VM: add "vm_munmap()" helper function
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33
34 #include <asm/uaccess.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlb.h>
37 #include <asm/mmu_context.h>
38
39 #include "internal.h"
40
41 #ifndef arch_mmap_check
42 #define arch_mmap_check(addr, len, flags) (0)
43 #endif
44
45 #ifndef arch_rebalance_pgtables
46 #define arch_rebalance_pgtables(addr, len) (addr)
47 #endif
48
49 static void unmap_region(struct mm_struct *mm,
50 struct vm_area_struct *vma, struct vm_area_struct *prev,
51 unsigned long start, unsigned long end);
52
53 /*
54 * WARNING: the debugging will use recursive algorithms so never enable this
55 * unless you know what you are doing.
56 */
57 #undef DEBUG_MM_RB
58
59 /* description of effects of mapping type and prot in current implementation.
60 * this is due to the limited x86 page protection hardware. The expected
61 * behavior is in parens:
62 *
63 * map_type prot
64 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
65 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (yes) yes w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (copy) copy w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
72 *
73 */
74 pgprot_t protection_map[16] = {
75 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
76 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
77 };
78
79 pgprot_t vm_get_page_prot(unsigned long vm_flags)
80 {
81 return __pgprot(pgprot_val(protection_map[vm_flags &
82 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
83 pgprot_val(arch_vm_get_page_prot(vm_flags)));
84 }
85 EXPORT_SYMBOL(vm_get_page_prot);
86
87 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
88 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
89 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
90 /*
91 * Make sure vm_committed_as in one cacheline and not cacheline shared with
92 * other variables. It can be updated by several CPUs frequently.
93 */
94 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
95
96 /*
97 * Check that a process has enough memory to allocate a new virtual
98 * mapping. 0 means there is enough memory for the allocation to
99 * succeed and -ENOMEM implies there is not.
100 *
101 * We currently support three overcommit policies, which are set via the
102 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
103 *
104 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
105 * Additional code 2002 Jul 20 by Robert Love.
106 *
107 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
108 *
109 * Note this is a helper function intended to be used by LSMs which
110 * wish to use this logic.
111 */
112 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
113 {
114 unsigned long free, allowed;
115
116 vm_acct_memory(pages);
117
118 /*
119 * Sometimes we want to use more memory than we have
120 */
121 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
122 return 0;
123
124 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
125 free = global_page_state(NR_FREE_PAGES);
126 free += global_page_state(NR_FILE_PAGES);
127
128 /*
129 * shmem pages shouldn't be counted as free in this
130 * case, they can't be purged, only swapped out, and
131 * that won't affect the overall amount of available
132 * memory in the system.
133 */
134 free -= global_page_state(NR_SHMEM);
135
136 free += nr_swap_pages;
137
138 /*
139 * Any slabs which are created with the
140 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
141 * which are reclaimable, under pressure. The dentry
142 * cache and most inode caches should fall into this
143 */
144 free += global_page_state(NR_SLAB_RECLAIMABLE);
145
146 /*
147 * Leave reserved pages. The pages are not for anonymous pages.
148 */
149 if (free <= totalreserve_pages)
150 goto error;
151 else
152 free -= totalreserve_pages;
153
154 /*
155 * Leave the last 3% for root
156 */
157 if (!cap_sys_admin)
158 free -= free / 32;
159
160 if (free > pages)
161 return 0;
162
163 goto error;
164 }
165
166 allowed = (totalram_pages - hugetlb_total_pages())
167 * sysctl_overcommit_ratio / 100;
168 /*
169 * Leave the last 3% for root
170 */
171 if (!cap_sys_admin)
172 allowed -= allowed / 32;
173 allowed += total_swap_pages;
174
175 /* Don't let a single process grow too big:
176 leave 3% of the size of this process for other processes */
177 if (mm)
178 allowed -= mm->total_vm / 32;
179
180 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
181 return 0;
182 error:
183 vm_unacct_memory(pages);
184
185 return -ENOMEM;
186 }
187
188 /*
189 * Requires inode->i_mapping->i_mmap_mutex
190 */
191 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
192 struct file *file, struct address_space *mapping)
193 {
194 if (vma->vm_flags & VM_DENYWRITE)
195 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
196 if (vma->vm_flags & VM_SHARED)
197 mapping->i_mmap_writable--;
198
199 flush_dcache_mmap_lock(mapping);
200 if (unlikely(vma->vm_flags & VM_NONLINEAR))
201 list_del_init(&vma->shared.vm_set.list);
202 else
203 vma_prio_tree_remove(vma, &mapping->i_mmap);
204 flush_dcache_mmap_unlock(mapping);
205 }
206
207 /*
208 * Unlink a file-based vm structure from its prio_tree, to hide
209 * vma from rmap and vmtruncate before freeing its page tables.
210 */
211 void unlink_file_vma(struct vm_area_struct *vma)
212 {
213 struct file *file = vma->vm_file;
214
215 if (file) {
216 struct address_space *mapping = file->f_mapping;
217 mutex_lock(&mapping->i_mmap_mutex);
218 __remove_shared_vm_struct(vma, file, mapping);
219 mutex_unlock(&mapping->i_mmap_mutex);
220 }
221 }
222
223 /*
224 * Close a vm structure and free it, returning the next.
225 */
226 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
227 {
228 struct vm_area_struct *next = vma->vm_next;
229
230 might_sleep();
231 if (vma->vm_ops && vma->vm_ops->close)
232 vma->vm_ops->close(vma);
233 if (vma->vm_file) {
234 fput(vma->vm_file);
235 if (vma->vm_flags & VM_EXECUTABLE)
236 removed_exe_file_vma(vma->vm_mm);
237 }
238 mpol_put(vma_policy(vma));
239 kmem_cache_free(vm_area_cachep, vma);
240 return next;
241 }
242
243 static unsigned long do_brk(unsigned long addr, unsigned long len);
244
245 SYSCALL_DEFINE1(brk, unsigned long, brk)
246 {
247 unsigned long rlim, retval;
248 unsigned long newbrk, oldbrk;
249 struct mm_struct *mm = current->mm;
250 unsigned long min_brk;
251
252 down_write(&mm->mmap_sem);
253
254 #ifdef CONFIG_COMPAT_BRK
255 /*
256 * CONFIG_COMPAT_BRK can still be overridden by setting
257 * randomize_va_space to 2, which will still cause mm->start_brk
258 * to be arbitrarily shifted
259 */
260 if (current->brk_randomized)
261 min_brk = mm->start_brk;
262 else
263 min_brk = mm->end_data;
264 #else
265 min_brk = mm->start_brk;
266 #endif
267 if (brk < min_brk)
268 goto out;
269
270 /*
271 * Check against rlimit here. If this check is done later after the test
272 * of oldbrk with newbrk then it can escape the test and let the data
273 * segment grow beyond its set limit the in case where the limit is
274 * not page aligned -Ram Gupta
275 */
276 rlim = rlimit(RLIMIT_DATA);
277 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
278 (mm->end_data - mm->start_data) > rlim)
279 goto out;
280
281 newbrk = PAGE_ALIGN(brk);
282 oldbrk = PAGE_ALIGN(mm->brk);
283 if (oldbrk == newbrk)
284 goto set_brk;
285
286 /* Always allow shrinking brk. */
287 if (brk <= mm->brk) {
288 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
289 goto set_brk;
290 goto out;
291 }
292
293 /* Check against existing mmap mappings. */
294 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
295 goto out;
296
297 /* Ok, looks good - let it rip. */
298 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
299 goto out;
300 set_brk:
301 mm->brk = brk;
302 out:
303 retval = mm->brk;
304 up_write(&mm->mmap_sem);
305 return retval;
306 }
307
308 #ifdef DEBUG_MM_RB
309 static int browse_rb(struct rb_root *root)
310 {
311 int i = 0, j;
312 struct rb_node *nd, *pn = NULL;
313 unsigned long prev = 0, pend = 0;
314
315 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
316 struct vm_area_struct *vma;
317 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
318 if (vma->vm_start < prev)
319 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
320 if (vma->vm_start < pend)
321 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
322 if (vma->vm_start > vma->vm_end)
323 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
324 i++;
325 pn = nd;
326 prev = vma->vm_start;
327 pend = vma->vm_end;
328 }
329 j = 0;
330 for (nd = pn; nd; nd = rb_prev(nd)) {
331 j++;
332 }
333 if (i != j)
334 printk("backwards %d, forwards %d\n", j, i), i = 0;
335 return i;
336 }
337
338 void validate_mm(struct mm_struct *mm)
339 {
340 int bug = 0;
341 int i = 0;
342 struct vm_area_struct *tmp = mm->mmap;
343 while (tmp) {
344 tmp = tmp->vm_next;
345 i++;
346 }
347 if (i != mm->map_count)
348 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
349 i = browse_rb(&mm->mm_rb);
350 if (i != mm->map_count)
351 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
352 BUG_ON(bug);
353 }
354 #else
355 #define validate_mm(mm) do { } while (0)
356 #endif
357
358 static struct vm_area_struct *
359 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
360 struct vm_area_struct **pprev, struct rb_node ***rb_link,
361 struct rb_node ** rb_parent)
362 {
363 struct vm_area_struct * vma;
364 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
365
366 __rb_link = &mm->mm_rb.rb_node;
367 rb_prev = __rb_parent = NULL;
368 vma = NULL;
369
370 while (*__rb_link) {
371 struct vm_area_struct *vma_tmp;
372
373 __rb_parent = *__rb_link;
374 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
375
376 if (vma_tmp->vm_end > addr) {
377 vma = vma_tmp;
378 if (vma_tmp->vm_start <= addr)
379 break;
380 __rb_link = &__rb_parent->rb_left;
381 } else {
382 rb_prev = __rb_parent;
383 __rb_link = &__rb_parent->rb_right;
384 }
385 }
386
387 *pprev = NULL;
388 if (rb_prev)
389 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
390 *rb_link = __rb_link;
391 *rb_parent = __rb_parent;
392 return vma;
393 }
394
395 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
396 struct rb_node **rb_link, struct rb_node *rb_parent)
397 {
398 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
399 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
400 }
401
402 static void __vma_link_file(struct vm_area_struct *vma)
403 {
404 struct file *file;
405
406 file = vma->vm_file;
407 if (file) {
408 struct address_space *mapping = file->f_mapping;
409
410 if (vma->vm_flags & VM_DENYWRITE)
411 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
412 if (vma->vm_flags & VM_SHARED)
413 mapping->i_mmap_writable++;
414
415 flush_dcache_mmap_lock(mapping);
416 if (unlikely(vma->vm_flags & VM_NONLINEAR))
417 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
418 else
419 vma_prio_tree_insert(vma, &mapping->i_mmap);
420 flush_dcache_mmap_unlock(mapping);
421 }
422 }
423
424 static void
425 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
426 struct vm_area_struct *prev, struct rb_node **rb_link,
427 struct rb_node *rb_parent)
428 {
429 __vma_link_list(mm, vma, prev, rb_parent);
430 __vma_link_rb(mm, vma, rb_link, rb_parent);
431 }
432
433 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
434 struct vm_area_struct *prev, struct rb_node **rb_link,
435 struct rb_node *rb_parent)
436 {
437 struct address_space *mapping = NULL;
438
439 if (vma->vm_file)
440 mapping = vma->vm_file->f_mapping;
441
442 if (mapping)
443 mutex_lock(&mapping->i_mmap_mutex);
444
445 __vma_link(mm, vma, prev, rb_link, rb_parent);
446 __vma_link_file(vma);
447
448 if (mapping)
449 mutex_unlock(&mapping->i_mmap_mutex);
450
451 mm->map_count++;
452 validate_mm(mm);
453 }
454
455 /*
456 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
457 * mm's list and rbtree. It has already been inserted into the prio_tree.
458 */
459 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
460 {
461 struct vm_area_struct *__vma, *prev;
462 struct rb_node **rb_link, *rb_parent;
463
464 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
465 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
466 __vma_link(mm, vma, prev, rb_link, rb_parent);
467 mm->map_count++;
468 }
469
470 static inline void
471 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
472 struct vm_area_struct *prev)
473 {
474 struct vm_area_struct *next = vma->vm_next;
475
476 prev->vm_next = next;
477 if (next)
478 next->vm_prev = prev;
479 rb_erase(&vma->vm_rb, &mm->mm_rb);
480 if (mm->mmap_cache == vma)
481 mm->mmap_cache = prev;
482 }
483
484 /*
485 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
486 * is already present in an i_mmap tree without adjusting the tree.
487 * The following helper function should be used when such adjustments
488 * are necessary. The "insert" vma (if any) is to be inserted
489 * before we drop the necessary locks.
490 */
491 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
492 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
493 {
494 struct mm_struct *mm = vma->vm_mm;
495 struct vm_area_struct *next = vma->vm_next;
496 struct vm_area_struct *importer = NULL;
497 struct address_space *mapping = NULL;
498 struct prio_tree_root *root = NULL;
499 struct anon_vma *anon_vma = NULL;
500 struct file *file = vma->vm_file;
501 long adjust_next = 0;
502 int remove_next = 0;
503
504 if (next && !insert) {
505 struct vm_area_struct *exporter = NULL;
506
507 if (end >= next->vm_end) {
508 /*
509 * vma expands, overlapping all the next, and
510 * perhaps the one after too (mprotect case 6).
511 */
512 again: remove_next = 1 + (end > next->vm_end);
513 end = next->vm_end;
514 exporter = next;
515 importer = vma;
516 } else if (end > next->vm_start) {
517 /*
518 * vma expands, overlapping part of the next:
519 * mprotect case 5 shifting the boundary up.
520 */
521 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
522 exporter = next;
523 importer = vma;
524 } else if (end < vma->vm_end) {
525 /*
526 * vma shrinks, and !insert tells it's not
527 * split_vma inserting another: so it must be
528 * mprotect case 4 shifting the boundary down.
529 */
530 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
531 exporter = vma;
532 importer = next;
533 }
534
535 /*
536 * Easily overlooked: when mprotect shifts the boundary,
537 * make sure the expanding vma has anon_vma set if the
538 * shrinking vma had, to cover any anon pages imported.
539 */
540 if (exporter && exporter->anon_vma && !importer->anon_vma) {
541 if (anon_vma_clone(importer, exporter))
542 return -ENOMEM;
543 importer->anon_vma = exporter->anon_vma;
544 }
545 }
546
547 if (file) {
548 mapping = file->f_mapping;
549 if (!(vma->vm_flags & VM_NONLINEAR))
550 root = &mapping->i_mmap;
551 mutex_lock(&mapping->i_mmap_mutex);
552 if (insert) {
553 /*
554 * Put into prio_tree now, so instantiated pages
555 * are visible to arm/parisc __flush_dcache_page
556 * throughout; but we cannot insert into address
557 * space until vma start or end is updated.
558 */
559 __vma_link_file(insert);
560 }
561 }
562
563 vma_adjust_trans_huge(vma, start, end, adjust_next);
564
565 /*
566 * When changing only vma->vm_end, we don't really need anon_vma
567 * lock. This is a fairly rare case by itself, but the anon_vma
568 * lock may be shared between many sibling processes. Skipping
569 * the lock for brk adjustments makes a difference sometimes.
570 */
571 if (vma->anon_vma && (importer || start != vma->vm_start)) {
572 anon_vma = vma->anon_vma;
573 anon_vma_lock(anon_vma);
574 }
575
576 if (root) {
577 flush_dcache_mmap_lock(mapping);
578 vma_prio_tree_remove(vma, root);
579 if (adjust_next)
580 vma_prio_tree_remove(next, root);
581 }
582
583 vma->vm_start = start;
584 vma->vm_end = end;
585 vma->vm_pgoff = pgoff;
586 if (adjust_next) {
587 next->vm_start += adjust_next << PAGE_SHIFT;
588 next->vm_pgoff += adjust_next;
589 }
590
591 if (root) {
592 if (adjust_next)
593 vma_prio_tree_insert(next, root);
594 vma_prio_tree_insert(vma, root);
595 flush_dcache_mmap_unlock(mapping);
596 }
597
598 if (remove_next) {
599 /*
600 * vma_merge has merged next into vma, and needs
601 * us to remove next before dropping the locks.
602 */
603 __vma_unlink(mm, next, vma);
604 if (file)
605 __remove_shared_vm_struct(next, file, mapping);
606 } else if (insert) {
607 /*
608 * split_vma has split insert from vma, and needs
609 * us to insert it before dropping the locks
610 * (it may either follow vma or precede it).
611 */
612 __insert_vm_struct(mm, insert);
613 }
614
615 if (anon_vma)
616 anon_vma_unlock(anon_vma);
617 if (mapping)
618 mutex_unlock(&mapping->i_mmap_mutex);
619
620 if (remove_next) {
621 if (file) {
622 fput(file);
623 if (next->vm_flags & VM_EXECUTABLE)
624 removed_exe_file_vma(mm);
625 }
626 if (next->anon_vma)
627 anon_vma_merge(vma, next);
628 mm->map_count--;
629 mpol_put(vma_policy(next));
630 kmem_cache_free(vm_area_cachep, next);
631 /*
632 * In mprotect's case 6 (see comments on vma_merge),
633 * we must remove another next too. It would clutter
634 * up the code too much to do both in one go.
635 */
636 if (remove_next == 2) {
637 next = vma->vm_next;
638 goto again;
639 }
640 }
641
642 validate_mm(mm);
643
644 return 0;
645 }
646
647 /*
648 * If the vma has a ->close operation then the driver probably needs to release
649 * per-vma resources, so we don't attempt to merge those.
650 */
651 static inline int is_mergeable_vma(struct vm_area_struct *vma,
652 struct file *file, unsigned long vm_flags)
653 {
654 /* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
655 if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
656 return 0;
657 if (vma->vm_file != file)
658 return 0;
659 if (vma->vm_ops && vma->vm_ops->close)
660 return 0;
661 return 1;
662 }
663
664 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
665 struct anon_vma *anon_vma2,
666 struct vm_area_struct *vma)
667 {
668 /*
669 * The list_is_singular() test is to avoid merging VMA cloned from
670 * parents. This can improve scalability caused by anon_vma lock.
671 */
672 if ((!anon_vma1 || !anon_vma2) && (!vma ||
673 list_is_singular(&vma->anon_vma_chain)))
674 return 1;
675 return anon_vma1 == anon_vma2;
676 }
677
678 /*
679 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
680 * in front of (at a lower virtual address and file offset than) the vma.
681 *
682 * We cannot merge two vmas if they have differently assigned (non-NULL)
683 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
684 *
685 * We don't check here for the merged mmap wrapping around the end of pagecache
686 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
687 * wrap, nor mmaps which cover the final page at index -1UL.
688 */
689 static int
690 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
691 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
692 {
693 if (is_mergeable_vma(vma, file, vm_flags) &&
694 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
695 if (vma->vm_pgoff == vm_pgoff)
696 return 1;
697 }
698 return 0;
699 }
700
701 /*
702 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
703 * beyond (at a higher virtual address and file offset than) the vma.
704 *
705 * We cannot merge two vmas if they have differently assigned (non-NULL)
706 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
707 */
708 static int
709 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
710 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
711 {
712 if (is_mergeable_vma(vma, file, vm_flags) &&
713 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
714 pgoff_t vm_pglen;
715 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
716 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
717 return 1;
718 }
719 return 0;
720 }
721
722 /*
723 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
724 * whether that can be merged with its predecessor or its successor.
725 * Or both (it neatly fills a hole).
726 *
727 * In most cases - when called for mmap, brk or mremap - [addr,end) is
728 * certain not to be mapped by the time vma_merge is called; but when
729 * called for mprotect, it is certain to be already mapped (either at
730 * an offset within prev, or at the start of next), and the flags of
731 * this area are about to be changed to vm_flags - and the no-change
732 * case has already been eliminated.
733 *
734 * The following mprotect cases have to be considered, where AAAA is
735 * the area passed down from mprotect_fixup, never extending beyond one
736 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
737 *
738 * AAAA AAAA AAAA AAAA
739 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
740 * cannot merge might become might become might become
741 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
742 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
743 * mremap move: PPPPNNNNNNNN 8
744 * AAAA
745 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
746 * might become case 1 below case 2 below case 3 below
747 *
748 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
749 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
750 */
751 struct vm_area_struct *vma_merge(struct mm_struct *mm,
752 struct vm_area_struct *prev, unsigned long addr,
753 unsigned long end, unsigned long vm_flags,
754 struct anon_vma *anon_vma, struct file *file,
755 pgoff_t pgoff, struct mempolicy *policy)
756 {
757 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
758 struct vm_area_struct *area, *next;
759 int err;
760
761 /*
762 * We later require that vma->vm_flags == vm_flags,
763 * so this tests vma->vm_flags & VM_SPECIAL, too.
764 */
765 if (vm_flags & VM_SPECIAL)
766 return NULL;
767
768 if (prev)
769 next = prev->vm_next;
770 else
771 next = mm->mmap;
772 area = next;
773 if (next && next->vm_end == end) /* cases 6, 7, 8 */
774 next = next->vm_next;
775
776 /*
777 * Can it merge with the predecessor?
778 */
779 if (prev && prev->vm_end == addr &&
780 mpol_equal(vma_policy(prev), policy) &&
781 can_vma_merge_after(prev, vm_flags,
782 anon_vma, file, pgoff)) {
783 /*
784 * OK, it can. Can we now merge in the successor as well?
785 */
786 if (next && end == next->vm_start &&
787 mpol_equal(policy, vma_policy(next)) &&
788 can_vma_merge_before(next, vm_flags,
789 anon_vma, file, pgoff+pglen) &&
790 is_mergeable_anon_vma(prev->anon_vma,
791 next->anon_vma, NULL)) {
792 /* cases 1, 6 */
793 err = vma_adjust(prev, prev->vm_start,
794 next->vm_end, prev->vm_pgoff, NULL);
795 } else /* cases 2, 5, 7 */
796 err = vma_adjust(prev, prev->vm_start,
797 end, prev->vm_pgoff, NULL);
798 if (err)
799 return NULL;
800 khugepaged_enter_vma_merge(prev);
801 return prev;
802 }
803
804 /*
805 * Can this new request be merged in front of next?
806 */
807 if (next && end == next->vm_start &&
808 mpol_equal(policy, vma_policy(next)) &&
809 can_vma_merge_before(next, vm_flags,
810 anon_vma, file, pgoff+pglen)) {
811 if (prev && addr < prev->vm_end) /* case 4 */
812 err = vma_adjust(prev, prev->vm_start,
813 addr, prev->vm_pgoff, NULL);
814 else /* cases 3, 8 */
815 err = vma_adjust(area, addr, next->vm_end,
816 next->vm_pgoff - pglen, NULL);
817 if (err)
818 return NULL;
819 khugepaged_enter_vma_merge(area);
820 return area;
821 }
822
823 return NULL;
824 }
825
826 /*
827 * Rough compatbility check to quickly see if it's even worth looking
828 * at sharing an anon_vma.
829 *
830 * They need to have the same vm_file, and the flags can only differ
831 * in things that mprotect may change.
832 *
833 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
834 * we can merge the two vma's. For example, we refuse to merge a vma if
835 * there is a vm_ops->close() function, because that indicates that the
836 * driver is doing some kind of reference counting. But that doesn't
837 * really matter for the anon_vma sharing case.
838 */
839 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
840 {
841 return a->vm_end == b->vm_start &&
842 mpol_equal(vma_policy(a), vma_policy(b)) &&
843 a->vm_file == b->vm_file &&
844 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
845 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
846 }
847
848 /*
849 * Do some basic sanity checking to see if we can re-use the anon_vma
850 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
851 * the same as 'old', the other will be the new one that is trying
852 * to share the anon_vma.
853 *
854 * NOTE! This runs with mm_sem held for reading, so it is possible that
855 * the anon_vma of 'old' is concurrently in the process of being set up
856 * by another page fault trying to merge _that_. But that's ok: if it
857 * is being set up, that automatically means that it will be a singleton
858 * acceptable for merging, so we can do all of this optimistically. But
859 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
860 *
861 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
862 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
863 * is to return an anon_vma that is "complex" due to having gone through
864 * a fork).
865 *
866 * We also make sure that the two vma's are compatible (adjacent,
867 * and with the same memory policies). That's all stable, even with just
868 * a read lock on the mm_sem.
869 */
870 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
871 {
872 if (anon_vma_compatible(a, b)) {
873 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
874
875 if (anon_vma && list_is_singular(&old->anon_vma_chain))
876 return anon_vma;
877 }
878 return NULL;
879 }
880
881 /*
882 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
883 * neighbouring vmas for a suitable anon_vma, before it goes off
884 * to allocate a new anon_vma. It checks because a repetitive
885 * sequence of mprotects and faults may otherwise lead to distinct
886 * anon_vmas being allocated, preventing vma merge in subsequent
887 * mprotect.
888 */
889 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
890 {
891 struct anon_vma *anon_vma;
892 struct vm_area_struct *near;
893
894 near = vma->vm_next;
895 if (!near)
896 goto try_prev;
897
898 anon_vma = reusable_anon_vma(near, vma, near);
899 if (anon_vma)
900 return anon_vma;
901 try_prev:
902 near = vma->vm_prev;
903 if (!near)
904 goto none;
905
906 anon_vma = reusable_anon_vma(near, near, vma);
907 if (anon_vma)
908 return anon_vma;
909 none:
910 /*
911 * There's no absolute need to look only at touching neighbours:
912 * we could search further afield for "compatible" anon_vmas.
913 * But it would probably just be a waste of time searching,
914 * or lead to too many vmas hanging off the same anon_vma.
915 * We're trying to allow mprotect remerging later on,
916 * not trying to minimize memory used for anon_vmas.
917 */
918 return NULL;
919 }
920
921 #ifdef CONFIG_PROC_FS
922 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
923 struct file *file, long pages)
924 {
925 const unsigned long stack_flags
926 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
927
928 if (file) {
929 mm->shared_vm += pages;
930 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
931 mm->exec_vm += pages;
932 } else if (flags & stack_flags)
933 mm->stack_vm += pages;
934 if (flags & (VM_RESERVED|VM_IO))
935 mm->reserved_vm += pages;
936 }
937 #endif /* CONFIG_PROC_FS */
938
939 /*
940 * If a hint addr is less than mmap_min_addr change hint to be as
941 * low as possible but still greater than mmap_min_addr
942 */
943 static inline unsigned long round_hint_to_min(unsigned long hint)
944 {
945 hint &= PAGE_MASK;
946 if (((void *)hint != NULL) &&
947 (hint < mmap_min_addr))
948 return PAGE_ALIGN(mmap_min_addr);
949 return hint;
950 }
951
952 /*
953 * The caller must hold down_write(&current->mm->mmap_sem).
954 */
955
956 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
957 unsigned long len, unsigned long prot,
958 unsigned long flags, unsigned long pgoff)
959 {
960 struct mm_struct * mm = current->mm;
961 struct inode *inode;
962 vm_flags_t vm_flags;
963 int error;
964 unsigned long reqprot = prot;
965
966 /*
967 * Does the application expect PROT_READ to imply PROT_EXEC?
968 *
969 * (the exception is when the underlying filesystem is noexec
970 * mounted, in which case we dont add PROT_EXEC.)
971 */
972 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
973 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
974 prot |= PROT_EXEC;
975
976 if (!len)
977 return -EINVAL;
978
979 if (!(flags & MAP_FIXED))
980 addr = round_hint_to_min(addr);
981
982 /* Careful about overflows.. */
983 len = PAGE_ALIGN(len);
984 if (!len)
985 return -ENOMEM;
986
987 /* offset overflow? */
988 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
989 return -EOVERFLOW;
990
991 /* Too many mappings? */
992 if (mm->map_count > sysctl_max_map_count)
993 return -ENOMEM;
994
995 /* Obtain the address to map to. we verify (or select) it and ensure
996 * that it represents a valid section of the address space.
997 */
998 addr = get_unmapped_area(file, addr, len, pgoff, flags);
999 if (addr & ~PAGE_MASK)
1000 return addr;
1001
1002 /* Do simple checking here so the lower-level routines won't have
1003 * to. we assume access permissions have been handled by the open
1004 * of the memory object, so we don't do any here.
1005 */
1006 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1007 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1008
1009 if (flags & MAP_LOCKED)
1010 if (!can_do_mlock())
1011 return -EPERM;
1012
1013 /* mlock MCL_FUTURE? */
1014 if (vm_flags & VM_LOCKED) {
1015 unsigned long locked, lock_limit;
1016 locked = len >> PAGE_SHIFT;
1017 locked += mm->locked_vm;
1018 lock_limit = rlimit(RLIMIT_MEMLOCK);
1019 lock_limit >>= PAGE_SHIFT;
1020 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1021 return -EAGAIN;
1022 }
1023
1024 inode = file ? file->f_path.dentry->d_inode : NULL;
1025
1026 if (file) {
1027 switch (flags & MAP_TYPE) {
1028 case MAP_SHARED:
1029 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1030 return -EACCES;
1031
1032 /*
1033 * Make sure we don't allow writing to an append-only
1034 * file..
1035 */
1036 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1037 return -EACCES;
1038
1039 /*
1040 * Make sure there are no mandatory locks on the file.
1041 */
1042 if (locks_verify_locked(inode))
1043 return -EAGAIN;
1044
1045 vm_flags |= VM_SHARED | VM_MAYSHARE;
1046 if (!(file->f_mode & FMODE_WRITE))
1047 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1048
1049 /* fall through */
1050 case MAP_PRIVATE:
1051 if (!(file->f_mode & FMODE_READ))
1052 return -EACCES;
1053 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1054 if (vm_flags & VM_EXEC)
1055 return -EPERM;
1056 vm_flags &= ~VM_MAYEXEC;
1057 }
1058
1059 if (!file->f_op || !file->f_op->mmap)
1060 return -ENODEV;
1061 break;
1062
1063 default:
1064 return -EINVAL;
1065 }
1066 } else {
1067 switch (flags & MAP_TYPE) {
1068 case MAP_SHARED:
1069 /*
1070 * Ignore pgoff.
1071 */
1072 pgoff = 0;
1073 vm_flags |= VM_SHARED | VM_MAYSHARE;
1074 break;
1075 case MAP_PRIVATE:
1076 /*
1077 * Set pgoff according to addr for anon_vma.
1078 */
1079 pgoff = addr >> PAGE_SHIFT;
1080 break;
1081 default:
1082 return -EINVAL;
1083 }
1084 }
1085
1086 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1087 if (error)
1088 return error;
1089
1090 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1091 }
1092 EXPORT_SYMBOL(do_mmap_pgoff);
1093
1094 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1095 unsigned long, prot, unsigned long, flags,
1096 unsigned long, fd, unsigned long, pgoff)
1097 {
1098 struct file *file = NULL;
1099 unsigned long retval = -EBADF;
1100
1101 if (!(flags & MAP_ANONYMOUS)) {
1102 audit_mmap_fd(fd, flags);
1103 if (unlikely(flags & MAP_HUGETLB))
1104 return -EINVAL;
1105 file = fget(fd);
1106 if (!file)
1107 goto out;
1108 } else if (flags & MAP_HUGETLB) {
1109 struct user_struct *user = NULL;
1110 /*
1111 * VM_NORESERVE is used because the reservations will be
1112 * taken when vm_ops->mmap() is called
1113 * A dummy user value is used because we are not locking
1114 * memory so no accounting is necessary
1115 */
1116 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1117 VM_NORESERVE, &user,
1118 HUGETLB_ANONHUGE_INODE);
1119 if (IS_ERR(file))
1120 return PTR_ERR(file);
1121 }
1122
1123 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1124
1125 down_write(&current->mm->mmap_sem);
1126 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1127 up_write(&current->mm->mmap_sem);
1128
1129 if (file)
1130 fput(file);
1131 out:
1132 return retval;
1133 }
1134
1135 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1136 struct mmap_arg_struct {
1137 unsigned long addr;
1138 unsigned long len;
1139 unsigned long prot;
1140 unsigned long flags;
1141 unsigned long fd;
1142 unsigned long offset;
1143 };
1144
1145 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1146 {
1147 struct mmap_arg_struct a;
1148
1149 if (copy_from_user(&a, arg, sizeof(a)))
1150 return -EFAULT;
1151 if (a.offset & ~PAGE_MASK)
1152 return -EINVAL;
1153
1154 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1155 a.offset >> PAGE_SHIFT);
1156 }
1157 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1158
1159 /*
1160 * Some shared mappigns will want the pages marked read-only
1161 * to track write events. If so, we'll downgrade vm_page_prot
1162 * to the private version (using protection_map[] without the
1163 * VM_SHARED bit).
1164 */
1165 int vma_wants_writenotify(struct vm_area_struct *vma)
1166 {
1167 vm_flags_t vm_flags = vma->vm_flags;
1168
1169 /* If it was private or non-writable, the write bit is already clear */
1170 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1171 return 0;
1172
1173 /* The backer wishes to know when pages are first written to? */
1174 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1175 return 1;
1176
1177 /* The open routine did something to the protections already? */
1178 if (pgprot_val(vma->vm_page_prot) !=
1179 pgprot_val(vm_get_page_prot(vm_flags)))
1180 return 0;
1181
1182 /* Specialty mapping? */
1183 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1184 return 0;
1185
1186 /* Can the mapping track the dirty pages? */
1187 return vma->vm_file && vma->vm_file->f_mapping &&
1188 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1189 }
1190
1191 /*
1192 * We account for memory if it's a private writeable mapping,
1193 * not hugepages and VM_NORESERVE wasn't set.
1194 */
1195 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1196 {
1197 /*
1198 * hugetlb has its own accounting separate from the core VM
1199 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1200 */
1201 if (file && is_file_hugepages(file))
1202 return 0;
1203
1204 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1205 }
1206
1207 unsigned long mmap_region(struct file *file, unsigned long addr,
1208 unsigned long len, unsigned long flags,
1209 vm_flags_t vm_flags, unsigned long pgoff)
1210 {
1211 struct mm_struct *mm = current->mm;
1212 struct vm_area_struct *vma, *prev;
1213 int correct_wcount = 0;
1214 int error;
1215 struct rb_node **rb_link, *rb_parent;
1216 unsigned long charged = 0;
1217 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1218
1219 /* Clear old maps */
1220 error = -ENOMEM;
1221 munmap_back:
1222 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1223 if (vma && vma->vm_start < addr + len) {
1224 if (do_munmap(mm, addr, len))
1225 return -ENOMEM;
1226 goto munmap_back;
1227 }
1228
1229 /* Check against address space limit. */
1230 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1231 return -ENOMEM;
1232
1233 /*
1234 * Set 'VM_NORESERVE' if we should not account for the
1235 * memory use of this mapping.
1236 */
1237 if ((flags & MAP_NORESERVE)) {
1238 /* We honor MAP_NORESERVE if allowed to overcommit */
1239 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1240 vm_flags |= VM_NORESERVE;
1241
1242 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1243 if (file && is_file_hugepages(file))
1244 vm_flags |= VM_NORESERVE;
1245 }
1246
1247 /*
1248 * Private writable mapping: check memory availability
1249 */
1250 if (accountable_mapping(file, vm_flags)) {
1251 charged = len >> PAGE_SHIFT;
1252 if (security_vm_enough_memory_mm(mm, charged))
1253 return -ENOMEM;
1254 vm_flags |= VM_ACCOUNT;
1255 }
1256
1257 /*
1258 * Can we just expand an old mapping?
1259 */
1260 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1261 if (vma)
1262 goto out;
1263
1264 /*
1265 * Determine the object being mapped and call the appropriate
1266 * specific mapper. the address has already been validated, but
1267 * not unmapped, but the maps are removed from the list.
1268 */
1269 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270 if (!vma) {
1271 error = -ENOMEM;
1272 goto unacct_error;
1273 }
1274
1275 vma->vm_mm = mm;
1276 vma->vm_start = addr;
1277 vma->vm_end = addr + len;
1278 vma->vm_flags = vm_flags;
1279 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1280 vma->vm_pgoff = pgoff;
1281 INIT_LIST_HEAD(&vma->anon_vma_chain);
1282
1283 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1284
1285 if (file) {
1286 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1287 goto free_vma;
1288 if (vm_flags & VM_DENYWRITE) {
1289 error = deny_write_access(file);
1290 if (error)
1291 goto free_vma;
1292 correct_wcount = 1;
1293 }
1294 vma->vm_file = file;
1295 get_file(file);
1296 error = file->f_op->mmap(file, vma);
1297 if (error)
1298 goto unmap_and_free_vma;
1299 if (vm_flags & VM_EXECUTABLE)
1300 added_exe_file_vma(mm);
1301
1302 /* Can addr have changed??
1303 *
1304 * Answer: Yes, several device drivers can do it in their
1305 * f_op->mmap method. -DaveM
1306 */
1307 addr = vma->vm_start;
1308 pgoff = vma->vm_pgoff;
1309 vm_flags = vma->vm_flags;
1310 } else if (vm_flags & VM_SHARED) {
1311 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1312 goto free_vma;
1313 error = shmem_zero_setup(vma);
1314 if (error)
1315 goto free_vma;
1316 }
1317
1318 if (vma_wants_writenotify(vma)) {
1319 pgprot_t pprot = vma->vm_page_prot;
1320
1321 /* Can vma->vm_page_prot have changed??
1322 *
1323 * Answer: Yes, drivers may have changed it in their
1324 * f_op->mmap method.
1325 *
1326 * Ensures that vmas marked as uncached stay that way.
1327 */
1328 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1329 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1330 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1331 }
1332
1333 vma_link(mm, vma, prev, rb_link, rb_parent);
1334 file = vma->vm_file;
1335
1336 /* Once vma denies write, undo our temporary denial count */
1337 if (correct_wcount)
1338 atomic_inc(&inode->i_writecount);
1339 out:
1340 perf_event_mmap(vma);
1341
1342 mm->total_vm += len >> PAGE_SHIFT;
1343 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1344 if (vm_flags & VM_LOCKED) {
1345 if (!mlock_vma_pages_range(vma, addr, addr + len))
1346 mm->locked_vm += (len >> PAGE_SHIFT);
1347 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1348 make_pages_present(addr, addr + len);
1349 return addr;
1350
1351 unmap_and_free_vma:
1352 if (correct_wcount)
1353 atomic_inc(&inode->i_writecount);
1354 vma->vm_file = NULL;
1355 fput(file);
1356
1357 /* Undo any partial mapping done by a device driver. */
1358 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1359 charged = 0;
1360 free_vma:
1361 kmem_cache_free(vm_area_cachep, vma);
1362 unacct_error:
1363 if (charged)
1364 vm_unacct_memory(charged);
1365 return error;
1366 }
1367
1368 /* Get an address range which is currently unmapped.
1369 * For shmat() with addr=0.
1370 *
1371 * Ugly calling convention alert:
1372 * Return value with the low bits set means error value,
1373 * ie
1374 * if (ret & ~PAGE_MASK)
1375 * error = ret;
1376 *
1377 * This function "knows" that -ENOMEM has the bits set.
1378 */
1379 #ifndef HAVE_ARCH_UNMAPPED_AREA
1380 unsigned long
1381 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1382 unsigned long len, unsigned long pgoff, unsigned long flags)
1383 {
1384 struct mm_struct *mm = current->mm;
1385 struct vm_area_struct *vma;
1386 unsigned long start_addr;
1387
1388 if (len > TASK_SIZE)
1389 return -ENOMEM;
1390
1391 if (flags & MAP_FIXED)
1392 return addr;
1393
1394 if (addr) {
1395 addr = PAGE_ALIGN(addr);
1396 vma = find_vma(mm, addr);
1397 if (TASK_SIZE - len >= addr &&
1398 (!vma || addr + len <= vma->vm_start))
1399 return addr;
1400 }
1401 if (len > mm->cached_hole_size) {
1402 start_addr = addr = mm->free_area_cache;
1403 } else {
1404 start_addr = addr = TASK_UNMAPPED_BASE;
1405 mm->cached_hole_size = 0;
1406 }
1407
1408 full_search:
1409 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1410 /* At this point: (!vma || addr < vma->vm_end). */
1411 if (TASK_SIZE - len < addr) {
1412 /*
1413 * Start a new search - just in case we missed
1414 * some holes.
1415 */
1416 if (start_addr != TASK_UNMAPPED_BASE) {
1417 addr = TASK_UNMAPPED_BASE;
1418 start_addr = addr;
1419 mm->cached_hole_size = 0;
1420 goto full_search;
1421 }
1422 return -ENOMEM;
1423 }
1424 if (!vma || addr + len <= vma->vm_start) {
1425 /*
1426 * Remember the place where we stopped the search:
1427 */
1428 mm->free_area_cache = addr + len;
1429 return addr;
1430 }
1431 if (addr + mm->cached_hole_size < vma->vm_start)
1432 mm->cached_hole_size = vma->vm_start - addr;
1433 addr = vma->vm_end;
1434 }
1435 }
1436 #endif
1437
1438 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1439 {
1440 /*
1441 * Is this a new hole at the lowest possible address?
1442 */
1443 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1444 mm->free_area_cache = addr;
1445 }
1446
1447 /*
1448 * This mmap-allocator allocates new areas top-down from below the
1449 * stack's low limit (the base):
1450 */
1451 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1452 unsigned long
1453 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1454 const unsigned long len, const unsigned long pgoff,
1455 const unsigned long flags)
1456 {
1457 struct vm_area_struct *vma;
1458 struct mm_struct *mm = current->mm;
1459 unsigned long addr = addr0, start_addr;
1460
1461 /* requested length too big for entire address space */
1462 if (len > TASK_SIZE)
1463 return -ENOMEM;
1464
1465 if (flags & MAP_FIXED)
1466 return addr;
1467
1468 /* requesting a specific address */
1469 if (addr) {
1470 addr = PAGE_ALIGN(addr);
1471 vma = find_vma(mm, addr);
1472 if (TASK_SIZE - len >= addr &&
1473 (!vma || addr + len <= vma->vm_start))
1474 return addr;
1475 }
1476
1477 /* check if free_area_cache is useful for us */
1478 if (len <= mm->cached_hole_size) {
1479 mm->cached_hole_size = 0;
1480 mm->free_area_cache = mm->mmap_base;
1481 }
1482
1483 try_again:
1484 /* either no address requested or can't fit in requested address hole */
1485 start_addr = addr = mm->free_area_cache;
1486
1487 if (addr < len)
1488 goto fail;
1489
1490 addr -= len;
1491 do {
1492 /*
1493 * Lookup failure means no vma is above this address,
1494 * else if new region fits below vma->vm_start,
1495 * return with success:
1496 */
1497 vma = find_vma(mm, addr);
1498 if (!vma || addr+len <= vma->vm_start)
1499 /* remember the address as a hint for next time */
1500 return (mm->free_area_cache = addr);
1501
1502 /* remember the largest hole we saw so far */
1503 if (addr + mm->cached_hole_size < vma->vm_start)
1504 mm->cached_hole_size = vma->vm_start - addr;
1505
1506 /* try just below the current vma->vm_start */
1507 addr = vma->vm_start-len;
1508 } while (len < vma->vm_start);
1509
1510 fail:
1511 /*
1512 * if hint left us with no space for the requested
1513 * mapping then try again:
1514 *
1515 * Note: this is different with the case of bottomup
1516 * which does the fully line-search, but we use find_vma
1517 * here that causes some holes skipped.
1518 */
1519 if (start_addr != mm->mmap_base) {
1520 mm->free_area_cache = mm->mmap_base;
1521 mm->cached_hole_size = 0;
1522 goto try_again;
1523 }
1524
1525 /*
1526 * A failed mmap() very likely causes application failure,
1527 * so fall back to the bottom-up function here. This scenario
1528 * can happen with large stack limits and large mmap()
1529 * allocations.
1530 */
1531 mm->cached_hole_size = ~0UL;
1532 mm->free_area_cache = TASK_UNMAPPED_BASE;
1533 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1534 /*
1535 * Restore the topdown base:
1536 */
1537 mm->free_area_cache = mm->mmap_base;
1538 mm->cached_hole_size = ~0UL;
1539
1540 return addr;
1541 }
1542 #endif
1543
1544 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1545 {
1546 /*
1547 * Is this a new hole at the highest possible address?
1548 */
1549 if (addr > mm->free_area_cache)
1550 mm->free_area_cache = addr;
1551
1552 /* dont allow allocations above current base */
1553 if (mm->free_area_cache > mm->mmap_base)
1554 mm->free_area_cache = mm->mmap_base;
1555 }
1556
1557 unsigned long
1558 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1559 unsigned long pgoff, unsigned long flags)
1560 {
1561 unsigned long (*get_area)(struct file *, unsigned long,
1562 unsigned long, unsigned long, unsigned long);
1563
1564 unsigned long error = arch_mmap_check(addr, len, flags);
1565 if (error)
1566 return error;
1567
1568 /* Careful about overflows.. */
1569 if (len > TASK_SIZE)
1570 return -ENOMEM;
1571
1572 get_area = current->mm->get_unmapped_area;
1573 if (file && file->f_op && file->f_op->get_unmapped_area)
1574 get_area = file->f_op->get_unmapped_area;
1575 addr = get_area(file, addr, len, pgoff, flags);
1576 if (IS_ERR_VALUE(addr))
1577 return addr;
1578
1579 if (addr > TASK_SIZE - len)
1580 return -ENOMEM;
1581 if (addr & ~PAGE_MASK)
1582 return -EINVAL;
1583
1584 return arch_rebalance_pgtables(addr, len);
1585 }
1586
1587 EXPORT_SYMBOL(get_unmapped_area);
1588
1589 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1590 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1591 {
1592 struct vm_area_struct *vma = NULL;
1593
1594 if (mm) {
1595 /* Check the cache first. */
1596 /* (Cache hit rate is typically around 35%.) */
1597 vma = mm->mmap_cache;
1598 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1599 struct rb_node * rb_node;
1600
1601 rb_node = mm->mm_rb.rb_node;
1602 vma = NULL;
1603
1604 while (rb_node) {
1605 struct vm_area_struct * vma_tmp;
1606
1607 vma_tmp = rb_entry(rb_node,
1608 struct vm_area_struct, vm_rb);
1609
1610 if (vma_tmp->vm_end > addr) {
1611 vma = vma_tmp;
1612 if (vma_tmp->vm_start <= addr)
1613 break;
1614 rb_node = rb_node->rb_left;
1615 } else
1616 rb_node = rb_node->rb_right;
1617 }
1618 if (vma)
1619 mm->mmap_cache = vma;
1620 }
1621 }
1622 return vma;
1623 }
1624
1625 EXPORT_SYMBOL(find_vma);
1626
1627 /*
1628 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1629 */
1630 struct vm_area_struct *
1631 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1632 struct vm_area_struct **pprev)
1633 {
1634 struct vm_area_struct *vma;
1635
1636 vma = find_vma(mm, addr);
1637 if (vma) {
1638 *pprev = vma->vm_prev;
1639 } else {
1640 struct rb_node *rb_node = mm->mm_rb.rb_node;
1641 *pprev = NULL;
1642 while (rb_node) {
1643 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1644 rb_node = rb_node->rb_right;
1645 }
1646 }
1647 return vma;
1648 }
1649
1650 /*
1651 * Verify that the stack growth is acceptable and
1652 * update accounting. This is shared with both the
1653 * grow-up and grow-down cases.
1654 */
1655 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1656 {
1657 struct mm_struct *mm = vma->vm_mm;
1658 struct rlimit *rlim = current->signal->rlim;
1659 unsigned long new_start;
1660
1661 /* address space limit tests */
1662 if (!may_expand_vm(mm, grow))
1663 return -ENOMEM;
1664
1665 /* Stack limit test */
1666 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1667 return -ENOMEM;
1668
1669 /* mlock limit tests */
1670 if (vma->vm_flags & VM_LOCKED) {
1671 unsigned long locked;
1672 unsigned long limit;
1673 locked = mm->locked_vm + grow;
1674 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1675 limit >>= PAGE_SHIFT;
1676 if (locked > limit && !capable(CAP_IPC_LOCK))
1677 return -ENOMEM;
1678 }
1679
1680 /* Check to ensure the stack will not grow into a hugetlb-only region */
1681 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1682 vma->vm_end - size;
1683 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1684 return -EFAULT;
1685
1686 /*
1687 * Overcommit.. This must be the final test, as it will
1688 * update security statistics.
1689 */
1690 if (security_vm_enough_memory_mm(mm, grow))
1691 return -ENOMEM;
1692
1693 /* Ok, everything looks good - let it rip */
1694 mm->total_vm += grow;
1695 if (vma->vm_flags & VM_LOCKED)
1696 mm->locked_vm += grow;
1697 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1698 return 0;
1699 }
1700
1701 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1702 /*
1703 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1704 * vma is the last one with address > vma->vm_end. Have to extend vma.
1705 */
1706 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1707 {
1708 int error;
1709
1710 if (!(vma->vm_flags & VM_GROWSUP))
1711 return -EFAULT;
1712
1713 /*
1714 * We must make sure the anon_vma is allocated
1715 * so that the anon_vma locking is not a noop.
1716 */
1717 if (unlikely(anon_vma_prepare(vma)))
1718 return -ENOMEM;
1719 vma_lock_anon_vma(vma);
1720
1721 /*
1722 * vma->vm_start/vm_end cannot change under us because the caller
1723 * is required to hold the mmap_sem in read mode. We need the
1724 * anon_vma lock to serialize against concurrent expand_stacks.
1725 * Also guard against wrapping around to address 0.
1726 */
1727 if (address < PAGE_ALIGN(address+4))
1728 address = PAGE_ALIGN(address+4);
1729 else {
1730 vma_unlock_anon_vma(vma);
1731 return -ENOMEM;
1732 }
1733 error = 0;
1734
1735 /* Somebody else might have raced and expanded it already */
1736 if (address > vma->vm_end) {
1737 unsigned long size, grow;
1738
1739 size = address - vma->vm_start;
1740 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1741
1742 error = -ENOMEM;
1743 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1744 error = acct_stack_growth(vma, size, grow);
1745 if (!error) {
1746 vma->vm_end = address;
1747 perf_event_mmap(vma);
1748 }
1749 }
1750 }
1751 vma_unlock_anon_vma(vma);
1752 khugepaged_enter_vma_merge(vma);
1753 return error;
1754 }
1755 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1756
1757 /*
1758 * vma is the first one with address < vma->vm_start. Have to extend vma.
1759 */
1760 int expand_downwards(struct vm_area_struct *vma,
1761 unsigned long address)
1762 {
1763 int error;
1764
1765 /*
1766 * We must make sure the anon_vma is allocated
1767 * so that the anon_vma locking is not a noop.
1768 */
1769 if (unlikely(anon_vma_prepare(vma)))
1770 return -ENOMEM;
1771
1772 address &= PAGE_MASK;
1773 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1774 if (error)
1775 return error;
1776
1777 vma_lock_anon_vma(vma);
1778
1779 /*
1780 * vma->vm_start/vm_end cannot change under us because the caller
1781 * is required to hold the mmap_sem in read mode. We need the
1782 * anon_vma lock to serialize against concurrent expand_stacks.
1783 */
1784
1785 /* Somebody else might have raced and expanded it already */
1786 if (address < vma->vm_start) {
1787 unsigned long size, grow;
1788
1789 size = vma->vm_end - address;
1790 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1791
1792 error = -ENOMEM;
1793 if (grow <= vma->vm_pgoff) {
1794 error = acct_stack_growth(vma, size, grow);
1795 if (!error) {
1796 vma->vm_start = address;
1797 vma->vm_pgoff -= grow;
1798 perf_event_mmap(vma);
1799 }
1800 }
1801 }
1802 vma_unlock_anon_vma(vma);
1803 khugepaged_enter_vma_merge(vma);
1804 return error;
1805 }
1806
1807 #ifdef CONFIG_STACK_GROWSUP
1808 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1809 {
1810 return expand_upwards(vma, address);
1811 }
1812
1813 struct vm_area_struct *
1814 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1815 {
1816 struct vm_area_struct *vma, *prev;
1817
1818 addr &= PAGE_MASK;
1819 vma = find_vma_prev(mm, addr, &prev);
1820 if (vma && (vma->vm_start <= addr))
1821 return vma;
1822 if (!prev || expand_stack(prev, addr))
1823 return NULL;
1824 if (prev->vm_flags & VM_LOCKED) {
1825 mlock_vma_pages_range(prev, addr, prev->vm_end);
1826 }
1827 return prev;
1828 }
1829 #else
1830 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1831 {
1832 return expand_downwards(vma, address);
1833 }
1834
1835 struct vm_area_struct *
1836 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1837 {
1838 struct vm_area_struct * vma;
1839 unsigned long start;
1840
1841 addr &= PAGE_MASK;
1842 vma = find_vma(mm,addr);
1843 if (!vma)
1844 return NULL;
1845 if (vma->vm_start <= addr)
1846 return vma;
1847 if (!(vma->vm_flags & VM_GROWSDOWN))
1848 return NULL;
1849 start = vma->vm_start;
1850 if (expand_stack(vma, addr))
1851 return NULL;
1852 if (vma->vm_flags & VM_LOCKED) {
1853 mlock_vma_pages_range(vma, addr, start);
1854 }
1855 return vma;
1856 }
1857 #endif
1858
1859 /*
1860 * Ok - we have the memory areas we should free on the vma list,
1861 * so release them, and do the vma updates.
1862 *
1863 * Called with the mm semaphore held.
1864 */
1865 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1866 {
1867 /* Update high watermark before we lower total_vm */
1868 update_hiwater_vm(mm);
1869 do {
1870 long nrpages = vma_pages(vma);
1871
1872 mm->total_vm -= nrpages;
1873 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1874 vma = remove_vma(vma);
1875 } while (vma);
1876 validate_mm(mm);
1877 }
1878
1879 /*
1880 * Get rid of page table information in the indicated region.
1881 *
1882 * Called with the mm semaphore held.
1883 */
1884 static void unmap_region(struct mm_struct *mm,
1885 struct vm_area_struct *vma, struct vm_area_struct *prev,
1886 unsigned long start, unsigned long end)
1887 {
1888 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1889 struct mmu_gather tlb;
1890 unsigned long nr_accounted = 0;
1891
1892 lru_add_drain();
1893 tlb_gather_mmu(&tlb, mm, 0);
1894 update_hiwater_rss(mm);
1895 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1896 vm_unacct_memory(nr_accounted);
1897 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1898 next ? next->vm_start : 0);
1899 tlb_finish_mmu(&tlb, start, end);
1900 }
1901
1902 /*
1903 * Create a list of vma's touched by the unmap, removing them from the mm's
1904 * vma list as we go..
1905 */
1906 static void
1907 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1908 struct vm_area_struct *prev, unsigned long end)
1909 {
1910 struct vm_area_struct **insertion_point;
1911 struct vm_area_struct *tail_vma = NULL;
1912 unsigned long addr;
1913
1914 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1915 vma->vm_prev = NULL;
1916 do {
1917 rb_erase(&vma->vm_rb, &mm->mm_rb);
1918 mm->map_count--;
1919 tail_vma = vma;
1920 vma = vma->vm_next;
1921 } while (vma && vma->vm_start < end);
1922 *insertion_point = vma;
1923 if (vma)
1924 vma->vm_prev = prev;
1925 tail_vma->vm_next = NULL;
1926 if (mm->unmap_area == arch_unmap_area)
1927 addr = prev ? prev->vm_end : mm->mmap_base;
1928 else
1929 addr = vma ? vma->vm_start : mm->mmap_base;
1930 mm->unmap_area(mm, addr);
1931 mm->mmap_cache = NULL; /* Kill the cache. */
1932 }
1933
1934 /*
1935 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1936 * munmap path where it doesn't make sense to fail.
1937 */
1938 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1939 unsigned long addr, int new_below)
1940 {
1941 struct mempolicy *pol;
1942 struct vm_area_struct *new;
1943 int err = -ENOMEM;
1944
1945 if (is_vm_hugetlb_page(vma) && (addr &
1946 ~(huge_page_mask(hstate_vma(vma)))))
1947 return -EINVAL;
1948
1949 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1950 if (!new)
1951 goto out_err;
1952
1953 /* most fields are the same, copy all, and then fixup */
1954 *new = *vma;
1955
1956 INIT_LIST_HEAD(&new->anon_vma_chain);
1957
1958 if (new_below)
1959 new->vm_end = addr;
1960 else {
1961 new->vm_start = addr;
1962 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1963 }
1964
1965 pol = mpol_dup(vma_policy(vma));
1966 if (IS_ERR(pol)) {
1967 err = PTR_ERR(pol);
1968 goto out_free_vma;
1969 }
1970 vma_set_policy(new, pol);
1971
1972 if (anon_vma_clone(new, vma))
1973 goto out_free_mpol;
1974
1975 if (new->vm_file) {
1976 get_file(new->vm_file);
1977 if (vma->vm_flags & VM_EXECUTABLE)
1978 added_exe_file_vma(mm);
1979 }
1980
1981 if (new->vm_ops && new->vm_ops->open)
1982 new->vm_ops->open(new);
1983
1984 if (new_below)
1985 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1986 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1987 else
1988 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1989
1990 /* Success. */
1991 if (!err)
1992 return 0;
1993
1994 /* Clean everything up if vma_adjust failed. */
1995 if (new->vm_ops && new->vm_ops->close)
1996 new->vm_ops->close(new);
1997 if (new->vm_file) {
1998 if (vma->vm_flags & VM_EXECUTABLE)
1999 removed_exe_file_vma(mm);
2000 fput(new->vm_file);
2001 }
2002 unlink_anon_vmas(new);
2003 out_free_mpol:
2004 mpol_put(pol);
2005 out_free_vma:
2006 kmem_cache_free(vm_area_cachep, new);
2007 out_err:
2008 return err;
2009 }
2010
2011 /*
2012 * Split a vma into two pieces at address 'addr', a new vma is allocated
2013 * either for the first part or the tail.
2014 */
2015 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2016 unsigned long addr, int new_below)
2017 {
2018 if (mm->map_count >= sysctl_max_map_count)
2019 return -ENOMEM;
2020
2021 return __split_vma(mm, vma, addr, new_below);
2022 }
2023
2024 /* Munmap is split into 2 main parts -- this part which finds
2025 * what needs doing, and the areas themselves, which do the
2026 * work. This now handles partial unmappings.
2027 * Jeremy Fitzhardinge <jeremy@goop.org>
2028 */
2029 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2030 {
2031 unsigned long end;
2032 struct vm_area_struct *vma, *prev, *last;
2033
2034 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2035 return -EINVAL;
2036
2037 if ((len = PAGE_ALIGN(len)) == 0)
2038 return -EINVAL;
2039
2040 /* Find the first overlapping VMA */
2041 vma = find_vma(mm, start);
2042 if (!vma)
2043 return 0;
2044 prev = vma->vm_prev;
2045 /* we have start < vma->vm_end */
2046
2047 /* if it doesn't overlap, we have nothing.. */
2048 end = start + len;
2049 if (vma->vm_start >= end)
2050 return 0;
2051
2052 /*
2053 * If we need to split any vma, do it now to save pain later.
2054 *
2055 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2056 * unmapped vm_area_struct will remain in use: so lower split_vma
2057 * places tmp vma above, and higher split_vma places tmp vma below.
2058 */
2059 if (start > vma->vm_start) {
2060 int error;
2061
2062 /*
2063 * Make sure that map_count on return from munmap() will
2064 * not exceed its limit; but let map_count go just above
2065 * its limit temporarily, to help free resources as expected.
2066 */
2067 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2068 return -ENOMEM;
2069
2070 error = __split_vma(mm, vma, start, 0);
2071 if (error)
2072 return error;
2073 prev = vma;
2074 }
2075
2076 /* Does it split the last one? */
2077 last = find_vma(mm, end);
2078 if (last && end > last->vm_start) {
2079 int error = __split_vma(mm, last, end, 1);
2080 if (error)
2081 return error;
2082 }
2083 vma = prev? prev->vm_next: mm->mmap;
2084
2085 /*
2086 * unlock any mlock()ed ranges before detaching vmas
2087 */
2088 if (mm->locked_vm) {
2089 struct vm_area_struct *tmp = vma;
2090 while (tmp && tmp->vm_start < end) {
2091 if (tmp->vm_flags & VM_LOCKED) {
2092 mm->locked_vm -= vma_pages(tmp);
2093 munlock_vma_pages_all(tmp);
2094 }
2095 tmp = tmp->vm_next;
2096 }
2097 }
2098
2099 /*
2100 * Remove the vma's, and unmap the actual pages
2101 */
2102 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2103 unmap_region(mm, vma, prev, start, end);
2104
2105 /* Fix up all other VM information */
2106 remove_vma_list(mm, vma);
2107
2108 return 0;
2109 }
2110 EXPORT_SYMBOL(do_munmap);
2111
2112 int vm_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2113 {
2114 int ret;
2115
2116 down_write(&mm->mmap_sem);
2117 ret = do_munmap(mm, start, len);
2118 up_write(&mm->mmap_sem);
2119 return ret;
2120 }
2121 EXPORT_SYMBOL(vm_munmap);
2122
2123 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2124 {
2125 profile_munmap(addr);
2126 return vm_munmap(current->mm, addr, len);
2127 }
2128
2129 static inline void verify_mm_writelocked(struct mm_struct *mm)
2130 {
2131 #ifdef CONFIG_DEBUG_VM
2132 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2133 WARN_ON(1);
2134 up_read(&mm->mmap_sem);
2135 }
2136 #endif
2137 }
2138
2139 /*
2140 * this is really a simplified "do_mmap". it only handles
2141 * anonymous maps. eventually we may be able to do some
2142 * brk-specific accounting here.
2143 */
2144 static unsigned long do_brk(unsigned long addr, unsigned long len)
2145 {
2146 struct mm_struct * mm = current->mm;
2147 struct vm_area_struct * vma, * prev;
2148 unsigned long flags;
2149 struct rb_node ** rb_link, * rb_parent;
2150 pgoff_t pgoff = addr >> PAGE_SHIFT;
2151 int error;
2152
2153 len = PAGE_ALIGN(len);
2154 if (!len)
2155 return addr;
2156
2157 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2158 if (error)
2159 return error;
2160
2161 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2162
2163 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2164 if (error & ~PAGE_MASK)
2165 return error;
2166
2167 /*
2168 * mlock MCL_FUTURE?
2169 */
2170 if (mm->def_flags & VM_LOCKED) {
2171 unsigned long locked, lock_limit;
2172 locked = len >> PAGE_SHIFT;
2173 locked += mm->locked_vm;
2174 lock_limit = rlimit(RLIMIT_MEMLOCK);
2175 lock_limit >>= PAGE_SHIFT;
2176 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2177 return -EAGAIN;
2178 }
2179
2180 /*
2181 * mm->mmap_sem is required to protect against another thread
2182 * changing the mappings in case we sleep.
2183 */
2184 verify_mm_writelocked(mm);
2185
2186 /*
2187 * Clear old maps. this also does some error checking for us
2188 */
2189 munmap_back:
2190 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2191 if (vma && vma->vm_start < addr + len) {
2192 if (do_munmap(mm, addr, len))
2193 return -ENOMEM;
2194 goto munmap_back;
2195 }
2196
2197 /* Check against address space limits *after* clearing old maps... */
2198 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2199 return -ENOMEM;
2200
2201 if (mm->map_count > sysctl_max_map_count)
2202 return -ENOMEM;
2203
2204 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2205 return -ENOMEM;
2206
2207 /* Can we just expand an old private anonymous mapping? */
2208 vma = vma_merge(mm, prev, addr, addr + len, flags,
2209 NULL, NULL, pgoff, NULL);
2210 if (vma)
2211 goto out;
2212
2213 /*
2214 * create a vma struct for an anonymous mapping
2215 */
2216 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2217 if (!vma) {
2218 vm_unacct_memory(len >> PAGE_SHIFT);
2219 return -ENOMEM;
2220 }
2221
2222 INIT_LIST_HEAD(&vma->anon_vma_chain);
2223 vma->vm_mm = mm;
2224 vma->vm_start = addr;
2225 vma->vm_end = addr + len;
2226 vma->vm_pgoff = pgoff;
2227 vma->vm_flags = flags;
2228 vma->vm_page_prot = vm_get_page_prot(flags);
2229 vma_link(mm, vma, prev, rb_link, rb_parent);
2230 out:
2231 perf_event_mmap(vma);
2232 mm->total_vm += len >> PAGE_SHIFT;
2233 if (flags & VM_LOCKED) {
2234 if (!mlock_vma_pages_range(vma, addr, addr + len))
2235 mm->locked_vm += (len >> PAGE_SHIFT);
2236 }
2237 return addr;
2238 }
2239
2240 unsigned long vm_brk(unsigned long addr, unsigned long len)
2241 {
2242 struct mm_struct *mm = current->mm;
2243 unsigned long ret;
2244
2245 down_write(&mm->mmap_sem);
2246 ret = do_brk(addr, len);
2247 up_write(&mm->mmap_sem);
2248 return ret;
2249 }
2250 EXPORT_SYMBOL(vm_brk);
2251
2252 /* Release all mmaps. */
2253 void exit_mmap(struct mm_struct *mm)
2254 {
2255 struct mmu_gather tlb;
2256 struct vm_area_struct *vma;
2257 unsigned long nr_accounted = 0;
2258
2259 /* mm's last user has gone, and its about to be pulled down */
2260 mmu_notifier_release(mm);
2261
2262 if (mm->locked_vm) {
2263 vma = mm->mmap;
2264 while (vma) {
2265 if (vma->vm_flags & VM_LOCKED)
2266 munlock_vma_pages_all(vma);
2267 vma = vma->vm_next;
2268 }
2269 }
2270
2271 arch_exit_mmap(mm);
2272
2273 vma = mm->mmap;
2274 if (!vma) /* Can happen if dup_mmap() received an OOM */
2275 return;
2276
2277 lru_add_drain();
2278 flush_cache_mm(mm);
2279 tlb_gather_mmu(&tlb, mm, 1);
2280 /* update_hiwater_rss(mm) here? but nobody should be looking */
2281 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2282 unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2283 vm_unacct_memory(nr_accounted);
2284
2285 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2286 tlb_finish_mmu(&tlb, 0, -1);
2287
2288 /*
2289 * Walk the list again, actually closing and freeing it,
2290 * with preemption enabled, without holding any MM locks.
2291 */
2292 while (vma)
2293 vma = remove_vma(vma);
2294
2295 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2296 }
2297
2298 /* Insert vm structure into process list sorted by address
2299 * and into the inode's i_mmap tree. If vm_file is non-NULL
2300 * then i_mmap_mutex is taken here.
2301 */
2302 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2303 {
2304 struct vm_area_struct * __vma, * prev;
2305 struct rb_node ** rb_link, * rb_parent;
2306
2307 /*
2308 * The vm_pgoff of a purely anonymous vma should be irrelevant
2309 * until its first write fault, when page's anon_vma and index
2310 * are set. But now set the vm_pgoff it will almost certainly
2311 * end up with (unless mremap moves it elsewhere before that
2312 * first wfault), so /proc/pid/maps tells a consistent story.
2313 *
2314 * By setting it to reflect the virtual start address of the
2315 * vma, merges and splits can happen in a seamless way, just
2316 * using the existing file pgoff checks and manipulations.
2317 * Similarly in do_mmap_pgoff and in do_brk.
2318 */
2319 if (!vma->vm_file) {
2320 BUG_ON(vma->anon_vma);
2321 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2322 }
2323 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2324 if (__vma && __vma->vm_start < vma->vm_end)
2325 return -ENOMEM;
2326 if ((vma->vm_flags & VM_ACCOUNT) &&
2327 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2328 return -ENOMEM;
2329 vma_link(mm, vma, prev, rb_link, rb_parent);
2330 return 0;
2331 }
2332
2333 /*
2334 * Copy the vma structure to a new location in the same mm,
2335 * prior to moving page table entries, to effect an mremap move.
2336 */
2337 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2338 unsigned long addr, unsigned long len, pgoff_t pgoff)
2339 {
2340 struct vm_area_struct *vma = *vmap;
2341 unsigned long vma_start = vma->vm_start;
2342 struct mm_struct *mm = vma->vm_mm;
2343 struct vm_area_struct *new_vma, *prev;
2344 struct rb_node **rb_link, *rb_parent;
2345 struct mempolicy *pol;
2346 bool faulted_in_anon_vma = true;
2347
2348 /*
2349 * If anonymous vma has not yet been faulted, update new pgoff
2350 * to match new location, to increase its chance of merging.
2351 */
2352 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2353 pgoff = addr >> PAGE_SHIFT;
2354 faulted_in_anon_vma = false;
2355 }
2356
2357 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2358 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2359 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2360 if (new_vma) {
2361 /*
2362 * Source vma may have been merged into new_vma
2363 */
2364 if (unlikely(vma_start >= new_vma->vm_start &&
2365 vma_start < new_vma->vm_end)) {
2366 /*
2367 * The only way we can get a vma_merge with
2368 * self during an mremap is if the vma hasn't
2369 * been faulted in yet and we were allowed to
2370 * reset the dst vma->vm_pgoff to the
2371 * destination address of the mremap to allow
2372 * the merge to happen. mremap must change the
2373 * vm_pgoff linearity between src and dst vmas
2374 * (in turn preventing a vma_merge) to be
2375 * safe. It is only safe to keep the vm_pgoff
2376 * linear if there are no pages mapped yet.
2377 */
2378 VM_BUG_ON(faulted_in_anon_vma);
2379 *vmap = new_vma;
2380 } else
2381 anon_vma_moveto_tail(new_vma);
2382 } else {
2383 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2384 if (new_vma) {
2385 *new_vma = *vma;
2386 pol = mpol_dup(vma_policy(vma));
2387 if (IS_ERR(pol))
2388 goto out_free_vma;
2389 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2390 if (anon_vma_clone(new_vma, vma))
2391 goto out_free_mempol;
2392 vma_set_policy(new_vma, pol);
2393 new_vma->vm_start = addr;
2394 new_vma->vm_end = addr + len;
2395 new_vma->vm_pgoff = pgoff;
2396 if (new_vma->vm_file) {
2397 get_file(new_vma->vm_file);
2398 if (vma->vm_flags & VM_EXECUTABLE)
2399 added_exe_file_vma(mm);
2400 }
2401 if (new_vma->vm_ops && new_vma->vm_ops->open)
2402 new_vma->vm_ops->open(new_vma);
2403 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2404 }
2405 }
2406 return new_vma;
2407
2408 out_free_mempol:
2409 mpol_put(pol);
2410 out_free_vma:
2411 kmem_cache_free(vm_area_cachep, new_vma);
2412 return NULL;
2413 }
2414
2415 /*
2416 * Return true if the calling process may expand its vm space by the passed
2417 * number of pages
2418 */
2419 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2420 {
2421 unsigned long cur = mm->total_vm; /* pages */
2422 unsigned long lim;
2423
2424 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2425
2426 if (cur + npages > lim)
2427 return 0;
2428 return 1;
2429 }
2430
2431
2432 static int special_mapping_fault(struct vm_area_struct *vma,
2433 struct vm_fault *vmf)
2434 {
2435 pgoff_t pgoff;
2436 struct page **pages;
2437
2438 /*
2439 * special mappings have no vm_file, and in that case, the mm
2440 * uses vm_pgoff internally. So we have to subtract it from here.
2441 * We are allowed to do this because we are the mm; do not copy
2442 * this code into drivers!
2443 */
2444 pgoff = vmf->pgoff - vma->vm_pgoff;
2445
2446 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2447 pgoff--;
2448
2449 if (*pages) {
2450 struct page *page = *pages;
2451 get_page(page);
2452 vmf->page = page;
2453 return 0;
2454 }
2455
2456 return VM_FAULT_SIGBUS;
2457 }
2458
2459 /*
2460 * Having a close hook prevents vma merging regardless of flags.
2461 */
2462 static void special_mapping_close(struct vm_area_struct *vma)
2463 {
2464 }
2465
2466 static const struct vm_operations_struct special_mapping_vmops = {
2467 .close = special_mapping_close,
2468 .fault = special_mapping_fault,
2469 };
2470
2471 /*
2472 * Called with mm->mmap_sem held for writing.
2473 * Insert a new vma covering the given region, with the given flags.
2474 * Its pages are supplied by the given array of struct page *.
2475 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2476 * The region past the last page supplied will always produce SIGBUS.
2477 * The array pointer and the pages it points to are assumed to stay alive
2478 * for as long as this mapping might exist.
2479 */
2480 int install_special_mapping(struct mm_struct *mm,
2481 unsigned long addr, unsigned long len,
2482 unsigned long vm_flags, struct page **pages)
2483 {
2484 int ret;
2485 struct vm_area_struct *vma;
2486
2487 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2488 if (unlikely(vma == NULL))
2489 return -ENOMEM;
2490
2491 INIT_LIST_HEAD(&vma->anon_vma_chain);
2492 vma->vm_mm = mm;
2493 vma->vm_start = addr;
2494 vma->vm_end = addr + len;
2495
2496 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2497 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2498
2499 vma->vm_ops = &special_mapping_vmops;
2500 vma->vm_private_data = pages;
2501
2502 ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2503 if (ret)
2504 goto out;
2505
2506 ret = insert_vm_struct(mm, vma);
2507 if (ret)
2508 goto out;
2509
2510 mm->total_vm += len >> PAGE_SHIFT;
2511
2512 perf_event_mmap(vma);
2513
2514 return 0;
2515
2516 out:
2517 kmem_cache_free(vm_area_cachep, vma);
2518 return ret;
2519 }
2520
2521 static DEFINE_MUTEX(mm_all_locks_mutex);
2522
2523 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2524 {
2525 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2526 /*
2527 * The LSB of head.next can't change from under us
2528 * because we hold the mm_all_locks_mutex.
2529 */
2530 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2531 /*
2532 * We can safely modify head.next after taking the
2533 * anon_vma->root->mutex. If some other vma in this mm shares
2534 * the same anon_vma we won't take it again.
2535 *
2536 * No need of atomic instructions here, head.next
2537 * can't change from under us thanks to the
2538 * anon_vma->root->mutex.
2539 */
2540 if (__test_and_set_bit(0, (unsigned long *)
2541 &anon_vma->root->head.next))
2542 BUG();
2543 }
2544 }
2545
2546 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2547 {
2548 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2549 /*
2550 * AS_MM_ALL_LOCKS can't change from under us because
2551 * we hold the mm_all_locks_mutex.
2552 *
2553 * Operations on ->flags have to be atomic because
2554 * even if AS_MM_ALL_LOCKS is stable thanks to the
2555 * mm_all_locks_mutex, there may be other cpus
2556 * changing other bitflags in parallel to us.
2557 */
2558 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2559 BUG();
2560 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2561 }
2562 }
2563
2564 /*
2565 * This operation locks against the VM for all pte/vma/mm related
2566 * operations that could ever happen on a certain mm. This includes
2567 * vmtruncate, try_to_unmap, and all page faults.
2568 *
2569 * The caller must take the mmap_sem in write mode before calling
2570 * mm_take_all_locks(). The caller isn't allowed to release the
2571 * mmap_sem until mm_drop_all_locks() returns.
2572 *
2573 * mmap_sem in write mode is required in order to block all operations
2574 * that could modify pagetables and free pages without need of
2575 * altering the vma layout (for example populate_range() with
2576 * nonlinear vmas). It's also needed in write mode to avoid new
2577 * anon_vmas to be associated with existing vmas.
2578 *
2579 * A single task can't take more than one mm_take_all_locks() in a row
2580 * or it would deadlock.
2581 *
2582 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2583 * mapping->flags avoid to take the same lock twice, if more than one
2584 * vma in this mm is backed by the same anon_vma or address_space.
2585 *
2586 * We can take all the locks in random order because the VM code
2587 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2588 * takes more than one of them in a row. Secondly we're protected
2589 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2590 *
2591 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2592 * that may have to take thousand of locks.
2593 *
2594 * mm_take_all_locks() can fail if it's interrupted by signals.
2595 */
2596 int mm_take_all_locks(struct mm_struct *mm)
2597 {
2598 struct vm_area_struct *vma;
2599 struct anon_vma_chain *avc;
2600
2601 BUG_ON(down_read_trylock(&mm->mmap_sem));
2602
2603 mutex_lock(&mm_all_locks_mutex);
2604
2605 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2606 if (signal_pending(current))
2607 goto out_unlock;
2608 if (vma->vm_file && vma->vm_file->f_mapping)
2609 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2610 }
2611
2612 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2613 if (signal_pending(current))
2614 goto out_unlock;
2615 if (vma->anon_vma)
2616 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2617 vm_lock_anon_vma(mm, avc->anon_vma);
2618 }
2619
2620 return 0;
2621
2622 out_unlock:
2623 mm_drop_all_locks(mm);
2624 return -EINTR;
2625 }
2626
2627 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2628 {
2629 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2630 /*
2631 * The LSB of head.next can't change to 0 from under
2632 * us because we hold the mm_all_locks_mutex.
2633 *
2634 * We must however clear the bitflag before unlocking
2635 * the vma so the users using the anon_vma->head will
2636 * never see our bitflag.
2637 *
2638 * No need of atomic instructions here, head.next
2639 * can't change from under us until we release the
2640 * anon_vma->root->mutex.
2641 */
2642 if (!__test_and_clear_bit(0, (unsigned long *)
2643 &anon_vma->root->head.next))
2644 BUG();
2645 anon_vma_unlock(anon_vma);
2646 }
2647 }
2648
2649 static void vm_unlock_mapping(struct address_space *mapping)
2650 {
2651 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2652 /*
2653 * AS_MM_ALL_LOCKS can't change to 0 from under us
2654 * because we hold the mm_all_locks_mutex.
2655 */
2656 mutex_unlock(&mapping->i_mmap_mutex);
2657 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2658 &mapping->flags))
2659 BUG();
2660 }
2661 }
2662
2663 /*
2664 * The mmap_sem cannot be released by the caller until
2665 * mm_drop_all_locks() returns.
2666 */
2667 void mm_drop_all_locks(struct mm_struct *mm)
2668 {
2669 struct vm_area_struct *vma;
2670 struct anon_vma_chain *avc;
2671
2672 BUG_ON(down_read_trylock(&mm->mmap_sem));
2673 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2674
2675 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2676 if (vma->anon_vma)
2677 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2678 vm_unlock_anon_vma(avc->anon_vma);
2679 if (vma->vm_file && vma->vm_file->f_mapping)
2680 vm_unlock_mapping(vma->vm_file->f_mapping);
2681 }
2682
2683 mutex_unlock(&mm_all_locks_mutex);
2684 }
2685
2686 /*
2687 * initialise the VMA slab
2688 */
2689 void __init mmap_init(void)
2690 {
2691 int ret;
2692
2693 ret = percpu_counter_init(&vm_committed_as, 0);
2694 VM_BUG_ON(ret);
2695 }
This page took 0.083703 seconds and 6 git commands to generate.