlock_vma_pages_range(vma, addr, addr + len))
2075 mm->locked_vm += (len >> PAGE_SHIFT);
2076 }
2077 return addr;
2078 }
2079
2080 EXPORT_SYMBOL(do_brk);
2081
2082 /* Release all mmaps. */
2083 void exit_mmap(struct mm_struct *mm)
2084 {
2085 struct mmu_gather *tlb;
2086 struct vm_area_struct *vma;
2087 unsigned long nr_accounted = 0;
2088 unsigned long end;
2089
2090 /* mm's last user has gone, and its about to be pulled down */
2091 mmu_notifier_release(mm);
2092
2093 if (mm->locked_vm) {
2094 vma = mm->mmap;
2095 while (vma) {
2096 if (vma->vm_flags & VM_LOCKED)
2097 munlock_vma_pages_all(vma);
2098 vma = vma->vm_next;
2099 }
2100 }
2101
2102 arch_exit_mmap(mm);
2103
2104 vma = mm->mmap;
2105 if (!vma) /* Can happen if dup_mmap() received an OOM */
2106 return;
2107
2108 lru_add_drain();
2109 flush_cache_mm(mm);
2110 tlb = tlb_gather_mmu(mm, 1);
2111 /* update_hiwater_rss(mm) here? but nobody should be looking */
2112 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2113 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2114 vm_unacct_memory(nr_accounted);
2115
2116 /*
2117 * For KSM to handle OOM without deadlock when it's breaking COW in a
2118 * likely victim of the OOM killer, we must serialize with ksm_exit()
2119 * after freeing mm's pages but before freeing its page tables.
2120 */
2121 ksm_exit(mm, &tlb, end);
2122
2123 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2124 tlb_finish_mmu(tlb, 0, end);
2125
2126 /*
2127 * Walk the list again, actually closing and freeing it,
2128 * with preemption enabled, without holding any MM locks.
2129 */
2130 while (vma)
2131 vma = remove_vma(vma);
2132
2133 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2134 }
2135
2136 /* Insert vm structure into process list sorted by address
2137 * and into the inode's i_mmap tree. If vm_file is non-NULL
2138 * then i_mmap_lock is taken here.
2139 */
2140 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2141 {
2142 struct vm_area_struct * __vma, * prev;
2143 struct rb_node ** rb_link, * rb_parent;
2144
2145 /*
2146 * The vm_pgoff of a purely anonymous vma should be irrelevant
2147 * until its first write fault, when page's anon_vma and index
2148 * are set. But now set the vm_pgoff it will almost certainly
2149 * end up with (unless mremap moves it elsewhere before that
2150 * first wfault), so /proc/pid/maps tells a consistent story.
2151 *
2152 * By setting it to reflect the virtual start address of the
2153 * vma, merges and splits can happen in a seamless way, just
2154 * using the existing file pgoff checks and manipulations.
2155 * Similarly in do_mmap_pgoff and in do_brk.
2156 */
2157 if (!vma->vm_file) {
2158 BUG_ON(vma->anon_vma);
2159 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2160 }
2161 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2162 if (__vma && __vma->vm_start < vma->vm_end)
2163 return -ENOMEM;
2164 if ((vma->vm_flags & VM_ACCOUNT) &&
2165 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2166 return -ENOMEM;
2167 vma_link(mm, vma, prev, rb_link, rb_parent);
2168 return 0;
2169 }
2170
2171 /*
2172 * Copy the vma structure to a new location in the same mm,
2173 * prior to moving page table entries, to effect an mremap move.
2174 */
2175 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2176 unsigned long addr, unsigned long len, pgoff_t pgoff)
2177 {
2178 struct vm_area_struct *vma = *vmap;
2179 unsigned long vma_start = vma->vm_start;
2180 struct mm_struct *mm = vma->vm_mm;
2181 struct vm_area_struct *new_vma, *prev;
2182 struct rb_node **rb_link, *rb_parent;
2183 struct mempolicy *pol;
2184
2185 /*
2186 * If anonymous vma has not yet been faulted, update new pgoff
2187 * to match new location, to increase its chance of merging.
2188 */
2189 if (!vma->vm_file && !vma->anon_vma)
2190 pgoff = addr >> PAGE_SHIFT;
2191
2192 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2193 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2194 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2195 if (new_vma) {
2196 /*
2197 * Source vma may have been merged into new_vma
2198 */
2199 if (vma_start >= new_vma->vm_start &&
2200 vma_start < new_vma->vm_end)
2201 *vmap = new_vma;
2202 } else {
2203 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2204 if (new_vma) {
2205 *new_vma = *vma;
2206 pol = mpol_dup(vma_policy(vma));
2207 if (IS_ERR(pol)) {
2208 kmem_cache_free(vm_area_cachep, new_vma);
2209 return NULL;
2210 }
2211 vma_set_policy(new_vma, pol);
2212 new_vma->vm_start = addr;
2213 new_vma->vm_end = addr + len;
2214 new_vma->vm_pgoff = pgoff;
2215 if (new_vma->vm_file) {
2216 get_file(new_vma->vm_file);
2217 if (vma->vm_flags & VM_EXECUTABLE)
2218 added_exe_file_vma(mm);
2219 }
2220 if (new_vma->vm_ops && new_vma->vm_ops->open)
2221 new_vma->vm_ops->open(new_vma);
2222 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2223 }
2224 }
2225 return new_vma;
2226 }
2227
2228 /*
2229 * Return true if the calling process may expand its vm space by the passed
2230 * number of pages
2231 */
2232 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2233 {
2234 unsigned long cur = mm->total_vm; /* pages */
2235 unsigned long lim;
2236
2237 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2238
2239 if (cur + npages > lim)
2240 return 0;
2241 return 1;
2242 }
2243
2244
2245 static int special_mapping_fault(struct vm_area_struct *vma,
2246 struct vm_fault *vmf)
2247 {
2248 pgoff_t pgoff;
2249 struct page **pages;
2250
2251 /*
2252 * special mappings have no vm_file, and in that case, the mm
2253 * uses vm_pgoff internally. So we have to subtract it from here.
2254 * We are allowed to do this because we are the mm; do not copy
2255 * this code into drivers!
2256 */
2257 pgoff = vmf->pgoff - vma->vm_pgoff;
2258
2259 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2260 pgoff--;
2261
2262 if (*pages) {
2263 struct page *page = *pages;
2264 get_page(page);
2265 vmf->page = page;
2266 return 0;
2267 }
2268
2269 return VM_FAULT_SIGBUS;
2270 }
2271
2272 /*
2273 * Having a close hook prevents vma merging regardless of flags.
2274 */
2275 static void special_mapping_close(struct vm_area_struct *vma)
2276 {
2277 }
2278
2279 static struct vm_operations_struct special_mapping_vmops = {
2280 .close = special_mapping_close,
2281 .fault = special_mapping_fault,
2282 };
2283
2284 /*
2285 * Called with mm->mmap_sem held for writing.
2286 * Insert a new vma covering the given region, with the given flags.
2287 * Its pages are supplied by the given array of struct page *.
2288 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2289 * The region past the last page supplied will always produce SIGBUS.
2290 * The array pointer and the pages it points to are assumed to stay alive
2291 * for as long as this mapping might exist.
2292 */
2293 int install_special_mapping(struct mm_struct *mm,
2294 unsigned long addr, unsigned long len,
2295 unsigned long vm_flags, struct page **pages)
2296 {
2297 struct vm_area_struct *vma;
2298
2299 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2300 if (unlikely(vma == NULL))
2301 return -ENOMEM;
2302
2303 vma->vm_mm = mm;
2304 vma->vm_start = addr;
2305 vma->vm_end = addr + len;
2306
2307 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2308 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2309
2310 vma->vm_ops = &special_mapping_vmops;
2311 vma->vm_private_data = pages;
2312
2313 if (unlikely(insert_vm_struct(mm, vma))) {
2314 kmem_cache_free(vm_area_cachep, vma);
2315 return -ENOMEM;
2316 }
2317
2318 mm->total_vm += len >> PAGE_SHIFT;
2319
2320 perf_event_mmap(vma);
2321
2322 return 0;
2323 }
2324
2325 static DEFINE_MUTEX(mm_all_locks_mutex);
2326
2327 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2328 {
2329 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2330 /*
2331 * The LSB of head.next can't change from under us
2332 * because we hold the mm_all_locks_mutex.
2333 */
2334 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2335 /*
2336 * We can safely modify head.next after taking the
2337 * anon_vma->lock. If some other vma in this mm shares
2338 * the same anon_vma we won't take it again.
2339 *
2340 * No need of atomic instructions here, head.next
2341 * can't change from under us thanks to the
2342 * anon_vma->lock.
2343 */
2344 if (__test_and_set_bit(0, (unsigned long *)
2345 &anon_vma->head.next))
2346 BUG();
2347 }
2348 }
2349
2350 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2351 {
2352 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2353 /*
2354 * AS_MM_ALL_LOCKS can't change from under us because
2355 * we hold the mm_all_locks_mutex.
2356 *
2357 * Operations on ->flags have to be atomic because
2358 * even if AS_MM_ALL_LOCKS is stable thanks to the
2359 * mm_all_locks_mutex, there may be other cpus
2360 * changing other bitflags in parallel to us.
2361 */
2362 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2363 BUG();
2364 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2365 }
2366 }
2367
2368 /*
2369 * This operation locks against the VM for all pte/vma/mm related
2370 * operations that could ever happen on a certain mm. This includes
2371 * vmtruncate, try_to_unmap, and all page faults.
2372 *
2373 * The caller must take the mmap_sem in write mode before calling
2374 * mm_take_all_locks(). The caller isn't allowed to release the
2375 * mmap_sem until mm_drop_all_locks() returns.
2376 *
2377 * mmap_sem in write mode is required in order to block all operations
2378 * that could modify pagetables and free pages without need of
2379 * altering the vma layout (for example populate_range() with
2380 * nonlinear vmas). It's also needed in write mode to avoid new
2381 * anon_vmas to be associated with existing vmas.
2382 *
2383 * A single task can't take more than one mm_take_all_locks() in a row
2384 * or it would deadlock.
2385 *
2386 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2387 * mapping->flags avoid to take the same lock twice, if more than one
2388 * vma in this mm is backed by the same anon_vma or address_space.
2389 *
2390 * We can take all the locks in random order because the VM code
2391 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2392 * takes more than one of them in a row. Secondly we're protected
2393 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2394 *
2395 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2396 * that may have to take thousand of locks.
2397 *
2398 * mm_take_all_locks() can fail if it's interrupted by signals.
2399 */
2400 int mm_take_all_locks(struct mm_struct *mm)
2401 {
2402 struct vm_area_struct *vma;
2403 int ret = -EINTR;
2404
2405 BUG_ON(down_read_trylock(&mm->mmap_sem));
2406
2407 mutex_lock(&mm_all_locks_mutex);
2408
2409 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2410 if (signal_pending(current))
2411 goto out_unlock;
2412 if (vma->vm_file && vma->vm_file->f_mapping)
2413 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2414 }
2415
2416 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2417 if (signal_pending(current))
2418 goto out_unlock;
2419 if (vma->anon_vma)
2420 vm_lock_anon_vma(mm, vma->anon_vma);
2421 }
2422
2423 ret = 0;
2424
2425 out_unlock:
2426 if (ret)
2427 mm_drop_all_locks(mm);
2428
2429 return ret;
2430 }
2431
2432 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2433 {
2434 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2435 /*
2436 * The LSB of head.next can't change to 0 from under
2437 * us because we hold the mm_all_locks_mutex.
2438 *
2439 * We must however clear the bitflag before unlocking
2440 * the vma so the users using the anon_vma->head will
2441 * never see our bitflag.
2442 *
2443 * No need of atomic instructions here, head.next
2444 * can't change from under us until we release the
2445 * anon_vma->lock.
2446 */
2447 if (!__test_and_clear_bit(0, (unsigned long *)
2448 &anon_vma->head.next))
2449 BUG();
2450 spin_unlock(&anon_vma->lock);
2451 }
2452 }
2453
2454 static void vm_unlock_mapping(struct address_space *mapping)
2455 {
2456 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2457 /*
2458 * AS_MM_ALL_LOCKS can't change to 0 from under us
2459 * because we hold the mm_all_locks_mutex.
2460 */
2461 spin_unlock(&mapping->i_mmap_lock);
2462 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2463 &mapping->flags))
2464 BUG();
2465 }
2466 }
2467
2468 /*
2469 * The mmap_sem cannot be released by the caller until
2470 * mm_drop_all_locks() returns.
2471 */
2472 void mm_drop_all_locks(struct mm_struct *mm)
2473 {
2474 struct vm_area_struct *vma;
2475
2476 BUG_ON(down_read_trylock(&mm->mmap_sem));
2477 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2478
2479 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2480 if (vma->anon_vma)
2481 vm_unlock_anon_vma(vma->anon_vma);
2482 if (vma->vm_file && vma->vm_file->f_mapping)
2483 vm_unlock_mapping(vma->vm_file->f_mapping);
2484 }
2485
2486 mutex_unlock(&mm_all_locks_mutex);
2487 }
2488
2489 /*
2490 * initialise the VMA slab
2491 */
2492 void __init mmap_init(void)
2493 {
2494 int ret;
2495
2496 ret = percpu_counter_init(&vm_committed_as, 0);
2497 VM_BUG_ON(ret);
2498 }
This page took 0.224276 seconds and 6 git commands to generate.