perf_counter: Remove munmap stuff
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/ima.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_counter.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/cacheflush.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37
38 #include "internal.h"
39
40 #ifndef arch_mmap_check
41 #define arch_mmap_check(addr, len, flags) (0)
42 #endif
43
44 #ifndef arch_rebalance_pgtables
45 #define arch_rebalance_pgtables(addr, len) (addr)
46 #endif
47
48 static void unmap_region(struct mm_struct *mm,
49 struct vm_area_struct *vma, struct vm_area_struct *prev,
50 unsigned long start, unsigned long end);
51
52 /*
53 * WARNING: the debugging will use recursive algorithms so never enable this
54 * unless you know what you are doing.
55 */
56 #undef DEBUG_MM_RB
57
58 /* description of effects of mapping type and prot in current implementation.
59 * this is due to the limited x86 page protection hardware. The expected
60 * behavior is in parens:
61 *
62 * map_type prot
63 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
64 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (yes) yes w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 *
68 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
69 * w: (no) no w: (no) no w: (copy) copy w: (no) no
70 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 *
72 */
73 pgprot_t protection_map[16] = {
74 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
75 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
76 };
77
78 pgprot_t vm_get_page_prot(unsigned long vm_flags)
79 {
80 return __pgprot(pgprot_val(protection_map[vm_flags &
81 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
82 pgprot_val(arch_vm_get_page_prot(vm_flags)));
83 }
84 EXPORT_SYMBOL(vm_get_page_prot);
85
86 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
87 int sysctl_overcommit_ratio = 50; /* default is 50% */
88 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
89 struct percpu_counter vm_committed_as;
90
91 /*
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
95 *
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 *
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
101 *
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 *
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
106 */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 unsigned long free, allowed;
110
111 vm_acct_memory(pages);
112
113 /*
114 * Sometimes we want to use more memory than we have
115 */
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
118
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 unsigned long n;
121
122 free = global_page_state(NR_FILE_PAGES);
123 free += nr_swap_pages;
124
125 /*
126 * Any slabs which are created with the
127 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
128 * which are reclaimable, under pressure. The dentry
129 * cache and most inode caches should fall into this
130 */
131 free += global_page_state(NR_SLAB_RECLAIMABLE);
132
133 /*
134 * Leave the last 3% for root
135 */
136 if (!cap_sys_admin)
137 free -= free / 32;
138
139 if (free > pages)
140 return 0;
141
142 /*
143 * nr_free_pages() is very expensive on large systems,
144 * only call if we're about to fail.
145 */
146 n = nr_free_pages();
147
148 /*
149 * Leave reserved pages. The pages are not for anonymous pages.
150 */
151 if (n <= totalreserve_pages)
152 goto error;
153 else
154 n -= totalreserve_pages;
155
156 /*
157 * Leave the last 3% for root
158 */
159 if (!cap_sys_admin)
160 n -= n / 32;
161 free += n;
162
163 if (free > pages)
164 return 0;
165
166 goto error;
167 }
168
169 allowed = (totalram_pages - hugetlb_total_pages())
170 * sysctl_overcommit_ratio / 100;
171 /*
172 * Leave the last 3% for root
173 */
174 if (!cap_sys_admin)
175 allowed -= allowed / 32;
176 allowed += total_swap_pages;
177
178 /* Don't let a single process grow too big:
179 leave 3% of the size of this process for other processes */
180 if (mm)
181 allowed -= mm->total_vm / 32;
182
183 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
184 return 0;
185 error:
186 vm_unacct_memory(pages);
187
188 return -ENOMEM;
189 }
190
191 /*
192 * Requires inode->i_mapping->i_mmap_lock
193 */
194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 struct file *file, struct address_space *mapping)
196 {
197 if (vma->vm_flags & VM_DENYWRITE)
198 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
199 if (vma->vm_flags & VM_SHARED)
200 mapping->i_mmap_writable--;
201
202 flush_dcache_mmap_lock(mapping);
203 if (unlikely(vma->vm_flags & VM_NONLINEAR))
204 list_del_init(&vma->shared.vm_set.list);
205 else
206 vma_prio_tree_remove(vma, &mapping->i_mmap);
207 flush_dcache_mmap_unlock(mapping);
208 }
209
210 /*
211 * Unlink a file-based vm structure from its prio_tree, to hide
212 * vma from rmap and vmtruncate before freeing its page tables.
213 */
214 void unlink_file_vma(struct vm_area_struct *vma)
215 {
216 struct file *file = vma->vm_file;
217
218 if (file) {
219 struct address_space *mapping = file->f_mapping;
220 spin_lock(&mapping->i_mmap_lock);
221 __remove_shared_vm_struct(vma, file, mapping);
222 spin_unlock(&mapping->i_mmap_lock);
223 }
224 }
225
226 /*
227 * Close a vm structure and free it, returning the next.
228 */
229 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
230 {
231 struct vm_area_struct *next = vma->vm_next;
232
233 might_sleep();
234 if (vma->vm_ops && vma->vm_ops->close)
235 vma->vm_ops->close(vma);
236 if (vma->vm_file) {
237 fput(vma->vm_file);
238 if (vma->vm_flags & VM_EXECUTABLE)
239 removed_exe_file_vma(vma->vm_mm);
240 }
241 mpol_put(vma_policy(vma));
242 kmem_cache_free(vm_area_cachep, vma);
243 return next;
244 }
245
246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 unsigned long rlim, retval;
249 unsigned long newbrk, oldbrk;
250 struct mm_struct *mm = current->mm;
251 unsigned long min_brk;
252
253 down_write(&mm->mmap_sem);
254
255 #ifdef CONFIG_COMPAT_BRK
256 min_brk = mm->end_code;
257 #else
258 min_brk = mm->start_brk;
259 #endif
260 if (brk < min_brk)
261 goto out;
262
263 /*
264 * Check against rlimit here. If this check is done later after the test
265 * of oldbrk with newbrk then it can escape the test and let the data
266 * segment grow beyond its set limit the in case where the limit is
267 * not page aligned -Ram Gupta
268 */
269 rlim = current->signal->rlim[RLIMIT_DATA].rlim_cur;
270 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
271 (mm->end_data - mm->start_data) > rlim)
272 goto out;
273
274 newbrk = PAGE_ALIGN(brk);
275 oldbrk = PAGE_ALIGN(mm->brk);
276 if (oldbrk == newbrk)
277 goto set_brk;
278
279 /* Always allow shrinking brk. */
280 if (brk <= mm->brk) {
281 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
282 goto set_brk;
283 goto out;
284 }
285
286 /* Check against existing mmap mappings. */
287 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
288 goto out;
289
290 /* Ok, looks good - let it rip. */
291 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
292 goto out;
293 set_brk:
294 mm->brk = brk;
295 out:
296 retval = mm->brk;
297 up_write(&mm->mmap_sem);
298 return retval;
299 }
300
301 #ifdef DEBUG_MM_RB
302 static int browse_rb(struct rb_root *root)
303 {
304 int i = 0, j;
305 struct rb_node *nd, *pn = NULL;
306 unsigned long prev = 0, pend = 0;
307
308 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
309 struct vm_area_struct *vma;
310 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
311 if (vma->vm_start < prev)
312 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
313 if (vma->vm_start < pend)
314 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
315 if (vma->vm_start > vma->vm_end)
316 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
317 i++;
318 pn = nd;
319 prev = vma->vm_start;
320 pend = vma->vm_end;
321 }
322 j = 0;
323 for (nd = pn; nd; nd = rb_prev(nd)) {
324 j++;
325 }
326 if (i != j)
327 printk("backwards %d, forwards %d\n", j, i), i = 0;
328 return i;
329 }
330
331 void validate_mm(struct mm_struct *mm)
332 {
333 int bug = 0;
334 int i = 0;
335 struct vm_area_struct *tmp = mm->mmap;
336 while (tmp) {
337 tmp = tmp->vm_next;
338 i++;
339 }
340 if (i != mm->map_count)
341 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
342 i = browse_rb(&mm->mm_rb);
343 if (i != mm->map_count)
344 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
345 BUG_ON(bug);
346 }
347 #else
348 #define validate_mm(mm) do { } while (0)
349 #endif
350
351 static struct vm_area_struct *
352 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
353 struct vm_area_struct **pprev, struct rb_node ***rb_link,
354 struct rb_node ** rb_parent)
355 {
356 struct vm_area_struct * vma;
357 struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
358
359 __rb_link = &mm->mm_rb.rb_node;
360 rb_prev = __rb_parent = NULL;
361 vma = NULL;
362
363 while (*__rb_link) {
364 struct vm_area_struct *vma_tmp;
365
366 __rb_parent = *__rb_link;
367 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
368
369 if (vma_tmp->vm_end > addr) {
370 vma = vma_tmp;
371 if (vma_tmp->vm_start <= addr)
372 break;
373 __rb_link = &__rb_parent->rb_left;
374 } else {
375 rb_prev = __rb_parent;
376 __rb_link = &__rb_parent->rb_right;
377 }
378 }
379
380 *pprev = NULL;
381 if (rb_prev)
382 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
383 *rb_link = __rb_link;
384 *rb_parent = __rb_parent;
385 return vma;
386 }
387
388 static inline void
389 __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
390 struct vm_area_struct *prev, struct rb_node *rb_parent)
391 {
392 if (prev) {
393 vma->vm_next = prev->vm_next;
394 prev->vm_next = vma;
395 } else {
396 mm->mmap = vma;
397 if (rb_parent)
398 vma->vm_next = rb_entry(rb_parent,
399 struct vm_area_struct, vm_rb);
400 else
401 vma->vm_next = NULL;
402 }
403 }
404
405 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
406 struct rb_node **rb_link, struct rb_node *rb_parent)
407 {
408 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
409 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
410 }
411
412 static void __vma_link_file(struct vm_area_struct *vma)
413 {
414 struct file *file;
415
416 file = vma->vm_file;
417 if (file) {
418 struct address_space *mapping = file->f_mapping;
419
420 if (vma->vm_flags & VM_DENYWRITE)
421 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
422 if (vma->vm_flags & VM_SHARED)
423 mapping->i_mmap_writable++;
424
425 flush_dcache_mmap_lock(mapping);
426 if (unlikely(vma->vm_flags & VM_NONLINEAR))
427 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
428 else
429 vma_prio_tree_insert(vma, &mapping->i_mmap);
430 flush_dcache_mmap_unlock(mapping);
431 }
432 }
433
434 static void
435 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
436 struct vm_area_struct *prev, struct rb_node **rb_link,
437 struct rb_node *rb_parent)
438 {
439 __vma_link_list(mm, vma, prev, rb_parent);
440 __vma_link_rb(mm, vma, rb_link, rb_parent);
441 __anon_vma_link(vma);
442 }
443
444 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
445 struct vm_area_struct *prev, struct rb_node **rb_link,
446 struct rb_node *rb_parent)
447 {
448 struct address_space *mapping = NULL;
449
450 if (vma->vm_file)
451 mapping = vma->vm_file->f_mapping;
452
453 if (mapping) {
454 spin_lock(&mapping->i_mmap_lock);
455 vma->vm_truncate_count = mapping->truncate_count;
456 }
457 anon_vma_lock(vma);
458
459 __vma_link(mm, vma, prev, rb_link, rb_parent);
460 __vma_link_file(vma);
461
462 anon_vma_unlock(vma);
463 if (mapping)
464 spin_unlock(&mapping->i_mmap_lock);
465
466 mm->map_count++;
467 validate_mm(mm);
468 }
469
470 /*
471 * Helper for vma_adjust in the split_vma insert case:
472 * insert vm structure into list and rbtree and anon_vma,
473 * but it has already been inserted into prio_tree earlier.
474 */
475 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
476 {
477 struct vm_area_struct *__vma, *prev;
478 struct rb_node **rb_link, *rb_parent;
479
480 __vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
481 BUG_ON(__vma && __vma->vm_start < vma->vm_end);
482 __vma_link(mm, vma, prev, rb_link, rb_parent);
483 mm->map_count++;
484 }
485
486 static inline void
487 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
488 struct vm_area_struct *prev)
489 {
490 prev->vm_next = vma->vm_next;
491 rb_erase(&vma->vm_rb, &mm->mm_rb);
492 if (mm->mmap_cache == vma)
493 mm->mmap_cache = prev;
494 }
495
496 /*
497 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
498 * is already present in an i_mmap tree without adjusting the tree.
499 * The following helper function should be used when such adjustments
500 * are necessary. The "insert" vma (if any) is to be inserted
501 * before we drop the necessary locks.
502 */
503 void vma_adjust(struct vm_area_struct *vma, unsigned long start,
504 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
505 {
506 struct mm_struct *mm = vma->vm_mm;
507 struct vm_area_struct *next = vma->vm_next;
508 struct vm_area_struct *importer = NULL;
509 struct address_space *mapping = NULL;
510 struct prio_tree_root *root = NULL;
511 struct file *file = vma->vm_file;
512 struct anon_vma *anon_vma = NULL;
513 long adjust_next = 0;
514 int remove_next = 0;
515
516 if (next && !insert) {
517 if (end >= next->vm_end) {
518 /*
519 * vma expands, overlapping all the next, and
520 * perhaps the one after too (mprotect case 6).
521 */
522 again: remove_next = 1 + (end > next->vm_end);
523 end = next->vm_end;
524 anon_vma = next->anon_vma;
525 importer = vma;
526 } else if (end > next->vm_start) {
527 /*
528 * vma expands, overlapping part of the next:
529 * mprotect case 5 shifting the boundary up.
530 */
531 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
532 anon_vma = next->anon_vma;
533 importer = vma;
534 } else if (end < vma->vm_end) {
535 /*
536 * vma shrinks, and !insert tells it's not
537 * split_vma inserting another: so it must be
538 * mprotect case 4 shifting the boundary down.
539 */
540 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
541 anon_vma = next->anon_vma;
542 importer = next;
543 }
544 }
545
546 if (file) {
547 mapping = file->f_mapping;
548 if (!(vma->vm_flags & VM_NONLINEAR))
549 root = &mapping->i_mmap;
550 spin_lock(&mapping->i_mmap_lock);
551 if (importer &&
552 vma->vm_truncate_count != next->vm_truncate_count) {
553 /*
554 * unmap_mapping_range might be in progress:
555 * ensure that the expanding vma is rescanned.
556 */
557 importer->vm_truncate_count = 0;
558 }
559 if (insert) {
560 insert->vm_truncate_count = vma->vm_truncate_count;
561 /*
562 * Put into prio_tree now, so instantiated pages
563 * are visible to arm/parisc __flush_dcache_page
564 * throughout; but we cannot insert into address
565 * space until vma start or end is updated.
566 */
567 __vma_link_file(insert);
568 }
569 }
570
571 /*
572 * When changing only vma->vm_end, we don't really need
573 * anon_vma lock: but is that case worth optimizing out?
574 */
575 if (vma->anon_vma)
576 anon_vma = vma->anon_vma;
577 if (anon_vma) {
578 spin_lock(&anon_vma->lock);
579 /*
580 * Easily overlooked: when mprotect shifts the boundary,
581 * make sure the expanding vma has anon_vma set if the
582 * shrinking vma had, to cover any anon pages imported.
583 */
584 if (importer && !importer->anon_vma) {
585 importer->anon_vma = anon_vma;
586 __anon_vma_link(importer);
587 }
588 }
589
590 if (root) {
591 flush_dcache_mmap_lock(mapping);
592 vma_prio_tree_remove(vma, root);
593 if (adjust_next)
594 vma_prio_tree_remove(next, root);
595 }
596
597 vma->vm_start = start;
598 vma->vm_end = end;
599 vma->vm_pgoff = pgoff;
600 if (adjust_next) {
601 next->vm_start += adjust_next << PAGE_SHIFT;
602 next->vm_pgoff += adjust_next;
603 }
604
605 if (root) {
606 if (adjust_next)
607 vma_prio_tree_insert(next, root);
608 vma_prio_tree_insert(vma, root);
609 flush_dcache_mmap_unlock(mapping);
610 }
611
612 if (remove_next) {
613 /*
614 * vma_merge has merged next into vma, and needs
615 * us to remove next before dropping the locks.
616 */
617 __vma_unlink(mm, next, vma);
618 if (file)
619 __remove_shared_vm_struct(next, file, mapping);
620 if (next->anon_vma)
621 __anon_vma_merge(vma, next);
622 } else if (insert) {
623 /*
624 * split_vma has split insert from vma, and needs
625 * us to insert it before dropping the locks
626 * (it may either follow vma or precede it).
627 */
628 __insert_vm_struct(mm, insert);
629 }
630
631 if (anon_vma)
632 spin_unlock(&anon_vma->lock);
633 if (mapping)
634 spin_unlock(&mapping->i_mmap_lock);
635
636 if (remove_next) {
637 if (file) {
638 fput(file);
639 if (next->vm_flags & VM_EXECUTABLE)
640 removed_exe_file_vma(mm);
641 }
642 mm->map_count--;
643 mpol_put(vma_policy(next));
644 kmem_cache_free(vm_area_cachep, next);
645 /*
646 * In mprotect's case 6 (see comments on vma_merge),
647 * we must remove another next too. It would clutter
648 * up the code too much to do both in one go.
649 */
650 if (remove_next == 2) {
651 next = vma->vm_next;
652 goto again;
653 }
654 }
655
656 validate_mm(mm);
657 }
658
659 /* Flags that can be inherited from an existing mapping when merging */
660 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
661
662 /*
663 * If the vma has a ->close operation then the driver probably needs to release
664 * per-vma resources, so we don't attempt to merge those.
665 */
666 static inline int is_mergeable_vma(struct vm_area_struct *vma,
667 struct file *file, unsigned long vm_flags)
668 {
669 if ((vma->vm_flags ^ vm_flags) & ~VM_MERGEABLE_FLAGS)
670 return 0;
671 if (vma->vm_file != file)
672 return 0;
673 if (vma->vm_ops && vma->vm_ops->close)
674 return 0;
675 return 1;
676 }
677
678 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
679 struct anon_vma *anon_vma2)
680 {
681 return !anon_vma1 || !anon_vma2 || (anon_vma1 == anon_vma2);
682 }
683
684 /*
685 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
686 * in front of (at a lower virtual address and file offset than) the vma.
687 *
688 * We cannot merge two vmas if they have differently assigned (non-NULL)
689 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
690 *
691 * We don't check here for the merged mmap wrapping around the end of pagecache
692 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
693 * wrap, nor mmaps which cover the final page at index -1UL.
694 */
695 static int
696 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
697 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
698 {
699 if (is_mergeable_vma(vma, file, vm_flags) &&
700 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
701 if (vma->vm_pgoff == vm_pgoff)
702 return 1;
703 }
704 return 0;
705 }
706
707 /*
708 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709 * beyond (at a higher virtual address and file offset than) the vma.
710 *
711 * We cannot merge two vmas if they have differently assigned (non-NULL)
712 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713 */
714 static int
715 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
716 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
717 {
718 if (is_mergeable_vma(vma, file, vm_flags) &&
719 is_mergeable_anon_vma(anon_vma, vma->anon_vma)) {
720 pgoff_t vm_pglen;
721 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
722 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
723 return 1;
724 }
725 return 0;
726 }
727
728 /*
729 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
730 * whether that can be merged with its predecessor or its successor.
731 * Or both (it neatly fills a hole).
732 *
733 * In most cases - when called for mmap, brk or mremap - [addr,end) is
734 * certain not to be mapped by the time vma_merge is called; but when
735 * called for mprotect, it is certain to be already mapped (either at
736 * an offset within prev, or at the start of next), and the flags of
737 * this area are about to be changed to vm_flags - and the no-change
738 * case has already been eliminated.
739 *
740 * The following mprotect cases have to be considered, where AAAA is
741 * the area passed down from mprotect_fixup, never extending beyond one
742 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
743 *
744 * AAAA AAAA AAAA AAAA
745 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
746 * cannot merge might become might become might become
747 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
748 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
749 * mremap move: PPPPNNNNNNNN 8
750 * AAAA
751 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
752 * might become case 1 below case 2 below case 3 below
753 *
754 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
755 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
756 */
757 struct vm_area_struct *vma_merge(struct mm_struct *mm,
758 struct vm_area_struct *prev, unsigned long addr,
759 unsigned long end, unsigned long vm_flags,
760 struct anon_vma *anon_vma, struct file *file,
761 pgoff_t pgoff, struct mempolicy *policy)
762 {
763 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
764 struct vm_area_struct *area, *next;
765
766 /*
767 * We later require that vma->vm_flags == vm_flags,
768 * so this tests vma->vm_flags & VM_SPECIAL, too.
769 */
770 if (vm_flags & VM_SPECIAL)
771 return NULL;
772
773 if (prev)
774 next = prev->vm_next;
775 else
776 next = mm->mmap;
777 area = next;
778 if (next && next->vm_end == end) /* cases 6, 7, 8 */
779 next = next->vm_next;
780
781 /*
782 * Can it merge with the predecessor?
783 */
784 if (prev && prev->vm_end == addr &&
785 mpol_equal(vma_policy(prev), policy) &&
786 can_vma_merge_after(prev, vm_flags,
787 anon_vma, file, pgoff)) {
788 /*
789 * OK, it can. Can we now merge in the successor as well?
790 */
791 if (next && end == next->vm_start &&
792 mpol_equal(policy, vma_policy(next)) &&
793 can_vma_merge_before(next, vm_flags,
794 anon_vma, file, pgoff+pglen) &&
795 is_mergeable_anon_vma(prev->anon_vma,
796 next->anon_vma)) {
797 /* cases 1, 6 */
798 vma_adjust(prev, prev->vm_start,
799 next->vm_end, prev->vm_pgoff, NULL);
800 } else /* cases 2, 5, 7 */
801 vma_adjust(prev, prev->vm_start,
802 end, prev->vm_pgoff, NULL);
803 return prev;
804 }
805
806 /*
807 * Can this new request be merged in front of next?
808 */
809 if (next && end == next->vm_start &&
810 mpol_equal(policy, vma_policy(next)) &&
811 can_vma_merge_before(next, vm_flags,
812 anon_vma, file, pgoff+pglen)) {
813 if (prev && addr < prev->vm_end) /* case 4 */
814 vma_adjust(prev, prev->vm_start,
815 addr, prev->vm_pgoff, NULL);
816 else /* cases 3, 8 */
817 vma_adjust(area, addr, next->vm_end,
818 next->vm_pgoff - pglen, NULL);
819 return area;
820 }
821
822 return NULL;
823 }
824
825 /*
826 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
827 * neighbouring vmas for a suitable anon_vma, before it goes off
828 * to allocate a new anon_vma. It checks because a repetitive
829 * sequence of mprotects and faults may otherwise lead to distinct
830 * anon_vmas being allocated, preventing vma merge in subsequent
831 * mprotect.
832 */
833 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
834 {
835 struct vm_area_struct *near;
836 unsigned long vm_flags;
837
838 near = vma->vm_next;
839 if (!near)
840 goto try_prev;
841
842 /*
843 * Since only mprotect tries to remerge vmas, match flags
844 * which might be mprotected into each other later on.
845 * Neither mlock nor madvise tries to remerge at present,
846 * so leave their flags as obstructing a merge.
847 */
848 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
849 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
850
851 if (near->anon_vma && vma->vm_end == near->vm_start &&
852 mpol_equal(vma_policy(vma), vma_policy(near)) &&
853 can_vma_merge_before(near, vm_flags,
854 NULL, vma->vm_file, vma->vm_pgoff +
855 ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT)))
856 return near->anon_vma;
857 try_prev:
858 /*
859 * It is potentially slow to have to call find_vma_prev here.
860 * But it's only on the first write fault on the vma, not
861 * every time, and we could devise a way to avoid it later
862 * (e.g. stash info in next's anon_vma_node when assigning
863 * an anon_vma, or when trying vma_merge). Another time.
864 */
865 BUG_ON(find_vma_prev(vma->vm_mm, vma->vm_start, &near) != vma);
866 if (!near)
867 goto none;
868
869 vm_flags = vma->vm_flags & ~(VM_READ|VM_WRITE|VM_EXEC);
870 vm_flags |= near->vm_flags & (VM_READ|VM_WRITE|VM_EXEC);
871
872 if (near->anon_vma && near->vm_end == vma->vm_start &&
873 mpol_equal(vma_policy(near), vma_policy(vma)) &&
874 can_vma_merge_after(near, vm_flags,
875 NULL, vma->vm_file, vma->vm_pgoff))
876 return near->anon_vma;
877 none:
878 /*
879 * There's no absolute need to look only at touching neighbours:
880 * we could search further afield for "compatible" anon_vmas.
881 * But it would probably just be a waste of time searching,
882 * or lead to too many vmas hanging off the same anon_vma.
883 * We're trying to allow mprotect remerging later on,
884 * not trying to minimize memory used for anon_vmas.
885 */
886 return NULL;
887 }
888
889 #ifdef CONFIG_PROC_FS
890 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
891 struct file *file, long pages)
892 {
893 const unsigned long stack_flags
894 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
895
896 if (file) {
897 mm->shared_vm += pages;
898 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
899 mm->exec_vm += pages;
900 } else if (flags & stack_flags)
901 mm->stack_vm += pages;
902 if (flags & (VM_RESERVED|VM_IO))
903 mm->reserved_vm += pages;
904 }
905 #endif /* CONFIG_PROC_FS */
906
907 /*
908 * The caller must hold down_write(current->mm->mmap_sem).
909 */
910
911 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
912 unsigned long len, unsigned long prot,
913 unsigned long flags, unsigned long pgoff)
914 {
915 struct mm_struct * mm = current->mm;
916 struct inode *inode;
917 unsigned int vm_flags;
918 int error;
919 unsigned long reqprot = prot;
920
921 /*
922 * Does the application expect PROT_READ to imply PROT_EXEC?
923 *
924 * (the exception is when the underlying filesystem is noexec
925 * mounted, in which case we dont add PROT_EXEC.)
926 */
927 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
928 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
929 prot |= PROT_EXEC;
930
931 if (!len)
932 return -EINVAL;
933
934 if (!(flags & MAP_FIXED))
935 addr = round_hint_to_min(addr);
936
937 error = arch_mmap_check(addr, len, flags);
938 if (error)
939 return error;
940
941 /* Careful about overflows.. */
942 len = PAGE_ALIGN(len);
943 if (!len || len > TASK_SIZE)
944 return -ENOMEM;
945
946 /* offset overflow? */
947 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
948 return -EOVERFLOW;
949
950 /* Too many mappings? */
951 if (mm->map_count > sysctl_max_map_count)
952 return -ENOMEM;
953
954 /* Obtain the address to map to. we verify (or select) it and ensure
955 * that it represents a valid section of the address space.
956 */
957 addr = get_unmapped_area(file, addr, len, pgoff, flags);
958 if (addr & ~PAGE_MASK)
959 return addr;
960
961 /* Do simple checking here so the lower-level routines won't have
962 * to. we assume access permissions have been handled by the open
963 * of the memory object, so we don't do any here.
964 */
965 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
966 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
967
968 if (flags & MAP_LOCKED) {
969 if (!can_do_mlock())
970 return -EPERM;
971 vm_flags |= VM_LOCKED;
972 }
973
974 /* mlock MCL_FUTURE? */
975 if (vm_flags & VM_LOCKED) {
976 unsigned long locked, lock_limit;
977 locked = len >> PAGE_SHIFT;
978 locked += mm->locked_vm;
979 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
980 lock_limit >>= PAGE_SHIFT;
981 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
982 return -EAGAIN;
983 }
984
985 inode = file ? file->f_path.dentry->d_inode : NULL;
986
987 if (file) {
988 switch (flags & MAP_TYPE) {
989 case MAP_SHARED:
990 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
991 return -EACCES;
992
993 /*
994 * Make sure we don't allow writing to an append-only
995 * file..
996 */
997 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
998 return -EACCES;
999
1000 /*
1001 * Make sure there are no mandatory locks on the file.
1002 */
1003 if (locks_verify_locked(inode))
1004 return -EAGAIN;
1005
1006 vm_flags |= VM_SHARED | VM_MAYSHARE;
1007 if (!(file->f_mode & FMODE_WRITE))
1008 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1009
1010 /* fall through */
1011 case MAP_PRIVATE:
1012 if (!(file->f_mode & FMODE_READ))
1013 return -EACCES;
1014 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015 if (vm_flags & VM_EXEC)
1016 return -EPERM;
1017 vm_flags &= ~VM_MAYEXEC;
1018 }
1019
1020 if (!file->f_op || !file->f_op->mmap)
1021 return -ENODEV;
1022 break;
1023
1024 default:
1025 return -EINVAL;
1026 }
1027 } else {
1028 switch (flags & MAP_TYPE) {
1029 case MAP_SHARED:
1030 /*
1031 * Ignore pgoff.
1032 */
1033 pgoff = 0;
1034 vm_flags |= VM_SHARED | VM_MAYSHARE;
1035 break;
1036 case MAP_PRIVATE:
1037 /*
1038 * Set pgoff according to addr for anon_vma.
1039 */
1040 pgoff = addr >> PAGE_SHIFT;
1041 break;
1042 default:
1043 return -EINVAL;
1044 }
1045 }
1046
1047 error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1048 if (error)
1049 return error;
1050 error = ima_file_mmap(file, prot);
1051 if (error)
1052 return error;
1053
1054 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1055 }
1056 EXPORT_SYMBOL(do_mmap_pgoff);
1057
1058 /*
1059 * Some shared mappigns will want the pages marked read-only
1060 * to track write events. If so, we'll downgrade vm_page_prot
1061 * to the private version (using protection_map[] without the
1062 * VM_SHARED bit).
1063 */
1064 int vma_wants_writenotify(struct vm_area_struct *vma)
1065 {
1066 unsigned int vm_flags = vma->vm_flags;
1067
1068 /* If it was private or non-writable, the write bit is already clear */
1069 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1070 return 0;
1071
1072 /* The backer wishes to know when pages are first written to? */
1073 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1074 return 1;
1075
1076 /* The open routine did something to the protections already? */
1077 if (pgprot_val(vma->vm_page_prot) !=
1078 pgprot_val(vm_get_page_prot(vm_flags)))
1079 return 0;
1080
1081 /* Specialty mapping? */
1082 if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1083 return 0;
1084
1085 /* Can the mapping track the dirty pages? */
1086 return vma->vm_file && vma->vm_file->f_mapping &&
1087 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1088 }
1089
1090 /*
1091 * We account for memory if it's a private writeable mapping,
1092 * not hugepages and VM_NORESERVE wasn't set.
1093 */
1094 static inline int accountable_mapping(struct file *file, unsigned int vm_flags)
1095 {
1096 /*
1097 * hugetlb has its own accounting separate from the core VM
1098 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1099 */
1100 if (file && is_file_hugepages(file))
1101 return 0;
1102
1103 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1104 }
1105
1106 unsigned long mmap_region(struct file *file, unsigned long addr,
1107 unsigned long len, unsigned long flags,
1108 unsigned int vm_flags, unsigned long pgoff)
1109 {
1110 struct mm_struct *mm = current->mm;
1111 struct vm_area_struct *vma, *prev;
1112 int correct_wcount = 0;
1113 int error;
1114 struct rb_node **rb_link, *rb_parent;
1115 unsigned long charged = 0;
1116 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1117
1118 /* Clear old maps */
1119 error = -ENOMEM;
1120 munmap_back:
1121 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1122 if (vma && vma->vm_start < addr + len) {
1123 if (do_munmap(mm, addr, len))
1124 return -ENOMEM;
1125 goto munmap_back;
1126 }
1127
1128 /* Check against address space limit. */
1129 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1130 return -ENOMEM;
1131
1132 /*
1133 * Set 'VM_NORESERVE' if we should not account for the
1134 * memory use of this mapping.
1135 */
1136 if ((flags & MAP_NORESERVE)) {
1137 /* We honor MAP_NORESERVE if allowed to overcommit */
1138 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1139 vm_flags |= VM_NORESERVE;
1140
1141 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1142 if (file && is_file_hugepages(file))
1143 vm_flags |= VM_NORESERVE;
1144 }
1145
1146 /*
1147 * Private writable mapping: check memory availability
1148 */
1149 if (accountable_mapping(file, vm_flags)) {
1150 charged = len >> PAGE_SHIFT;
1151 if (security_vm_enough_memory(charged))
1152 return -ENOMEM;
1153 vm_flags |= VM_ACCOUNT;
1154 }
1155
1156 /*
1157 * Can we just expand an old mapping?
1158 */
1159 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1160 if (vma)
1161 goto out;
1162
1163 /*
1164 * Determine the object being mapped and call the appropriate
1165 * specific mapper. the address has already been validated, but
1166 * not unmapped, but the maps are removed from the list.
1167 */
1168 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1169 if (!vma) {
1170 error = -ENOMEM;
1171 goto unacct_error;
1172 }
1173
1174 vma->vm_mm = mm;
1175 vma->vm_start = addr;
1176 vma->vm_end = addr + len;
1177 vma->vm_flags = vm_flags;
1178 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1179 vma->vm_pgoff = pgoff;
1180
1181 if (file) {
1182 error = -EINVAL;
1183 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1184 goto free_vma;
1185 if (vm_flags & VM_DENYWRITE) {
1186 error = deny_write_access(file);
1187 if (error)
1188 goto free_vma;
1189 correct_wcount = 1;
1190 }
1191 vma->vm_file = file;
1192 get_file(file);
1193 error = file->f_op->mmap(file, vma);
1194 if (error)
1195 goto unmap_and_free_vma;
1196 if (vm_flags & VM_EXECUTABLE)
1197 added_exe_file_vma(mm);
1198 } else if (vm_flags & VM_SHARED) {
1199 error = shmem_zero_setup(vma);
1200 if (error)
1201 goto free_vma;
1202 }
1203
1204 /* Can addr have changed??
1205 *
1206 * Answer: Yes, several device drivers can do it in their
1207 * f_op->mmap method. -DaveM
1208 */
1209 addr = vma->vm_start;
1210 pgoff = vma->vm_pgoff;
1211 vm_flags = vma->vm_flags;
1212
1213 if (vma_wants_writenotify(vma))
1214 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1215
1216 vma_link(mm, vma, prev, rb_link, rb_parent);
1217 file = vma->vm_file;
1218
1219 /* Once vma denies write, undo our temporary denial count */
1220 if (correct_wcount)
1221 atomic_inc(&inode->i_writecount);
1222 out:
1223 if (vm_flags & VM_EXEC)
1224 perf_counter_mmap(addr, len, pgoff, file);
1225
1226 mm->total_vm += len >> PAGE_SHIFT;
1227 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1228 if (vm_flags & VM_LOCKED) {
1229 /*
1230 * makes pages present; downgrades, drops, reacquires mmap_sem
1231 */
1232 long nr_pages = mlock_vma_pages_range(vma, addr, addr + len);
1233 if (nr_pages < 0)
1234 return nr_pages; /* vma gone! */
1235 mm->locked_vm += (len >> PAGE_SHIFT) - nr_pages;
1236 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1237 make_pages_present(addr, addr + len);
1238 return addr;
1239
1240 unmap_and_free_vma:
1241 if (correct_wcount)
1242 atomic_inc(&inode->i_writecount);
1243 vma->vm_file = NULL;
1244 fput(file);
1245
1246 /* Undo any partial mapping done by a device driver. */
1247 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1248 charged = 0;
1249 free_vma:
1250 kmem_cache_free(vm_area_cachep, vma);
1251 unacct_error:
1252 if (charged)
1253 vm_unacct_memory(charged);
1254 return error;
1255 }
1256
1257 /* Get an address range which is currently unmapped.
1258 * For shmat() with addr=0.
1259 *
1260 * Ugly calling convention alert:
1261 * Return value with the low bits set means error value,
1262 * ie
1263 * if (ret & ~PAGE_MASK)
1264 * error = ret;
1265 *
1266 * This function "knows" that -ENOMEM has the bits set.
1267 */
1268 #ifndef HAVE_ARCH_UNMAPPED_AREA
1269 unsigned long
1270 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1271 unsigned long len, unsigned long pgoff, unsigned long flags)
1272 {
1273 struct mm_struct *mm = current->mm;
1274 struct vm_area_struct *vma;
1275 unsigned long start_addr;
1276
1277 if (len > TASK_SIZE)
1278 return -ENOMEM;
1279
1280 if (flags & MAP_FIXED)
1281 return addr;
1282
1283 if (addr) {
1284 addr = PAGE_ALIGN(addr);
1285 vma = find_vma(mm, addr);
1286 if (TASK_SIZE - len >= addr &&
1287 (!vma || addr + len <= vma->vm_start))
1288 return addr;
1289 }
1290 if (len > mm->cached_hole_size) {
1291 start_addr = addr = mm->free_area_cache;
1292 } else {
1293 start_addr = addr = TASK_UNMAPPED_BASE;
1294 mm->cached_hole_size = 0;
1295 }
1296
1297 full_search:
1298 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1299 /* At this point: (!vma || addr < vma->vm_end). */
1300 if (TASK_SIZE - len < addr) {
1301 /*
1302 * Start a new search - just in case we missed
1303 * some holes.
1304 */
1305 if (start_addr != TASK_UNMAPPED_BASE) {
1306 addr = TASK_UNMAPPED_BASE;
1307 start_addr = addr;
1308 mm->cached_hole_size = 0;
1309 goto full_search;
1310 }
1311 return -ENOMEM;
1312 }
1313 if (!vma || addr + len <= vma->vm_start) {
1314 /*
1315 * Remember the place where we stopped the search:
1316 */
1317 mm->free_area_cache = addr + len;
1318 return addr;
1319 }
1320 if (addr + mm->cached_hole_size < vma->vm_start)
1321 mm->cached_hole_size = vma->vm_start - addr;
1322 addr = vma->vm_end;
1323 }
1324 }
1325 #endif
1326
1327 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1328 {
1329 /*
1330 * Is this a new hole at the lowest possible address?
1331 */
1332 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache) {
1333 mm->free_area_cache = addr;
1334 mm->cached_hole_size = ~0UL;
1335 }
1336 }
1337
1338 /*
1339 * This mmap-allocator allocates new areas top-down from below the
1340 * stack's low limit (the base):
1341 */
1342 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1343 unsigned long
1344 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1345 const unsigned long len, const unsigned long pgoff,
1346 const unsigned long flags)
1347 {
1348 struct vm_area_struct *vma;
1349 struct mm_struct *mm = current->mm;
1350 unsigned long addr = addr0;
1351
1352 /* requested length too big for entire address space */
1353 if (len > TASK_SIZE)
1354 return -ENOMEM;
1355
1356 if (flags & MAP_FIXED)
1357 return addr;
1358
1359 /* requesting a specific address */
1360 if (addr) {
1361 addr = PAGE_ALIGN(addr);
1362 vma = find_vma(mm, addr);
1363 if (TASK_SIZE - len >= addr &&
1364 (!vma || addr + len <= vma->vm_start))
1365 return addr;
1366 }
1367
1368 /* check if free_area_cache is useful for us */
1369 if (len <= mm->cached_hole_size) {
1370 mm->cached_hole_size = 0;
1371 mm->free_area_cache = mm->mmap_base;
1372 }
1373
1374 /* either no address requested or can't fit in requested address hole */
1375 addr = mm->free_area_cache;
1376
1377 /* make sure it can fit in the remaining address space */
1378 if (addr > len) {
1379 vma = find_vma(mm, addr-len);
1380 if (!vma || addr <= vma->vm_start)
1381 /* remember the address as a hint for next time */
1382 return (mm->free_area_cache = addr-len);
1383 }
1384
1385 if (mm->mmap_base < len)
1386 goto bottomup;
1387
1388 addr = mm->mmap_base-len;
1389
1390 do {
1391 /*
1392 * Lookup failure means no vma is above this address,
1393 * else if new region fits below vma->vm_start,
1394 * return with success:
1395 */
1396 vma = find_vma(mm, addr);
1397 if (!vma || addr+len <= vma->vm_start)
1398 /* remember the address as a hint for next time */
1399 return (mm->free_area_cache = addr);
1400
1401 /* remember the largest hole we saw so far */
1402 if (addr + mm->cached_hole_size < vma->vm_start)
1403 mm->cached_hole_size = vma->vm_start - addr;
1404
1405 /* try just below the current vma->vm_start */
1406 addr = vma->vm_start-len;
1407 } while (len < vma->vm_start);
1408
1409 bottomup:
1410 /*
1411 * A failed mmap() very likely causes application failure,
1412 * so fall back to the bottom-up function here. This scenario
1413 * can happen with large stack limits and large mmap()
1414 * allocations.
1415 */
1416 mm->cached_hole_size = ~0UL;
1417 mm->free_area_cache = TASK_UNMAPPED_BASE;
1418 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1419 /*
1420 * Restore the topdown base:
1421 */
1422 mm->free_area_cache = mm->mmap_base;
1423 mm->cached_hole_size = ~0UL;
1424
1425 return addr;
1426 }
1427 #endif
1428
1429 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1430 {
1431 /*
1432 * Is this a new hole at the highest possible address?
1433 */
1434 if (addr > mm->free_area_cache)
1435 mm->free_area_cache = addr;
1436
1437 /* dont allow allocations above current base */
1438 if (mm->free_area_cache > mm->mmap_base)
1439 mm->free_area_cache = mm->mmap_base;
1440 }
1441
1442 unsigned long
1443 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1444 unsigned long pgoff, unsigned long flags)
1445 {
1446 unsigned long (*get_area)(struct file *, unsigned long,
1447 unsigned long, unsigned long, unsigned long);
1448
1449 get_area = current->mm->get_unmapped_area;
1450 if (file && file->f_op && file->f_op->get_unmapped_area)
1451 get_area = file->f_op->get_unmapped_area;
1452 addr = get_area(file, addr, len, pgoff, flags);
1453 if (IS_ERR_VALUE(addr))
1454 return addr;
1455
1456 if (addr > TASK_SIZE - len)
1457 return -ENOMEM;
1458 if (addr & ~PAGE_MASK)
1459 return -EINVAL;
1460
1461 return arch_rebalance_pgtables(addr, len);
1462 }
1463
1464 EXPORT_SYMBOL(get_unmapped_area);
1465
1466 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1467 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1468 {
1469 struct vm_area_struct *vma = NULL;
1470
1471 if (mm) {
1472 /* Check the cache first. */
1473 /* (Cache hit rate is typically around 35%.) */
1474 vma = mm->mmap_cache;
1475 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1476 struct rb_node * rb_node;
1477
1478 rb_node = mm->mm_rb.rb_node;
1479 vma = NULL;
1480
1481 while (rb_node) {
1482 struct vm_area_struct * vma_tmp;
1483
1484 vma_tmp = rb_entry(rb_node,
1485 struct vm_area_struct, vm_rb);
1486
1487 if (vma_tmp->vm_end > addr) {
1488 vma = vma_tmp;
1489 if (vma_tmp->vm_start <= addr)
1490 break;
1491 rb_node = rb_node->rb_left;
1492 } else
1493 rb_node = rb_node->rb_right;
1494 }
1495 if (vma)
1496 mm->mmap_cache = vma;
1497 }
1498 }
1499 return vma;
1500 }
1501
1502 EXPORT_SYMBOL(find_vma);
1503
1504 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1505 struct vm_area_struct *
1506 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1507 struct vm_area_struct **pprev)
1508 {
1509 struct vm_area_struct *vma = NULL, *prev = NULL;
1510 struct rb_node *rb_node;
1511 if (!mm)
1512 goto out;
1513
1514 /* Guard against addr being lower than the first VMA */
1515 vma = mm->mmap;
1516
1517 /* Go through the RB tree quickly. */
1518 rb_node = mm->mm_rb.rb_node;
1519
1520 while (rb_node) {
1521 struct vm_area_struct *vma_tmp;
1522 vma_tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1523
1524 if (addr < vma_tmp->vm_end) {
1525 rb_node = rb_node->rb_left;
1526 } else {
1527 prev = vma_tmp;
1528 if (!prev->vm_next || (addr < prev->vm_next->vm_end))
1529 break;
1530 rb_node = rb_node->rb_right;
1531 }
1532 }
1533
1534 out:
1535 *pprev = prev;
1536 return prev ? prev->vm_next : vma;
1537 }
1538
1539 /*
1540 * Verify that the stack growth is acceptable and
1541 * update accounting. This is shared with both the
1542 * grow-up and grow-down cases.
1543 */
1544 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1545 {
1546 struct mm_struct *mm = vma->vm_mm;
1547 struct rlimit *rlim = current->signal->rlim;
1548 unsigned long new_start;
1549
1550 /* address space limit tests */
1551 if (!may_expand_vm(mm, grow))
1552 return -ENOMEM;
1553
1554 /* Stack limit test */
1555 if (size > rlim[RLIMIT_STACK].rlim_cur)
1556 return -ENOMEM;
1557
1558 /* mlock limit tests */
1559 if (vma->vm_flags & VM_LOCKED) {
1560 unsigned long locked;
1561 unsigned long limit;
1562 locked = mm->locked_vm + grow;
1563 limit = rlim[RLIMIT_MEMLOCK].rlim_cur >> PAGE_SHIFT;
1564 if (locked > limit && !capable(CAP_IPC_LOCK))
1565 return -ENOMEM;
1566 }
1567
1568 /* Check to ensure the stack will not grow into a hugetlb-only region */
1569 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1570 vma->vm_end - size;
1571 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1572 return -EFAULT;
1573
1574 /*
1575 * Overcommit.. This must be the final test, as it will
1576 * update security statistics.
1577 */
1578 if (security_vm_enough_memory_mm(mm, grow))
1579 return -ENOMEM;
1580
1581 /* Ok, everything looks good - let it rip */
1582 mm->total_vm += grow;
1583 if (vma->vm_flags & VM_LOCKED)
1584 mm->locked_vm += grow;
1585 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1586 return 0;
1587 }
1588
1589 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1590 /*
1591 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1592 * vma is the last one with address > vma->vm_end. Have to extend vma.
1593 */
1594 #ifndef CONFIG_IA64
1595 static
1596 #endif
1597 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1598 {
1599 int error;
1600
1601 if (!(vma->vm_flags & VM_GROWSUP))
1602 return -EFAULT;
1603
1604 /*
1605 * We must make sure the anon_vma is allocated
1606 * so that the anon_vma locking is not a noop.
1607 */
1608 if (unlikely(anon_vma_prepare(vma)))
1609 return -ENOMEM;
1610 anon_vma_lock(vma);
1611
1612 /*
1613 * vma->vm_start/vm_end cannot change under us because the caller
1614 * is required to hold the mmap_sem in read mode. We need the
1615 * anon_vma lock to serialize against concurrent expand_stacks.
1616 * Also guard against wrapping around to address 0.
1617 */
1618 if (address < PAGE_ALIGN(address+4))
1619 address = PAGE_ALIGN(address+4);
1620 else {
1621 anon_vma_unlock(vma);
1622 return -ENOMEM;
1623 }
1624 error = 0;
1625
1626 /* Somebody else might have raced and expanded it already */
1627 if (address > vma->vm_end) {
1628 unsigned long size, grow;
1629
1630 size = address - vma->vm_start;
1631 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1632
1633 error = acct_stack_growth(vma, size, grow);
1634 if (!error)
1635 vma->vm_end = address;
1636 }
1637 anon_vma_unlock(vma);
1638 return error;
1639 }
1640 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1641
1642 /*
1643 * vma is the first one with address < vma->vm_start. Have to extend vma.
1644 */
1645 static int expand_downwards(struct vm_area_struct *vma,
1646 unsigned long address)
1647 {
1648 int error;
1649
1650 /*
1651 * We must make sure the anon_vma is allocated
1652 * so that the anon_vma locking is not a noop.
1653 */
1654 if (unlikely(anon_vma_prepare(vma)))
1655 return -ENOMEM;
1656
1657 address &= PAGE_MASK;
1658 error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1659 if (error)
1660 return error;
1661
1662 anon_vma_lock(vma);
1663
1664 /*
1665 * vma->vm_start/vm_end cannot change under us because the caller
1666 * is required to hold the mmap_sem in read mode. We need the
1667 * anon_vma lock to serialize against concurrent expand_stacks.
1668 */
1669
1670 /* Somebody else might have raced and expanded it already */
1671 if (address < vma->vm_start) {
1672 unsigned long size, grow;
1673
1674 size = vma->vm_end - address;
1675 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1676
1677 error = acct_stack_growth(vma, size, grow);
1678 if (!error) {
1679 vma->vm_start = address;
1680 vma->vm_pgoff -= grow;
1681 }
1682 }
1683 anon_vma_unlock(vma);
1684 return error;
1685 }
1686
1687 int expand_stack_downwards(struct vm_area_struct *vma, unsigned long address)
1688 {
1689 return expand_downwards(vma, address);
1690 }
1691
1692 #ifdef CONFIG_STACK_GROWSUP
1693 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1694 {
1695 return expand_upwards(vma, address);
1696 }
1697
1698 struct vm_area_struct *
1699 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1700 {
1701 struct vm_area_struct *vma, *prev;
1702
1703 addr &= PAGE_MASK;
1704 vma = find_vma_prev(mm, addr, &prev);
1705 if (vma && (vma->vm_start <= addr))
1706 return vma;
1707 if (!prev || expand_stack(prev, addr))
1708 return NULL;
1709 if (prev->vm_flags & VM_LOCKED) {
1710 if (mlock_vma_pages_range(prev, addr, prev->vm_end) < 0)
1711 return NULL; /* vma gone! */
1712 }
1713 return prev;
1714 }
1715 #else
1716 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1717 {
1718 return expand_downwards(vma, address);
1719 }
1720
1721 struct vm_area_struct *
1722 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1723 {
1724 struct vm_area_struct * vma;
1725 unsigned long start;
1726
1727 addr &= PAGE_MASK;
1728 vma = find_vma(mm,addr);
1729 if (!vma)
1730 return NULL;
1731 if (vma->vm_start <= addr)
1732 return vma;
1733 if (!(vma->vm_flags & VM_GROWSDOWN))
1734 return NULL;
1735 start = vma->vm_start;
1736 if (expand_stack(vma, addr))
1737 return NULL;
1738 if (vma->vm_flags & VM_LOCKED) {
1739 if (mlock_vma_pages_range(vma, addr, start) < 0)
1740 return NULL; /* vma gone! */
1741 }
1742 return vma;
1743 }
1744 #endif
1745
1746 /*
1747 * Ok - we have the memory areas we should free on the vma list,
1748 * so release them, and do the vma updates.
1749 *
1750 * Called with the mm semaphore held.
1751 */
1752 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1753 {
1754 /* Update high watermark before we lower total_vm */
1755 update_hiwater_vm(mm);
1756 do {
1757 long nrpages = vma_pages(vma);
1758
1759 mm->total_vm -= nrpages;
1760 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1761 vma = remove_vma(vma);
1762 } while (vma);
1763 validate_mm(mm);
1764 }
1765
1766 /*
1767 * Get rid of page table information in the indicated region.
1768 *
1769 * Called with the mm semaphore held.
1770 */
1771 static void unmap_region(struct mm_struct *mm,
1772 struct vm_area_struct *vma, struct vm_area_struct *prev,
1773 unsigned long start, unsigned long end)
1774 {
1775 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1776 struct mmu_gather *tlb;
1777 unsigned long nr_accounted = 0;
1778
1779 lru_add_drain();
1780 tlb = tlb_gather_mmu(mm, 0);
1781 update_hiwater_rss(mm);
1782 unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1783 vm_unacct_memory(nr_accounted);
1784 free_pgtables(tlb, vma, prev? prev->vm_end: FIRST_USER_ADDRESS,
1785 next? next->vm_start: 0);
1786 tlb_finish_mmu(tlb, start, end);
1787 }
1788
1789 /*
1790 * Create a list of vma's touched by the unmap, removing them from the mm's
1791 * vma list as we go..
1792 */
1793 static void
1794 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1795 struct vm_area_struct *prev, unsigned long end)
1796 {
1797 struct vm_area_struct **insertion_point;
1798 struct vm_area_struct *tail_vma = NULL;
1799 unsigned long addr;
1800
1801 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1802 do {
1803 rb_erase(&vma->vm_rb, &mm->mm_rb);
1804 mm->map_count--;
1805 tail_vma = vma;
1806 vma = vma->vm_next;
1807 } while (vma && vma->vm_start < end);
1808 *insertion_point = vma;
1809 tail_vma->vm_next = NULL;
1810 if (mm->unmap_area == arch_unmap_area)
1811 addr = prev ? prev->vm_end : mm->mmap_base;
1812 else
1813 addr = vma ? vma->vm_start : mm->mmap_base;
1814 mm->unmap_area(mm, addr);
1815 mm->mmap_cache = NULL; /* Kill the cache. */
1816 }
1817
1818 /*
1819 * Split a vma into two pieces at address 'addr', a new vma is allocated
1820 * either for the first part or the tail.
1821 */
1822 int split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1823 unsigned long addr, int new_below)
1824 {
1825 struct mempolicy *pol;
1826 struct vm_area_struct *new;
1827
1828 if (is_vm_hugetlb_page(vma) && (addr &
1829 ~(huge_page_mask(hstate_vma(vma)))))
1830 return -EINVAL;
1831
1832 if (mm->map_count >= sysctl_max_map_count)
1833 return -ENOMEM;
1834
1835 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1836 if (!new)
1837 return -ENOMEM;
1838
1839 /* most fields are the same, copy all, and then fixup */
1840 *new = *vma;
1841
1842 if (new_below)
1843 new->vm_end = addr;
1844 else {
1845 new->vm_start = addr;
1846 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1847 }
1848
1849 pol = mpol_dup(vma_policy(vma));
1850 if (IS_ERR(pol)) {
1851 kmem_cache_free(vm_area_cachep, new);
1852 return PTR_ERR(pol);
1853 }
1854 vma_set_policy(new, pol);
1855
1856 if (new->vm_file) {
1857 get_file(new->vm_file);
1858 if (vma->vm_flags & VM_EXECUTABLE)
1859 added_exe_file_vma(mm);
1860 }
1861
1862 if (new->vm_ops && new->vm_ops->open)
1863 new->vm_ops->open(new);
1864
1865 if (new_below)
1866 vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1867 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1868 else
1869 vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1870
1871 return 0;
1872 }
1873
1874 /* Munmap is split into 2 main parts -- this part which finds
1875 * what needs doing, and the areas themselves, which do the
1876 * work. This now handles partial unmappings.
1877 * Jeremy Fitzhardinge <jeremy@goop.org>
1878 */
1879 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1880 {
1881 unsigned long end;
1882 struct vm_area_struct *vma, *prev, *last;
1883
1884 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
1885 return -EINVAL;
1886
1887 if ((len = PAGE_ALIGN(len)) == 0)
1888 return -EINVAL;
1889
1890 /* Find the first overlapping VMA */
1891 vma = find_vma_prev(mm, start, &prev);
1892 if (!vma)
1893 return 0;
1894 /* we have start < vma->vm_end */
1895
1896 /* if it doesn't overlap, we have nothing.. */
1897 end = start + len;
1898 if (vma->vm_start >= end)
1899 return 0;
1900
1901 /*
1902 * If we need to split any vma, do it now to save pain later.
1903 *
1904 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1905 * unmapped vm_area_struct will remain in use: so lower split_vma
1906 * places tmp vma above, and higher split_vma places tmp vma below.
1907 */
1908 if (start > vma->vm_start) {
1909 int error = split_vma(mm, vma, start, 0);
1910 if (error)
1911 return error;
1912 prev = vma;
1913 }
1914
1915 /* Does it split the last one? */
1916 last = find_vma(mm, end);
1917 if (last && end > last->vm_start) {
1918 int error = split_vma(mm, last, end, 1);
1919 if (error)
1920 return error;
1921 }
1922 vma = prev? prev->vm_next: mm->mmap;
1923
1924 /*
1925 * unlock any mlock()ed ranges before detaching vmas
1926 */
1927 if (mm->locked_vm) {
1928 struct vm_area_struct *tmp = vma;
1929 while (tmp && tmp->vm_start < end) {
1930 if (tmp->vm_flags & VM_LOCKED) {
1931 mm->locked_vm -= vma_pages(tmp);
1932 munlock_vma_pages_all(tmp);
1933 }
1934 tmp = tmp->vm_next;
1935 }
1936 }
1937
1938 /*
1939 * Remove the vma's, and unmap the actual pages
1940 */
1941 detach_vmas_to_be_unmapped(mm, vma, prev, end);
1942 unmap_region(mm, vma, prev, start, end);
1943
1944 /* Fix up all other VM information */
1945 remove_vma_list(mm, vma);
1946
1947 return 0;
1948 }
1949
1950 EXPORT_SYMBOL(do_munmap);
1951
1952 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1953 {
1954 int ret;
1955 struct mm_struct *mm = current->mm;
1956
1957 profile_munmap(addr);
1958
1959 down_write(&mm->mmap_sem);
1960 ret = do_munmap(mm, addr, len);
1961 up_write(&mm->mmap_sem);
1962 return ret;
1963 }
1964
1965 static inline void verify_mm_writelocked(struct mm_struct *mm)
1966 {
1967 #ifdef CONFIG_DEBUG_VM
1968 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
1969 WARN_ON(1);
1970 up_read(&mm->mmap_sem);
1971 }
1972 #endif
1973 }
1974
1975 /*
1976 * this is really a simplified "do_mmap". it only handles
1977 * anonymous maps. eventually we may be able to do some
1978 * brk-specific accounting here.
1979 */
1980 unsigned long do_brk(unsigned long addr, unsigned long len)
1981 {
1982 struct mm_struct * mm = current->mm;
1983 struct vm_area_struct * vma, * prev;
1984 unsigned long flags;
1985 struct rb_node ** rb_link, * rb_parent;
1986 pgoff_t pgoff = addr >> PAGE_SHIFT;
1987 int error;
1988
1989 len = PAGE_ALIGN(len);
1990 if (!len)
1991 return addr;
1992
1993 if ((addr + len) > TASK_SIZE || (addr + len) < addr)
1994 return -EINVAL;
1995
1996 if (is_hugepage_only_range(mm, addr, len))
1997 return -EINVAL;
1998
1999 error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2000 if (error)
2001 return error;
2002
2003 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2004
2005 error = arch_mmap_check(addr, len, flags);
2006 if (error)
2007 return error;
2008
2009 /*
2010 * mlock MCL_FUTURE?
2011 */
2012 if (mm->def_flags & VM_LOCKED) {
2013 unsigned long locked, lock_limit;
2014 locked = len >> PAGE_SHIFT;
2015 locked += mm->locked_vm;
2016 lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
2017 lock_limit >>= PAGE_SHIFT;
2018 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2019 return -EAGAIN;
2020 }
2021
2022 /*
2023 * mm->mmap_sem is required to protect against another thread
2024 * changing the mappings in case we sleep.
2025 */
2026 verify_mm_writelocked(mm);
2027
2028 /*
2029 * Clear old maps. this also does some error checking for us
2030 */
2031 munmap_back:
2032 vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2033 if (vma && vma->vm_start < addr + len) {
2034 if (do_munmap(mm, addr, len))
2035 return -ENOMEM;
2036 goto munmap_back;
2037 }
2038
2039 /* Check against address space limits *after* clearing old maps... */
2040 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2041 return -ENOMEM;
2042
2043 if (mm->map_count > sysctl_max_map_count)
2044 return -ENOMEM;
2045
2046 if (security_vm_enough_memory(len >> PAGE_SHIFT))
2047 return -ENOMEM;
2048
2049 /* Can we just expand an old private anonymous mapping? */
2050 vma = vma_merge(mm, prev, addr, addr + len, flags,
2051 NULL, NULL, pgoff, NULL);
2052 if (vma)
2053 goto out;
2054
2055 /*
2056 * create a vma struct for an anonymous mapping
2057 */
2058 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2059 if (!vma) {
2060 vm_unacct_memory(len >> PAGE_SHIFT);
2061 return -ENOMEM;
2062 }
2063
2064 vma->vm_mm = mm;
2065 vma->vm_start = addr;
2066 vma->vm_end = addr + len;
2067 vma->vm_pgoff = pgoff;
2068 vma->vm_flags = flags;
2069 vma->vm_page_prot = vm_get_page_prot(flags);
2070 vma_link(mm, vma, prev, rb_link, rb_parent);
2071 out:
2072 mm->total_vm += len >> PAGE_SHIFT;
2073 if (flags & VM_LOCKED) {
2074 if (!mlock_vma_pages_range(vma, addr, addr + len))
2075 mm->locked_vm += (len >> PAGE_SHIFT);
2076 }
2077 return addr;
2078 }
2079
2080 EXPORT_SYMBOL(do_brk);
2081
2082 /* Release all mmaps. */
2083 void exit_mmap(struct mm_struct *mm)
2084 {
2085 struct mmu_gather *tlb;
2086 struct vm_area_struct *vma;
2087 unsigned long nr_accounted = 0;
2088 unsigned long end;
2089
2090 /* mm's last user has gone, and its about to be pulled down */
2091 mmu_notifier_release(mm);
2092
2093 if (mm->locked_vm) {
2094 vma = mm->mmap;
2095 while (vma) {
2096 if (vma->vm_flags & VM_LOCKED)
2097 munlock_vma_pages_all(vma);
2098 vma = vma->vm_next;
2099 }
2100 }
2101
2102 arch_exit_mmap(mm);
2103
2104 vma = mm->mmap;
2105 if (!vma) /* Can happen if dup_mmap() received an OOM */
2106 return;
2107
2108 lru_add_drain();
2109 flush_cache_mm(mm);
2110 tlb = tlb_gather_mmu(mm, 1);
2111 /* update_hiwater_rss(mm) here? but nobody should be looking */
2112 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2113 end = unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2114 vm_unacct_memory(nr_accounted);
2115 free_pgtables(tlb, vma, FIRST_USER_ADDRESS, 0);
2116 tlb_finish_mmu(tlb, 0, end);
2117
2118 /*
2119 * Walk the list again, actually closing and freeing it,
2120 * with preemption enabled, without holding any MM locks.
2121 */
2122 while (vma)
2123 vma = remove_vma(vma);
2124
2125 BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2126 }
2127
2128 /* Insert vm structure into process list sorted by address
2129 * and into the inode's i_mmap tree. If vm_file is non-NULL
2130 * then i_mmap_lock is taken here.
2131 */
2132 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2133 {
2134 struct vm_area_struct * __vma, * prev;
2135 struct rb_node ** rb_link, * rb_parent;
2136
2137 /*
2138 * The vm_pgoff of a purely anonymous vma should be irrelevant
2139 * until its first write fault, when page's anon_vma and index
2140 * are set. But now set the vm_pgoff it will almost certainly
2141 * end up with (unless mremap moves it elsewhere before that
2142 * first wfault), so /proc/pid/maps tells a consistent story.
2143 *
2144 * By setting it to reflect the virtual start address of the
2145 * vma, merges and splits can happen in a seamless way, just
2146 * using the existing file pgoff checks and manipulations.
2147 * Similarly in do_mmap_pgoff and in do_brk.
2148 */
2149 if (!vma->vm_file) {
2150 BUG_ON(vma->anon_vma);
2151 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2152 }
2153 __vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2154 if (__vma && __vma->vm_start < vma->vm_end)
2155 return -ENOMEM;
2156 if ((vma->vm_flags & VM_ACCOUNT) &&
2157 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2158 return -ENOMEM;
2159 vma_link(mm, vma, prev, rb_link, rb_parent);
2160 return 0;
2161 }
2162
2163 /*
2164 * Copy the vma structure to a new location in the same mm,
2165 * prior to moving page table entries, to effect an mremap move.
2166 */
2167 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2168 unsigned long addr, unsigned long len, pgoff_t pgoff)
2169 {
2170 struct vm_area_struct *vma = *vmap;
2171 unsigned long vma_start = vma->vm_start;
2172 struct mm_struct *mm = vma->vm_mm;
2173 struct vm_area_struct *new_vma, *prev;
2174 struct rb_node **rb_link, *rb_parent;
2175 struct mempolicy *pol;
2176
2177 /*
2178 * If anonymous vma has not yet been faulted, update new pgoff
2179 * to match new location, to increase its chance of merging.
2180 */
2181 if (!vma->vm_file && !vma->anon_vma)
2182 pgoff = addr >> PAGE_SHIFT;
2183
2184 find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2185 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2186 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2187 if (new_vma) {
2188 /*
2189 * Source vma may have been merged into new_vma
2190 */
2191 if (vma_start >= new_vma->vm_start &&
2192 vma_start < new_vma->vm_end)
2193 *vmap = new_vma;
2194 } else {
2195 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2196 if (new_vma) {
2197 *new_vma = *vma;
2198 pol = mpol_dup(vma_policy(vma));
2199 if (IS_ERR(pol)) {
2200 kmem_cache_free(vm_area_cachep, new_vma);
2201 return NULL;
2202 }
2203 vma_set_policy(new_vma, pol);
2204 new_vma->vm_start = addr;
2205 new_vma->vm_end = addr + len;
2206 new_vma->vm_pgoff = pgoff;
2207 if (new_vma->vm_file) {
2208 get_file(new_vma->vm_file);
2209 if (vma->vm_flags & VM_EXECUTABLE)
2210 added_exe_file_vma(mm);
2211 }
2212 if (new_vma->vm_ops && new_vma->vm_ops->open)
2213 new_vma->vm_ops->open(new_vma);
2214 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2215 }
2216 }
2217 return new_vma;
2218 }
2219
2220 /*
2221 * Return true if the calling process may expand its vm space by the passed
2222 * number of pages
2223 */
2224 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2225 {
2226 unsigned long cur = mm->total_vm; /* pages */
2227 unsigned long lim;
2228
2229 lim = current->signal->rlim[RLIMIT_AS].rlim_cur >> PAGE_SHIFT;
2230
2231 if (cur + npages > lim)
2232 return 0;
2233 return 1;
2234 }
2235
2236
2237 static int special_mapping_fault(struct vm_area_struct *vma,
2238 struct vm_fault *vmf)
2239 {
2240 pgoff_t pgoff;
2241 struct page **pages;
2242
2243 /*
2244 * special mappings have no vm_file, and in that case, the mm
2245 * uses vm_pgoff internally. So we have to subtract it from here.
2246 * We are allowed to do this because we are the mm; do not copy
2247 * this code into drivers!
2248 */
2249 pgoff = vmf->pgoff - vma->vm_pgoff;
2250
2251 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2252 pgoff--;
2253
2254 if (*pages) {
2255 struct page *page = *pages;
2256 get_page(page);
2257 vmf->page = page;
2258 return 0;
2259 }
2260
2261 return VM_FAULT_SIGBUS;
2262 }
2263
2264 /*
2265 * Having a close hook prevents vma merging regardless of flags.
2266 */
2267 static void special_mapping_close(struct vm_area_struct *vma)
2268 {
2269 }
2270
2271 static struct vm_operations_struct special_mapping_vmops = {
2272 .close = special_mapping_close,
2273 .fault = special_mapping_fault,
2274 };
2275
2276 /*
2277 * Called with mm->mmap_sem held for writing.
2278 * Insert a new vma covering the given region, with the given flags.
2279 * Its pages are supplied by the given array of struct page *.
2280 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2281 * The region past the last page supplied will always produce SIGBUS.
2282 * The array pointer and the pages it points to are assumed to stay alive
2283 * for as long as this mapping might exist.
2284 */
2285 int install_special_mapping(struct mm_struct *mm,
2286 unsigned long addr, unsigned long len,
2287 unsigned long vm_flags, struct page **pages)
2288 {
2289 struct vm_area_struct *vma;
2290
2291 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2292 if (unlikely(vma == NULL))
2293 return -ENOMEM;
2294
2295 vma->vm_mm = mm;
2296 vma->vm_start = addr;
2297 vma->vm_end = addr + len;
2298
2299 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2300 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2301
2302 vma->vm_ops = &special_mapping_vmops;
2303 vma->vm_private_data = pages;
2304
2305 if (unlikely(insert_vm_struct(mm, vma))) {
2306 kmem_cache_free(vm_area_cachep, vma);
2307 return -ENOMEM;
2308 }
2309
2310 mm->total_vm += len >> PAGE_SHIFT;
2311
2312 return 0;
2313 }
2314
2315 static DEFINE_MUTEX(mm_all_locks_mutex);
2316
2317 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2318 {
2319 if (!test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2320 /*
2321 * The LSB of head.next can't change from under us
2322 * because we hold the mm_all_locks_mutex.
2323 */
2324 spin_lock_nest_lock(&anon_vma->lock, &mm->mmap_sem);
2325 /*
2326 * We can safely modify head.next after taking the
2327 * anon_vma->lock. If some other vma in this mm shares
2328 * the same anon_vma we won't take it again.
2329 *
2330 * No need of atomic instructions here, head.next
2331 * can't change from under us thanks to the
2332 * anon_vma->lock.
2333 */
2334 if (__test_and_set_bit(0, (unsigned long *)
2335 &anon_vma->head.next))
2336 BUG();
2337 }
2338 }
2339
2340 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2341 {
2342 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2343 /*
2344 * AS_MM_ALL_LOCKS can't change from under us because
2345 * we hold the mm_all_locks_mutex.
2346 *
2347 * Operations on ->flags have to be atomic because
2348 * even if AS_MM_ALL_LOCKS is stable thanks to the
2349 * mm_all_locks_mutex, there may be other cpus
2350 * changing other bitflags in parallel to us.
2351 */
2352 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2353 BUG();
2354 spin_lock_nest_lock(&mapping->i_mmap_lock, &mm->mmap_sem);
2355 }
2356 }
2357
2358 /*
2359 * This operation locks against the VM for all pte/vma/mm related
2360 * operations that could ever happen on a certain mm. This includes
2361 * vmtruncate, try_to_unmap, and all page faults.
2362 *
2363 * The caller must take the mmap_sem in write mode before calling
2364 * mm_take_all_locks(). The caller isn't allowed to release the
2365 * mmap_sem until mm_drop_all_locks() returns.
2366 *
2367 * mmap_sem in write mode is required in order to block all operations
2368 * that could modify pagetables and free pages without need of
2369 * altering the vma layout (for example populate_range() with
2370 * nonlinear vmas). It's also needed in write mode to avoid new
2371 * anon_vmas to be associated with existing vmas.
2372 *
2373 * A single task can't take more than one mm_take_all_locks() in a row
2374 * or it would deadlock.
2375 *
2376 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2377 * mapping->flags avoid to take the same lock twice, if more than one
2378 * vma in this mm is backed by the same anon_vma or address_space.
2379 *
2380 * We can take all the locks in random order because the VM code
2381 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2382 * takes more than one of them in a row. Secondly we're protected
2383 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2384 *
2385 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2386 * that may have to take thousand of locks.
2387 *
2388 * mm_take_all_locks() can fail if it's interrupted by signals.
2389 */
2390 int mm_take_all_locks(struct mm_struct *mm)
2391 {
2392 struct vm_area_struct *vma;
2393 int ret = -EINTR;
2394
2395 BUG_ON(down_read_trylock(&mm->mmap_sem));
2396
2397 mutex_lock(&mm_all_locks_mutex);
2398
2399 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2400 if (signal_pending(current))
2401 goto out_unlock;
2402 if (vma->vm_file && vma->vm_file->f_mapping)
2403 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2404 }
2405
2406 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2407 if (signal_pending(current))
2408 goto out_unlock;
2409 if (vma->anon_vma)
2410 vm_lock_anon_vma(mm, vma->anon_vma);
2411 }
2412
2413 ret = 0;
2414
2415 out_unlock:
2416 if (ret)
2417 mm_drop_all_locks(mm);
2418
2419 return ret;
2420 }
2421
2422 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2423 {
2424 if (test_bit(0, (unsigned long *) &anon_vma->head.next)) {
2425 /*
2426 * The LSB of head.next can't change to 0 from under
2427 * us because we hold the mm_all_locks_mutex.
2428 *
2429 * We must however clear the bitflag before unlocking
2430 * the vma so the users using the anon_vma->head will
2431 * never see our bitflag.
2432 *
2433 * No need of atomic instructions here, head.next
2434 * can't change from under us until we release the
2435 * anon_vma->lock.
2436 */
2437 if (!__test_and_clear_bit(0, (unsigned long *)
2438 &anon_vma->head.next))
2439 BUG();
2440 spin_unlock(&anon_vma->lock);
2441 }
2442 }
2443
2444 static void vm_unlock_mapping(struct address_space *mapping)
2445 {
2446 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2447 /*
2448 * AS_MM_ALL_LOCKS can't change to 0 from under us
2449 * because we hold the mm_all_locks_mutex.
2450 */
2451 spin_unlock(&mapping->i_mmap_lock);
2452 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2453 &mapping->flags))
2454 BUG();
2455 }
2456 }
2457
2458 /*
2459 * The mmap_sem cannot be released by the caller until
2460 * mm_drop_all_locks() returns.
2461 */
2462 void mm_drop_all_locks(struct mm_struct *mm)
2463 {
2464 struct vm_area_struct *vma;
2465
2466 BUG_ON(down_read_trylock(&mm->mmap_sem));
2467 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2468
2469 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2470 if (vma->anon_vma)
2471 vm_unlock_anon_vma(vma->anon_vma);
2472 if (vma->vm_file && vma->vm_file->f_mapping)
2473 vm_unlock_mapping(vma->vm_file->f_mapping);
2474 }
2475
2476 mutex_unlock(&mm_all_locks_mutex);
2477 }
2478
2479 /*
2480 * initialise the VMA slab
2481 */
2482 void __init mmap_init(void)
2483 {
2484 int ret;
2485
2486 ret = percpu_counter_init(&vm_committed_as, 0);
2487 VM_BUG_ON(ret);
2488 }
This page took 0.083048 seconds and 6 git commands to generate.