mm: warn about VmData over RLIMIT_DATA
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
14 #include <linux/mm.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
24 #include <linux/fs.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
45 #include <linux/moduleparam.h>
46
47 #include <asm/uaccess.h>
48 #include <asm/cacheflush.h>
49 #include <asm/tlb.h>
50 #include <asm/mmu_context.h>
51
52 #include "internal.h"
53
54 #ifndef arch_mmap_check
55 #define arch_mmap_check(addr, len, flags) (0)
56 #endif
57
58 #ifndef arch_rebalance_pgtables
59 #define arch_rebalance_pgtables(addr, len) (addr)
60 #endif
61
62 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
63 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
64 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
65 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
66 #endif
67 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
68 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
69 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
70 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
71 #endif
72
73 static bool ignore_rlimit_data = true;
74 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
75
76 static void unmap_region(struct mm_struct *mm,
77 struct vm_area_struct *vma, struct vm_area_struct *prev,
78 unsigned long start, unsigned long end);
79
80 /* description of effects of mapping type and prot in current implementation.
81 * this is due to the limited x86 page protection hardware. The expected
82 * behavior is in parens:
83 *
84 * map_type prot
85 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
86 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
87 * w: (no) no w: (no) no w: (yes) yes w: (no) no
88 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
89 *
90 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
91 * w: (no) no w: (no) no w: (copy) copy w: (no) no
92 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
93 *
94 */
95 pgprot_t protection_map[16] = {
96 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
97 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
98 };
99
100 pgprot_t vm_get_page_prot(unsigned long vm_flags)
101 {
102 return __pgprot(pgprot_val(protection_map[vm_flags &
103 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
104 pgprot_val(arch_vm_get_page_prot(vm_flags)));
105 }
106 EXPORT_SYMBOL(vm_get_page_prot);
107
108 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
109 {
110 return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
111 }
112
113 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
114 void vma_set_page_prot(struct vm_area_struct *vma)
115 {
116 unsigned long vm_flags = vma->vm_flags;
117
118 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
119 if (vma_wants_writenotify(vma)) {
120 vm_flags &= ~VM_SHARED;
121 vma->vm_page_prot = vm_pgprot_modify(vma->vm_page_prot,
122 vm_flags);
123 }
124 }
125
126
127 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
128 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
129 unsigned long sysctl_overcommit_kbytes __read_mostly;
130 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
131 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
132 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
133 /*
134 * Make sure vm_committed_as in one cacheline and not cacheline shared with
135 * other variables. It can be updated by several CPUs frequently.
136 */
137 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
138
139 /*
140 * The global memory commitment made in the system can be a metric
141 * that can be used to drive ballooning decisions when Linux is hosted
142 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
143 * balancing memory across competing virtual machines that are hosted.
144 * Several metrics drive this policy engine including the guest reported
145 * memory commitment.
146 */
147 unsigned long vm_memory_committed(void)
148 {
149 return percpu_counter_read_positive(&vm_committed_as);
150 }
151 EXPORT_SYMBOL_GPL(vm_memory_committed);
152
153 /*
154 * Check that a process has enough memory to allocate a new virtual
155 * mapping. 0 means there is enough memory for the allocation to
156 * succeed and -ENOMEM implies there is not.
157 *
158 * We currently support three overcommit policies, which are set via the
159 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
160 *
161 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
162 * Additional code 2002 Jul 20 by Robert Love.
163 *
164 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
165 *
166 * Note this is a helper function intended to be used by LSMs which
167 * wish to use this logic.
168 */
169 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
170 {
171 long free, allowed, reserve;
172
173 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
174 -(s64)vm_committed_as_batch * num_online_cpus(),
175 "memory commitment underflow");
176
177 vm_acct_memory(pages);
178
179 /*
180 * Sometimes we want to use more memory than we have
181 */
182 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
183 return 0;
184
185 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
186 free = global_page_state(NR_FREE_PAGES);
187 free += global_page_state(NR_FILE_PAGES);
188
189 /*
190 * shmem pages shouldn't be counted as free in this
191 * case, they can't be purged, only swapped out, and
192 * that won't affect the overall amount of available
193 * memory in the system.
194 */
195 free -= global_page_state(NR_SHMEM);
196
197 free += get_nr_swap_pages();
198
199 /*
200 * Any slabs which are created with the
201 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
202 * which are reclaimable, under pressure. The dentry
203 * cache and most inode caches should fall into this
204 */
205 free += global_page_state(NR_SLAB_RECLAIMABLE);
206
207 /*
208 * Leave reserved pages. The pages are not for anonymous pages.
209 */
210 if (free <= totalreserve_pages)
211 goto error;
212 else
213 free -= totalreserve_pages;
214
215 /*
216 * Reserve some for root
217 */
218 if (!cap_sys_admin)
219 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
220
221 if (free > pages)
222 return 0;
223
224 goto error;
225 }
226
227 allowed = vm_commit_limit();
228 /*
229 * Reserve some for root
230 */
231 if (!cap_sys_admin)
232 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
233
234 /*
235 * Don't let a single process grow so big a user can't recover
236 */
237 if (mm) {
238 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
239 allowed -= min_t(long, mm->total_vm / 32, reserve);
240 }
241
242 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
243 return 0;
244 error:
245 vm_unacct_memory(pages);
246
247 return -ENOMEM;
248 }
249
250 /*
251 * Requires inode->i_mapping->i_mmap_rwsem
252 */
253 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
254 struct file *file, struct address_space *mapping)
255 {
256 if (vma->vm_flags & VM_DENYWRITE)
257 atomic_inc(&file_inode(file)->i_writecount);
258 if (vma->vm_flags & VM_SHARED)
259 mapping_unmap_writable(mapping);
260
261 flush_dcache_mmap_lock(mapping);
262 vma_interval_tree_remove(vma, &mapping->i_mmap);
263 flush_dcache_mmap_unlock(mapping);
264 }
265
266 /*
267 * Unlink a file-based vm structure from its interval tree, to hide
268 * vma from rmap and vmtruncate before freeing its page tables.
269 */
270 void unlink_file_vma(struct vm_area_struct *vma)
271 {
272 struct file *file = vma->vm_file;
273
274 if (file) {
275 struct address_space *mapping = file->f_mapping;
276 i_mmap_lock_write(mapping);
277 __remove_shared_vm_struct(vma, file, mapping);
278 i_mmap_unlock_write(mapping);
279 }
280 }
281
282 /*
283 * Close a vm structure and free it, returning the next.
284 */
285 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
286 {
287 struct vm_area_struct *next = vma->vm_next;
288
289 might_sleep();
290 if (vma->vm_ops && vma->vm_ops->close)
291 vma->vm_ops->close(vma);
292 if (vma->vm_file)
293 fput(vma->vm_file);
294 mpol_put(vma_policy(vma));
295 kmem_cache_free(vm_area_cachep, vma);
296 return next;
297 }
298
299 static unsigned long do_brk(unsigned long addr, unsigned long len);
300
301 SYSCALL_DEFINE1(brk, unsigned long, brk)
302 {
303 unsigned long retval;
304 unsigned long newbrk, oldbrk;
305 struct mm_struct *mm = current->mm;
306 unsigned long min_brk;
307 bool populate;
308
309 down_write(&mm->mmap_sem);
310
311 #ifdef CONFIG_COMPAT_BRK
312 /*
313 * CONFIG_COMPAT_BRK can still be overridden by setting
314 * randomize_va_space to 2, which will still cause mm->start_brk
315 * to be arbitrarily shifted
316 */
317 if (current->brk_randomized)
318 min_brk = mm->start_brk;
319 else
320 min_brk = mm->end_data;
321 #else
322 min_brk = mm->start_brk;
323 #endif
324 if (brk < min_brk)
325 goto out;
326
327 /*
328 * Check against rlimit here. If this check is done later after the test
329 * of oldbrk with newbrk then it can escape the test and let the data
330 * segment grow beyond its set limit the in case where the limit is
331 * not page aligned -Ram Gupta
332 */
333 if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
334 mm->end_data, mm->start_data))
335 goto out;
336
337 newbrk = PAGE_ALIGN(brk);
338 oldbrk = PAGE_ALIGN(mm->brk);
339 if (oldbrk == newbrk)
340 goto set_brk;
341
342 /* Always allow shrinking brk. */
343 if (brk <= mm->brk) {
344 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
345 goto set_brk;
346 goto out;
347 }
348
349 /* Check against existing mmap mappings. */
350 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
351 goto out;
352
353 /* Ok, looks good - let it rip. */
354 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
355 goto out;
356
357 set_brk:
358 mm->brk = brk;
359 populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
360 up_write(&mm->mmap_sem);
361 if (populate)
362 mm_populate(oldbrk, newbrk - oldbrk);
363 return brk;
364
365 out:
366 retval = mm->brk;
367 up_write(&mm->mmap_sem);
368 return retval;
369 }
370
371 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
372 {
373 unsigned long max, subtree_gap;
374 max = vma->vm_start;
375 if (vma->vm_prev)
376 max -= vma->vm_prev->vm_end;
377 if (vma->vm_rb.rb_left) {
378 subtree_gap = rb_entry(vma->vm_rb.rb_left,
379 struct vm_area_struct, vm_rb)->rb_subtree_gap;
380 if (subtree_gap > max)
381 max = subtree_gap;
382 }
383 if (vma->vm_rb.rb_right) {
384 subtree_gap = rb_entry(vma->vm_rb.rb_right,
385 struct vm_area_struct, vm_rb)->rb_subtree_gap;
386 if (subtree_gap > max)
387 max = subtree_gap;
388 }
389 return max;
390 }
391
392 #ifdef CONFIG_DEBUG_VM_RB
393 static int browse_rb(struct rb_root *root)
394 {
395 int i = 0, j, bug = 0;
396 struct rb_node *nd, *pn = NULL;
397 unsigned long prev = 0, pend = 0;
398
399 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
400 struct vm_area_struct *vma;
401 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
402 if (vma->vm_start < prev) {
403 pr_emerg("vm_start %lx < prev %lx\n",
404 vma->vm_start, prev);
405 bug = 1;
406 }
407 if (vma->vm_start < pend) {
408 pr_emerg("vm_start %lx < pend %lx\n",
409 vma->vm_start, pend);
410 bug = 1;
411 }
412 if (vma->vm_start > vma->vm_end) {
413 pr_emerg("vm_start %lx > vm_end %lx\n",
414 vma->vm_start, vma->vm_end);
415 bug = 1;
416 }
417 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
418 pr_emerg("free gap %lx, correct %lx\n",
419 vma->rb_subtree_gap,
420 vma_compute_subtree_gap(vma));
421 bug = 1;
422 }
423 i++;
424 pn = nd;
425 prev = vma->vm_start;
426 pend = vma->vm_end;
427 }
428 j = 0;
429 for (nd = pn; nd; nd = rb_prev(nd))
430 j++;
431 if (i != j) {
432 pr_emerg("backwards %d, forwards %d\n", j, i);
433 bug = 1;
434 }
435 return bug ? -1 : i;
436 }
437
438 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
439 {
440 struct rb_node *nd;
441
442 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
443 struct vm_area_struct *vma;
444 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
445 VM_BUG_ON_VMA(vma != ignore &&
446 vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
447 vma);
448 }
449 }
450
451 static void validate_mm(struct mm_struct *mm)
452 {
453 int bug = 0;
454 int i = 0;
455 unsigned long highest_address = 0;
456 struct vm_area_struct *vma = mm->mmap;
457
458 while (vma) {
459 struct anon_vma_chain *avc;
460
461 vma_lock_anon_vma(vma);
462 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
463 anon_vma_interval_tree_verify(avc);
464 vma_unlock_anon_vma(vma);
465 highest_address = vma->vm_end;
466 vma = vma->vm_next;
467 i++;
468 }
469 if (i != mm->map_count) {
470 pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
471 bug = 1;
472 }
473 if (highest_address != mm->highest_vm_end) {
474 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
475 mm->highest_vm_end, highest_address);
476 bug = 1;
477 }
478 i = browse_rb(&mm->mm_rb);
479 if (i != mm->map_count) {
480 if (i != -1)
481 pr_emerg("map_count %d rb %d\n", mm->map_count, i);
482 bug = 1;
483 }
484 VM_BUG_ON_MM(bug, mm);
485 }
486 #else
487 #define validate_mm_rb(root, ignore) do { } while (0)
488 #define validate_mm(mm) do { } while (0)
489 #endif
490
491 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
492 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
493
494 /*
495 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
496 * vma->vm_prev->vm_end values changed, without modifying the vma's position
497 * in the rbtree.
498 */
499 static void vma_gap_update(struct vm_area_struct *vma)
500 {
501 /*
502 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
503 * function that does exacltly what we want.
504 */
505 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
506 }
507
508 static inline void vma_rb_insert(struct vm_area_struct *vma,
509 struct rb_root *root)
510 {
511 /* All rb_subtree_gap values must be consistent prior to insertion */
512 validate_mm_rb(root, NULL);
513
514 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
515 }
516
517 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
518 {
519 /*
520 * All rb_subtree_gap values must be consistent prior to erase,
521 * with the possible exception of the vma being erased.
522 */
523 validate_mm_rb(root, vma);
524
525 /*
526 * Note rb_erase_augmented is a fairly large inline function,
527 * so make sure we instantiate it only once with our desired
528 * augmented rbtree callbacks.
529 */
530 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
531 }
532
533 /*
534 * vma has some anon_vma assigned, and is already inserted on that
535 * anon_vma's interval trees.
536 *
537 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
538 * vma must be removed from the anon_vma's interval trees using
539 * anon_vma_interval_tree_pre_update_vma().
540 *
541 * After the update, the vma will be reinserted using
542 * anon_vma_interval_tree_post_update_vma().
543 *
544 * The entire update must be protected by exclusive mmap_sem and by
545 * the root anon_vma's mutex.
546 */
547 static inline void
548 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
549 {
550 struct anon_vma_chain *avc;
551
552 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
553 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
554 }
555
556 static inline void
557 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
558 {
559 struct anon_vma_chain *avc;
560
561 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
562 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
563 }
564
565 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
566 unsigned long end, struct vm_area_struct **pprev,
567 struct rb_node ***rb_link, struct rb_node **rb_parent)
568 {
569 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
570
571 __rb_link = &mm->mm_rb.rb_node;
572 rb_prev = __rb_parent = NULL;
573
574 while (*__rb_link) {
575 struct vm_area_struct *vma_tmp;
576
577 __rb_parent = *__rb_link;
578 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
579
580 if (vma_tmp->vm_end > addr) {
581 /* Fail if an existing vma overlaps the area */
582 if (vma_tmp->vm_start < end)
583 return -ENOMEM;
584 __rb_link = &__rb_parent->rb_left;
585 } else {
586 rb_prev = __rb_parent;
587 __rb_link = &__rb_parent->rb_right;
588 }
589 }
590
591 *pprev = NULL;
592 if (rb_prev)
593 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
594 *rb_link = __rb_link;
595 *rb_parent = __rb_parent;
596 return 0;
597 }
598
599 static unsigned long count_vma_pages_range(struct mm_struct *mm,
600 unsigned long addr, unsigned long end)
601 {
602 unsigned long nr_pages = 0;
603 struct vm_area_struct *vma;
604
605 /* Find first overlaping mapping */
606 vma = find_vma_intersection(mm, addr, end);
607 if (!vma)
608 return 0;
609
610 nr_pages = (min(end, vma->vm_end) -
611 max(addr, vma->vm_start)) >> PAGE_SHIFT;
612
613 /* Iterate over the rest of the overlaps */
614 for (vma = vma->vm_next; vma; vma = vma->vm_next) {
615 unsigned long overlap_len;
616
617 if (vma->vm_start > end)
618 break;
619
620 overlap_len = min(end, vma->vm_end) - vma->vm_start;
621 nr_pages += overlap_len >> PAGE_SHIFT;
622 }
623
624 return nr_pages;
625 }
626
627 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
628 struct rb_node **rb_link, struct rb_node *rb_parent)
629 {
630 /* Update tracking information for the gap following the new vma. */
631 if (vma->vm_next)
632 vma_gap_update(vma->vm_next);
633 else
634 mm->highest_vm_end = vma->vm_end;
635
636 /*
637 * vma->vm_prev wasn't known when we followed the rbtree to find the
638 * correct insertion point for that vma. As a result, we could not
639 * update the vma vm_rb parents rb_subtree_gap values on the way down.
640 * So, we first insert the vma with a zero rb_subtree_gap value
641 * (to be consistent with what we did on the way down), and then
642 * immediately update the gap to the correct value. Finally we
643 * rebalance the rbtree after all augmented values have been set.
644 */
645 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
646 vma->rb_subtree_gap = 0;
647 vma_gap_update(vma);
648 vma_rb_insert(vma, &mm->mm_rb);
649 }
650
651 static void __vma_link_file(struct vm_area_struct *vma)
652 {
653 struct file *file;
654
655 file = vma->vm_file;
656 if (file) {
657 struct address_space *mapping = file->f_mapping;
658
659 if (vma->vm_flags & VM_DENYWRITE)
660 atomic_dec(&file_inode(file)->i_writecount);
661 if (vma->vm_flags & VM_SHARED)
662 atomic_inc(&mapping->i_mmap_writable);
663
664 flush_dcache_mmap_lock(mapping);
665 vma_interval_tree_insert(vma, &mapping->i_mmap);
666 flush_dcache_mmap_unlock(mapping);
667 }
668 }
669
670 static void
671 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
672 struct vm_area_struct *prev, struct rb_node **rb_link,
673 struct rb_node *rb_parent)
674 {
675 __vma_link_list(mm, vma, prev, rb_parent);
676 __vma_link_rb(mm, vma, rb_link, rb_parent);
677 }
678
679 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
680 struct vm_area_struct *prev, struct rb_node **rb_link,
681 struct rb_node *rb_parent)
682 {
683 struct address_space *mapping = NULL;
684
685 if (vma->vm_file) {
686 mapping = vma->vm_file->f_mapping;
687 i_mmap_lock_write(mapping);
688 }
689
690 __vma_link(mm, vma, prev, rb_link, rb_parent);
691 __vma_link_file(vma);
692
693 if (mapping)
694 i_mmap_unlock_write(mapping);
695
696 mm->map_count++;
697 validate_mm(mm);
698 }
699
700 /*
701 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
702 * mm's list and rbtree. It has already been inserted into the interval tree.
703 */
704 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
705 {
706 struct vm_area_struct *prev;
707 struct rb_node **rb_link, *rb_parent;
708
709 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
710 &prev, &rb_link, &rb_parent))
711 BUG();
712 __vma_link(mm, vma, prev, rb_link, rb_parent);
713 mm->map_count++;
714 }
715
716 static inline void
717 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
718 struct vm_area_struct *prev)
719 {
720 struct vm_area_struct *next;
721
722 vma_rb_erase(vma, &mm->mm_rb);
723 prev->vm_next = next = vma->vm_next;
724 if (next)
725 next->vm_prev = prev;
726
727 /* Kill the cache */
728 vmacache_invalidate(mm);
729 }
730
731 /*
732 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
733 * is already present in an i_mmap tree without adjusting the tree.
734 * The following helper function should be used when such adjustments
735 * are necessary. The "insert" vma (if any) is to be inserted
736 * before we drop the necessary locks.
737 */
738 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
739 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
740 {
741 struct mm_struct *mm = vma->vm_mm;
742 struct vm_area_struct *next = vma->vm_next;
743 struct vm_area_struct *importer = NULL;
744 struct address_space *mapping = NULL;
745 struct rb_root *root = NULL;
746 struct anon_vma *anon_vma = NULL;
747 struct file *file = vma->vm_file;
748 bool start_changed = false, end_changed = false;
749 long adjust_next = 0;
750 int remove_next = 0;
751
752 if (next && !insert) {
753 struct vm_area_struct *exporter = NULL;
754
755 if (end >= next->vm_end) {
756 /*
757 * vma expands, overlapping all the next, and
758 * perhaps the one after too (mprotect case 6).
759 */
760 again: remove_next = 1 + (end > next->vm_end);
761 end = next->vm_end;
762 exporter = next;
763 importer = vma;
764 } else if (end > next->vm_start) {
765 /*
766 * vma expands, overlapping part of the next:
767 * mprotect case 5 shifting the boundary up.
768 */
769 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
770 exporter = next;
771 importer = vma;
772 } else if (end < vma->vm_end) {
773 /*
774 * vma shrinks, and !insert tells it's not
775 * split_vma inserting another: so it must be
776 * mprotect case 4 shifting the boundary down.
777 */
778 adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
779 exporter = vma;
780 importer = next;
781 }
782
783 /*
784 * Easily overlooked: when mprotect shifts the boundary,
785 * make sure the expanding vma has anon_vma set if the
786 * shrinking vma had, to cover any anon pages imported.
787 */
788 if (exporter && exporter->anon_vma && !importer->anon_vma) {
789 int error;
790
791 importer->anon_vma = exporter->anon_vma;
792 error = anon_vma_clone(importer, exporter);
793 if (error)
794 return error;
795 }
796 }
797
798 if (file) {
799 mapping = file->f_mapping;
800 root = &mapping->i_mmap;
801 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
802
803 if (adjust_next)
804 uprobe_munmap(next, next->vm_start, next->vm_end);
805
806 i_mmap_lock_write(mapping);
807 if (insert) {
808 /*
809 * Put into interval tree now, so instantiated pages
810 * are visible to arm/parisc __flush_dcache_page
811 * throughout; but we cannot insert into address
812 * space until vma start or end is updated.
813 */
814 __vma_link_file(insert);
815 }
816 }
817
818 vma_adjust_trans_huge(vma, start, end, adjust_next);
819
820 anon_vma = vma->anon_vma;
821 if (!anon_vma && adjust_next)
822 anon_vma = next->anon_vma;
823 if (anon_vma) {
824 VM_BUG_ON_VMA(adjust_next && next->anon_vma &&
825 anon_vma != next->anon_vma, next);
826 anon_vma_lock_write(anon_vma);
827 anon_vma_interval_tree_pre_update_vma(vma);
828 if (adjust_next)
829 anon_vma_interval_tree_pre_update_vma(next);
830 }
831
832 if (root) {
833 flush_dcache_mmap_lock(mapping);
834 vma_interval_tree_remove(vma, root);
835 if (adjust_next)
836 vma_interval_tree_remove(next, root);
837 }
838
839 if (start != vma->vm_start) {
840 vma->vm_start = start;
841 start_changed = true;
842 }
843 if (end != vma->vm_end) {
844 vma->vm_end = end;
845 end_changed = true;
846 }
847 vma->vm_pgoff = pgoff;
848 if (adjust_next) {
849 next->vm_start += adjust_next << PAGE_SHIFT;
850 next->vm_pgoff += adjust_next;
851 }
852
853 if (root) {
854 if (adjust_next)
855 vma_interval_tree_insert(next, root);
856 vma_interval_tree_insert(vma, root);
857 flush_dcache_mmap_unlock(mapping);
858 }
859
860 if (remove_next) {
861 /*
862 * vma_merge has merged next into vma, and needs
863 * us to remove next before dropping the locks.
864 */
865 __vma_unlink(mm, next, vma);
866 if (file)
867 __remove_shared_vm_struct(next, file, mapping);
868 } else if (insert) {
869 /*
870 * split_vma has split insert from vma, and needs
871 * us to insert it before dropping the locks
872 * (it may either follow vma or precede it).
873 */
874 __insert_vm_struct(mm, insert);
875 } else {
876 if (start_changed)
877 vma_gap_update(vma);
878 if (end_changed) {
879 if (!next)
880 mm->highest_vm_end = end;
881 else if (!adjust_next)
882 vma_gap_update(next);
883 }
884 }
885
886 if (anon_vma) {
887 anon_vma_interval_tree_post_update_vma(vma);
888 if (adjust_next)
889 anon_vma_interval_tree_post_update_vma(next);
890 anon_vma_unlock_write(anon_vma);
891 }
892 if (mapping)
893 i_mmap_unlock_write(mapping);
894
895 if (root) {
896 uprobe_mmap(vma);
897
898 if (adjust_next)
899 uprobe_mmap(next);
900 }
901
902 if (remove_next) {
903 if (file) {
904 uprobe_munmap(next, next->vm_start, next->vm_end);
905 fput(file);
906 }
907 if (next->anon_vma)
908 anon_vma_merge(vma, next);
909 mm->map_count--;
910 mpol_put(vma_policy(next));
911 kmem_cache_free(vm_area_cachep, next);
912 /*
913 * In mprotect's case 6 (see comments on vma_merge),
914 * we must remove another next too. It would clutter
915 * up the code too much to do both in one go.
916 */
917 next = vma->vm_next;
918 if (remove_next == 2)
919 goto again;
920 else if (next)
921 vma_gap_update(next);
922 else
923 mm->highest_vm_end = end;
924 }
925 if (insert && file)
926 uprobe_mmap(insert);
927
928 validate_mm(mm);
929
930 return 0;
931 }
932
933 /*
934 * If the vma has a ->close operation then the driver probably needs to release
935 * per-vma resources, so we don't attempt to merge those.
936 */
937 static inline int is_mergeable_vma(struct vm_area_struct *vma,
938 struct file *file, unsigned long vm_flags,
939 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
940 {
941 /*
942 * VM_SOFTDIRTY should not prevent from VMA merging, if we
943 * match the flags but dirty bit -- the caller should mark
944 * merged VMA as dirty. If dirty bit won't be excluded from
945 * comparison, we increase pressue on the memory system forcing
946 * the kernel to generate new VMAs when old one could be
947 * extended instead.
948 */
949 if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
950 return 0;
951 if (vma->vm_file != file)
952 return 0;
953 if (vma->vm_ops && vma->vm_ops->close)
954 return 0;
955 if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
956 return 0;
957 return 1;
958 }
959
960 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
961 struct anon_vma *anon_vma2,
962 struct vm_area_struct *vma)
963 {
964 /*
965 * The list_is_singular() test is to avoid merging VMA cloned from
966 * parents. This can improve scalability caused by anon_vma lock.
967 */
968 if ((!anon_vma1 || !anon_vma2) && (!vma ||
969 list_is_singular(&vma->anon_vma_chain)))
970 return 1;
971 return anon_vma1 == anon_vma2;
972 }
973
974 /*
975 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
976 * in front of (at a lower virtual address and file offset than) the vma.
977 *
978 * We cannot merge two vmas if they have differently assigned (non-NULL)
979 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
980 *
981 * We don't check here for the merged mmap wrapping around the end of pagecache
982 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
983 * wrap, nor mmaps which cover the final page at index -1UL.
984 */
985 static int
986 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
987 struct anon_vma *anon_vma, struct file *file,
988 pgoff_t vm_pgoff,
989 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
990 {
991 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
992 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
993 if (vma->vm_pgoff == vm_pgoff)
994 return 1;
995 }
996 return 0;
997 }
998
999 /*
1000 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1001 * beyond (at a higher virtual address and file offset than) the vma.
1002 *
1003 * We cannot merge two vmas if they have differently assigned (non-NULL)
1004 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1005 */
1006 static int
1007 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1008 struct anon_vma *anon_vma, struct file *file,
1009 pgoff_t vm_pgoff,
1010 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1011 {
1012 if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1013 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1014 pgoff_t vm_pglen;
1015 vm_pglen = vma_pages(vma);
1016 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1017 return 1;
1018 }
1019 return 0;
1020 }
1021
1022 /*
1023 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1024 * whether that can be merged with its predecessor or its successor.
1025 * Or both (it neatly fills a hole).
1026 *
1027 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1028 * certain not to be mapped by the time vma_merge is called; but when
1029 * called for mprotect, it is certain to be already mapped (either at
1030 * an offset within prev, or at the start of next), and the flags of
1031 * this area are about to be changed to vm_flags - and the no-change
1032 * case has already been eliminated.
1033 *
1034 * The following mprotect cases have to be considered, where AAAA is
1035 * the area passed down from mprotect_fixup, never extending beyond one
1036 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1037 *
1038 * AAAA AAAA AAAA AAAA
1039 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1040 * cannot merge might become might become might become
1041 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1042 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1043 * mremap move: PPPPNNNNNNNN 8
1044 * AAAA
1045 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1046 * might become case 1 below case 2 below case 3 below
1047 *
1048 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1049 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1050 */
1051 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1052 struct vm_area_struct *prev, unsigned long addr,
1053 unsigned long end, unsigned long vm_flags,
1054 struct anon_vma *anon_vma, struct file *file,
1055 pgoff_t pgoff, struct mempolicy *policy,
1056 struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1057 {
1058 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1059 struct vm_area_struct *area, *next;
1060 int err;
1061
1062 /*
1063 * We later require that vma->vm_flags == vm_flags,
1064 * so this tests vma->vm_flags & VM_SPECIAL, too.
1065 */
1066 if (vm_flags & VM_SPECIAL)
1067 return NULL;
1068
1069 if (prev)
1070 next = prev->vm_next;
1071 else
1072 next = mm->mmap;
1073 area = next;
1074 if (next && next->vm_end == end) /* cases 6, 7, 8 */
1075 next = next->vm_next;
1076
1077 /*
1078 * Can it merge with the predecessor?
1079 */
1080 if (prev && prev->vm_end == addr &&
1081 mpol_equal(vma_policy(prev), policy) &&
1082 can_vma_merge_after(prev, vm_flags,
1083 anon_vma, file, pgoff,
1084 vm_userfaultfd_ctx)) {
1085 /*
1086 * OK, it can. Can we now merge in the successor as well?
1087 */
1088 if (next && end == next->vm_start &&
1089 mpol_equal(policy, vma_policy(next)) &&
1090 can_vma_merge_before(next, vm_flags,
1091 anon_vma, file,
1092 pgoff+pglen,
1093 vm_userfaultfd_ctx) &&
1094 is_mergeable_anon_vma(prev->anon_vma,
1095 next->anon_vma, NULL)) {
1096 /* cases 1, 6 */
1097 err = vma_adjust(prev, prev->vm_start,
1098 next->vm_end, prev->vm_pgoff, NULL);
1099 } else /* cases 2, 5, 7 */
1100 err = vma_adjust(prev, prev->vm_start,
1101 end, prev->vm_pgoff, NULL);
1102 if (err)
1103 return NULL;
1104 khugepaged_enter_vma_merge(prev, vm_flags);
1105 return prev;
1106 }
1107
1108 /*
1109 * Can this new request be merged in front of next?
1110 */
1111 if (next && end == next->vm_start &&
1112 mpol_equal(policy, vma_policy(next)) &&
1113 can_vma_merge_before(next, vm_flags,
1114 anon_vma, file, pgoff+pglen,
1115 vm_userfaultfd_ctx)) {
1116 if (prev && addr < prev->vm_end) /* case 4 */
1117 err = vma_adjust(prev, prev->vm_start,
1118 addr, prev->vm_pgoff, NULL);
1119 else /* cases 3, 8 */
1120 err = vma_adjust(area, addr, next->vm_end,
1121 next->vm_pgoff - pglen, NULL);
1122 if (err)
1123 return NULL;
1124 khugepaged_enter_vma_merge(area, vm_flags);
1125 return area;
1126 }
1127
1128 return NULL;
1129 }
1130
1131 /*
1132 * Rough compatbility check to quickly see if it's even worth looking
1133 * at sharing an anon_vma.
1134 *
1135 * They need to have the same vm_file, and the flags can only differ
1136 * in things that mprotect may change.
1137 *
1138 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1139 * we can merge the two vma's. For example, we refuse to merge a vma if
1140 * there is a vm_ops->close() function, because that indicates that the
1141 * driver is doing some kind of reference counting. But that doesn't
1142 * really matter for the anon_vma sharing case.
1143 */
1144 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1145 {
1146 return a->vm_end == b->vm_start &&
1147 mpol_equal(vma_policy(a), vma_policy(b)) &&
1148 a->vm_file == b->vm_file &&
1149 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1150 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1151 }
1152
1153 /*
1154 * Do some basic sanity checking to see if we can re-use the anon_vma
1155 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1156 * the same as 'old', the other will be the new one that is trying
1157 * to share the anon_vma.
1158 *
1159 * NOTE! This runs with mm_sem held for reading, so it is possible that
1160 * the anon_vma of 'old' is concurrently in the process of being set up
1161 * by another page fault trying to merge _that_. But that's ok: if it
1162 * is being set up, that automatically means that it will be a singleton
1163 * acceptable for merging, so we can do all of this optimistically. But
1164 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1165 *
1166 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1167 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1168 * is to return an anon_vma that is "complex" due to having gone through
1169 * a fork).
1170 *
1171 * We also make sure that the two vma's are compatible (adjacent,
1172 * and with the same memory policies). That's all stable, even with just
1173 * a read lock on the mm_sem.
1174 */
1175 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1176 {
1177 if (anon_vma_compatible(a, b)) {
1178 struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1179
1180 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1181 return anon_vma;
1182 }
1183 return NULL;
1184 }
1185
1186 /*
1187 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1188 * neighbouring vmas for a suitable anon_vma, before it goes off
1189 * to allocate a new anon_vma. It checks because a repetitive
1190 * sequence of mprotects and faults may otherwise lead to distinct
1191 * anon_vmas being allocated, preventing vma merge in subsequent
1192 * mprotect.
1193 */
1194 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1195 {
1196 struct anon_vma *anon_vma;
1197 struct vm_area_struct *near;
1198
1199 near = vma->vm_next;
1200 if (!near)
1201 goto try_prev;
1202
1203 anon_vma = reusable_anon_vma(near, vma, near);
1204 if (anon_vma)
1205 return anon_vma;
1206 try_prev:
1207 near = vma->vm_prev;
1208 if (!near)
1209 goto none;
1210
1211 anon_vma = reusable_anon_vma(near, near, vma);
1212 if (anon_vma)
1213 return anon_vma;
1214 none:
1215 /*
1216 * There's no absolute need to look only at touching neighbours:
1217 * we could search further afield for "compatible" anon_vmas.
1218 * But it would probably just be a waste of time searching,
1219 * or lead to too many vmas hanging off the same anon_vma.
1220 * We're trying to allow mprotect remerging later on,
1221 * not trying to minimize memory used for anon_vmas.
1222 */
1223 return NULL;
1224 }
1225
1226 /*
1227 * If a hint addr is less than mmap_min_addr change hint to be as
1228 * low as possible but still greater than mmap_min_addr
1229 */
1230 static inline unsigned long round_hint_to_min(unsigned long hint)
1231 {
1232 hint &= PAGE_MASK;
1233 if (((void *)hint != NULL) &&
1234 (hint < mmap_min_addr))
1235 return PAGE_ALIGN(mmap_min_addr);
1236 return hint;
1237 }
1238
1239 static inline int mlock_future_check(struct mm_struct *mm,
1240 unsigned long flags,
1241 unsigned long len)
1242 {
1243 unsigned long locked, lock_limit;
1244
1245 /* mlock MCL_FUTURE? */
1246 if (flags & VM_LOCKED) {
1247 locked = len >> PAGE_SHIFT;
1248 locked += mm->locked_vm;
1249 lock_limit = rlimit(RLIMIT_MEMLOCK);
1250 lock_limit >>= PAGE_SHIFT;
1251 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1252 return -EAGAIN;
1253 }
1254 return 0;
1255 }
1256
1257 /*
1258 * The caller must hold down_write(&current->mm->mmap_sem).
1259 */
1260 unsigned long do_mmap(struct file *file, unsigned long addr,
1261 unsigned long len, unsigned long prot,
1262 unsigned long flags, vm_flags_t vm_flags,
1263 unsigned long pgoff, unsigned long *populate)
1264 {
1265 struct mm_struct *mm = current->mm;
1266
1267 *populate = 0;
1268
1269 if (!len)
1270 return -EINVAL;
1271
1272 /*
1273 * Does the application expect PROT_READ to imply PROT_EXEC?
1274 *
1275 * (the exception is when the underlying filesystem is noexec
1276 * mounted, in which case we dont add PROT_EXEC.)
1277 */
1278 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1279 if (!(file && path_noexec(&file->f_path)))
1280 prot |= PROT_EXEC;
1281
1282 if (!(flags & MAP_FIXED))
1283 addr = round_hint_to_min(addr);
1284
1285 /* Careful about overflows.. */
1286 len = PAGE_ALIGN(len);
1287 if (!len)
1288 return -ENOMEM;
1289
1290 /* offset overflow? */
1291 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1292 return -EOVERFLOW;
1293
1294 /* Too many mappings? */
1295 if (mm->map_count > sysctl_max_map_count)
1296 return -ENOMEM;
1297
1298 /* Obtain the address to map to. we verify (or select) it and ensure
1299 * that it represents a valid section of the address space.
1300 */
1301 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1302 if (offset_in_page(addr))
1303 return addr;
1304
1305 /* Do simple checking here so the lower-level routines won't have
1306 * to. we assume access permissions have been handled by the open
1307 * of the memory object, so we don't do any here.
1308 */
1309 vm_flags |= calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1310 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1311
1312 if (flags & MAP_LOCKED)
1313 if (!can_do_mlock())
1314 return -EPERM;
1315
1316 if (mlock_future_check(mm, vm_flags, len))
1317 return -EAGAIN;
1318
1319 if (file) {
1320 struct inode *inode = file_inode(file);
1321
1322 switch (flags & MAP_TYPE) {
1323 case MAP_SHARED:
1324 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1325 return -EACCES;
1326
1327 /*
1328 * Make sure we don't allow writing to an append-only
1329 * file..
1330 */
1331 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1332 return -EACCES;
1333
1334 /*
1335 * Make sure there are no mandatory locks on the file.
1336 */
1337 if (locks_verify_locked(file))
1338 return -EAGAIN;
1339
1340 vm_flags |= VM_SHARED | VM_MAYSHARE;
1341 if (!(file->f_mode & FMODE_WRITE))
1342 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1343
1344 /* fall through */
1345 case MAP_PRIVATE:
1346 if (!(file->f_mode & FMODE_READ))
1347 return -EACCES;
1348 if (path_noexec(&file->f_path)) {
1349 if (vm_flags & VM_EXEC)
1350 return -EPERM;
1351 vm_flags &= ~VM_MAYEXEC;
1352 }
1353
1354 if (!file->f_op->mmap)
1355 return -ENODEV;
1356 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1357 return -EINVAL;
1358 break;
1359
1360 default:
1361 return -EINVAL;
1362 }
1363 } else {
1364 switch (flags & MAP_TYPE) {
1365 case MAP_SHARED:
1366 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1367 return -EINVAL;
1368 /*
1369 * Ignore pgoff.
1370 */
1371 pgoff = 0;
1372 vm_flags |= VM_SHARED | VM_MAYSHARE;
1373 break;
1374 case MAP_PRIVATE:
1375 /*
1376 * Set pgoff according to addr for anon_vma.
1377 */
1378 pgoff = addr >> PAGE_SHIFT;
1379 break;
1380 default:
1381 return -EINVAL;
1382 }
1383 }
1384
1385 /*
1386 * Set 'VM_NORESERVE' if we should not account for the
1387 * memory use of this mapping.
1388 */
1389 if (flags & MAP_NORESERVE) {
1390 /* We honor MAP_NORESERVE if allowed to overcommit */
1391 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1392 vm_flags |= VM_NORESERVE;
1393
1394 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1395 if (file && is_file_hugepages(file))
1396 vm_flags |= VM_NORESERVE;
1397 }
1398
1399 addr = mmap_region(file, addr, len, vm_flags, pgoff);
1400 if (!IS_ERR_VALUE(addr) &&
1401 ((vm_flags & VM_LOCKED) ||
1402 (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1403 *populate = len;
1404 return addr;
1405 }
1406
1407 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1408 unsigned long, prot, unsigned long, flags,
1409 unsigned long, fd, unsigned long, pgoff)
1410 {
1411 struct file *file = NULL;
1412 unsigned long retval;
1413
1414 if (!(flags & MAP_ANONYMOUS)) {
1415 audit_mmap_fd(fd, flags);
1416 file = fget(fd);
1417 if (!file)
1418 return -EBADF;
1419 if (is_file_hugepages(file))
1420 len = ALIGN(len, huge_page_size(hstate_file(file)));
1421 retval = -EINVAL;
1422 if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1423 goto out_fput;
1424 } else if (flags & MAP_HUGETLB) {
1425 struct user_struct *user = NULL;
1426 struct hstate *hs;
1427
1428 hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1429 if (!hs)
1430 return -EINVAL;
1431
1432 len = ALIGN(len, huge_page_size(hs));
1433 /*
1434 * VM_NORESERVE is used because the reservations will be
1435 * taken when vm_ops->mmap() is called
1436 * A dummy user value is used because we are not locking
1437 * memory so no accounting is necessary
1438 */
1439 file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1440 VM_NORESERVE,
1441 &user, HUGETLB_ANONHUGE_INODE,
1442 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1443 if (IS_ERR(file))
1444 return PTR_ERR(file);
1445 }
1446
1447 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1448
1449 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1450 out_fput:
1451 if (file)
1452 fput(file);
1453 return retval;
1454 }
1455
1456 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1457 struct mmap_arg_struct {
1458 unsigned long addr;
1459 unsigned long len;
1460 unsigned long prot;
1461 unsigned long flags;
1462 unsigned long fd;
1463 unsigned long offset;
1464 };
1465
1466 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1467 {
1468 struct mmap_arg_struct a;
1469
1470 if (copy_from_user(&a, arg, sizeof(a)))
1471 return -EFAULT;
1472 if (offset_in_page(a.offset))
1473 return -EINVAL;
1474
1475 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1476 a.offset >> PAGE_SHIFT);
1477 }
1478 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1479
1480 /*
1481 * Some shared mappigns will want the pages marked read-only
1482 * to track write events. If so, we'll downgrade vm_page_prot
1483 * to the private version (using protection_map[] without the
1484 * VM_SHARED bit).
1485 */
1486 int vma_wants_writenotify(struct vm_area_struct *vma)
1487 {
1488 vm_flags_t vm_flags = vma->vm_flags;
1489 const struct vm_operations_struct *vm_ops = vma->vm_ops;
1490
1491 /* If it was private or non-writable, the write bit is already clear */
1492 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1493 return 0;
1494
1495 /* The backer wishes to know when pages are first written to? */
1496 if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1497 return 1;
1498
1499 /* The open routine did something to the protections that pgprot_modify
1500 * won't preserve? */
1501 if (pgprot_val(vma->vm_page_prot) !=
1502 pgprot_val(vm_pgprot_modify(vma->vm_page_prot, vm_flags)))
1503 return 0;
1504
1505 /* Do we need to track softdirty? */
1506 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1507 return 1;
1508
1509 /* Specialty mapping? */
1510 if (vm_flags & VM_PFNMAP)
1511 return 0;
1512
1513 /* Can the mapping track the dirty pages? */
1514 return vma->vm_file && vma->vm_file->f_mapping &&
1515 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1516 }
1517
1518 /*
1519 * We account for memory if it's a private writeable mapping,
1520 * not hugepages and VM_NORESERVE wasn't set.
1521 */
1522 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1523 {
1524 /*
1525 * hugetlb has its own accounting separate from the core VM
1526 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1527 */
1528 if (file && is_file_hugepages(file))
1529 return 0;
1530
1531 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1532 }
1533
1534 unsigned long mmap_region(struct file *file, unsigned long addr,
1535 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1536 {
1537 struct mm_struct *mm = current->mm;
1538 struct vm_area_struct *vma, *prev;
1539 int error;
1540 struct rb_node **rb_link, *rb_parent;
1541 unsigned long charged = 0;
1542
1543 /* Check against address space limit. */
1544 if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1545 unsigned long nr_pages;
1546
1547 /*
1548 * MAP_FIXED may remove pages of mappings that intersects with
1549 * requested mapping. Account for the pages it would unmap.
1550 */
1551 nr_pages = count_vma_pages_range(mm, addr, addr + len);
1552
1553 if (!may_expand_vm(mm, vm_flags,
1554 (len >> PAGE_SHIFT) - nr_pages))
1555 return -ENOMEM;
1556 }
1557
1558 /* Clear old maps */
1559 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1560 &rb_parent)) {
1561 if (do_munmap(mm, addr, len))
1562 return -ENOMEM;
1563 }
1564
1565 /*
1566 * Private writable mapping: check memory availability
1567 */
1568 if (accountable_mapping(file, vm_flags)) {
1569 charged = len >> PAGE_SHIFT;
1570 if (security_vm_enough_memory_mm(mm, charged))
1571 return -ENOMEM;
1572 vm_flags |= VM_ACCOUNT;
1573 }
1574
1575 /*
1576 * Can we just expand an old mapping?
1577 */
1578 vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1579 NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1580 if (vma)
1581 goto out;
1582
1583 /*
1584 * Determine the object being mapped and call the appropriate
1585 * specific mapper. the address has already been validated, but
1586 * not unmapped, but the maps are removed from the list.
1587 */
1588 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1589 if (!vma) {
1590 error = -ENOMEM;
1591 goto unacct_error;
1592 }
1593
1594 vma->vm_mm = mm;
1595 vma->vm_start = addr;
1596 vma->vm_end = addr + len;
1597 vma->vm_flags = vm_flags;
1598 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1599 vma->vm_pgoff = pgoff;
1600 INIT_LIST_HEAD(&vma->anon_vma_chain);
1601
1602 if (file) {
1603 if (vm_flags & VM_DENYWRITE) {
1604 error = deny_write_access(file);
1605 if (error)
1606 goto free_vma;
1607 }
1608 if (vm_flags & VM_SHARED) {
1609 error = mapping_map_writable(file->f_mapping);
1610 if (error)
1611 goto allow_write_and_free_vma;
1612 }
1613
1614 /* ->mmap() can change vma->vm_file, but must guarantee that
1615 * vma_link() below can deny write-access if VM_DENYWRITE is set
1616 * and map writably if VM_SHARED is set. This usually means the
1617 * new file must not have been exposed to user-space, yet.
1618 */
1619 vma->vm_file = get_file(file);
1620 error = file->f_op->mmap(file, vma);
1621 if (error)
1622 goto unmap_and_free_vma;
1623
1624 /* Can addr have changed??
1625 *
1626 * Answer: Yes, several device drivers can do it in their
1627 * f_op->mmap method. -DaveM
1628 * Bug: If addr is changed, prev, rb_link, rb_parent should
1629 * be updated for vma_link()
1630 */
1631 WARN_ON_ONCE(addr != vma->vm_start);
1632
1633 addr = vma->vm_start;
1634 vm_flags = vma->vm_flags;
1635 } else if (vm_flags & VM_SHARED) {
1636 error = shmem_zero_setup(vma);
1637 if (error)
1638 goto free_vma;
1639 }
1640
1641 vma_link(mm, vma, prev, rb_link, rb_parent);
1642 /* Once vma denies write, undo our temporary denial count */
1643 if (file) {
1644 if (vm_flags & VM_SHARED)
1645 mapping_unmap_writable(file->f_mapping);
1646 if (vm_flags & VM_DENYWRITE)
1647 allow_write_access(file);
1648 }
1649 file = vma->vm_file;
1650 out:
1651 perf_event_mmap(vma);
1652
1653 vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1654 if (vm_flags & VM_LOCKED) {
1655 if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1656 vma == get_gate_vma(current->mm)))
1657 mm->locked_vm += (len >> PAGE_SHIFT);
1658 else
1659 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1660 }
1661
1662 if (file)
1663 uprobe_mmap(vma);
1664
1665 /*
1666 * New (or expanded) vma always get soft dirty status.
1667 * Otherwise user-space soft-dirty page tracker won't
1668 * be able to distinguish situation when vma area unmapped,
1669 * then new mapped in-place (which must be aimed as
1670 * a completely new data area).
1671 */
1672 vma->vm_flags |= VM_SOFTDIRTY;
1673
1674 vma_set_page_prot(vma);
1675
1676 return addr;
1677
1678 unmap_and_free_vma:
1679 vma->vm_file = NULL;
1680 fput(file);
1681
1682 /* Undo any partial mapping done by a device driver. */
1683 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1684 charged = 0;
1685 if (vm_flags & VM_SHARED)
1686 mapping_unmap_writable(file->f_mapping);
1687 allow_write_and_free_vma:
1688 if (vm_flags & VM_DENYWRITE)
1689 allow_write_access(file);
1690 free_vma:
1691 kmem_cache_free(vm_area_cachep, vma);
1692 unacct_error:
1693 if (charged)
1694 vm_unacct_memory(charged);
1695 return error;
1696 }
1697
1698 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1699 {
1700 /*
1701 * We implement the search by looking for an rbtree node that
1702 * immediately follows a suitable gap. That is,
1703 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1704 * - gap_end = vma->vm_start >= info->low_limit + length;
1705 * - gap_end - gap_start >= length
1706 */
1707
1708 struct mm_struct *mm = current->mm;
1709 struct vm_area_struct *vma;
1710 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1711
1712 /* Adjust search length to account for worst case alignment overhead */
1713 length = info->length + info->align_mask;
1714 if (length < info->length)
1715 return -ENOMEM;
1716
1717 /* Adjust search limits by the desired length */
1718 if (info->high_limit < length)
1719 return -ENOMEM;
1720 high_limit = info->high_limit - length;
1721
1722 if (info->low_limit > high_limit)
1723 return -ENOMEM;
1724 low_limit = info->low_limit + length;
1725
1726 /* Check if rbtree root looks promising */
1727 if (RB_EMPTY_ROOT(&mm->mm_rb))
1728 goto check_highest;
1729 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1730 if (vma->rb_subtree_gap < length)
1731 goto check_highest;
1732
1733 while (true) {
1734 /* Visit left subtree if it looks promising */
1735 gap_end = vma->vm_start;
1736 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1737 struct vm_area_struct *left =
1738 rb_entry(vma->vm_rb.rb_left,
1739 struct vm_area_struct, vm_rb);
1740 if (left->rb_subtree_gap >= length) {
1741 vma = left;
1742 continue;
1743 }
1744 }
1745
1746 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1747 check_current:
1748 /* Check if current node has a suitable gap */
1749 if (gap_start > high_limit)
1750 return -ENOMEM;
1751 if (gap_end >= low_limit && gap_end - gap_start >= length)
1752 goto found;
1753
1754 /* Visit right subtree if it looks promising */
1755 if (vma->vm_rb.rb_right) {
1756 struct vm_area_struct *right =
1757 rb_entry(vma->vm_rb.rb_right,
1758 struct vm_area_struct, vm_rb);
1759 if (right->rb_subtree_gap >= length) {
1760 vma = right;
1761 continue;
1762 }
1763 }
1764
1765 /* Go back up the rbtree to find next candidate node */
1766 while (true) {
1767 struct rb_node *prev = &vma->vm_rb;
1768 if (!rb_parent(prev))
1769 goto check_highest;
1770 vma = rb_entry(rb_parent(prev),
1771 struct vm_area_struct, vm_rb);
1772 if (prev == vma->vm_rb.rb_left) {
1773 gap_start = vma->vm_prev->vm_end;
1774 gap_end = vma->vm_start;
1775 goto check_current;
1776 }
1777 }
1778 }
1779
1780 check_highest:
1781 /* Check highest gap, which does not precede any rbtree node */
1782 gap_start = mm->highest_vm_end;
1783 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1784 if (gap_start > high_limit)
1785 return -ENOMEM;
1786
1787 found:
1788 /* We found a suitable gap. Clip it with the original low_limit. */
1789 if (gap_start < info->low_limit)
1790 gap_start = info->low_limit;
1791
1792 /* Adjust gap address to the desired alignment */
1793 gap_start += (info->align_offset - gap_start) & info->align_mask;
1794
1795 VM_BUG_ON(gap_start + info->length > info->high_limit);
1796 VM_BUG_ON(gap_start + info->length > gap_end);
1797 return gap_start;
1798 }
1799
1800 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1801 {
1802 struct mm_struct *mm = current->mm;
1803 struct vm_area_struct *vma;
1804 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1805
1806 /* Adjust search length to account for worst case alignment overhead */
1807 length = info->length + info->align_mask;
1808 if (length < info->length)
1809 return -ENOMEM;
1810
1811 /*
1812 * Adjust search limits by the desired length.
1813 * See implementation comment at top of unmapped_area().
1814 */
1815 gap_end = info->high_limit;
1816 if (gap_end < length)
1817 return -ENOMEM;
1818 high_limit = gap_end - length;
1819
1820 if (info->low_limit > high_limit)
1821 return -ENOMEM;
1822 low_limit = info->low_limit + length;
1823
1824 /* Check highest gap, which does not precede any rbtree node */
1825 gap_start = mm->highest_vm_end;
1826 if (gap_start <= high_limit)
1827 goto found_highest;
1828
1829 /* Check if rbtree root looks promising */
1830 if (RB_EMPTY_ROOT(&mm->mm_rb))
1831 return -ENOMEM;
1832 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1833 if (vma->rb_subtree_gap < length)
1834 return -ENOMEM;
1835
1836 while (true) {
1837 /* Visit right subtree if it looks promising */
1838 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1839 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1840 struct vm_area_struct *right =
1841 rb_entry(vma->vm_rb.rb_right,
1842 struct vm_area_struct, vm_rb);
1843 if (right->rb_subtree_gap >= length) {
1844 vma = right;
1845 continue;
1846 }
1847 }
1848
1849 check_current:
1850 /* Check if current node has a suitable gap */
1851 gap_end = vma->vm_start;
1852 if (gap_end < low_limit)
1853 return -ENOMEM;
1854 if (gap_start <= high_limit && gap_end - gap_start >= length)
1855 goto found;
1856
1857 /* Visit left subtree if it looks promising */
1858 if (vma->vm_rb.rb_left) {
1859 struct vm_area_struct *left =
1860 rb_entry(vma->vm_rb.rb_left,
1861 struct vm_area_struct, vm_rb);
1862 if (left->rb_subtree_gap >= length) {
1863 vma = left;
1864 continue;
1865 }
1866 }
1867
1868 /* Go back up the rbtree to find next candidate node */
1869 while (true) {
1870 struct rb_node *prev = &vma->vm_rb;
1871 if (!rb_parent(prev))
1872 return -ENOMEM;
1873 vma = rb_entry(rb_parent(prev),
1874 struct vm_area_struct, vm_rb);
1875 if (prev == vma->vm_rb.rb_right) {
1876 gap_start = vma->vm_prev ?
1877 vma->vm_prev->vm_end : 0;
1878 goto check_current;
1879 }
1880 }
1881 }
1882
1883 found:
1884 /* We found a suitable gap. Clip it with the original high_limit. */
1885 if (gap_end > info->high_limit)
1886 gap_end = info->high_limit;
1887
1888 found_highest:
1889 /* Compute highest gap address at the desired alignment */
1890 gap_end -= info->length;
1891 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1892
1893 VM_BUG_ON(gap_end < info->low_limit);
1894 VM_BUG_ON(gap_end < gap_start);
1895 return gap_end;
1896 }
1897
1898 /* Get an address range which is currently unmapped.
1899 * For shmat() with addr=0.
1900 *
1901 * Ugly calling convention alert:
1902 * Return value with the low bits set means error value,
1903 * ie
1904 * if (ret & ~PAGE_MASK)
1905 * error = ret;
1906 *
1907 * This function "knows" that -ENOMEM has the bits set.
1908 */
1909 #ifndef HAVE_ARCH_UNMAPPED_AREA
1910 unsigned long
1911 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1912 unsigned long len, unsigned long pgoff, unsigned long flags)
1913 {
1914 struct mm_struct *mm = current->mm;
1915 struct vm_area_struct *vma;
1916 struct vm_unmapped_area_info info;
1917
1918 if (len > TASK_SIZE - mmap_min_addr)
1919 return -ENOMEM;
1920
1921 if (flags & MAP_FIXED)
1922 return addr;
1923
1924 if (addr) {
1925 addr = PAGE_ALIGN(addr);
1926 vma = find_vma(mm, addr);
1927 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928 (!vma || addr + len <= vma->vm_start))
1929 return addr;
1930 }
1931
1932 info.flags = 0;
1933 info.length = len;
1934 info.low_limit = mm->mmap_base;
1935 info.high_limit = TASK_SIZE;
1936 info.align_mask = 0;
1937 return vm_unmapped_area(&info);
1938 }
1939 #endif
1940
1941 /*
1942 * This mmap-allocator allocates new areas top-down from below the
1943 * stack's low limit (the base):
1944 */
1945 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1946 unsigned long
1947 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1948 const unsigned long len, const unsigned long pgoff,
1949 const unsigned long flags)
1950 {
1951 struct vm_area_struct *vma;
1952 struct mm_struct *mm = current->mm;
1953 unsigned long addr = addr0;
1954 struct vm_unmapped_area_info info;
1955
1956 /* requested length too big for entire address space */
1957 if (len > TASK_SIZE - mmap_min_addr)
1958 return -ENOMEM;
1959
1960 if (flags & MAP_FIXED)
1961 return addr;
1962
1963 /* requesting a specific address */
1964 if (addr) {
1965 addr = PAGE_ALIGN(addr);
1966 vma = find_vma(mm, addr);
1967 if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1968 (!vma || addr + len <= vma->vm_start))
1969 return addr;
1970 }
1971
1972 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1973 info.length = len;
1974 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1975 info.high_limit = mm->mmap_base;
1976 info.align_mask = 0;
1977 addr = vm_unmapped_area(&info);
1978
1979 /*
1980 * A failed mmap() very likely causes application failure,
1981 * so fall back to the bottom-up function here. This scenario
1982 * can happen with large stack limits and large mmap()
1983 * allocations.
1984 */
1985 if (offset_in_page(addr)) {
1986 VM_BUG_ON(addr != -ENOMEM);
1987 info.flags = 0;
1988 info.low_limit = TASK_UNMAPPED_BASE;
1989 info.high_limit = TASK_SIZE;
1990 addr = vm_unmapped_area(&info);
1991 }
1992
1993 return addr;
1994 }
1995 #endif
1996
1997 unsigned long
1998 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1999 unsigned long pgoff, unsigned long flags)
2000 {
2001 unsigned long (*get_area)(struct file *, unsigned long,
2002 unsigned long, unsigned long, unsigned long);
2003
2004 unsigned long error = arch_mmap_check(addr, len, flags);
2005 if (error)
2006 return error;
2007
2008 /* Careful about overflows.. */
2009 if (len > TASK_SIZE)
2010 return -ENOMEM;
2011
2012 get_area = current->mm->get_unmapped_area;
2013 if (file && file->f_op->get_unmapped_area)
2014 get_area = file->f_op->get_unmapped_area;
2015 addr = get_area(file, addr, len, pgoff, flags);
2016 if (IS_ERR_VALUE(addr))
2017 return addr;
2018
2019 if (addr > TASK_SIZE - len)
2020 return -ENOMEM;
2021 if (offset_in_page(addr))
2022 return -EINVAL;
2023
2024 addr = arch_rebalance_pgtables(addr, len);
2025 error = security_mmap_addr(addr);
2026 return error ? error : addr;
2027 }
2028
2029 EXPORT_SYMBOL(get_unmapped_area);
2030
2031 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2032 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2033 {
2034 struct rb_node *rb_node;
2035 struct vm_area_struct *vma;
2036
2037 /* Check the cache first. */
2038 vma = vmacache_find(mm, addr);
2039 if (likely(vma))
2040 return vma;
2041
2042 rb_node = mm->mm_rb.rb_node;
2043
2044 while (rb_node) {
2045 struct vm_area_struct *tmp;
2046
2047 tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2048
2049 if (tmp->vm_end > addr) {
2050 vma = tmp;
2051 if (tmp->vm_start <= addr)
2052 break;
2053 rb_node = rb_node->rb_left;
2054 } else
2055 rb_node = rb_node->rb_right;
2056 }
2057
2058 if (vma)
2059 vmacache_update(addr, vma);
2060 return vma;
2061 }
2062
2063 EXPORT_SYMBOL(find_vma);
2064
2065 /*
2066 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2067 */
2068 struct vm_area_struct *
2069 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2070 struct vm_area_struct **pprev)
2071 {
2072 struct vm_area_struct *vma;
2073
2074 vma = find_vma(mm, addr);
2075 if (vma) {
2076 *pprev = vma->vm_prev;
2077 } else {
2078 struct rb_node *rb_node = mm->mm_rb.rb_node;
2079 *pprev = NULL;
2080 while (rb_node) {
2081 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2082 rb_node = rb_node->rb_right;
2083 }
2084 }
2085 return vma;
2086 }
2087
2088 /*
2089 * Verify that the stack growth is acceptable and
2090 * update accounting. This is shared with both the
2091 * grow-up and grow-down cases.
2092 */
2093 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
2094 {
2095 struct mm_struct *mm = vma->vm_mm;
2096 struct rlimit *rlim = current->signal->rlim;
2097 unsigned long new_start, actual_size;
2098
2099 /* address space limit tests */
2100 if (!may_expand_vm(mm, vma->vm_flags, grow))
2101 return -ENOMEM;
2102
2103 /* Stack limit test */
2104 actual_size = size;
2105 if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2106 actual_size -= PAGE_SIZE;
2107 if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2108 return -ENOMEM;
2109
2110 /* mlock limit tests */
2111 if (vma->vm_flags & VM_LOCKED) {
2112 unsigned long locked;
2113 unsigned long limit;
2114 locked = mm->locked_vm + grow;
2115 limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2116 limit >>= PAGE_SHIFT;
2117 if (locked > limit && !capable(CAP_IPC_LOCK))
2118 return -ENOMEM;
2119 }
2120
2121 /* Check to ensure the stack will not grow into a hugetlb-only region */
2122 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2123 vma->vm_end - size;
2124 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2125 return -EFAULT;
2126
2127 /*
2128 * Overcommit.. This must be the final test, as it will
2129 * update security statistics.
2130 */
2131 if (security_vm_enough_memory_mm(mm, grow))
2132 return -ENOMEM;
2133
2134 return 0;
2135 }
2136
2137 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2138 /*
2139 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2140 * vma is the last one with address > vma->vm_end. Have to extend vma.
2141 */
2142 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2143 {
2144 struct mm_struct *mm = vma->vm_mm;
2145 int error;
2146
2147 if (!(vma->vm_flags & VM_GROWSUP))
2148 return -EFAULT;
2149
2150 /*
2151 * We must make sure the anon_vma is allocated
2152 * so that the anon_vma locking is not a noop.
2153 */
2154 if (unlikely(anon_vma_prepare(vma)))
2155 return -ENOMEM;
2156 vma_lock_anon_vma(vma);
2157
2158 /*
2159 * vma->vm_start/vm_end cannot change under us because the caller
2160 * is required to hold the mmap_sem in read mode. We need the
2161 * anon_vma lock to serialize against concurrent expand_stacks.
2162 * Also guard against wrapping around to address 0.
2163 */
2164 if (address < PAGE_ALIGN(address+4))
2165 address = PAGE_ALIGN(address+4);
2166 else {
2167 vma_unlock_anon_vma(vma);
2168 return -ENOMEM;
2169 }
2170 error = 0;
2171
2172 /* Somebody else might have raced and expanded it already */
2173 if (address > vma->vm_end) {
2174 unsigned long size, grow;
2175
2176 size = address - vma->vm_start;
2177 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2178
2179 error = -ENOMEM;
2180 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2181 error = acct_stack_growth(vma, size, grow);
2182 if (!error) {
2183 /*
2184 * vma_gap_update() doesn't support concurrent
2185 * updates, but we only hold a shared mmap_sem
2186 * lock here, so we need to protect against
2187 * concurrent vma expansions.
2188 * vma_lock_anon_vma() doesn't help here, as
2189 * we don't guarantee that all growable vmas
2190 * in a mm share the same root anon vma.
2191 * So, we reuse mm->page_table_lock to guard
2192 * against concurrent vma expansions.
2193 */
2194 spin_lock(&mm->page_table_lock);
2195 if (vma->vm_flags & VM_LOCKED)
2196 mm->locked_vm += grow;
2197 vm_stat_account(mm, vma->vm_flags, grow);
2198 anon_vma_interval_tree_pre_update_vma(vma);
2199 vma->vm_end = address;
2200 anon_vma_interval_tree_post_update_vma(vma);
2201 if (vma->vm_next)
2202 vma_gap_update(vma->vm_next);
2203 else
2204 mm->highest_vm_end = address;
2205 spin_unlock(&mm->page_table_lock);
2206
2207 perf_event_mmap(vma);
2208 }
2209 }
2210 }
2211 vma_unlock_anon_vma(vma);
2212 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2213 validate_mm(mm);
2214 return error;
2215 }
2216 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2217
2218 /*
2219 * vma is the first one with address < vma->vm_start. Have to extend vma.
2220 */
2221 int expand_downwards(struct vm_area_struct *vma,
2222 unsigned long address)
2223 {
2224 struct mm_struct *mm = vma->vm_mm;
2225 int error;
2226
2227 /*
2228 * We must make sure the anon_vma is allocated
2229 * so that the anon_vma locking is not a noop.
2230 */
2231 if (unlikely(anon_vma_prepare(vma)))
2232 return -ENOMEM;
2233
2234 address &= PAGE_MASK;
2235 error = security_mmap_addr(address);
2236 if (error)
2237 return error;
2238
2239 vma_lock_anon_vma(vma);
2240
2241 /*
2242 * vma->vm_start/vm_end cannot change under us because the caller
2243 * is required to hold the mmap_sem in read mode. We need the
2244 * anon_vma lock to serialize against concurrent expand_stacks.
2245 */
2246
2247 /* Somebody else might have raced and expanded it already */
2248 if (address < vma->vm_start) {
2249 unsigned long size, grow;
2250
2251 size = vma->vm_end - address;
2252 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2253
2254 error = -ENOMEM;
2255 if (grow <= vma->vm_pgoff) {
2256 error = acct_stack_growth(vma, size, grow);
2257 if (!error) {
2258 /*
2259 * vma_gap_update() doesn't support concurrent
2260 * updates, but we only hold a shared mmap_sem
2261 * lock here, so we need to protect against
2262 * concurrent vma expansions.
2263 * vma_lock_anon_vma() doesn't help here, as
2264 * we don't guarantee that all growable vmas
2265 * in a mm share the same root anon vma.
2266 * So, we reuse mm->page_table_lock to guard
2267 * against concurrent vma expansions.
2268 */
2269 spin_lock(&mm->page_table_lock);
2270 if (vma->vm_flags & VM_LOCKED)
2271 mm->locked_vm += grow;
2272 vm_stat_account(mm, vma->vm_flags, grow);
2273 anon_vma_interval_tree_pre_update_vma(vma);
2274 vma->vm_start = address;
2275 vma->vm_pgoff -= grow;
2276 anon_vma_interval_tree_post_update_vma(vma);
2277 vma_gap_update(vma);
2278 spin_unlock(&mm->page_table_lock);
2279
2280 perf_event_mmap(vma);
2281 }
2282 }
2283 }
2284 vma_unlock_anon_vma(vma);
2285 khugepaged_enter_vma_merge(vma, vma->vm_flags);
2286 validate_mm(mm);
2287 return error;
2288 }
2289
2290 /*
2291 * Note how expand_stack() refuses to expand the stack all the way to
2292 * abut the next virtual mapping, *unless* that mapping itself is also
2293 * a stack mapping. We want to leave room for a guard page, after all
2294 * (the guard page itself is not added here, that is done by the
2295 * actual page faulting logic)
2296 *
2297 * This matches the behavior of the guard page logic (see mm/memory.c:
2298 * check_stack_guard_page()), which only allows the guard page to be
2299 * removed under these circumstances.
2300 */
2301 #ifdef CONFIG_STACK_GROWSUP
2302 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2303 {
2304 struct vm_area_struct *next;
2305
2306 address &= PAGE_MASK;
2307 next = vma->vm_next;
2308 if (next && next->vm_start == address + PAGE_SIZE) {
2309 if (!(next->vm_flags & VM_GROWSUP))
2310 return -ENOMEM;
2311 }
2312 return expand_upwards(vma, address);
2313 }
2314
2315 struct vm_area_struct *
2316 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2317 {
2318 struct vm_area_struct *vma, *prev;
2319
2320 addr &= PAGE_MASK;
2321 vma = find_vma_prev(mm, addr, &prev);
2322 if (vma && (vma->vm_start <= addr))
2323 return vma;
2324 if (!prev || expand_stack(prev, addr))
2325 return NULL;
2326 if (prev->vm_flags & VM_LOCKED)
2327 populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2328 return prev;
2329 }
2330 #else
2331 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2332 {
2333 struct vm_area_struct *prev;
2334
2335 address &= PAGE_MASK;
2336 prev = vma->vm_prev;
2337 if (prev && prev->vm_end == address) {
2338 if (!(prev->vm_flags & VM_GROWSDOWN))
2339 return -ENOMEM;
2340 }
2341 return expand_downwards(vma, address);
2342 }
2343
2344 struct vm_area_struct *
2345 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2346 {
2347 struct vm_area_struct *vma;
2348 unsigned long start;
2349
2350 addr &= PAGE_MASK;
2351 vma = find_vma(mm, addr);
2352 if (!vma)
2353 return NULL;
2354 if (vma->vm_start <= addr)
2355 return vma;
2356 if (!(vma->vm_flags & VM_GROWSDOWN))
2357 return NULL;
2358 start = vma->vm_start;
2359 if (expand_stack(vma, addr))
2360 return NULL;
2361 if (vma->vm_flags & VM_LOCKED)
2362 populate_vma_page_range(vma, addr, start, NULL);
2363 return vma;
2364 }
2365 #endif
2366
2367 EXPORT_SYMBOL_GPL(find_extend_vma);
2368
2369 /*
2370 * Ok - we have the memory areas we should free on the vma list,
2371 * so release them, and do the vma updates.
2372 *
2373 * Called with the mm semaphore held.
2374 */
2375 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2376 {
2377 unsigned long nr_accounted = 0;
2378
2379 /* Update high watermark before we lower total_vm */
2380 update_hiwater_vm(mm);
2381 do {
2382 long nrpages = vma_pages(vma);
2383
2384 if (vma->vm_flags & VM_ACCOUNT)
2385 nr_accounted += nrpages;
2386 vm_stat_account(mm, vma->vm_flags, -nrpages);
2387 vma = remove_vma(vma);
2388 } while (vma);
2389 vm_unacct_memory(nr_accounted);
2390 validate_mm(mm);
2391 }
2392
2393 /*
2394 * Get rid of page table information in the indicated region.
2395 *
2396 * Called with the mm semaphore held.
2397 */
2398 static void unmap_region(struct mm_struct *mm,
2399 struct vm_area_struct *vma, struct vm_area_struct *prev,
2400 unsigned long start, unsigned long end)
2401 {
2402 struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2403 struct mmu_gather tlb;
2404
2405 lru_add_drain();
2406 tlb_gather_mmu(&tlb, mm, start, end);
2407 update_hiwater_rss(mm);
2408 unmap_vmas(&tlb, vma, start, end);
2409 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2410 next ? next->vm_start : USER_PGTABLES_CEILING);
2411 tlb_finish_mmu(&tlb, start, end);
2412 }
2413
2414 /*
2415 * Create a list of vma's touched by the unmap, removing them from the mm's
2416 * vma list as we go..
2417 */
2418 static void
2419 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2420 struct vm_area_struct *prev, unsigned long end)
2421 {
2422 struct vm_area_struct **insertion_point;
2423 struct vm_area_struct *tail_vma = NULL;
2424
2425 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2426 vma->vm_prev = NULL;
2427 do {
2428 vma_rb_erase(vma, &mm->mm_rb);
2429 mm->map_count--;
2430 tail_vma = vma;
2431 vma = vma->vm_next;
2432 } while (vma && vma->vm_start < end);
2433 *insertion_point = vma;
2434 if (vma) {
2435 vma->vm_prev = prev;
2436 vma_gap_update(vma);
2437 } else
2438 mm->highest_vm_end = prev ? prev->vm_end : 0;
2439 tail_vma->vm_next = NULL;
2440
2441 /* Kill the cache */
2442 vmacache_invalidate(mm);
2443 }
2444
2445 /*
2446 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2447 * munmap path where it doesn't make sense to fail.
2448 */
2449 static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2450 unsigned long addr, int new_below)
2451 {
2452 struct vm_area_struct *new;
2453 int err;
2454
2455 if (is_vm_hugetlb_page(vma) && (addr &
2456 ~(huge_page_mask(hstate_vma(vma)))))
2457 return -EINVAL;
2458
2459 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2460 if (!new)
2461 return -ENOMEM;
2462
2463 /* most fields are the same, copy all, and then fixup */
2464 *new = *vma;
2465
2466 INIT_LIST_HEAD(&new->anon_vma_chain);
2467
2468 if (new_below)
2469 new->vm_end = addr;
2470 else {
2471 new->vm_start = addr;
2472 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2473 }
2474
2475 err = vma_dup_policy(vma, new);
2476 if (err)
2477 goto out_free_vma;
2478
2479 err = anon_vma_clone(new, vma);
2480 if (err)
2481 goto out_free_mpol;
2482
2483 if (new->vm_file)
2484 get_file(new->vm_file);
2485
2486 if (new->vm_ops && new->vm_ops->open)
2487 new->vm_ops->open(new);
2488
2489 if (new_below)
2490 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2491 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2492 else
2493 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2494
2495 /* Success. */
2496 if (!err)
2497 return 0;
2498
2499 /* Clean everything up if vma_adjust failed. */
2500 if (new->vm_ops && new->vm_ops->close)
2501 new->vm_ops->close(new);
2502 if (new->vm_file)
2503 fput(new->vm_file);
2504 unlink_anon_vmas(new);
2505 out_free_mpol:
2506 mpol_put(vma_policy(new));
2507 out_free_vma:
2508 kmem_cache_free(vm_area_cachep, new);
2509 return err;
2510 }
2511
2512 /*
2513 * Split a vma into two pieces at address 'addr', a new vma is allocated
2514 * either for the first part or the tail.
2515 */
2516 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2517 unsigned long addr, int new_below)
2518 {
2519 if (mm->map_count >= sysctl_max_map_count)
2520 return -ENOMEM;
2521
2522 return __split_vma(mm, vma, addr, new_below);
2523 }
2524
2525 /* Munmap is split into 2 main parts -- this part which finds
2526 * what needs doing, and the areas themselves, which do the
2527 * work. This now handles partial unmappings.
2528 * Jeremy Fitzhardinge <jeremy@goop.org>
2529 */
2530 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2531 {
2532 unsigned long end;
2533 struct vm_area_struct *vma, *prev, *last;
2534
2535 if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2536 return -EINVAL;
2537
2538 len = PAGE_ALIGN(len);
2539 if (len == 0)
2540 return -EINVAL;
2541
2542 /* Find the first overlapping VMA */
2543 vma = find_vma(mm, start);
2544 if (!vma)
2545 return 0;
2546 prev = vma->vm_prev;
2547 /* we have start < vma->vm_end */
2548
2549 /* if it doesn't overlap, we have nothing.. */
2550 end = start + len;
2551 if (vma->vm_start >= end)
2552 return 0;
2553
2554 /*
2555 * If we need to split any vma, do it now to save pain later.
2556 *
2557 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2558 * unmapped vm_area_struct will remain in use: so lower split_vma
2559 * places tmp vma above, and higher split_vma places tmp vma below.
2560 */
2561 if (start > vma->vm_start) {
2562 int error;
2563
2564 /*
2565 * Make sure that map_count on return from munmap() will
2566 * not exceed its limit; but let map_count go just above
2567 * its limit temporarily, to help free resources as expected.
2568 */
2569 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2570 return -ENOMEM;
2571
2572 error = __split_vma(mm, vma, start, 0);
2573 if (error)
2574 return error;
2575 prev = vma;
2576 }
2577
2578 /* Does it split the last one? */
2579 last = find_vma(mm, end);
2580 if (last && end > last->vm_start) {
2581 int error = __split_vma(mm, last, end, 1);
2582 if (error)
2583 return error;
2584 }
2585 vma = prev ? prev->vm_next : mm->mmap;
2586
2587 /*
2588 * unlock any mlock()ed ranges before detaching vmas
2589 */
2590 if (mm->locked_vm) {
2591 struct vm_area_struct *tmp = vma;
2592 while (tmp && tmp->vm_start < end) {
2593 if (tmp->vm_flags & VM_LOCKED) {
2594 mm->locked_vm -= vma_pages(tmp);
2595 munlock_vma_pages_all(tmp);
2596 }
2597 tmp = tmp->vm_next;
2598 }
2599 }
2600
2601 /*
2602 * Remove the vma's, and unmap the actual pages
2603 */
2604 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2605 unmap_region(mm, vma, prev, start, end);
2606
2607 arch_unmap(mm, vma, start, end);
2608
2609 /* Fix up all other VM information */
2610 remove_vma_list(mm, vma);
2611
2612 return 0;
2613 }
2614
2615 int vm_munmap(unsigned long start, size_t len)
2616 {
2617 int ret;
2618 struct mm_struct *mm = current->mm;
2619
2620 down_write(&mm->mmap_sem);
2621 ret = do_munmap(mm, start, len);
2622 up_write(&mm->mmap_sem);
2623 return ret;
2624 }
2625 EXPORT_SYMBOL(vm_munmap);
2626
2627 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2628 {
2629 profile_munmap(addr);
2630 return vm_munmap(addr, len);
2631 }
2632
2633
2634 /*
2635 * Emulation of deprecated remap_file_pages() syscall.
2636 */
2637 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2638 unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2639 {
2640
2641 struct mm_struct *mm = current->mm;
2642 struct vm_area_struct *vma;
2643 unsigned long populate = 0;
2644 unsigned long ret = -EINVAL;
2645 struct file *file;
2646
2647 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2648 "See Documentation/vm/remap_file_pages.txt.\n",
2649 current->comm, current->pid);
2650
2651 if (prot)
2652 return ret;
2653 start = start & PAGE_MASK;
2654 size = size & PAGE_MASK;
2655
2656 if (start + size <= start)
2657 return ret;
2658
2659 /* Does pgoff wrap? */
2660 if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2661 return ret;
2662
2663 down_write(&mm->mmap_sem);
2664 vma = find_vma(mm, start);
2665
2666 if (!vma || !(vma->vm_flags & VM_SHARED))
2667 goto out;
2668
2669 if (start < vma->vm_start || start + size > vma->vm_end)
2670 goto out;
2671
2672 if (pgoff == linear_page_index(vma, start)) {
2673 ret = 0;
2674 goto out;
2675 }
2676
2677 prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2678 prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2679 prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2680
2681 flags &= MAP_NONBLOCK;
2682 flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2683 if (vma->vm_flags & VM_LOCKED) {
2684 flags |= MAP_LOCKED;
2685 /* drop PG_Mlocked flag for over-mapped range */
2686 munlock_vma_pages_range(vma, start, start + size);
2687 }
2688
2689 file = get_file(vma->vm_file);
2690 ret = do_mmap_pgoff(vma->vm_file, start, size,
2691 prot, flags, pgoff, &populate);
2692 fput(file);
2693 out:
2694 up_write(&mm->mmap_sem);
2695 if (populate)
2696 mm_populate(ret, populate);
2697 if (!IS_ERR_VALUE(ret))
2698 ret = 0;
2699 return ret;
2700 }
2701
2702 static inline void verify_mm_writelocked(struct mm_struct *mm)
2703 {
2704 #ifdef CONFIG_DEBUG_VM
2705 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2706 WARN_ON(1);
2707 up_read(&mm->mmap_sem);
2708 }
2709 #endif
2710 }
2711
2712 /*
2713 * this is really a simplified "do_mmap". it only handles
2714 * anonymous maps. eventually we may be able to do some
2715 * brk-specific accounting here.
2716 */
2717 static unsigned long do_brk(unsigned long addr, unsigned long len)
2718 {
2719 struct mm_struct *mm = current->mm;
2720 struct vm_area_struct *vma, *prev;
2721 unsigned long flags;
2722 struct rb_node **rb_link, *rb_parent;
2723 pgoff_t pgoff = addr >> PAGE_SHIFT;
2724 int error;
2725
2726 len = PAGE_ALIGN(len);
2727 if (!len)
2728 return addr;
2729
2730 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2731
2732 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2733 if (offset_in_page(error))
2734 return error;
2735
2736 error = mlock_future_check(mm, mm->def_flags, len);
2737 if (error)
2738 return error;
2739
2740 /*
2741 * mm->mmap_sem is required to protect against another thread
2742 * changing the mappings in case we sleep.
2743 */
2744 verify_mm_writelocked(mm);
2745
2746 /*
2747 * Clear old maps. this also does some error checking for us
2748 */
2749 while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2750 &rb_parent)) {
2751 if (do_munmap(mm, addr, len))
2752 return -ENOMEM;
2753 }
2754
2755 /* Check against address space limits *after* clearing old maps... */
2756 if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2757 return -ENOMEM;
2758
2759 if (mm->map_count > sysctl_max_map_count)
2760 return -ENOMEM;
2761
2762 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2763 return -ENOMEM;
2764
2765 /* Can we just expand an old private anonymous mapping? */
2766 vma = vma_merge(mm, prev, addr, addr + len, flags,
2767 NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2768 if (vma)
2769 goto out;
2770
2771 /*
2772 * create a vma struct for an anonymous mapping
2773 */
2774 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2775 if (!vma) {
2776 vm_unacct_memory(len >> PAGE_SHIFT);
2777 return -ENOMEM;
2778 }
2779
2780 INIT_LIST_HEAD(&vma->anon_vma_chain);
2781 vma->vm_mm = mm;
2782 vma->vm_start = addr;
2783 vma->vm_end = addr + len;
2784 vma->vm_pgoff = pgoff;
2785 vma->vm_flags = flags;
2786 vma->vm_page_prot = vm_get_page_prot(flags);
2787 vma_link(mm, vma, prev, rb_link, rb_parent);
2788 out:
2789 perf_event_mmap(vma);
2790 mm->total_vm += len >> PAGE_SHIFT;
2791 mm->data_vm += len >> PAGE_SHIFT;
2792 if (flags & VM_LOCKED)
2793 mm->locked_vm += (len >> PAGE_SHIFT);
2794 vma->vm_flags |= VM_SOFTDIRTY;
2795 return addr;
2796 }
2797
2798 unsigned long vm_brk(unsigned long addr, unsigned long len)
2799 {
2800 struct mm_struct *mm = current->mm;
2801 unsigned long ret;
2802 bool populate;
2803
2804 down_write(&mm->mmap_sem);
2805 ret = do_brk(addr, len);
2806 populate = ((mm->def_flags & VM_LOCKED) != 0);
2807 up_write(&mm->mmap_sem);
2808 if (populate)
2809 mm_populate(addr, len);
2810 return ret;
2811 }
2812 EXPORT_SYMBOL(vm_brk);
2813
2814 /* Release all mmaps. */
2815 void exit_mmap(struct mm_struct *mm)
2816 {
2817 struct mmu_gather tlb;
2818 struct vm_area_struct *vma;
2819 unsigned long nr_accounted = 0;
2820
2821 /* mm's last user has gone, and its about to be pulled down */
2822 mmu_notifier_release(mm);
2823
2824 if (mm->locked_vm) {
2825 vma = mm->mmap;
2826 while (vma) {
2827 if (vma->vm_flags & VM_LOCKED)
2828 munlock_vma_pages_all(vma);
2829 vma = vma->vm_next;
2830 }
2831 }
2832
2833 arch_exit_mmap(mm);
2834
2835 vma = mm->mmap;
2836 if (!vma) /* Can happen if dup_mmap() received an OOM */
2837 return;
2838
2839 lru_add_drain();
2840 flush_cache_mm(mm);
2841 tlb_gather_mmu(&tlb, mm, 0, -1);
2842 /* update_hiwater_rss(mm) here? but nobody should be looking */
2843 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2844 unmap_vmas(&tlb, vma, 0, -1);
2845
2846 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2847 tlb_finish_mmu(&tlb, 0, -1);
2848
2849 /*
2850 * Walk the list again, actually closing and freeing it,
2851 * with preemption enabled, without holding any MM locks.
2852 */
2853 while (vma) {
2854 if (vma->vm_flags & VM_ACCOUNT)
2855 nr_accounted += vma_pages(vma);
2856 vma = remove_vma(vma);
2857 }
2858 vm_unacct_memory(nr_accounted);
2859 }
2860
2861 /* Insert vm structure into process list sorted by address
2862 * and into the inode's i_mmap tree. If vm_file is non-NULL
2863 * then i_mmap_rwsem is taken here.
2864 */
2865 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2866 {
2867 struct vm_area_struct *prev;
2868 struct rb_node **rb_link, *rb_parent;
2869
2870 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2871 &prev, &rb_link, &rb_parent))
2872 return -ENOMEM;
2873 if ((vma->vm_flags & VM_ACCOUNT) &&
2874 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2875 return -ENOMEM;
2876
2877 /*
2878 * The vm_pgoff of a purely anonymous vma should be irrelevant
2879 * until its first write fault, when page's anon_vma and index
2880 * are set. But now set the vm_pgoff it will almost certainly
2881 * end up with (unless mremap moves it elsewhere before that
2882 * first wfault), so /proc/pid/maps tells a consistent story.
2883 *
2884 * By setting it to reflect the virtual start address of the
2885 * vma, merges and splits can happen in a seamless way, just
2886 * using the existing file pgoff checks and manipulations.
2887 * Similarly in do_mmap_pgoff and in do_brk.
2888 */
2889 if (vma_is_anonymous(vma)) {
2890 BUG_ON(vma->anon_vma);
2891 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2892 }
2893
2894 vma_link(mm, vma, prev, rb_link, rb_parent);
2895 return 0;
2896 }
2897
2898 /*
2899 * Copy the vma structure to a new location in the same mm,
2900 * prior to moving page table entries, to effect an mremap move.
2901 */
2902 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2903 unsigned long addr, unsigned long len, pgoff_t pgoff,
2904 bool *need_rmap_locks)
2905 {
2906 struct vm_area_struct *vma = *vmap;
2907 unsigned long vma_start = vma->vm_start;
2908 struct mm_struct *mm = vma->vm_mm;
2909 struct vm_area_struct *new_vma, *prev;
2910 struct rb_node **rb_link, *rb_parent;
2911 bool faulted_in_anon_vma = true;
2912
2913 /*
2914 * If anonymous vma has not yet been faulted, update new pgoff
2915 * to match new location, to increase its chance of merging.
2916 */
2917 if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
2918 pgoff = addr >> PAGE_SHIFT;
2919 faulted_in_anon_vma = false;
2920 }
2921
2922 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2923 return NULL; /* should never get here */
2924 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2925 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
2926 vma->vm_userfaultfd_ctx);
2927 if (new_vma) {
2928 /*
2929 * Source vma may have been merged into new_vma
2930 */
2931 if (unlikely(vma_start >= new_vma->vm_start &&
2932 vma_start < new_vma->vm_end)) {
2933 /*
2934 * The only way we can get a vma_merge with
2935 * self during an mremap is if the vma hasn't
2936 * been faulted in yet and we were allowed to
2937 * reset the dst vma->vm_pgoff to the
2938 * destination address of the mremap to allow
2939 * the merge to happen. mremap must change the
2940 * vm_pgoff linearity between src and dst vmas
2941 * (in turn preventing a vma_merge) to be
2942 * safe. It is only safe to keep the vm_pgoff
2943 * linear if there are no pages mapped yet.
2944 */
2945 VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
2946 *vmap = vma = new_vma;
2947 }
2948 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2949 } else {
2950 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2951 if (!new_vma)
2952 goto out;
2953 *new_vma = *vma;
2954 new_vma->vm_start = addr;
2955 new_vma->vm_end = addr + len;
2956 new_vma->vm_pgoff = pgoff;
2957 if (vma_dup_policy(vma, new_vma))
2958 goto out_free_vma;
2959 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2960 if (anon_vma_clone(new_vma, vma))
2961 goto out_free_mempol;
2962 if (new_vma->vm_file)
2963 get_file(new_vma->vm_file);
2964 if (new_vma->vm_ops && new_vma->vm_ops->open)
2965 new_vma->vm_ops->open(new_vma);
2966 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2967 *need_rmap_locks = false;
2968 }
2969 return new_vma;
2970
2971 out_free_mempol:
2972 mpol_put(vma_policy(new_vma));
2973 out_free_vma:
2974 kmem_cache_free(vm_area_cachep, new_vma);
2975 out:
2976 return NULL;
2977 }
2978
2979 /*
2980 * Return true if the calling process may expand its vm space by the passed
2981 * number of pages
2982 */
2983 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
2984 {
2985 if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
2986 return false;
2987
2988 if (is_data_mapping(flags) &&
2989 mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
2990 if (ignore_rlimit_data)
2991 pr_warn_once("%s (%d): VmData %lu exceed data ulimit "
2992 "%lu. Will be forbidden soon.\n",
2993 current->comm, current->pid,
2994 (mm->data_vm + npages) << PAGE_SHIFT,
2995 rlimit(RLIMIT_DATA));
2996 else
2997 return false;
2998 }
2999
3000 return true;
3001 }
3002
3003 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3004 {
3005 mm->total_vm += npages;
3006
3007 if (is_exec_mapping(flags))
3008 mm->exec_vm += npages;
3009 else if (is_stack_mapping(flags))
3010 mm->stack_vm += npages;
3011 else if (is_data_mapping(flags))
3012 mm->data_vm += npages;
3013 }
3014
3015 static int special_mapping_fault(struct vm_area_struct *vma,
3016 struct vm_fault *vmf);
3017
3018 /*
3019 * Having a close hook prevents vma merging regardless of flags.
3020 */
3021 static void special_mapping_close(struct vm_area_struct *vma)
3022 {
3023 }
3024
3025 static const char *special_mapping_name(struct vm_area_struct *vma)
3026 {
3027 return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3028 }
3029
3030 static const struct vm_operations_struct special_mapping_vmops = {
3031 .close = special_mapping_close,
3032 .fault = special_mapping_fault,
3033 .name = special_mapping_name,
3034 };
3035
3036 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3037 .close = special_mapping_close,
3038 .fault = special_mapping_fault,
3039 };
3040
3041 static int special_mapping_fault(struct vm_area_struct *vma,
3042 struct vm_fault *vmf)
3043 {
3044 pgoff_t pgoff;
3045 struct page **pages;
3046
3047 if (vma->vm_ops == &legacy_special_mapping_vmops)
3048 pages = vma->vm_private_data;
3049 else
3050 pages = ((struct vm_special_mapping *)vma->vm_private_data)->
3051 pages;
3052
3053 for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3054 pgoff--;
3055
3056 if (*pages) {
3057 struct page *page = *pages;
3058 get_page(page);
3059 vmf->page = page;
3060 return 0;
3061 }
3062
3063 return VM_FAULT_SIGBUS;
3064 }
3065
3066 static struct vm_area_struct *__install_special_mapping(
3067 struct mm_struct *mm,
3068 unsigned long addr, unsigned long len,
3069 unsigned long vm_flags, void *priv,
3070 const struct vm_operations_struct *ops)
3071 {
3072 int ret;
3073 struct vm_area_struct *vma;
3074
3075 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3076 if (unlikely(vma == NULL))
3077 return ERR_PTR(-ENOMEM);
3078
3079 INIT_LIST_HEAD(&vma->anon_vma_chain);
3080 vma->vm_mm = mm;
3081 vma->vm_start = addr;
3082 vma->vm_end = addr + len;
3083
3084 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3085 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3086
3087 vma->vm_ops = ops;
3088 vma->vm_private_data = priv;
3089
3090 ret = insert_vm_struct(mm, vma);
3091 if (ret)
3092 goto out;
3093
3094 vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3095
3096 perf_event_mmap(vma);
3097
3098 return vma;
3099
3100 out:
3101 kmem_cache_free(vm_area_cachep, vma);
3102 return ERR_PTR(ret);
3103 }
3104
3105 /*
3106 * Called with mm->mmap_sem held for writing.
3107 * Insert a new vma covering the given region, with the given flags.
3108 * Its pages are supplied by the given array of struct page *.
3109 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3110 * The region past the last page supplied will always produce SIGBUS.
3111 * The array pointer and the pages it points to are assumed to stay alive
3112 * for as long as this mapping might exist.
3113 */
3114 struct vm_area_struct *_install_special_mapping(
3115 struct mm_struct *mm,
3116 unsigned long addr, unsigned long len,
3117 unsigned long vm_flags, const struct vm_special_mapping *spec)
3118 {
3119 return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3120 &special_mapping_vmops);
3121 }
3122
3123 int install_special_mapping(struct mm_struct *mm,
3124 unsigned long addr, unsigned long len,
3125 unsigned long vm_flags, struct page **pages)
3126 {
3127 struct vm_area_struct *vma = __install_special_mapping(
3128 mm, addr, len, vm_flags, (void *)pages,
3129 &legacy_special_mapping_vmops);
3130
3131 return PTR_ERR_OR_ZERO(vma);
3132 }
3133
3134 static DEFINE_MUTEX(mm_all_locks_mutex);
3135
3136 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3137 {
3138 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3139 /*
3140 * The LSB of head.next can't change from under us
3141 * because we hold the mm_all_locks_mutex.
3142 */
3143 down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3144 /*
3145 * We can safely modify head.next after taking the
3146 * anon_vma->root->rwsem. If some other vma in this mm shares
3147 * the same anon_vma we won't take it again.
3148 *
3149 * No need of atomic instructions here, head.next
3150 * can't change from under us thanks to the
3151 * anon_vma->root->rwsem.
3152 */
3153 if (__test_and_set_bit(0, (unsigned long *)
3154 &anon_vma->root->rb_root.rb_node))
3155 BUG();
3156 }
3157 }
3158
3159 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3160 {
3161 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3162 /*
3163 * AS_MM_ALL_LOCKS can't change from under us because
3164 * we hold the mm_all_locks_mutex.
3165 *
3166 * Operations on ->flags have to be atomic because
3167 * even if AS_MM_ALL_LOCKS is stable thanks to the
3168 * mm_all_locks_mutex, there may be other cpus
3169 * changing other bitflags in parallel to us.
3170 */
3171 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3172 BUG();
3173 down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3174 }
3175 }
3176
3177 /*
3178 * This operation locks against the VM for all pte/vma/mm related
3179 * operations that could ever happen on a certain mm. This includes
3180 * vmtruncate, try_to_unmap, and all page faults.
3181 *
3182 * The caller must take the mmap_sem in write mode before calling
3183 * mm_take_all_locks(). The caller isn't allowed to release the
3184 * mmap_sem until mm_drop_all_locks() returns.
3185 *
3186 * mmap_sem in write mode is required in order to block all operations
3187 * that could modify pagetables and free pages without need of
3188 * altering the vma layout. It's also needed in write mode to avoid new
3189 * anon_vmas to be associated with existing vmas.
3190 *
3191 * A single task can't take more than one mm_take_all_locks() in a row
3192 * or it would deadlock.
3193 *
3194 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3195 * mapping->flags avoid to take the same lock twice, if more than one
3196 * vma in this mm is backed by the same anon_vma or address_space.
3197 *
3198 * We take locks in following order, accordingly to comment at beginning
3199 * of mm/rmap.c:
3200 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3201 * hugetlb mapping);
3202 * - all i_mmap_rwsem locks;
3203 * - all anon_vma->rwseml
3204 *
3205 * We can take all locks within these types randomly because the VM code
3206 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3207 * mm_all_locks_mutex.
3208 *
3209 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3210 * that may have to take thousand of locks.
3211 *
3212 * mm_take_all_locks() can fail if it's interrupted by signals.
3213 */
3214 int mm_take_all_locks(struct mm_struct *mm)
3215 {
3216 struct vm_area_struct *vma;
3217 struct anon_vma_chain *avc;
3218
3219 BUG_ON(down_read_trylock(&mm->mmap_sem));
3220
3221 mutex_lock(&mm_all_locks_mutex);
3222
3223 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3224 if (signal_pending(current))
3225 goto out_unlock;
3226 if (vma->vm_file && vma->vm_file->f_mapping &&
3227 is_vm_hugetlb_page(vma))
3228 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3229 }
3230
3231 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3232 if (signal_pending(current))
3233 goto out_unlock;
3234 if (vma->vm_file && vma->vm_file->f_mapping &&
3235 !is_vm_hugetlb_page(vma))
3236 vm_lock_mapping(mm, vma->vm_file->f_mapping);
3237 }
3238
3239 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3240 if (signal_pending(current))
3241 goto out_unlock;
3242 if (vma->anon_vma)
3243 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3244 vm_lock_anon_vma(mm, avc->anon_vma);
3245 }
3246
3247 return 0;
3248
3249 out_unlock:
3250 mm_drop_all_locks(mm);
3251 return -EINTR;
3252 }
3253
3254 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3255 {
3256 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3257 /*
3258 * The LSB of head.next can't change to 0 from under
3259 * us because we hold the mm_all_locks_mutex.
3260 *
3261 * We must however clear the bitflag before unlocking
3262 * the vma so the users using the anon_vma->rb_root will
3263 * never see our bitflag.
3264 *
3265 * No need of atomic instructions here, head.next
3266 * can't change from under us until we release the
3267 * anon_vma->root->rwsem.
3268 */
3269 if (!__test_and_clear_bit(0, (unsigned long *)
3270 &anon_vma->root->rb_root.rb_node))
3271 BUG();
3272 anon_vma_unlock_write(anon_vma);
3273 }
3274 }
3275
3276 static void vm_unlock_mapping(struct address_space *mapping)
3277 {
3278 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3279 /*
3280 * AS_MM_ALL_LOCKS can't change to 0 from under us
3281 * because we hold the mm_all_locks_mutex.
3282 */
3283 i_mmap_unlock_write(mapping);
3284 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3285 &mapping->flags))
3286 BUG();
3287 }
3288 }
3289
3290 /*
3291 * The mmap_sem cannot be released by the caller until
3292 * mm_drop_all_locks() returns.
3293 */
3294 void mm_drop_all_locks(struct mm_struct *mm)
3295 {
3296 struct vm_area_struct *vma;
3297 struct anon_vma_chain *avc;
3298
3299 BUG_ON(down_read_trylock(&mm->mmap_sem));
3300 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3301
3302 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3303 if (vma->anon_vma)
3304 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3305 vm_unlock_anon_vma(avc->anon_vma);
3306 if (vma->vm_file && vma->vm_file->f_mapping)
3307 vm_unlock_mapping(vma->vm_file->f_mapping);
3308 }
3309
3310 mutex_unlock(&mm_all_locks_mutex);
3311 }
3312
3313 /*
3314 * initialise the VMA slab
3315 */
3316 void __init mmap_init(void)
3317 {
3318 int ret;
3319
3320 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3321 VM_BUG_ON(ret);
3322 }
3323
3324 /*
3325 * Initialise sysctl_user_reserve_kbytes.
3326 *
3327 * This is intended to prevent a user from starting a single memory hogging
3328 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3329 * mode.
3330 *
3331 * The default value is min(3% of free memory, 128MB)
3332 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3333 */
3334 static int init_user_reserve(void)
3335 {
3336 unsigned long free_kbytes;
3337
3338 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3339
3340 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3341 return 0;
3342 }
3343 subsys_initcall(init_user_reserve);
3344
3345 /*
3346 * Initialise sysctl_admin_reserve_kbytes.
3347 *
3348 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3349 * to log in and kill a memory hogging process.
3350 *
3351 * Systems with more than 256MB will reserve 8MB, enough to recover
3352 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3353 * only reserve 3% of free pages by default.
3354 */
3355 static int init_admin_reserve(void)
3356 {
3357 unsigned long free_kbytes;
3358
3359 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3360
3361 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3362 return 0;
3363 }
3364 subsys_initcall(init_admin_reserve);
3365
3366 /*
3367 * Reinititalise user and admin reserves if memory is added or removed.
3368 *
3369 * The default user reserve max is 128MB, and the default max for the
3370 * admin reserve is 8MB. These are usually, but not always, enough to
3371 * enable recovery from a memory hogging process using login/sshd, a shell,
3372 * and tools like top. It may make sense to increase or even disable the
3373 * reserve depending on the existence of swap or variations in the recovery
3374 * tools. So, the admin may have changed them.
3375 *
3376 * If memory is added and the reserves have been eliminated or increased above
3377 * the default max, then we'll trust the admin.
3378 *
3379 * If memory is removed and there isn't enough free memory, then we
3380 * need to reset the reserves.
3381 *
3382 * Otherwise keep the reserve set by the admin.
3383 */
3384 static int reserve_mem_notifier(struct notifier_block *nb,
3385 unsigned long action, void *data)
3386 {
3387 unsigned long tmp, free_kbytes;
3388
3389 switch (action) {
3390 case MEM_ONLINE:
3391 /* Default max is 128MB. Leave alone if modified by operator. */
3392 tmp = sysctl_user_reserve_kbytes;
3393 if (0 < tmp && tmp < (1UL << 17))
3394 init_user_reserve();
3395
3396 /* Default max is 8MB. Leave alone if modified by operator. */
3397 tmp = sysctl_admin_reserve_kbytes;
3398 if (0 < tmp && tmp < (1UL << 13))
3399 init_admin_reserve();
3400
3401 break;
3402 case MEM_OFFLINE:
3403 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3404
3405 if (sysctl_user_reserve_kbytes > free_kbytes) {
3406 init_user_reserve();
3407 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3408 sysctl_user_reserve_kbytes);
3409 }
3410
3411 if (sysctl_admin_reserve_kbytes > free_kbytes) {
3412 init_admin_reserve();
3413 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3414 sysctl_admin_reserve_kbytes);
3415 }
3416 break;
3417 default:
3418 break;
3419 }
3420 return NOTIFY_OK;
3421 }
3422
3423 static struct notifier_block reserve_mem_nb = {
3424 .notifier_call = reserve_mem_notifier,
3425 };
3426
3427 static int __meminit init_reserve_notifier(void)
3428 {
3429 if (register_hotmemory_notifier(&reserve_mem_nb))
3430 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3431
3432 return 0;
3433 }
3434 subsys_initcall(init_reserve_notifier);
This page took 0.095488 seconds and 6 git commands to generate.