mm: includecheck fix for mm/nommu.c
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include "internal.h"
37
38 static inline __attribute__((format(printf, 1, 2)))
39 void no_printk(const char *fmt, ...)
40 {
41 }
42
43 #if 0
44 #define kenter(FMT, ...) \
45 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
46 #define kleave(FMT, ...) \
47 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
48 #define kdebug(FMT, ...) \
49 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
50 #else
51 #define kenter(FMT, ...) \
52 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
53 #define kleave(FMT, ...) \
54 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
55 #define kdebug(FMT, ...) \
56 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
57 #endif
58
59 void *high_memory;
60 struct page *mem_map;
61 unsigned long max_mapnr;
62 unsigned long num_physpages;
63 struct percpu_counter vm_committed_as;
64 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
65 int sysctl_overcommit_ratio = 50; /* default is 50% */
66 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
67 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
68 int heap_stack_gap = 0;
69
70 atomic_long_t mmap_pages_allocated;
71
72 EXPORT_SYMBOL(mem_map);
73 EXPORT_SYMBOL(num_physpages);
74
75 /* list of mapped, potentially shareable regions */
76 static struct kmem_cache *vm_region_jar;
77 struct rb_root nommu_region_tree = RB_ROOT;
78 DECLARE_RWSEM(nommu_region_sem);
79
80 struct vm_operations_struct generic_file_vm_ops = {
81 };
82
83 /*
84 * Handle all mappings that got truncated by a "truncate()"
85 * system call.
86 *
87 * NOTE! We have to be ready to update the memory sharing
88 * between the file and the memory map for a potential last
89 * incomplete page. Ugly, but necessary.
90 */
91 int vmtruncate(struct inode *inode, loff_t offset)
92 {
93 struct address_space *mapping = inode->i_mapping;
94 unsigned long limit;
95
96 if (inode->i_size < offset)
97 goto do_expand;
98 i_size_write(inode, offset);
99
100 truncate_inode_pages(mapping, offset);
101 goto out_truncate;
102
103 do_expand:
104 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
105 if (limit != RLIM_INFINITY && offset > limit)
106 goto out_sig;
107 if (offset > inode->i_sb->s_maxbytes)
108 goto out;
109 i_size_write(inode, offset);
110
111 out_truncate:
112 if (inode->i_op->truncate)
113 inode->i_op->truncate(inode);
114 return 0;
115 out_sig:
116 send_sig(SIGXFSZ, current, 0);
117 out:
118 return -EFBIG;
119 }
120
121 EXPORT_SYMBOL(vmtruncate);
122
123 /*
124 * Return the total memory allocated for this pointer, not
125 * just what the caller asked for.
126 *
127 * Doesn't have to be accurate, i.e. may have races.
128 */
129 unsigned int kobjsize(const void *objp)
130 {
131 struct page *page;
132
133 /*
134 * If the object we have should not have ksize performed on it,
135 * return size of 0
136 */
137 if (!objp || !virt_addr_valid(objp))
138 return 0;
139
140 page = virt_to_head_page(objp);
141
142 /*
143 * If the allocator sets PageSlab, we know the pointer came from
144 * kmalloc().
145 */
146 if (PageSlab(page))
147 return ksize(objp);
148
149 /*
150 * If it's not a compound page, see if we have a matching VMA
151 * region. This test is intentionally done in reverse order,
152 * so if there's no VMA, we still fall through and hand back
153 * PAGE_SIZE for 0-order pages.
154 */
155 if (!PageCompound(page)) {
156 struct vm_area_struct *vma;
157
158 vma = find_vma(current->mm, (unsigned long)objp);
159 if (vma)
160 return vma->vm_end - vma->vm_start;
161 }
162
163 /*
164 * The ksize() function is only guaranteed to work for pointers
165 * returned by kmalloc(). So handle arbitrary pointers here.
166 */
167 return PAGE_SIZE << compound_order(page);
168 }
169
170 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
171 unsigned long start, int nr_pages, int flags,
172 struct page **pages, struct vm_area_struct **vmas)
173 {
174 struct vm_area_struct *vma;
175 unsigned long vm_flags;
176 int i;
177 int write = !!(flags & GUP_FLAGS_WRITE);
178 int force = !!(flags & GUP_FLAGS_FORCE);
179 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
180
181 /* calculate required read or write permissions.
182 * - if 'force' is set, we only require the "MAY" flags.
183 */
184 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
185 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
186
187 for (i = 0; i < nr_pages; i++) {
188 vma = find_vma(mm, start);
189 if (!vma)
190 goto finish_or_fault;
191
192 /* protect what we can, including chardevs */
193 if (vma->vm_flags & (VM_IO | VM_PFNMAP) ||
194 (!ignore && !(vm_flags & vma->vm_flags)))
195 goto finish_or_fault;
196
197 if (pages) {
198 pages[i] = virt_to_page(start);
199 if (pages[i])
200 page_cache_get(pages[i]);
201 }
202 if (vmas)
203 vmas[i] = vma;
204 start += PAGE_SIZE;
205 }
206
207 return i;
208
209 finish_or_fault:
210 return i ? : -EFAULT;
211 }
212
213
214 /*
215 * get a list of pages in an address range belonging to the specified process
216 * and indicate the VMA that covers each page
217 * - this is potentially dodgy as we may end incrementing the page count of a
218 * slab page or a secondary page from a compound page
219 * - don't permit access to VMAs that don't support it, such as I/O mappings
220 */
221 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
222 unsigned long start, int nr_pages, int write, int force,
223 struct page **pages, struct vm_area_struct **vmas)
224 {
225 int flags = 0;
226
227 if (write)
228 flags |= GUP_FLAGS_WRITE;
229 if (force)
230 flags |= GUP_FLAGS_FORCE;
231
232 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
233 }
234 EXPORT_SYMBOL(get_user_pages);
235
236 /**
237 * follow_pfn - look up PFN at a user virtual address
238 * @vma: memory mapping
239 * @address: user virtual address
240 * @pfn: location to store found PFN
241 *
242 * Only IO mappings and raw PFN mappings are allowed.
243 *
244 * Returns zero and the pfn at @pfn on success, -ve otherwise.
245 */
246 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
247 unsigned long *pfn)
248 {
249 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
250 return -EINVAL;
251
252 *pfn = address >> PAGE_SHIFT;
253 return 0;
254 }
255 EXPORT_SYMBOL(follow_pfn);
256
257 DEFINE_RWLOCK(vmlist_lock);
258 struct vm_struct *vmlist;
259
260 void vfree(const void *addr)
261 {
262 kfree(addr);
263 }
264 EXPORT_SYMBOL(vfree);
265
266 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
267 {
268 /*
269 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
270 * returns only a logical address.
271 */
272 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
273 }
274 EXPORT_SYMBOL(__vmalloc);
275
276 void *vmalloc_user(unsigned long size)
277 {
278 void *ret;
279
280 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
281 PAGE_KERNEL);
282 if (ret) {
283 struct vm_area_struct *vma;
284
285 down_write(&current->mm->mmap_sem);
286 vma = find_vma(current->mm, (unsigned long)ret);
287 if (vma)
288 vma->vm_flags |= VM_USERMAP;
289 up_write(&current->mm->mmap_sem);
290 }
291
292 return ret;
293 }
294 EXPORT_SYMBOL(vmalloc_user);
295
296 struct page *vmalloc_to_page(const void *addr)
297 {
298 return virt_to_page(addr);
299 }
300 EXPORT_SYMBOL(vmalloc_to_page);
301
302 unsigned long vmalloc_to_pfn(const void *addr)
303 {
304 return page_to_pfn(virt_to_page(addr));
305 }
306 EXPORT_SYMBOL(vmalloc_to_pfn);
307
308 long vread(char *buf, char *addr, unsigned long count)
309 {
310 memcpy(buf, addr, count);
311 return count;
312 }
313
314 long vwrite(char *buf, char *addr, unsigned long count)
315 {
316 /* Don't allow overflow */
317 if ((unsigned long) addr + count < count)
318 count = -(unsigned long) addr;
319
320 memcpy(addr, buf, count);
321 return(count);
322 }
323
324 /*
325 * vmalloc - allocate virtually continguos memory
326 *
327 * @size: allocation size
328 *
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
331 *
332 * For tight control over page level allocator and protection flags
333 * use __vmalloc() instead.
334 */
335 void *vmalloc(unsigned long size)
336 {
337 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc);
340
341 void *vmalloc_node(unsigned long size, int node)
342 {
343 return vmalloc(size);
344 }
345 EXPORT_SYMBOL(vmalloc_node);
346
347 #ifndef PAGE_KERNEL_EXEC
348 # define PAGE_KERNEL_EXEC PAGE_KERNEL
349 #endif
350
351 /**
352 * vmalloc_exec - allocate virtually contiguous, executable memory
353 * @size: allocation size
354 *
355 * Kernel-internal function to allocate enough pages to cover @size
356 * the page level allocator and map them into contiguous and
357 * executable kernel virtual space.
358 *
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
361 */
362
363 void *vmalloc_exec(unsigned long size)
364 {
365 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
366 }
367
368 /**
369 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
370 * @size: allocation size
371 *
372 * Allocate enough 32bit PA addressable pages to cover @size from the
373 * page level allocator and map them into continguos kernel virtual space.
374 */
375 void *vmalloc_32(unsigned long size)
376 {
377 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
378 }
379 EXPORT_SYMBOL(vmalloc_32);
380
381 /**
382 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
383 * @size: allocation size
384 *
385 * The resulting memory area is 32bit addressable and zeroed so it can be
386 * mapped to userspace without leaking data.
387 *
388 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
389 * remap_vmalloc_range() are permissible.
390 */
391 void *vmalloc_32_user(unsigned long size)
392 {
393 /*
394 * We'll have to sort out the ZONE_DMA bits for 64-bit,
395 * but for now this can simply use vmalloc_user() directly.
396 */
397 return vmalloc_user(size);
398 }
399 EXPORT_SYMBOL(vmalloc_32_user);
400
401 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
402 {
403 BUG();
404 return NULL;
405 }
406 EXPORT_SYMBOL(vmap);
407
408 void vunmap(const void *addr)
409 {
410 BUG();
411 }
412 EXPORT_SYMBOL(vunmap);
413
414 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
415 {
416 BUG();
417 return NULL;
418 }
419 EXPORT_SYMBOL(vm_map_ram);
420
421 void vm_unmap_ram(const void *mem, unsigned int count)
422 {
423 BUG();
424 }
425 EXPORT_SYMBOL(vm_unmap_ram);
426
427 void vm_unmap_aliases(void)
428 {
429 }
430 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
431
432 /*
433 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
434 * have one.
435 */
436 void __attribute__((weak)) vmalloc_sync_all(void)
437 {
438 }
439
440 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
441 struct page *page)
442 {
443 return -EINVAL;
444 }
445 EXPORT_SYMBOL(vm_insert_page);
446
447 /*
448 * sys_brk() for the most part doesn't need the global kernel
449 * lock, except when an application is doing something nasty
450 * like trying to un-brk an area that has already been mapped
451 * to a regular file. in this case, the unmapping will need
452 * to invoke file system routines that need the global lock.
453 */
454 SYSCALL_DEFINE1(brk, unsigned long, brk)
455 {
456 struct mm_struct *mm = current->mm;
457
458 if (brk < mm->start_brk || brk > mm->context.end_brk)
459 return mm->brk;
460
461 if (mm->brk == brk)
462 return mm->brk;
463
464 /*
465 * Always allow shrinking brk
466 */
467 if (brk <= mm->brk) {
468 mm->brk = brk;
469 return brk;
470 }
471
472 /*
473 * Ok, looks good - let it rip.
474 */
475 return mm->brk = brk;
476 }
477
478 /*
479 * initialise the VMA and region record slabs
480 */
481 void __init mmap_init(void)
482 {
483 int ret;
484
485 ret = percpu_counter_init(&vm_committed_as, 0);
486 VM_BUG_ON(ret);
487 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
488 }
489
490 /*
491 * validate the region tree
492 * - the caller must hold the region lock
493 */
494 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
495 static noinline void validate_nommu_regions(void)
496 {
497 struct vm_region *region, *last;
498 struct rb_node *p, *lastp;
499
500 lastp = rb_first(&nommu_region_tree);
501 if (!lastp)
502 return;
503
504 last = rb_entry(lastp, struct vm_region, vm_rb);
505 BUG_ON(unlikely(last->vm_end <= last->vm_start));
506 BUG_ON(unlikely(last->vm_top < last->vm_end));
507
508 while ((p = rb_next(lastp))) {
509 region = rb_entry(p, struct vm_region, vm_rb);
510 last = rb_entry(lastp, struct vm_region, vm_rb);
511
512 BUG_ON(unlikely(region->vm_end <= region->vm_start));
513 BUG_ON(unlikely(region->vm_top < region->vm_end));
514 BUG_ON(unlikely(region->vm_start < last->vm_top));
515
516 lastp = p;
517 }
518 }
519 #else
520 static void validate_nommu_regions(void)
521 {
522 }
523 #endif
524
525 /*
526 * add a region into the global tree
527 */
528 static void add_nommu_region(struct vm_region *region)
529 {
530 struct vm_region *pregion;
531 struct rb_node **p, *parent;
532
533 validate_nommu_regions();
534
535 parent = NULL;
536 p = &nommu_region_tree.rb_node;
537 while (*p) {
538 parent = *p;
539 pregion = rb_entry(parent, struct vm_region, vm_rb);
540 if (region->vm_start < pregion->vm_start)
541 p = &(*p)->rb_left;
542 else if (region->vm_start > pregion->vm_start)
543 p = &(*p)->rb_right;
544 else if (pregion == region)
545 return;
546 else
547 BUG();
548 }
549
550 rb_link_node(&region->vm_rb, parent, p);
551 rb_insert_color(&region->vm_rb, &nommu_region_tree);
552
553 validate_nommu_regions();
554 }
555
556 /*
557 * delete a region from the global tree
558 */
559 static void delete_nommu_region(struct vm_region *region)
560 {
561 BUG_ON(!nommu_region_tree.rb_node);
562
563 validate_nommu_regions();
564 rb_erase(&region->vm_rb, &nommu_region_tree);
565 validate_nommu_regions();
566 }
567
568 /*
569 * free a contiguous series of pages
570 */
571 static void free_page_series(unsigned long from, unsigned long to)
572 {
573 for (; from < to; from += PAGE_SIZE) {
574 struct page *page = virt_to_page(from);
575
576 kdebug("- free %lx", from);
577 atomic_long_dec(&mmap_pages_allocated);
578 if (page_count(page) != 1)
579 kdebug("free page %p: refcount not one: %d",
580 page, page_count(page));
581 put_page(page);
582 }
583 }
584
585 /*
586 * release a reference to a region
587 * - the caller must hold the region semaphore for writing, which this releases
588 * - the region may not have been added to the tree yet, in which case vm_top
589 * will equal vm_start
590 */
591 static void __put_nommu_region(struct vm_region *region)
592 __releases(nommu_region_sem)
593 {
594 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
595
596 BUG_ON(!nommu_region_tree.rb_node);
597
598 if (atomic_dec_and_test(&region->vm_usage)) {
599 if (region->vm_top > region->vm_start)
600 delete_nommu_region(region);
601 up_write(&nommu_region_sem);
602
603 if (region->vm_file)
604 fput(region->vm_file);
605
606 /* IO memory and memory shared directly out of the pagecache
607 * from ramfs/tmpfs mustn't be released here */
608 if (region->vm_flags & VM_MAPPED_COPY) {
609 kdebug("free series");
610 free_page_series(region->vm_start, region->vm_top);
611 }
612 kmem_cache_free(vm_region_jar, region);
613 } else {
614 up_write(&nommu_region_sem);
615 }
616 }
617
618 /*
619 * release a reference to a region
620 */
621 static void put_nommu_region(struct vm_region *region)
622 {
623 down_write(&nommu_region_sem);
624 __put_nommu_region(region);
625 }
626
627 /*
628 * add a VMA into a process's mm_struct in the appropriate place in the list
629 * and tree and add to the address space's page tree also if not an anonymous
630 * page
631 * - should be called with mm->mmap_sem held writelocked
632 */
633 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
634 {
635 struct vm_area_struct *pvma, **pp;
636 struct address_space *mapping;
637 struct rb_node **p, *parent;
638
639 kenter(",%p", vma);
640
641 BUG_ON(!vma->vm_region);
642
643 mm->map_count++;
644 vma->vm_mm = mm;
645
646 /* add the VMA to the mapping */
647 if (vma->vm_file) {
648 mapping = vma->vm_file->f_mapping;
649
650 flush_dcache_mmap_lock(mapping);
651 vma_prio_tree_insert(vma, &mapping->i_mmap);
652 flush_dcache_mmap_unlock(mapping);
653 }
654
655 /* add the VMA to the tree */
656 parent = NULL;
657 p = &mm->mm_rb.rb_node;
658 while (*p) {
659 parent = *p;
660 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
661
662 /* sort by: start addr, end addr, VMA struct addr in that order
663 * (the latter is necessary as we may get identical VMAs) */
664 if (vma->vm_start < pvma->vm_start)
665 p = &(*p)->rb_left;
666 else if (vma->vm_start > pvma->vm_start)
667 p = &(*p)->rb_right;
668 else if (vma->vm_end < pvma->vm_end)
669 p = &(*p)->rb_left;
670 else if (vma->vm_end > pvma->vm_end)
671 p = &(*p)->rb_right;
672 else if (vma < pvma)
673 p = &(*p)->rb_left;
674 else if (vma > pvma)
675 p = &(*p)->rb_right;
676 else
677 BUG();
678 }
679
680 rb_link_node(&vma->vm_rb, parent, p);
681 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
682
683 /* add VMA to the VMA list also */
684 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
685 if (pvma->vm_start > vma->vm_start)
686 break;
687 if (pvma->vm_start < vma->vm_start)
688 continue;
689 if (pvma->vm_end < vma->vm_end)
690 break;
691 }
692
693 vma->vm_next = *pp;
694 *pp = vma;
695 }
696
697 /*
698 * delete a VMA from its owning mm_struct and address space
699 */
700 static void delete_vma_from_mm(struct vm_area_struct *vma)
701 {
702 struct vm_area_struct **pp;
703 struct address_space *mapping;
704 struct mm_struct *mm = vma->vm_mm;
705
706 kenter("%p", vma);
707
708 mm->map_count--;
709 if (mm->mmap_cache == vma)
710 mm->mmap_cache = NULL;
711
712 /* remove the VMA from the mapping */
713 if (vma->vm_file) {
714 mapping = vma->vm_file->f_mapping;
715
716 flush_dcache_mmap_lock(mapping);
717 vma_prio_tree_remove(vma, &mapping->i_mmap);
718 flush_dcache_mmap_unlock(mapping);
719 }
720
721 /* remove from the MM's tree and list */
722 rb_erase(&vma->vm_rb, &mm->mm_rb);
723 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
724 if (*pp == vma) {
725 *pp = vma->vm_next;
726 break;
727 }
728 }
729
730 vma->vm_mm = NULL;
731 }
732
733 /*
734 * destroy a VMA record
735 */
736 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
737 {
738 kenter("%p", vma);
739 if (vma->vm_ops && vma->vm_ops->close)
740 vma->vm_ops->close(vma);
741 if (vma->vm_file) {
742 fput(vma->vm_file);
743 if (vma->vm_flags & VM_EXECUTABLE)
744 removed_exe_file_vma(mm);
745 }
746 put_nommu_region(vma->vm_region);
747 kmem_cache_free(vm_area_cachep, vma);
748 }
749
750 /*
751 * look up the first VMA in which addr resides, NULL if none
752 * - should be called with mm->mmap_sem at least held readlocked
753 */
754 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
755 {
756 struct vm_area_struct *vma;
757 struct rb_node *n = mm->mm_rb.rb_node;
758
759 /* check the cache first */
760 vma = mm->mmap_cache;
761 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
762 return vma;
763
764 /* trawl the tree (there may be multiple mappings in which addr
765 * resides) */
766 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
767 vma = rb_entry(n, struct vm_area_struct, vm_rb);
768 if (vma->vm_start > addr)
769 return NULL;
770 if (vma->vm_end > addr) {
771 mm->mmap_cache = vma;
772 return vma;
773 }
774 }
775
776 return NULL;
777 }
778 EXPORT_SYMBOL(find_vma);
779
780 /*
781 * find a VMA
782 * - we don't extend stack VMAs under NOMMU conditions
783 */
784 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
785 {
786 return find_vma(mm, addr);
787 }
788
789 /*
790 * expand a stack to a given address
791 * - not supported under NOMMU conditions
792 */
793 int expand_stack(struct vm_area_struct *vma, unsigned long address)
794 {
795 return -ENOMEM;
796 }
797
798 /*
799 * look up the first VMA exactly that exactly matches addr
800 * - should be called with mm->mmap_sem at least held readlocked
801 */
802 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
803 unsigned long addr,
804 unsigned long len)
805 {
806 struct vm_area_struct *vma;
807 struct rb_node *n = mm->mm_rb.rb_node;
808 unsigned long end = addr + len;
809
810 /* check the cache first */
811 vma = mm->mmap_cache;
812 if (vma && vma->vm_start == addr && vma->vm_end == end)
813 return vma;
814
815 /* trawl the tree (there may be multiple mappings in which addr
816 * resides) */
817 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
818 vma = rb_entry(n, struct vm_area_struct, vm_rb);
819 if (vma->vm_start < addr)
820 continue;
821 if (vma->vm_start > addr)
822 return NULL;
823 if (vma->vm_end == end) {
824 mm->mmap_cache = vma;
825 return vma;
826 }
827 }
828
829 return NULL;
830 }
831
832 /*
833 * determine whether a mapping should be permitted and, if so, what sort of
834 * mapping we're capable of supporting
835 */
836 static int validate_mmap_request(struct file *file,
837 unsigned long addr,
838 unsigned long len,
839 unsigned long prot,
840 unsigned long flags,
841 unsigned long pgoff,
842 unsigned long *_capabilities)
843 {
844 unsigned long capabilities, rlen;
845 unsigned long reqprot = prot;
846 int ret;
847
848 /* do the simple checks first */
849 if (flags & MAP_FIXED || addr) {
850 printk(KERN_DEBUG
851 "%d: Can't do fixed-address/overlay mmap of RAM\n",
852 current->pid);
853 return -EINVAL;
854 }
855
856 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
857 (flags & MAP_TYPE) != MAP_SHARED)
858 return -EINVAL;
859
860 if (!len)
861 return -EINVAL;
862
863 /* Careful about overflows.. */
864 rlen = PAGE_ALIGN(len);
865 if (!rlen || rlen > TASK_SIZE)
866 return -ENOMEM;
867
868 /* offset overflow? */
869 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
870 return -EOVERFLOW;
871
872 if (file) {
873 /* validate file mapping requests */
874 struct address_space *mapping;
875
876 /* files must support mmap */
877 if (!file->f_op || !file->f_op->mmap)
878 return -ENODEV;
879
880 /* work out if what we've got could possibly be shared
881 * - we support chardevs that provide their own "memory"
882 * - we support files/blockdevs that are memory backed
883 */
884 mapping = file->f_mapping;
885 if (!mapping)
886 mapping = file->f_path.dentry->d_inode->i_mapping;
887
888 capabilities = 0;
889 if (mapping && mapping->backing_dev_info)
890 capabilities = mapping->backing_dev_info->capabilities;
891
892 if (!capabilities) {
893 /* no explicit capabilities set, so assume some
894 * defaults */
895 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
896 case S_IFREG:
897 case S_IFBLK:
898 capabilities = BDI_CAP_MAP_COPY;
899 break;
900
901 case S_IFCHR:
902 capabilities =
903 BDI_CAP_MAP_DIRECT |
904 BDI_CAP_READ_MAP |
905 BDI_CAP_WRITE_MAP;
906 break;
907
908 default:
909 return -EINVAL;
910 }
911 }
912
913 /* eliminate any capabilities that we can't support on this
914 * device */
915 if (!file->f_op->get_unmapped_area)
916 capabilities &= ~BDI_CAP_MAP_DIRECT;
917 if (!file->f_op->read)
918 capabilities &= ~BDI_CAP_MAP_COPY;
919
920 /* The file shall have been opened with read permission. */
921 if (!(file->f_mode & FMODE_READ))
922 return -EACCES;
923
924 if (flags & MAP_SHARED) {
925 /* do checks for writing, appending and locking */
926 if ((prot & PROT_WRITE) &&
927 !(file->f_mode & FMODE_WRITE))
928 return -EACCES;
929
930 if (IS_APPEND(file->f_path.dentry->d_inode) &&
931 (file->f_mode & FMODE_WRITE))
932 return -EACCES;
933
934 if (locks_verify_locked(file->f_path.dentry->d_inode))
935 return -EAGAIN;
936
937 if (!(capabilities & BDI_CAP_MAP_DIRECT))
938 return -ENODEV;
939
940 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
941 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
942 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
943 ) {
944 printk("MAP_SHARED not completely supported on !MMU\n");
945 return -EINVAL;
946 }
947
948 /* we mustn't privatise shared mappings */
949 capabilities &= ~BDI_CAP_MAP_COPY;
950 }
951 else {
952 /* we're going to read the file into private memory we
953 * allocate */
954 if (!(capabilities & BDI_CAP_MAP_COPY))
955 return -ENODEV;
956
957 /* we don't permit a private writable mapping to be
958 * shared with the backing device */
959 if (prot & PROT_WRITE)
960 capabilities &= ~BDI_CAP_MAP_DIRECT;
961 }
962
963 /* handle executable mappings and implied executable
964 * mappings */
965 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
966 if (prot & PROT_EXEC)
967 return -EPERM;
968 }
969 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
970 /* handle implication of PROT_EXEC by PROT_READ */
971 if (current->personality & READ_IMPLIES_EXEC) {
972 if (capabilities & BDI_CAP_EXEC_MAP)
973 prot |= PROT_EXEC;
974 }
975 }
976 else if ((prot & PROT_READ) &&
977 (prot & PROT_EXEC) &&
978 !(capabilities & BDI_CAP_EXEC_MAP)
979 ) {
980 /* backing file is not executable, try to copy */
981 capabilities &= ~BDI_CAP_MAP_DIRECT;
982 }
983 }
984 else {
985 /* anonymous mappings are always memory backed and can be
986 * privately mapped
987 */
988 capabilities = BDI_CAP_MAP_COPY;
989
990 /* handle PROT_EXEC implication by PROT_READ */
991 if ((prot & PROT_READ) &&
992 (current->personality & READ_IMPLIES_EXEC))
993 prot |= PROT_EXEC;
994 }
995
996 /* allow the security API to have its say */
997 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
998 if (ret < 0)
999 return ret;
1000
1001 /* looks okay */
1002 *_capabilities = capabilities;
1003 return 0;
1004 }
1005
1006 /*
1007 * we've determined that we can make the mapping, now translate what we
1008 * now know into VMA flags
1009 */
1010 static unsigned long determine_vm_flags(struct file *file,
1011 unsigned long prot,
1012 unsigned long flags,
1013 unsigned long capabilities)
1014 {
1015 unsigned long vm_flags;
1016
1017 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1018 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1019 /* vm_flags |= mm->def_flags; */
1020
1021 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1022 /* attempt to share read-only copies of mapped file chunks */
1023 if (file && !(prot & PROT_WRITE))
1024 vm_flags |= VM_MAYSHARE;
1025 }
1026 else {
1027 /* overlay a shareable mapping on the backing device or inode
1028 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1029 * romfs/cramfs */
1030 if (flags & MAP_SHARED)
1031 vm_flags |= VM_MAYSHARE | VM_SHARED;
1032 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1033 vm_flags |= VM_MAYSHARE;
1034 }
1035
1036 /* refuse to let anyone share private mappings with this process if
1037 * it's being traced - otherwise breakpoints set in it may interfere
1038 * with another untraced process
1039 */
1040 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1041 vm_flags &= ~VM_MAYSHARE;
1042
1043 return vm_flags;
1044 }
1045
1046 /*
1047 * set up a shared mapping on a file (the driver or filesystem provides and
1048 * pins the storage)
1049 */
1050 static int do_mmap_shared_file(struct vm_area_struct *vma)
1051 {
1052 int ret;
1053
1054 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1055 if (ret == 0) {
1056 vma->vm_region->vm_top = vma->vm_region->vm_end;
1057 return ret;
1058 }
1059 if (ret != -ENOSYS)
1060 return ret;
1061
1062 /* getting an ENOSYS error indicates that direct mmap isn't
1063 * possible (as opposed to tried but failed) so we'll fall
1064 * through to making a private copy of the data and mapping
1065 * that if we can */
1066 return -ENODEV;
1067 }
1068
1069 /*
1070 * set up a private mapping or an anonymous shared mapping
1071 */
1072 static int do_mmap_private(struct vm_area_struct *vma,
1073 struct vm_region *region,
1074 unsigned long len)
1075 {
1076 struct page *pages;
1077 unsigned long total, point, n, rlen;
1078 void *base;
1079 int ret, order;
1080
1081 /* invoke the file's mapping function so that it can keep track of
1082 * shared mappings on devices or memory
1083 * - VM_MAYSHARE will be set if it may attempt to share
1084 */
1085 if (vma->vm_file) {
1086 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1087 if (ret == 0) {
1088 /* shouldn't return success if we're not sharing */
1089 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1090 vma->vm_region->vm_top = vma->vm_region->vm_end;
1091 return ret;
1092 }
1093 if (ret != -ENOSYS)
1094 return ret;
1095
1096 /* getting an ENOSYS error indicates that direct mmap isn't
1097 * possible (as opposed to tried but failed) so we'll try to
1098 * make a private copy of the data and map that instead */
1099 }
1100
1101 rlen = PAGE_ALIGN(len);
1102
1103 /* allocate some memory to hold the mapping
1104 * - note that this may not return a page-aligned address if the object
1105 * we're allocating is smaller than a page
1106 */
1107 order = get_order(rlen);
1108 kdebug("alloc order %d for %lx", order, len);
1109
1110 pages = alloc_pages(GFP_KERNEL, order);
1111 if (!pages)
1112 goto enomem;
1113
1114 total = 1 << order;
1115 atomic_long_add(total, &mmap_pages_allocated);
1116
1117 point = rlen >> PAGE_SHIFT;
1118
1119 /* we allocated a power-of-2 sized page set, so we may want to trim off
1120 * the excess */
1121 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1122 while (total > point) {
1123 order = ilog2(total - point);
1124 n = 1 << order;
1125 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1126 atomic_long_sub(n, &mmap_pages_allocated);
1127 total -= n;
1128 set_page_refcounted(pages + total);
1129 __free_pages(pages + total, order);
1130 }
1131 }
1132
1133 for (point = 1; point < total; point++)
1134 set_page_refcounted(&pages[point]);
1135
1136 base = page_address(pages);
1137 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1138 region->vm_start = (unsigned long) base;
1139 region->vm_end = region->vm_start + rlen;
1140 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1141
1142 vma->vm_start = region->vm_start;
1143 vma->vm_end = region->vm_start + len;
1144
1145 if (vma->vm_file) {
1146 /* read the contents of a file into the copy */
1147 mm_segment_t old_fs;
1148 loff_t fpos;
1149
1150 fpos = vma->vm_pgoff;
1151 fpos <<= PAGE_SHIFT;
1152
1153 old_fs = get_fs();
1154 set_fs(KERNEL_DS);
1155 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1156 set_fs(old_fs);
1157
1158 if (ret < 0)
1159 goto error_free;
1160
1161 /* clear the last little bit */
1162 if (ret < rlen)
1163 memset(base + ret, 0, rlen - ret);
1164
1165 } else {
1166 /* if it's an anonymous mapping, then just clear it */
1167 memset(base, 0, rlen);
1168 }
1169
1170 return 0;
1171
1172 error_free:
1173 free_page_series(region->vm_start, region->vm_end);
1174 region->vm_start = vma->vm_start = 0;
1175 region->vm_end = vma->vm_end = 0;
1176 region->vm_top = 0;
1177 return ret;
1178
1179 enomem:
1180 printk("Allocation of length %lu from process %d (%s) failed\n",
1181 len, current->pid, current->comm);
1182 show_free_areas();
1183 return -ENOMEM;
1184 }
1185
1186 /*
1187 * handle mapping creation for uClinux
1188 */
1189 unsigned long do_mmap_pgoff(struct file *file,
1190 unsigned long addr,
1191 unsigned long len,
1192 unsigned long prot,
1193 unsigned long flags,
1194 unsigned long pgoff)
1195 {
1196 struct vm_area_struct *vma;
1197 struct vm_region *region;
1198 struct rb_node *rb;
1199 unsigned long capabilities, vm_flags, result;
1200 int ret;
1201
1202 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1203
1204 if (!(flags & MAP_FIXED))
1205 addr = round_hint_to_min(addr);
1206
1207 /* decide whether we should attempt the mapping, and if so what sort of
1208 * mapping */
1209 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1210 &capabilities);
1211 if (ret < 0) {
1212 kleave(" = %d [val]", ret);
1213 return ret;
1214 }
1215
1216 /* we've determined that we can make the mapping, now translate what we
1217 * now know into VMA flags */
1218 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1219
1220 /* we're going to need to record the mapping */
1221 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1222 if (!region)
1223 goto error_getting_region;
1224
1225 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1226 if (!vma)
1227 goto error_getting_vma;
1228
1229 atomic_set(&region->vm_usage, 1);
1230 region->vm_flags = vm_flags;
1231 region->vm_pgoff = pgoff;
1232
1233 INIT_LIST_HEAD(&vma->anon_vma_node);
1234 vma->vm_flags = vm_flags;
1235 vma->vm_pgoff = pgoff;
1236
1237 if (file) {
1238 region->vm_file = file;
1239 get_file(file);
1240 vma->vm_file = file;
1241 get_file(file);
1242 if (vm_flags & VM_EXECUTABLE) {
1243 added_exe_file_vma(current->mm);
1244 vma->vm_mm = current->mm;
1245 }
1246 }
1247
1248 down_write(&nommu_region_sem);
1249
1250 /* if we want to share, we need to check for regions created by other
1251 * mmap() calls that overlap with our proposed mapping
1252 * - we can only share with a superset match on most regular files
1253 * - shared mappings on character devices and memory backed files are
1254 * permitted to overlap inexactly as far as we are concerned for in
1255 * these cases, sharing is handled in the driver or filesystem rather
1256 * than here
1257 */
1258 if (vm_flags & VM_MAYSHARE) {
1259 struct vm_region *pregion;
1260 unsigned long pglen, rpglen, pgend, rpgend, start;
1261
1262 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1263 pgend = pgoff + pglen;
1264
1265 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1266 pregion = rb_entry(rb, struct vm_region, vm_rb);
1267
1268 if (!(pregion->vm_flags & VM_MAYSHARE))
1269 continue;
1270
1271 /* search for overlapping mappings on the same file */
1272 if (pregion->vm_file->f_path.dentry->d_inode !=
1273 file->f_path.dentry->d_inode)
1274 continue;
1275
1276 if (pregion->vm_pgoff >= pgend)
1277 continue;
1278
1279 rpglen = pregion->vm_end - pregion->vm_start;
1280 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1281 rpgend = pregion->vm_pgoff + rpglen;
1282 if (pgoff >= rpgend)
1283 continue;
1284
1285 /* handle inexactly overlapping matches between
1286 * mappings */
1287 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1288 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1289 /* new mapping is not a subset of the region */
1290 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1291 goto sharing_violation;
1292 continue;
1293 }
1294
1295 /* we've found a region we can share */
1296 atomic_inc(&pregion->vm_usage);
1297 vma->vm_region = pregion;
1298 start = pregion->vm_start;
1299 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1300 vma->vm_start = start;
1301 vma->vm_end = start + len;
1302
1303 if (pregion->vm_flags & VM_MAPPED_COPY) {
1304 kdebug("share copy");
1305 vma->vm_flags |= VM_MAPPED_COPY;
1306 } else {
1307 kdebug("share mmap");
1308 ret = do_mmap_shared_file(vma);
1309 if (ret < 0) {
1310 vma->vm_region = NULL;
1311 vma->vm_start = 0;
1312 vma->vm_end = 0;
1313 atomic_dec(&pregion->vm_usage);
1314 pregion = NULL;
1315 goto error_just_free;
1316 }
1317 }
1318 fput(region->vm_file);
1319 kmem_cache_free(vm_region_jar, region);
1320 region = pregion;
1321 result = start;
1322 goto share;
1323 }
1324
1325 /* obtain the address at which to make a shared mapping
1326 * - this is the hook for quasi-memory character devices to
1327 * tell us the location of a shared mapping
1328 */
1329 if (file && file->f_op->get_unmapped_area) {
1330 addr = file->f_op->get_unmapped_area(file, addr, len,
1331 pgoff, flags);
1332 if (IS_ERR((void *) addr)) {
1333 ret = addr;
1334 if (ret != (unsigned long) -ENOSYS)
1335 goto error_just_free;
1336
1337 /* the driver refused to tell us where to site
1338 * the mapping so we'll have to attempt to copy
1339 * it */
1340 ret = (unsigned long) -ENODEV;
1341 if (!(capabilities & BDI_CAP_MAP_COPY))
1342 goto error_just_free;
1343
1344 capabilities &= ~BDI_CAP_MAP_DIRECT;
1345 } else {
1346 vma->vm_start = region->vm_start = addr;
1347 vma->vm_end = region->vm_end = addr + len;
1348 }
1349 }
1350 }
1351
1352 vma->vm_region = region;
1353 add_nommu_region(region);
1354
1355 /* set up the mapping */
1356 if (file && vma->vm_flags & VM_SHARED)
1357 ret = do_mmap_shared_file(vma);
1358 else
1359 ret = do_mmap_private(vma, region, len);
1360 if (ret < 0)
1361 goto error_put_region;
1362
1363 /* okay... we have a mapping; now we have to register it */
1364 result = vma->vm_start;
1365
1366 current->mm->total_vm += len >> PAGE_SHIFT;
1367
1368 share:
1369 add_vma_to_mm(current->mm, vma);
1370
1371 up_write(&nommu_region_sem);
1372
1373 if (prot & PROT_EXEC)
1374 flush_icache_range(result, result + len);
1375
1376 kleave(" = %lx", result);
1377 return result;
1378
1379 error_put_region:
1380 __put_nommu_region(region);
1381 if (vma) {
1382 if (vma->vm_file) {
1383 fput(vma->vm_file);
1384 if (vma->vm_flags & VM_EXECUTABLE)
1385 removed_exe_file_vma(vma->vm_mm);
1386 }
1387 kmem_cache_free(vm_area_cachep, vma);
1388 }
1389 kleave(" = %d [pr]", ret);
1390 return ret;
1391
1392 error_just_free:
1393 up_write(&nommu_region_sem);
1394 error:
1395 fput(region->vm_file);
1396 kmem_cache_free(vm_region_jar, region);
1397 fput(vma->vm_file);
1398 if (vma->vm_flags & VM_EXECUTABLE)
1399 removed_exe_file_vma(vma->vm_mm);
1400 kmem_cache_free(vm_area_cachep, vma);
1401 kleave(" = %d", ret);
1402 return ret;
1403
1404 sharing_violation:
1405 up_write(&nommu_region_sem);
1406 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1407 ret = -EINVAL;
1408 goto error;
1409
1410 error_getting_vma:
1411 kmem_cache_free(vm_region_jar, region);
1412 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1413 " from process %d failed\n",
1414 len, current->pid);
1415 show_free_areas();
1416 return -ENOMEM;
1417
1418 error_getting_region:
1419 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1420 " from process %d failed\n",
1421 len, current->pid);
1422 show_free_areas();
1423 return -ENOMEM;
1424 }
1425 EXPORT_SYMBOL(do_mmap_pgoff);
1426
1427 /*
1428 * split a vma into two pieces at address 'addr', a new vma is allocated either
1429 * for the first part or the tail.
1430 */
1431 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1432 unsigned long addr, int new_below)
1433 {
1434 struct vm_area_struct *new;
1435 struct vm_region *region;
1436 unsigned long npages;
1437
1438 kenter("");
1439
1440 /* we're only permitted to split anonymous regions that have a single
1441 * owner */
1442 if (vma->vm_file ||
1443 atomic_read(&vma->vm_region->vm_usage) != 1)
1444 return -ENOMEM;
1445
1446 if (mm->map_count >= sysctl_max_map_count)
1447 return -ENOMEM;
1448
1449 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1450 if (!region)
1451 return -ENOMEM;
1452
1453 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1454 if (!new) {
1455 kmem_cache_free(vm_region_jar, region);
1456 return -ENOMEM;
1457 }
1458
1459 /* most fields are the same, copy all, and then fixup */
1460 *new = *vma;
1461 *region = *vma->vm_region;
1462 new->vm_region = region;
1463
1464 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1465
1466 if (new_below) {
1467 region->vm_top = region->vm_end = new->vm_end = addr;
1468 } else {
1469 region->vm_start = new->vm_start = addr;
1470 region->vm_pgoff = new->vm_pgoff += npages;
1471 }
1472
1473 if (new->vm_ops && new->vm_ops->open)
1474 new->vm_ops->open(new);
1475
1476 delete_vma_from_mm(vma);
1477 down_write(&nommu_region_sem);
1478 delete_nommu_region(vma->vm_region);
1479 if (new_below) {
1480 vma->vm_region->vm_start = vma->vm_start = addr;
1481 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1482 } else {
1483 vma->vm_region->vm_end = vma->vm_end = addr;
1484 vma->vm_region->vm_top = addr;
1485 }
1486 add_nommu_region(vma->vm_region);
1487 add_nommu_region(new->vm_region);
1488 up_write(&nommu_region_sem);
1489 add_vma_to_mm(mm, vma);
1490 add_vma_to_mm(mm, new);
1491 return 0;
1492 }
1493
1494 /*
1495 * shrink a VMA by removing the specified chunk from either the beginning or
1496 * the end
1497 */
1498 static int shrink_vma(struct mm_struct *mm,
1499 struct vm_area_struct *vma,
1500 unsigned long from, unsigned long to)
1501 {
1502 struct vm_region *region;
1503
1504 kenter("");
1505
1506 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1507 * and list */
1508 delete_vma_from_mm(vma);
1509 if (from > vma->vm_start)
1510 vma->vm_end = from;
1511 else
1512 vma->vm_start = to;
1513 add_vma_to_mm(mm, vma);
1514
1515 /* cut the backing region down to size */
1516 region = vma->vm_region;
1517 BUG_ON(atomic_read(&region->vm_usage) != 1);
1518
1519 down_write(&nommu_region_sem);
1520 delete_nommu_region(region);
1521 if (from > region->vm_start) {
1522 to = region->vm_top;
1523 region->vm_top = region->vm_end = from;
1524 } else {
1525 region->vm_start = to;
1526 }
1527 add_nommu_region(region);
1528 up_write(&nommu_region_sem);
1529
1530 free_page_series(from, to);
1531 return 0;
1532 }
1533
1534 /*
1535 * release a mapping
1536 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1537 * VMA, though it need not cover the whole VMA
1538 */
1539 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1540 {
1541 struct vm_area_struct *vma;
1542 struct rb_node *rb;
1543 unsigned long end = start + len;
1544 int ret;
1545
1546 kenter(",%lx,%zx", start, len);
1547
1548 if (len == 0)
1549 return -EINVAL;
1550
1551 /* find the first potentially overlapping VMA */
1552 vma = find_vma(mm, start);
1553 if (!vma) {
1554 static int limit = 0;
1555 if (limit < 5) {
1556 printk(KERN_WARNING
1557 "munmap of memory not mmapped by process %d"
1558 " (%s): 0x%lx-0x%lx\n",
1559 current->pid, current->comm,
1560 start, start + len - 1);
1561 limit++;
1562 }
1563 return -EINVAL;
1564 }
1565
1566 /* we're allowed to split an anonymous VMA but not a file-backed one */
1567 if (vma->vm_file) {
1568 do {
1569 if (start > vma->vm_start) {
1570 kleave(" = -EINVAL [miss]");
1571 return -EINVAL;
1572 }
1573 if (end == vma->vm_end)
1574 goto erase_whole_vma;
1575 rb = rb_next(&vma->vm_rb);
1576 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1577 } while (rb);
1578 kleave(" = -EINVAL [split file]");
1579 return -EINVAL;
1580 } else {
1581 /* the chunk must be a subset of the VMA found */
1582 if (start == vma->vm_start && end == vma->vm_end)
1583 goto erase_whole_vma;
1584 if (start < vma->vm_start || end > vma->vm_end) {
1585 kleave(" = -EINVAL [superset]");
1586 return -EINVAL;
1587 }
1588 if (start & ~PAGE_MASK) {
1589 kleave(" = -EINVAL [unaligned start]");
1590 return -EINVAL;
1591 }
1592 if (end != vma->vm_end && end & ~PAGE_MASK) {
1593 kleave(" = -EINVAL [unaligned split]");
1594 return -EINVAL;
1595 }
1596 if (start != vma->vm_start && end != vma->vm_end) {
1597 ret = split_vma(mm, vma, start, 1);
1598 if (ret < 0) {
1599 kleave(" = %d [split]", ret);
1600 return ret;
1601 }
1602 }
1603 return shrink_vma(mm, vma, start, end);
1604 }
1605
1606 erase_whole_vma:
1607 delete_vma_from_mm(vma);
1608 delete_vma(mm, vma);
1609 kleave(" = 0");
1610 return 0;
1611 }
1612 EXPORT_SYMBOL(do_munmap);
1613
1614 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1615 {
1616 int ret;
1617 struct mm_struct *mm = current->mm;
1618
1619 down_write(&mm->mmap_sem);
1620 ret = do_munmap(mm, addr, len);
1621 up_write(&mm->mmap_sem);
1622 return ret;
1623 }
1624
1625 /*
1626 * release all the mappings made in a process's VM space
1627 */
1628 void exit_mmap(struct mm_struct *mm)
1629 {
1630 struct vm_area_struct *vma;
1631
1632 if (!mm)
1633 return;
1634
1635 kenter("");
1636
1637 mm->total_vm = 0;
1638
1639 while ((vma = mm->mmap)) {
1640 mm->mmap = vma->vm_next;
1641 delete_vma_from_mm(vma);
1642 delete_vma(mm, vma);
1643 }
1644
1645 kleave("");
1646 }
1647
1648 unsigned long do_brk(unsigned long addr, unsigned long len)
1649 {
1650 return -ENOMEM;
1651 }
1652
1653 /*
1654 * expand (or shrink) an existing mapping, potentially moving it at the same
1655 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1656 *
1657 * under NOMMU conditions, we only permit changing a mapping's size, and only
1658 * as long as it stays within the region allocated by do_mmap_private() and the
1659 * block is not shareable
1660 *
1661 * MREMAP_FIXED is not supported under NOMMU conditions
1662 */
1663 unsigned long do_mremap(unsigned long addr,
1664 unsigned long old_len, unsigned long new_len,
1665 unsigned long flags, unsigned long new_addr)
1666 {
1667 struct vm_area_struct *vma;
1668
1669 /* insanity checks first */
1670 if (old_len == 0 || new_len == 0)
1671 return (unsigned long) -EINVAL;
1672
1673 if (addr & ~PAGE_MASK)
1674 return -EINVAL;
1675
1676 if (flags & MREMAP_FIXED && new_addr != addr)
1677 return (unsigned long) -EINVAL;
1678
1679 vma = find_vma_exact(current->mm, addr, old_len);
1680 if (!vma)
1681 return (unsigned long) -EINVAL;
1682
1683 if (vma->vm_end != vma->vm_start + old_len)
1684 return (unsigned long) -EFAULT;
1685
1686 if (vma->vm_flags & VM_MAYSHARE)
1687 return (unsigned long) -EPERM;
1688
1689 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1690 return (unsigned long) -ENOMEM;
1691
1692 /* all checks complete - do it */
1693 vma->vm_end = vma->vm_start + new_len;
1694 return vma->vm_start;
1695 }
1696 EXPORT_SYMBOL(do_mremap);
1697
1698 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1699 unsigned long, new_len, unsigned long, flags,
1700 unsigned long, new_addr)
1701 {
1702 unsigned long ret;
1703
1704 down_write(&current->mm->mmap_sem);
1705 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1706 up_write(&current->mm->mmap_sem);
1707 return ret;
1708 }
1709
1710 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1711 unsigned int foll_flags)
1712 {
1713 return NULL;
1714 }
1715
1716 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1717 unsigned long to, unsigned long size, pgprot_t prot)
1718 {
1719 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1720 return 0;
1721 }
1722 EXPORT_SYMBOL(remap_pfn_range);
1723
1724 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1725 unsigned long pgoff)
1726 {
1727 unsigned int size = vma->vm_end - vma->vm_start;
1728
1729 if (!(vma->vm_flags & VM_USERMAP))
1730 return -EINVAL;
1731
1732 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1733 vma->vm_end = vma->vm_start + size;
1734
1735 return 0;
1736 }
1737 EXPORT_SYMBOL(remap_vmalloc_range);
1738
1739 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1740 {
1741 }
1742
1743 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1744 unsigned long len, unsigned long pgoff, unsigned long flags)
1745 {
1746 return -ENOMEM;
1747 }
1748
1749 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1750 {
1751 }
1752
1753 void unmap_mapping_range(struct address_space *mapping,
1754 loff_t const holebegin, loff_t const holelen,
1755 int even_cows)
1756 {
1757 }
1758 EXPORT_SYMBOL(unmap_mapping_range);
1759
1760 /*
1761 * ask for an unmapped area at which to create a mapping on a file
1762 */
1763 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1764 unsigned long len, unsigned long pgoff,
1765 unsigned long flags)
1766 {
1767 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1768 unsigned long, unsigned long);
1769
1770 get_area = current->mm->get_unmapped_area;
1771 if (file && file->f_op && file->f_op->get_unmapped_area)
1772 get_area = file->f_op->get_unmapped_area;
1773
1774 if (!get_area)
1775 return -ENOSYS;
1776
1777 return get_area(file, addr, len, pgoff, flags);
1778 }
1779 EXPORT_SYMBOL(get_unmapped_area);
1780
1781 /*
1782 * Check that a process has enough memory to allocate a new virtual
1783 * mapping. 0 means there is enough memory for the allocation to
1784 * succeed and -ENOMEM implies there is not.
1785 *
1786 * We currently support three overcommit policies, which are set via the
1787 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1788 *
1789 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1790 * Additional code 2002 Jul 20 by Robert Love.
1791 *
1792 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1793 *
1794 * Note this is a helper function intended to be used by LSMs which
1795 * wish to use this logic.
1796 */
1797 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1798 {
1799 unsigned long free, allowed;
1800
1801 vm_acct_memory(pages);
1802
1803 /*
1804 * Sometimes we want to use more memory than we have
1805 */
1806 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1807 return 0;
1808
1809 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1810 unsigned long n;
1811
1812 free = global_page_state(NR_FILE_PAGES);
1813 free += nr_swap_pages;
1814
1815 /*
1816 * Any slabs which are created with the
1817 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1818 * which are reclaimable, under pressure. The dentry
1819 * cache and most inode caches should fall into this
1820 */
1821 free += global_page_state(NR_SLAB_RECLAIMABLE);
1822
1823 /*
1824 * Leave the last 3% for root
1825 */
1826 if (!cap_sys_admin)
1827 free -= free / 32;
1828
1829 if (free > pages)
1830 return 0;
1831
1832 /*
1833 * nr_free_pages() is very expensive on large systems,
1834 * only call if we're about to fail.
1835 */
1836 n = nr_free_pages();
1837
1838 /*
1839 * Leave reserved pages. The pages are not for anonymous pages.
1840 */
1841 if (n <= totalreserve_pages)
1842 goto error;
1843 else
1844 n -= totalreserve_pages;
1845
1846 /*
1847 * Leave the last 3% for root
1848 */
1849 if (!cap_sys_admin)
1850 n -= n / 32;
1851 free += n;
1852
1853 if (free > pages)
1854 return 0;
1855
1856 goto error;
1857 }
1858
1859 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1860 /*
1861 * Leave the last 3% for root
1862 */
1863 if (!cap_sys_admin)
1864 allowed -= allowed / 32;
1865 allowed += total_swap_pages;
1866
1867 /* Don't let a single process grow too big:
1868 leave 3% of the size of this process for other processes */
1869 if (mm)
1870 allowed -= mm->total_vm / 32;
1871
1872 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1873 return 0;
1874
1875 error:
1876 vm_unacct_memory(pages);
1877
1878 return -ENOMEM;
1879 }
1880
1881 int in_gate_area_no_task(unsigned long addr)
1882 {
1883 return 0;
1884 }
1885
1886 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1887 {
1888 BUG();
1889 return 0;
1890 }
1891 EXPORT_SYMBOL(filemap_fault);
1892
1893 /*
1894 * Access another process' address space.
1895 * - source/target buffer must be kernel space
1896 */
1897 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1898 {
1899 struct vm_area_struct *vma;
1900 struct mm_struct *mm;
1901
1902 if (addr + len < addr)
1903 return 0;
1904
1905 mm = get_task_mm(tsk);
1906 if (!mm)
1907 return 0;
1908
1909 down_read(&mm->mmap_sem);
1910
1911 /* the access must start within one of the target process's mappings */
1912 vma = find_vma(mm, addr);
1913 if (vma) {
1914 /* don't overrun this mapping */
1915 if (addr + len >= vma->vm_end)
1916 len = vma->vm_end - addr;
1917
1918 /* only read or write mappings where it is permitted */
1919 if (write && vma->vm_flags & VM_MAYWRITE)
1920 len -= copy_to_user((void *) addr, buf, len);
1921 else if (!write && vma->vm_flags & VM_MAYREAD)
1922 len -= copy_from_user(buf, (void *) addr, len);
1923 else
1924 len = 0;
1925 } else {
1926 len = 0;
1927 }
1928
1929 up_read(&mm->mmap_sem);
1930 mmput(mm);
1931 return len;
1932 }
This page took 0.069685 seconds and 5 git commands to generate.