ASoC: twl6040: Replace w->codec snd_soc_dapm_to_codec(w->dapm)
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 struct page *mem_map;
63 unsigned long max_mapnr;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 unsigned long sysctl_overcommit_kbytes __read_mostly;
69 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
70 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
71 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
72 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
73 int heap_stack_gap = 0;
74
75 atomic_long_t mmap_pages_allocated;
76
77 /*
78 * The global memory commitment made in the system can be a metric
79 * that can be used to drive ballooning decisions when Linux is hosted
80 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
81 * balancing memory across competing virtual machines that are hosted.
82 * Several metrics drive this policy engine including the guest reported
83 * memory commitment.
84 */
85 unsigned long vm_memory_committed(void)
86 {
87 return percpu_counter_read_positive(&vm_committed_as);
88 }
89
90 EXPORT_SYMBOL_GPL(vm_memory_committed);
91
92 EXPORT_SYMBOL(mem_map);
93
94 /* list of mapped, potentially shareable regions */
95 static struct kmem_cache *vm_region_jar;
96 struct rb_root nommu_region_tree = RB_ROOT;
97 DECLARE_RWSEM(nommu_region_sem);
98
99 const struct vm_operations_struct generic_file_vm_ops = {
100 };
101
102 /*
103 * Return the total memory allocated for this pointer, not
104 * just what the caller asked for.
105 *
106 * Doesn't have to be accurate, i.e. may have races.
107 */
108 unsigned int kobjsize(const void *objp)
109 {
110 struct page *page;
111
112 /*
113 * If the object we have should not have ksize performed on it,
114 * return size of 0
115 */
116 if (!objp || !virt_addr_valid(objp))
117 return 0;
118
119 page = virt_to_head_page(objp);
120
121 /*
122 * If the allocator sets PageSlab, we know the pointer came from
123 * kmalloc().
124 */
125 if (PageSlab(page))
126 return ksize(objp);
127
128 /*
129 * If it's not a compound page, see if we have a matching VMA
130 * region. This test is intentionally done in reverse order,
131 * so if there's no VMA, we still fall through and hand back
132 * PAGE_SIZE for 0-order pages.
133 */
134 if (!PageCompound(page)) {
135 struct vm_area_struct *vma;
136
137 vma = find_vma(current->mm, (unsigned long)objp);
138 if (vma)
139 return vma->vm_end - vma->vm_start;
140 }
141
142 /*
143 * The ksize() function is only guaranteed to work for pointers
144 * returned by kmalloc(). So handle arbitrary pointers here.
145 */
146 return PAGE_SIZE << compound_order(page);
147 }
148
149 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
150 unsigned long start, unsigned long nr_pages,
151 unsigned int foll_flags, struct page **pages,
152 struct vm_area_struct **vmas, int *nonblocking)
153 {
154 struct vm_area_struct *vma;
155 unsigned long vm_flags;
156 int i;
157
158 /* calculate required read or write permissions.
159 * If FOLL_FORCE is set, we only require the "MAY" flags.
160 */
161 vm_flags = (foll_flags & FOLL_WRITE) ?
162 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
163 vm_flags &= (foll_flags & FOLL_FORCE) ?
164 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
165
166 for (i = 0; i < nr_pages; i++) {
167 vma = find_vma(mm, start);
168 if (!vma)
169 goto finish_or_fault;
170
171 /* protect what we can, including chardevs */
172 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
173 !(vm_flags & vma->vm_flags))
174 goto finish_or_fault;
175
176 if (pages) {
177 pages[i] = virt_to_page(start);
178 if (pages[i])
179 page_cache_get(pages[i]);
180 }
181 if (vmas)
182 vmas[i] = vma;
183 start = (start + PAGE_SIZE) & PAGE_MASK;
184 }
185
186 return i;
187
188 finish_or_fault:
189 return i ? : -EFAULT;
190 }
191
192 /*
193 * get a list of pages in an address range belonging to the specified process
194 * and indicate the VMA that covers each page
195 * - this is potentially dodgy as we may end incrementing the page count of a
196 * slab page or a secondary page from a compound page
197 * - don't permit access to VMAs that don't support it, such as I/O mappings
198 */
199 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
200 unsigned long start, unsigned long nr_pages,
201 int write, int force, struct page **pages,
202 struct vm_area_struct **vmas)
203 {
204 int flags = 0;
205
206 if (write)
207 flags |= FOLL_WRITE;
208 if (force)
209 flags |= FOLL_FORCE;
210
211 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
212 NULL);
213 }
214 EXPORT_SYMBOL(get_user_pages);
215
216 /**
217 * follow_pfn - look up PFN at a user virtual address
218 * @vma: memory mapping
219 * @address: user virtual address
220 * @pfn: location to store found PFN
221 *
222 * Only IO mappings and raw PFN mappings are allowed.
223 *
224 * Returns zero and the pfn at @pfn on success, -ve otherwise.
225 */
226 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
227 unsigned long *pfn)
228 {
229 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
230 return -EINVAL;
231
232 *pfn = address >> PAGE_SHIFT;
233 return 0;
234 }
235 EXPORT_SYMBOL(follow_pfn);
236
237 LIST_HEAD(vmap_area_list);
238
239 void vfree(const void *addr)
240 {
241 kfree(addr);
242 }
243 EXPORT_SYMBOL(vfree);
244
245 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
246 {
247 /*
248 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
249 * returns only a logical address.
250 */
251 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
252 }
253 EXPORT_SYMBOL(__vmalloc);
254
255 void *vmalloc_user(unsigned long size)
256 {
257 void *ret;
258
259 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
260 PAGE_KERNEL);
261 if (ret) {
262 struct vm_area_struct *vma;
263
264 down_write(&current->mm->mmap_sem);
265 vma = find_vma(current->mm, (unsigned long)ret);
266 if (vma)
267 vma->vm_flags |= VM_USERMAP;
268 up_write(&current->mm->mmap_sem);
269 }
270
271 return ret;
272 }
273 EXPORT_SYMBOL(vmalloc_user);
274
275 struct page *vmalloc_to_page(const void *addr)
276 {
277 return virt_to_page(addr);
278 }
279 EXPORT_SYMBOL(vmalloc_to_page);
280
281 unsigned long vmalloc_to_pfn(const void *addr)
282 {
283 return page_to_pfn(virt_to_page(addr));
284 }
285 EXPORT_SYMBOL(vmalloc_to_pfn);
286
287 long vread(char *buf, char *addr, unsigned long count)
288 {
289 /* Don't allow overflow */
290 if ((unsigned long) buf + count < count)
291 count = -(unsigned long) buf;
292
293 memcpy(buf, addr, count);
294 return count;
295 }
296
297 long vwrite(char *buf, char *addr, unsigned long count)
298 {
299 /* Don't allow overflow */
300 if ((unsigned long) addr + count < count)
301 count = -(unsigned long) addr;
302
303 memcpy(addr, buf, count);
304 return count;
305 }
306
307 /*
308 * vmalloc - allocate virtually continguos memory
309 *
310 * @size: allocation size
311 *
312 * Allocate enough pages to cover @size from the page level
313 * allocator and map them into continguos kernel virtual space.
314 *
315 * For tight control over page level allocator and protection flags
316 * use __vmalloc() instead.
317 */
318 void *vmalloc(unsigned long size)
319 {
320 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
321 }
322 EXPORT_SYMBOL(vmalloc);
323
324 /*
325 * vzalloc - allocate virtually continguos memory with zero fill
326 *
327 * @size: allocation size
328 *
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
331 * The memory allocated is set to zero.
332 *
333 * For tight control over page level allocator and protection flags
334 * use __vmalloc() instead.
335 */
336 void *vzalloc(unsigned long size)
337 {
338 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
339 PAGE_KERNEL);
340 }
341 EXPORT_SYMBOL(vzalloc);
342
343 /**
344 * vmalloc_node - allocate memory on a specific node
345 * @size: allocation size
346 * @node: numa node
347 *
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into contiguous kernel virtual space.
350 *
351 * For tight control over page level allocator and protection flags
352 * use __vmalloc() instead.
353 */
354 void *vmalloc_node(unsigned long size, int node)
355 {
356 return vmalloc(size);
357 }
358 EXPORT_SYMBOL(vmalloc_node);
359
360 /**
361 * vzalloc_node - allocate memory on a specific node with zero fill
362 * @size: allocation size
363 * @node: numa node
364 *
365 * Allocate enough pages to cover @size from the page level
366 * allocator and map them into contiguous kernel virtual space.
367 * The memory allocated is set to zero.
368 *
369 * For tight control over page level allocator and protection flags
370 * use __vmalloc() instead.
371 */
372 void *vzalloc_node(unsigned long size, int node)
373 {
374 return vzalloc(size);
375 }
376 EXPORT_SYMBOL(vzalloc_node);
377
378 #ifndef PAGE_KERNEL_EXEC
379 # define PAGE_KERNEL_EXEC PAGE_KERNEL
380 #endif
381
382 /**
383 * vmalloc_exec - allocate virtually contiguous, executable memory
384 * @size: allocation size
385 *
386 * Kernel-internal function to allocate enough pages to cover @size
387 * the page level allocator and map them into contiguous and
388 * executable kernel virtual space.
389 *
390 * For tight control over page level allocator and protection flags
391 * use __vmalloc() instead.
392 */
393
394 void *vmalloc_exec(unsigned long size)
395 {
396 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
397 }
398
399 /**
400 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
401 * @size: allocation size
402 *
403 * Allocate enough 32bit PA addressable pages to cover @size from the
404 * page level allocator and map them into continguos kernel virtual space.
405 */
406 void *vmalloc_32(unsigned long size)
407 {
408 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
409 }
410 EXPORT_SYMBOL(vmalloc_32);
411
412 /**
413 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
414 * @size: allocation size
415 *
416 * The resulting memory area is 32bit addressable and zeroed so it can be
417 * mapped to userspace without leaking data.
418 *
419 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
420 * remap_vmalloc_range() are permissible.
421 */
422 void *vmalloc_32_user(unsigned long size)
423 {
424 /*
425 * We'll have to sort out the ZONE_DMA bits for 64-bit,
426 * but for now this can simply use vmalloc_user() directly.
427 */
428 return vmalloc_user(size);
429 }
430 EXPORT_SYMBOL(vmalloc_32_user);
431
432 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
433 {
434 BUG();
435 return NULL;
436 }
437 EXPORT_SYMBOL(vmap);
438
439 void vunmap(const void *addr)
440 {
441 BUG();
442 }
443 EXPORT_SYMBOL(vunmap);
444
445 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
446 {
447 BUG();
448 return NULL;
449 }
450 EXPORT_SYMBOL(vm_map_ram);
451
452 void vm_unmap_ram(const void *mem, unsigned int count)
453 {
454 BUG();
455 }
456 EXPORT_SYMBOL(vm_unmap_ram);
457
458 void vm_unmap_aliases(void)
459 {
460 }
461 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
462
463 /*
464 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
465 * have one.
466 */
467 void __weak vmalloc_sync_all(void)
468 {
469 }
470
471 /**
472 * alloc_vm_area - allocate a range of kernel address space
473 * @size: size of the area
474 *
475 * Returns: NULL on failure, vm_struct on success
476 *
477 * This function reserves a range of kernel address space, and
478 * allocates pagetables to map that range. No actual mappings
479 * are created. If the kernel address space is not shared
480 * between processes, it syncs the pagetable across all
481 * processes.
482 */
483 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
484 {
485 BUG();
486 return NULL;
487 }
488 EXPORT_SYMBOL_GPL(alloc_vm_area);
489
490 void free_vm_area(struct vm_struct *area)
491 {
492 BUG();
493 }
494 EXPORT_SYMBOL_GPL(free_vm_area);
495
496 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
497 struct page *page)
498 {
499 return -EINVAL;
500 }
501 EXPORT_SYMBOL(vm_insert_page);
502
503 /*
504 * sys_brk() for the most part doesn't need the global kernel
505 * lock, except when an application is doing something nasty
506 * like trying to un-brk an area that has already been mapped
507 * to a regular file. in this case, the unmapping will need
508 * to invoke file system routines that need the global lock.
509 */
510 SYSCALL_DEFINE1(brk, unsigned long, brk)
511 {
512 struct mm_struct *mm = current->mm;
513
514 if (brk < mm->start_brk || brk > mm->context.end_brk)
515 return mm->brk;
516
517 if (mm->brk == brk)
518 return mm->brk;
519
520 /*
521 * Always allow shrinking brk
522 */
523 if (brk <= mm->brk) {
524 mm->brk = brk;
525 return brk;
526 }
527
528 /*
529 * Ok, looks good - let it rip.
530 */
531 flush_icache_range(mm->brk, brk);
532 return mm->brk = brk;
533 }
534
535 /*
536 * initialise the VMA and region record slabs
537 */
538 void __init mmap_init(void)
539 {
540 int ret;
541
542 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
543 VM_BUG_ON(ret);
544 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
545 }
546
547 /*
548 * validate the region tree
549 * - the caller must hold the region lock
550 */
551 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
552 static noinline void validate_nommu_regions(void)
553 {
554 struct vm_region *region, *last;
555 struct rb_node *p, *lastp;
556
557 lastp = rb_first(&nommu_region_tree);
558 if (!lastp)
559 return;
560
561 last = rb_entry(lastp, struct vm_region, vm_rb);
562 BUG_ON(unlikely(last->vm_end <= last->vm_start));
563 BUG_ON(unlikely(last->vm_top < last->vm_end));
564
565 while ((p = rb_next(lastp))) {
566 region = rb_entry(p, struct vm_region, vm_rb);
567 last = rb_entry(lastp, struct vm_region, vm_rb);
568
569 BUG_ON(unlikely(region->vm_end <= region->vm_start));
570 BUG_ON(unlikely(region->vm_top < region->vm_end));
571 BUG_ON(unlikely(region->vm_start < last->vm_top));
572
573 lastp = p;
574 }
575 }
576 #else
577 static void validate_nommu_regions(void)
578 {
579 }
580 #endif
581
582 /*
583 * add a region into the global tree
584 */
585 static void add_nommu_region(struct vm_region *region)
586 {
587 struct vm_region *pregion;
588 struct rb_node **p, *parent;
589
590 validate_nommu_regions();
591
592 parent = NULL;
593 p = &nommu_region_tree.rb_node;
594 while (*p) {
595 parent = *p;
596 pregion = rb_entry(parent, struct vm_region, vm_rb);
597 if (region->vm_start < pregion->vm_start)
598 p = &(*p)->rb_left;
599 else if (region->vm_start > pregion->vm_start)
600 p = &(*p)->rb_right;
601 else if (pregion == region)
602 return;
603 else
604 BUG();
605 }
606
607 rb_link_node(&region->vm_rb, parent, p);
608 rb_insert_color(&region->vm_rb, &nommu_region_tree);
609
610 validate_nommu_regions();
611 }
612
613 /*
614 * delete a region from the global tree
615 */
616 static void delete_nommu_region(struct vm_region *region)
617 {
618 BUG_ON(!nommu_region_tree.rb_node);
619
620 validate_nommu_regions();
621 rb_erase(&region->vm_rb, &nommu_region_tree);
622 validate_nommu_regions();
623 }
624
625 /*
626 * free a contiguous series of pages
627 */
628 static void free_page_series(unsigned long from, unsigned long to)
629 {
630 for (; from < to; from += PAGE_SIZE) {
631 struct page *page = virt_to_page(from);
632
633 kdebug("- free %lx", from);
634 atomic_long_dec(&mmap_pages_allocated);
635 if (page_count(page) != 1)
636 kdebug("free page %p: refcount not one: %d",
637 page, page_count(page));
638 put_page(page);
639 }
640 }
641
642 /*
643 * release a reference to a region
644 * - the caller must hold the region semaphore for writing, which this releases
645 * - the region may not have been added to the tree yet, in which case vm_top
646 * will equal vm_start
647 */
648 static void __put_nommu_region(struct vm_region *region)
649 __releases(nommu_region_sem)
650 {
651 kenter("%p{%d}", region, region->vm_usage);
652
653 BUG_ON(!nommu_region_tree.rb_node);
654
655 if (--region->vm_usage == 0) {
656 if (region->vm_top > region->vm_start)
657 delete_nommu_region(region);
658 up_write(&nommu_region_sem);
659
660 if (region->vm_file)
661 fput(region->vm_file);
662
663 /* IO memory and memory shared directly out of the pagecache
664 * from ramfs/tmpfs mustn't be released here */
665 if (region->vm_flags & VM_MAPPED_COPY) {
666 kdebug("free series");
667 free_page_series(region->vm_start, region->vm_top);
668 }
669 kmem_cache_free(vm_region_jar, region);
670 } else {
671 up_write(&nommu_region_sem);
672 }
673 }
674
675 /*
676 * release a reference to a region
677 */
678 static void put_nommu_region(struct vm_region *region)
679 {
680 down_write(&nommu_region_sem);
681 __put_nommu_region(region);
682 }
683
684 /*
685 * update protection on a vma
686 */
687 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
688 {
689 #ifdef CONFIG_MPU
690 struct mm_struct *mm = vma->vm_mm;
691 long start = vma->vm_start & PAGE_MASK;
692 while (start < vma->vm_end) {
693 protect_page(mm, start, flags);
694 start += PAGE_SIZE;
695 }
696 update_protections(mm);
697 #endif
698 }
699
700 /*
701 * add a VMA into a process's mm_struct in the appropriate place in the list
702 * and tree and add to the address space's page tree also if not an anonymous
703 * page
704 * - should be called with mm->mmap_sem held writelocked
705 */
706 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
707 {
708 struct vm_area_struct *pvma, *prev;
709 struct address_space *mapping;
710 struct rb_node **p, *parent, *rb_prev;
711
712 kenter(",%p", vma);
713
714 BUG_ON(!vma->vm_region);
715
716 mm->map_count++;
717 vma->vm_mm = mm;
718
719 protect_vma(vma, vma->vm_flags);
720
721 /* add the VMA to the mapping */
722 if (vma->vm_file) {
723 mapping = vma->vm_file->f_mapping;
724
725 i_mmap_lock_write(mapping);
726 flush_dcache_mmap_lock(mapping);
727 vma_interval_tree_insert(vma, &mapping->i_mmap);
728 flush_dcache_mmap_unlock(mapping);
729 i_mmap_unlock_write(mapping);
730 }
731
732 /* add the VMA to the tree */
733 parent = rb_prev = NULL;
734 p = &mm->mm_rb.rb_node;
735 while (*p) {
736 parent = *p;
737 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
738
739 /* sort by: start addr, end addr, VMA struct addr in that order
740 * (the latter is necessary as we may get identical VMAs) */
741 if (vma->vm_start < pvma->vm_start)
742 p = &(*p)->rb_left;
743 else if (vma->vm_start > pvma->vm_start) {
744 rb_prev = parent;
745 p = &(*p)->rb_right;
746 } else if (vma->vm_end < pvma->vm_end)
747 p = &(*p)->rb_left;
748 else if (vma->vm_end > pvma->vm_end) {
749 rb_prev = parent;
750 p = &(*p)->rb_right;
751 } else if (vma < pvma)
752 p = &(*p)->rb_left;
753 else if (vma > pvma) {
754 rb_prev = parent;
755 p = &(*p)->rb_right;
756 } else
757 BUG();
758 }
759
760 rb_link_node(&vma->vm_rb, parent, p);
761 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
762
763 /* add VMA to the VMA list also */
764 prev = NULL;
765 if (rb_prev)
766 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
767
768 __vma_link_list(mm, vma, prev, parent);
769 }
770
771 /*
772 * delete a VMA from its owning mm_struct and address space
773 */
774 static void delete_vma_from_mm(struct vm_area_struct *vma)
775 {
776 int i;
777 struct address_space *mapping;
778 struct mm_struct *mm = vma->vm_mm;
779 struct task_struct *curr = current;
780
781 kenter("%p", vma);
782
783 protect_vma(vma, 0);
784
785 mm->map_count--;
786 for (i = 0; i < VMACACHE_SIZE; i++) {
787 /* if the vma is cached, invalidate the entire cache */
788 if (curr->vmacache[i] == vma) {
789 vmacache_invalidate(mm);
790 break;
791 }
792 }
793
794 /* remove the VMA from the mapping */
795 if (vma->vm_file) {
796 mapping = vma->vm_file->f_mapping;
797
798 i_mmap_lock_write(mapping);
799 flush_dcache_mmap_lock(mapping);
800 vma_interval_tree_remove(vma, &mapping->i_mmap);
801 flush_dcache_mmap_unlock(mapping);
802 i_mmap_unlock_write(mapping);
803 }
804
805 /* remove from the MM's tree and list */
806 rb_erase(&vma->vm_rb, &mm->mm_rb);
807
808 if (vma->vm_prev)
809 vma->vm_prev->vm_next = vma->vm_next;
810 else
811 mm->mmap = vma->vm_next;
812
813 if (vma->vm_next)
814 vma->vm_next->vm_prev = vma->vm_prev;
815 }
816
817 /*
818 * destroy a VMA record
819 */
820 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
821 {
822 kenter("%p", vma);
823 if (vma->vm_ops && vma->vm_ops->close)
824 vma->vm_ops->close(vma);
825 if (vma->vm_file)
826 fput(vma->vm_file);
827 put_nommu_region(vma->vm_region);
828 kmem_cache_free(vm_area_cachep, vma);
829 }
830
831 /*
832 * look up the first VMA in which addr resides, NULL if none
833 * - should be called with mm->mmap_sem at least held readlocked
834 */
835 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
836 {
837 struct vm_area_struct *vma;
838
839 /* check the cache first */
840 vma = vmacache_find(mm, addr);
841 if (likely(vma))
842 return vma;
843
844 /* trawl the list (there may be multiple mappings in which addr
845 * resides) */
846 for (vma = mm->mmap; vma; vma = vma->vm_next) {
847 if (vma->vm_start > addr)
848 return NULL;
849 if (vma->vm_end > addr) {
850 vmacache_update(addr, vma);
851 return vma;
852 }
853 }
854
855 return NULL;
856 }
857 EXPORT_SYMBOL(find_vma);
858
859 /*
860 * find a VMA
861 * - we don't extend stack VMAs under NOMMU conditions
862 */
863 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
864 {
865 return find_vma(mm, addr);
866 }
867
868 /*
869 * expand a stack to a given address
870 * - not supported under NOMMU conditions
871 */
872 int expand_stack(struct vm_area_struct *vma, unsigned long address)
873 {
874 return -ENOMEM;
875 }
876
877 /*
878 * look up the first VMA exactly that exactly matches addr
879 * - should be called with mm->mmap_sem at least held readlocked
880 */
881 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
882 unsigned long addr,
883 unsigned long len)
884 {
885 struct vm_area_struct *vma;
886 unsigned long end = addr + len;
887
888 /* check the cache first */
889 vma = vmacache_find_exact(mm, addr, end);
890 if (vma)
891 return vma;
892
893 /* trawl the list (there may be multiple mappings in which addr
894 * resides) */
895 for (vma = mm->mmap; vma; vma = vma->vm_next) {
896 if (vma->vm_start < addr)
897 continue;
898 if (vma->vm_start > addr)
899 return NULL;
900 if (vma->vm_end == end) {
901 vmacache_update(addr, vma);
902 return vma;
903 }
904 }
905
906 return NULL;
907 }
908
909 /*
910 * determine whether a mapping should be permitted and, if so, what sort of
911 * mapping we're capable of supporting
912 */
913 static int validate_mmap_request(struct file *file,
914 unsigned long addr,
915 unsigned long len,
916 unsigned long prot,
917 unsigned long flags,
918 unsigned long pgoff,
919 unsigned long *_capabilities)
920 {
921 unsigned long capabilities, rlen;
922 int ret;
923
924 /* do the simple checks first */
925 if (flags & MAP_FIXED) {
926 printk(KERN_DEBUG
927 "%d: Can't do fixed-address/overlay mmap of RAM\n",
928 current->pid);
929 return -EINVAL;
930 }
931
932 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
933 (flags & MAP_TYPE) != MAP_SHARED)
934 return -EINVAL;
935
936 if (!len)
937 return -EINVAL;
938
939 /* Careful about overflows.. */
940 rlen = PAGE_ALIGN(len);
941 if (!rlen || rlen > TASK_SIZE)
942 return -ENOMEM;
943
944 /* offset overflow? */
945 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
946 return -EOVERFLOW;
947
948 if (file) {
949 /* validate file mapping requests */
950 struct address_space *mapping;
951
952 /* files must support mmap */
953 if (!file->f_op->mmap)
954 return -ENODEV;
955
956 /* work out if what we've got could possibly be shared
957 * - we support chardevs that provide their own "memory"
958 * - we support files/blockdevs that are memory backed
959 */
960 mapping = file->f_mapping;
961 if (!mapping)
962 mapping = file_inode(file)->i_mapping;
963
964 capabilities = 0;
965 if (mapping && mapping->backing_dev_info)
966 capabilities = mapping->backing_dev_info->capabilities;
967
968 if (!capabilities) {
969 /* no explicit capabilities set, so assume some
970 * defaults */
971 switch (file_inode(file)->i_mode & S_IFMT) {
972 case S_IFREG:
973 case S_IFBLK:
974 capabilities = BDI_CAP_MAP_COPY;
975 break;
976
977 case S_IFCHR:
978 capabilities =
979 BDI_CAP_MAP_DIRECT |
980 BDI_CAP_READ_MAP |
981 BDI_CAP_WRITE_MAP;
982 break;
983
984 default:
985 return -EINVAL;
986 }
987 }
988
989 /* eliminate any capabilities that we can't support on this
990 * device */
991 if (!file->f_op->get_unmapped_area)
992 capabilities &= ~BDI_CAP_MAP_DIRECT;
993 if (!file->f_op->read)
994 capabilities &= ~BDI_CAP_MAP_COPY;
995
996 /* The file shall have been opened with read permission. */
997 if (!(file->f_mode & FMODE_READ))
998 return -EACCES;
999
1000 if (flags & MAP_SHARED) {
1001 /* do checks for writing, appending and locking */
1002 if ((prot & PROT_WRITE) &&
1003 !(file->f_mode & FMODE_WRITE))
1004 return -EACCES;
1005
1006 if (IS_APPEND(file_inode(file)) &&
1007 (file->f_mode & FMODE_WRITE))
1008 return -EACCES;
1009
1010 if (locks_verify_locked(file))
1011 return -EAGAIN;
1012
1013 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1014 return -ENODEV;
1015
1016 /* we mustn't privatise shared mappings */
1017 capabilities &= ~BDI_CAP_MAP_COPY;
1018 } else {
1019 /* we're going to read the file into private memory we
1020 * allocate */
1021 if (!(capabilities & BDI_CAP_MAP_COPY))
1022 return -ENODEV;
1023
1024 /* we don't permit a private writable mapping to be
1025 * shared with the backing device */
1026 if (prot & PROT_WRITE)
1027 capabilities &= ~BDI_CAP_MAP_DIRECT;
1028 }
1029
1030 if (capabilities & BDI_CAP_MAP_DIRECT) {
1031 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1032 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1033 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1034 ) {
1035 capabilities &= ~BDI_CAP_MAP_DIRECT;
1036 if (flags & MAP_SHARED) {
1037 printk(KERN_WARNING
1038 "MAP_SHARED not completely supported on !MMU\n");
1039 return -EINVAL;
1040 }
1041 }
1042 }
1043
1044 /* handle executable mappings and implied executable
1045 * mappings */
1046 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1047 if (prot & PROT_EXEC)
1048 return -EPERM;
1049 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1050 /* handle implication of PROT_EXEC by PROT_READ */
1051 if (current->personality & READ_IMPLIES_EXEC) {
1052 if (capabilities & BDI_CAP_EXEC_MAP)
1053 prot |= PROT_EXEC;
1054 }
1055 } else if ((prot & PROT_READ) &&
1056 (prot & PROT_EXEC) &&
1057 !(capabilities & BDI_CAP_EXEC_MAP)
1058 ) {
1059 /* backing file is not executable, try to copy */
1060 capabilities &= ~BDI_CAP_MAP_DIRECT;
1061 }
1062 } else {
1063 /* anonymous mappings are always memory backed and can be
1064 * privately mapped
1065 */
1066 capabilities = BDI_CAP_MAP_COPY;
1067
1068 /* handle PROT_EXEC implication by PROT_READ */
1069 if ((prot & PROT_READ) &&
1070 (current->personality & READ_IMPLIES_EXEC))
1071 prot |= PROT_EXEC;
1072 }
1073
1074 /* allow the security API to have its say */
1075 ret = security_mmap_addr(addr);
1076 if (ret < 0)
1077 return ret;
1078
1079 /* looks okay */
1080 *_capabilities = capabilities;
1081 return 0;
1082 }
1083
1084 /*
1085 * we've determined that we can make the mapping, now translate what we
1086 * now know into VMA flags
1087 */
1088 static unsigned long determine_vm_flags(struct file *file,
1089 unsigned long prot,
1090 unsigned long flags,
1091 unsigned long capabilities)
1092 {
1093 unsigned long vm_flags;
1094
1095 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1096 /* vm_flags |= mm->def_flags; */
1097
1098 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1099 /* attempt to share read-only copies of mapped file chunks */
1100 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1101 if (file && !(prot & PROT_WRITE))
1102 vm_flags |= VM_MAYSHARE;
1103 } else {
1104 /* overlay a shareable mapping on the backing device or inode
1105 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1106 * romfs/cramfs */
1107 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1108 if (flags & MAP_SHARED)
1109 vm_flags |= VM_SHARED;
1110 }
1111
1112 /* refuse to let anyone share private mappings with this process if
1113 * it's being traced - otherwise breakpoints set in it may interfere
1114 * with another untraced process
1115 */
1116 if ((flags & MAP_PRIVATE) && current->ptrace)
1117 vm_flags &= ~VM_MAYSHARE;
1118
1119 return vm_flags;
1120 }
1121
1122 /*
1123 * set up a shared mapping on a file (the driver or filesystem provides and
1124 * pins the storage)
1125 */
1126 static int do_mmap_shared_file(struct vm_area_struct *vma)
1127 {
1128 int ret;
1129
1130 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1131 if (ret == 0) {
1132 vma->vm_region->vm_top = vma->vm_region->vm_end;
1133 return 0;
1134 }
1135 if (ret != -ENOSYS)
1136 return ret;
1137
1138 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1139 * opposed to tried but failed) so we can only give a suitable error as
1140 * it's not possible to make a private copy if MAP_SHARED was given */
1141 return -ENODEV;
1142 }
1143
1144 /*
1145 * set up a private mapping or an anonymous shared mapping
1146 */
1147 static int do_mmap_private(struct vm_area_struct *vma,
1148 struct vm_region *region,
1149 unsigned long len,
1150 unsigned long capabilities)
1151 {
1152 unsigned long total, point;
1153 void *base;
1154 int ret, order;
1155
1156 /* invoke the file's mapping function so that it can keep track of
1157 * shared mappings on devices or memory
1158 * - VM_MAYSHARE will be set if it may attempt to share
1159 */
1160 if (capabilities & BDI_CAP_MAP_DIRECT) {
1161 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1162 if (ret == 0) {
1163 /* shouldn't return success if we're not sharing */
1164 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1165 vma->vm_region->vm_top = vma->vm_region->vm_end;
1166 return 0;
1167 }
1168 if (ret != -ENOSYS)
1169 return ret;
1170
1171 /* getting an ENOSYS error indicates that direct mmap isn't
1172 * possible (as opposed to tried but failed) so we'll try to
1173 * make a private copy of the data and map that instead */
1174 }
1175
1176
1177 /* allocate some memory to hold the mapping
1178 * - note that this may not return a page-aligned address if the object
1179 * we're allocating is smaller than a page
1180 */
1181 order = get_order(len);
1182 kdebug("alloc order %d for %lx", order, len);
1183
1184 total = 1 << order;
1185 point = len >> PAGE_SHIFT;
1186
1187 /* we don't want to allocate a power-of-2 sized page set */
1188 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1189 total = point;
1190 kdebug("try to alloc exact %lu pages", total);
1191 base = alloc_pages_exact(len, GFP_KERNEL);
1192 } else {
1193 base = (void *)__get_free_pages(GFP_KERNEL, order);
1194 }
1195
1196 if (!base)
1197 goto enomem;
1198
1199 atomic_long_add(total, &mmap_pages_allocated);
1200
1201 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1202 region->vm_start = (unsigned long) base;
1203 region->vm_end = region->vm_start + len;
1204 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1205
1206 vma->vm_start = region->vm_start;
1207 vma->vm_end = region->vm_start + len;
1208
1209 if (vma->vm_file) {
1210 /* read the contents of a file into the copy */
1211 mm_segment_t old_fs;
1212 loff_t fpos;
1213
1214 fpos = vma->vm_pgoff;
1215 fpos <<= PAGE_SHIFT;
1216
1217 old_fs = get_fs();
1218 set_fs(KERNEL_DS);
1219 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1220 set_fs(old_fs);
1221
1222 if (ret < 0)
1223 goto error_free;
1224
1225 /* clear the last little bit */
1226 if (ret < len)
1227 memset(base + ret, 0, len - ret);
1228
1229 }
1230
1231 return 0;
1232
1233 error_free:
1234 free_page_series(region->vm_start, region->vm_top);
1235 region->vm_start = vma->vm_start = 0;
1236 region->vm_end = vma->vm_end = 0;
1237 region->vm_top = 0;
1238 return ret;
1239
1240 enomem:
1241 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1242 len, current->pid, current->comm);
1243 show_free_areas(0);
1244 return -ENOMEM;
1245 }
1246
1247 /*
1248 * handle mapping creation for uClinux
1249 */
1250 unsigned long do_mmap_pgoff(struct file *file,
1251 unsigned long addr,
1252 unsigned long len,
1253 unsigned long prot,
1254 unsigned long flags,
1255 unsigned long pgoff,
1256 unsigned long *populate)
1257 {
1258 struct vm_area_struct *vma;
1259 struct vm_region *region;
1260 struct rb_node *rb;
1261 unsigned long capabilities, vm_flags, result;
1262 int ret;
1263
1264 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1265
1266 *populate = 0;
1267
1268 /* decide whether we should attempt the mapping, and if so what sort of
1269 * mapping */
1270 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1271 &capabilities);
1272 if (ret < 0) {
1273 kleave(" = %d [val]", ret);
1274 return ret;
1275 }
1276
1277 /* we ignore the address hint */
1278 addr = 0;
1279 len = PAGE_ALIGN(len);
1280
1281 /* we've determined that we can make the mapping, now translate what we
1282 * now know into VMA flags */
1283 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1284
1285 /* we're going to need to record the mapping */
1286 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1287 if (!region)
1288 goto error_getting_region;
1289
1290 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1291 if (!vma)
1292 goto error_getting_vma;
1293
1294 region->vm_usage = 1;
1295 region->vm_flags = vm_flags;
1296 region->vm_pgoff = pgoff;
1297
1298 INIT_LIST_HEAD(&vma->anon_vma_chain);
1299 vma->vm_flags = vm_flags;
1300 vma->vm_pgoff = pgoff;
1301
1302 if (file) {
1303 region->vm_file = get_file(file);
1304 vma->vm_file = get_file(file);
1305 }
1306
1307 down_write(&nommu_region_sem);
1308
1309 /* if we want to share, we need to check for regions created by other
1310 * mmap() calls that overlap with our proposed mapping
1311 * - we can only share with a superset match on most regular files
1312 * - shared mappings on character devices and memory backed files are
1313 * permitted to overlap inexactly as far as we are concerned for in
1314 * these cases, sharing is handled in the driver or filesystem rather
1315 * than here
1316 */
1317 if (vm_flags & VM_MAYSHARE) {
1318 struct vm_region *pregion;
1319 unsigned long pglen, rpglen, pgend, rpgend, start;
1320
1321 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1322 pgend = pgoff + pglen;
1323
1324 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1325 pregion = rb_entry(rb, struct vm_region, vm_rb);
1326
1327 if (!(pregion->vm_flags & VM_MAYSHARE))
1328 continue;
1329
1330 /* search for overlapping mappings on the same file */
1331 if (file_inode(pregion->vm_file) !=
1332 file_inode(file))
1333 continue;
1334
1335 if (pregion->vm_pgoff >= pgend)
1336 continue;
1337
1338 rpglen = pregion->vm_end - pregion->vm_start;
1339 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1340 rpgend = pregion->vm_pgoff + rpglen;
1341 if (pgoff >= rpgend)
1342 continue;
1343
1344 /* handle inexactly overlapping matches between
1345 * mappings */
1346 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1347 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1348 /* new mapping is not a subset of the region */
1349 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1350 goto sharing_violation;
1351 continue;
1352 }
1353
1354 /* we've found a region we can share */
1355 pregion->vm_usage++;
1356 vma->vm_region = pregion;
1357 start = pregion->vm_start;
1358 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1359 vma->vm_start = start;
1360 vma->vm_end = start + len;
1361
1362 if (pregion->vm_flags & VM_MAPPED_COPY) {
1363 kdebug("share copy");
1364 vma->vm_flags |= VM_MAPPED_COPY;
1365 } else {
1366 kdebug("share mmap");
1367 ret = do_mmap_shared_file(vma);
1368 if (ret < 0) {
1369 vma->vm_region = NULL;
1370 vma->vm_start = 0;
1371 vma->vm_end = 0;
1372 pregion->vm_usage--;
1373 pregion = NULL;
1374 goto error_just_free;
1375 }
1376 }
1377 fput(region->vm_file);
1378 kmem_cache_free(vm_region_jar, region);
1379 region = pregion;
1380 result = start;
1381 goto share;
1382 }
1383
1384 /* obtain the address at which to make a shared mapping
1385 * - this is the hook for quasi-memory character devices to
1386 * tell us the location of a shared mapping
1387 */
1388 if (capabilities & BDI_CAP_MAP_DIRECT) {
1389 addr = file->f_op->get_unmapped_area(file, addr, len,
1390 pgoff, flags);
1391 if (IS_ERR_VALUE(addr)) {
1392 ret = addr;
1393 if (ret != -ENOSYS)
1394 goto error_just_free;
1395
1396 /* the driver refused to tell us where to site
1397 * the mapping so we'll have to attempt to copy
1398 * it */
1399 ret = -ENODEV;
1400 if (!(capabilities & BDI_CAP_MAP_COPY))
1401 goto error_just_free;
1402
1403 capabilities &= ~BDI_CAP_MAP_DIRECT;
1404 } else {
1405 vma->vm_start = region->vm_start = addr;
1406 vma->vm_end = region->vm_end = addr + len;
1407 }
1408 }
1409 }
1410
1411 vma->vm_region = region;
1412
1413 /* set up the mapping
1414 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1415 */
1416 if (file && vma->vm_flags & VM_SHARED)
1417 ret = do_mmap_shared_file(vma);
1418 else
1419 ret = do_mmap_private(vma, region, len, capabilities);
1420 if (ret < 0)
1421 goto error_just_free;
1422 add_nommu_region(region);
1423
1424 /* clear anonymous mappings that don't ask for uninitialized data */
1425 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1426 memset((void *)region->vm_start, 0,
1427 region->vm_end - region->vm_start);
1428
1429 /* okay... we have a mapping; now we have to register it */
1430 result = vma->vm_start;
1431
1432 current->mm->total_vm += len >> PAGE_SHIFT;
1433
1434 share:
1435 add_vma_to_mm(current->mm, vma);
1436
1437 /* we flush the region from the icache only when the first executable
1438 * mapping of it is made */
1439 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1440 flush_icache_range(region->vm_start, region->vm_end);
1441 region->vm_icache_flushed = true;
1442 }
1443
1444 up_write(&nommu_region_sem);
1445
1446 kleave(" = %lx", result);
1447 return result;
1448
1449 error_just_free:
1450 up_write(&nommu_region_sem);
1451 error:
1452 if (region->vm_file)
1453 fput(region->vm_file);
1454 kmem_cache_free(vm_region_jar, region);
1455 if (vma->vm_file)
1456 fput(vma->vm_file);
1457 kmem_cache_free(vm_area_cachep, vma);
1458 kleave(" = %d", ret);
1459 return ret;
1460
1461 sharing_violation:
1462 up_write(&nommu_region_sem);
1463 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1464 ret = -EINVAL;
1465 goto error;
1466
1467 error_getting_vma:
1468 kmem_cache_free(vm_region_jar, region);
1469 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1470 " from process %d failed\n",
1471 len, current->pid);
1472 show_free_areas(0);
1473 return -ENOMEM;
1474
1475 error_getting_region:
1476 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1477 " from process %d failed\n",
1478 len, current->pid);
1479 show_free_areas(0);
1480 return -ENOMEM;
1481 }
1482
1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484 unsigned long, prot, unsigned long, flags,
1485 unsigned long, fd, unsigned long, pgoff)
1486 {
1487 struct file *file = NULL;
1488 unsigned long retval = -EBADF;
1489
1490 audit_mmap_fd(fd, flags);
1491 if (!(flags & MAP_ANONYMOUS)) {
1492 file = fget(fd);
1493 if (!file)
1494 goto out;
1495 }
1496
1497 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1498
1499 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1500
1501 if (file)
1502 fput(file);
1503 out:
1504 return retval;
1505 }
1506
1507 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1508 struct mmap_arg_struct {
1509 unsigned long addr;
1510 unsigned long len;
1511 unsigned long prot;
1512 unsigned long flags;
1513 unsigned long fd;
1514 unsigned long offset;
1515 };
1516
1517 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518 {
1519 struct mmap_arg_struct a;
1520
1521 if (copy_from_user(&a, arg, sizeof(a)))
1522 return -EFAULT;
1523 if (a.offset & ~PAGE_MASK)
1524 return -EINVAL;
1525
1526 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527 a.offset >> PAGE_SHIFT);
1528 }
1529 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530
1531 /*
1532 * split a vma into two pieces at address 'addr', a new vma is allocated either
1533 * for the first part or the tail.
1534 */
1535 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1536 unsigned long addr, int new_below)
1537 {
1538 struct vm_area_struct *new;
1539 struct vm_region *region;
1540 unsigned long npages;
1541
1542 kenter("");
1543
1544 /* we're only permitted to split anonymous regions (these should have
1545 * only a single usage on the region) */
1546 if (vma->vm_file)
1547 return -ENOMEM;
1548
1549 if (mm->map_count >= sysctl_max_map_count)
1550 return -ENOMEM;
1551
1552 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1553 if (!region)
1554 return -ENOMEM;
1555
1556 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1557 if (!new) {
1558 kmem_cache_free(vm_region_jar, region);
1559 return -ENOMEM;
1560 }
1561
1562 /* most fields are the same, copy all, and then fixup */
1563 *new = *vma;
1564 *region = *vma->vm_region;
1565 new->vm_region = region;
1566
1567 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1568
1569 if (new_below) {
1570 region->vm_top = region->vm_end = new->vm_end = addr;
1571 } else {
1572 region->vm_start = new->vm_start = addr;
1573 region->vm_pgoff = new->vm_pgoff += npages;
1574 }
1575
1576 if (new->vm_ops && new->vm_ops->open)
1577 new->vm_ops->open(new);
1578
1579 delete_vma_from_mm(vma);
1580 down_write(&nommu_region_sem);
1581 delete_nommu_region(vma->vm_region);
1582 if (new_below) {
1583 vma->vm_region->vm_start = vma->vm_start = addr;
1584 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1585 } else {
1586 vma->vm_region->vm_end = vma->vm_end = addr;
1587 vma->vm_region->vm_top = addr;
1588 }
1589 add_nommu_region(vma->vm_region);
1590 add_nommu_region(new->vm_region);
1591 up_write(&nommu_region_sem);
1592 add_vma_to_mm(mm, vma);
1593 add_vma_to_mm(mm, new);
1594 return 0;
1595 }
1596
1597 /*
1598 * shrink a VMA by removing the specified chunk from either the beginning or
1599 * the end
1600 */
1601 static int shrink_vma(struct mm_struct *mm,
1602 struct vm_area_struct *vma,
1603 unsigned long from, unsigned long to)
1604 {
1605 struct vm_region *region;
1606
1607 kenter("");
1608
1609 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1610 * and list */
1611 delete_vma_from_mm(vma);
1612 if (from > vma->vm_start)
1613 vma->vm_end = from;
1614 else
1615 vma->vm_start = to;
1616 add_vma_to_mm(mm, vma);
1617
1618 /* cut the backing region down to size */
1619 region = vma->vm_region;
1620 BUG_ON(region->vm_usage != 1);
1621
1622 down_write(&nommu_region_sem);
1623 delete_nommu_region(region);
1624 if (from > region->vm_start) {
1625 to = region->vm_top;
1626 region->vm_top = region->vm_end = from;
1627 } else {
1628 region->vm_start = to;
1629 }
1630 add_nommu_region(region);
1631 up_write(&nommu_region_sem);
1632
1633 free_page_series(from, to);
1634 return 0;
1635 }
1636
1637 /*
1638 * release a mapping
1639 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1640 * VMA, though it need not cover the whole VMA
1641 */
1642 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1643 {
1644 struct vm_area_struct *vma;
1645 unsigned long end;
1646 int ret;
1647
1648 kenter(",%lx,%zx", start, len);
1649
1650 len = PAGE_ALIGN(len);
1651 if (len == 0)
1652 return -EINVAL;
1653
1654 end = start + len;
1655
1656 /* find the first potentially overlapping VMA */
1657 vma = find_vma(mm, start);
1658 if (!vma) {
1659 static int limit;
1660 if (limit < 5) {
1661 printk(KERN_WARNING
1662 "munmap of memory not mmapped by process %d"
1663 " (%s): 0x%lx-0x%lx\n",
1664 current->pid, current->comm,
1665 start, start + len - 1);
1666 limit++;
1667 }
1668 return -EINVAL;
1669 }
1670
1671 /* we're allowed to split an anonymous VMA but not a file-backed one */
1672 if (vma->vm_file) {
1673 do {
1674 if (start > vma->vm_start) {
1675 kleave(" = -EINVAL [miss]");
1676 return -EINVAL;
1677 }
1678 if (end == vma->vm_end)
1679 goto erase_whole_vma;
1680 vma = vma->vm_next;
1681 } while (vma);
1682 kleave(" = -EINVAL [split file]");
1683 return -EINVAL;
1684 } else {
1685 /* the chunk must be a subset of the VMA found */
1686 if (start == vma->vm_start && end == vma->vm_end)
1687 goto erase_whole_vma;
1688 if (start < vma->vm_start || end > vma->vm_end) {
1689 kleave(" = -EINVAL [superset]");
1690 return -EINVAL;
1691 }
1692 if (start & ~PAGE_MASK) {
1693 kleave(" = -EINVAL [unaligned start]");
1694 return -EINVAL;
1695 }
1696 if (end != vma->vm_end && end & ~PAGE_MASK) {
1697 kleave(" = -EINVAL [unaligned split]");
1698 return -EINVAL;
1699 }
1700 if (start != vma->vm_start && end != vma->vm_end) {
1701 ret = split_vma(mm, vma, start, 1);
1702 if (ret < 0) {
1703 kleave(" = %d [split]", ret);
1704 return ret;
1705 }
1706 }
1707 return shrink_vma(mm, vma, start, end);
1708 }
1709
1710 erase_whole_vma:
1711 delete_vma_from_mm(vma);
1712 delete_vma(mm, vma);
1713 kleave(" = 0");
1714 return 0;
1715 }
1716 EXPORT_SYMBOL(do_munmap);
1717
1718 int vm_munmap(unsigned long addr, size_t len)
1719 {
1720 struct mm_struct *mm = current->mm;
1721 int ret;
1722
1723 down_write(&mm->mmap_sem);
1724 ret = do_munmap(mm, addr, len);
1725 up_write(&mm->mmap_sem);
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(vm_munmap);
1729
1730 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1731 {
1732 return vm_munmap(addr, len);
1733 }
1734
1735 /*
1736 * release all the mappings made in a process's VM space
1737 */
1738 void exit_mmap(struct mm_struct *mm)
1739 {
1740 struct vm_area_struct *vma;
1741
1742 if (!mm)
1743 return;
1744
1745 kenter("");
1746
1747 mm->total_vm = 0;
1748
1749 while ((vma = mm->mmap)) {
1750 mm->mmap = vma->vm_next;
1751 delete_vma_from_mm(vma);
1752 delete_vma(mm, vma);
1753 cond_resched();
1754 }
1755
1756 kleave("");
1757 }
1758
1759 unsigned long vm_brk(unsigned long addr, unsigned long len)
1760 {
1761 return -ENOMEM;
1762 }
1763
1764 /*
1765 * expand (or shrink) an existing mapping, potentially moving it at the same
1766 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1767 *
1768 * under NOMMU conditions, we only permit changing a mapping's size, and only
1769 * as long as it stays within the region allocated by do_mmap_private() and the
1770 * block is not shareable
1771 *
1772 * MREMAP_FIXED is not supported under NOMMU conditions
1773 */
1774 static unsigned long do_mremap(unsigned long addr,
1775 unsigned long old_len, unsigned long new_len,
1776 unsigned long flags, unsigned long new_addr)
1777 {
1778 struct vm_area_struct *vma;
1779
1780 /* insanity checks first */
1781 old_len = PAGE_ALIGN(old_len);
1782 new_len = PAGE_ALIGN(new_len);
1783 if (old_len == 0 || new_len == 0)
1784 return (unsigned long) -EINVAL;
1785
1786 if (addr & ~PAGE_MASK)
1787 return -EINVAL;
1788
1789 if (flags & MREMAP_FIXED && new_addr != addr)
1790 return (unsigned long) -EINVAL;
1791
1792 vma = find_vma_exact(current->mm, addr, old_len);
1793 if (!vma)
1794 return (unsigned long) -EINVAL;
1795
1796 if (vma->vm_end != vma->vm_start + old_len)
1797 return (unsigned long) -EFAULT;
1798
1799 if (vma->vm_flags & VM_MAYSHARE)
1800 return (unsigned long) -EPERM;
1801
1802 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1803 return (unsigned long) -ENOMEM;
1804
1805 /* all checks complete - do it */
1806 vma->vm_end = vma->vm_start + new_len;
1807 return vma->vm_start;
1808 }
1809
1810 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1811 unsigned long, new_len, unsigned long, flags,
1812 unsigned long, new_addr)
1813 {
1814 unsigned long ret;
1815
1816 down_write(&current->mm->mmap_sem);
1817 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1818 up_write(&current->mm->mmap_sem);
1819 return ret;
1820 }
1821
1822 struct page *follow_page_mask(struct vm_area_struct *vma,
1823 unsigned long address, unsigned int flags,
1824 unsigned int *page_mask)
1825 {
1826 *page_mask = 0;
1827 return NULL;
1828 }
1829
1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1831 unsigned long pfn, unsigned long size, pgprot_t prot)
1832 {
1833 if (addr != (pfn << PAGE_SHIFT))
1834 return -EINVAL;
1835
1836 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1837 return 0;
1838 }
1839 EXPORT_SYMBOL(remap_pfn_range);
1840
1841 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1842 {
1843 unsigned long pfn = start >> PAGE_SHIFT;
1844 unsigned long vm_len = vma->vm_end - vma->vm_start;
1845
1846 pfn += vma->vm_pgoff;
1847 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1848 }
1849 EXPORT_SYMBOL(vm_iomap_memory);
1850
1851 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1852 unsigned long pgoff)
1853 {
1854 unsigned int size = vma->vm_end - vma->vm_start;
1855
1856 if (!(vma->vm_flags & VM_USERMAP))
1857 return -EINVAL;
1858
1859 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1860 vma->vm_end = vma->vm_start + size;
1861
1862 return 0;
1863 }
1864 EXPORT_SYMBOL(remap_vmalloc_range);
1865
1866 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1867 unsigned long len, unsigned long pgoff, unsigned long flags)
1868 {
1869 return -ENOMEM;
1870 }
1871
1872 void unmap_mapping_range(struct address_space *mapping,
1873 loff_t const holebegin, loff_t const holelen,
1874 int even_cows)
1875 {
1876 }
1877 EXPORT_SYMBOL(unmap_mapping_range);
1878
1879 /*
1880 * Check that a process has enough memory to allocate a new virtual
1881 * mapping. 0 means there is enough memory for the allocation to
1882 * succeed and -ENOMEM implies there is not.
1883 *
1884 * We currently support three overcommit policies, which are set via the
1885 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1886 *
1887 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1888 * Additional code 2002 Jul 20 by Robert Love.
1889 *
1890 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1891 *
1892 * Note this is a helper function intended to be used by LSMs which
1893 * wish to use this logic.
1894 */
1895 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1896 {
1897 unsigned long free, allowed, reserve;
1898
1899 vm_acct_memory(pages);
1900
1901 /*
1902 * Sometimes we want to use more memory than we have
1903 */
1904 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1905 return 0;
1906
1907 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1908 free = global_page_state(NR_FREE_PAGES);
1909 free += global_page_state(NR_FILE_PAGES);
1910
1911 /*
1912 * shmem pages shouldn't be counted as free in this
1913 * case, they can't be purged, only swapped out, and
1914 * that won't affect the overall amount of available
1915 * memory in the system.
1916 */
1917 free -= global_page_state(NR_SHMEM);
1918
1919 free += get_nr_swap_pages();
1920
1921 /*
1922 * Any slabs which are created with the
1923 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1924 * which are reclaimable, under pressure. The dentry
1925 * cache and most inode caches should fall into this
1926 */
1927 free += global_page_state(NR_SLAB_RECLAIMABLE);
1928
1929 /*
1930 * Leave reserved pages. The pages are not for anonymous pages.
1931 */
1932 if (free <= totalreserve_pages)
1933 goto error;
1934 else
1935 free -= totalreserve_pages;
1936
1937 /*
1938 * Reserve some for root
1939 */
1940 if (!cap_sys_admin)
1941 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1942
1943 if (free > pages)
1944 return 0;
1945
1946 goto error;
1947 }
1948
1949 allowed = vm_commit_limit();
1950 /*
1951 * Reserve some 3% for root
1952 */
1953 if (!cap_sys_admin)
1954 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1955
1956 /*
1957 * Don't let a single process grow so big a user can't recover
1958 */
1959 if (mm) {
1960 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1961 allowed -= min(mm->total_vm / 32, reserve);
1962 }
1963
1964 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1965 return 0;
1966
1967 error:
1968 vm_unacct_memory(pages);
1969
1970 return -ENOMEM;
1971 }
1972
1973 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1974 {
1975 BUG();
1976 return 0;
1977 }
1978 EXPORT_SYMBOL(filemap_fault);
1979
1980 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1981 {
1982 BUG();
1983 }
1984 EXPORT_SYMBOL(filemap_map_pages);
1985
1986 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1987 unsigned long size, pgoff_t pgoff)
1988 {
1989 BUG();
1990 return 0;
1991 }
1992 EXPORT_SYMBOL(generic_file_remap_pages);
1993
1994 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1995 unsigned long addr, void *buf, int len, int write)
1996 {
1997 struct vm_area_struct *vma;
1998
1999 down_read(&mm->mmap_sem);
2000
2001 /* the access must start within one of the target process's mappings */
2002 vma = find_vma(mm, addr);
2003 if (vma) {
2004 /* don't overrun this mapping */
2005 if (addr + len >= vma->vm_end)
2006 len = vma->vm_end - addr;
2007
2008 /* only read or write mappings where it is permitted */
2009 if (write && vma->vm_flags & VM_MAYWRITE)
2010 copy_to_user_page(vma, NULL, addr,
2011 (void *) addr, buf, len);
2012 else if (!write && vma->vm_flags & VM_MAYREAD)
2013 copy_from_user_page(vma, NULL, addr,
2014 buf, (void *) addr, len);
2015 else
2016 len = 0;
2017 } else {
2018 len = 0;
2019 }
2020
2021 up_read(&mm->mmap_sem);
2022
2023 return len;
2024 }
2025
2026 /**
2027 * @access_remote_vm - access another process' address space
2028 * @mm: the mm_struct of the target address space
2029 * @addr: start address to access
2030 * @buf: source or destination buffer
2031 * @len: number of bytes to transfer
2032 * @write: whether the access is a write
2033 *
2034 * The caller must hold a reference on @mm.
2035 */
2036 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2037 void *buf, int len, int write)
2038 {
2039 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2040 }
2041
2042 /*
2043 * Access another process' address space.
2044 * - source/target buffer must be kernel space
2045 */
2046 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2047 {
2048 struct mm_struct *mm;
2049
2050 if (addr + len < addr)
2051 return 0;
2052
2053 mm = get_task_mm(tsk);
2054 if (!mm)
2055 return 0;
2056
2057 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2058
2059 mmput(mm);
2060 return len;
2061 }
2062
2063 /**
2064 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2065 * @inode: The inode to check
2066 * @size: The current filesize of the inode
2067 * @newsize: The proposed filesize of the inode
2068 *
2069 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2070 * make sure that that any outstanding VMAs aren't broken and then shrink the
2071 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2072 * automatically grant mappings that are too large.
2073 */
2074 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2075 size_t newsize)
2076 {
2077 struct vm_area_struct *vma;
2078 struct vm_region *region;
2079 pgoff_t low, high;
2080 size_t r_size, r_top;
2081
2082 low = newsize >> PAGE_SHIFT;
2083 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2084
2085 down_write(&nommu_region_sem);
2086 i_mmap_lock_read(inode->i_mapping);
2087
2088 /* search for VMAs that fall within the dead zone */
2089 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2090 /* found one - only interested if it's shared out of the page
2091 * cache */
2092 if (vma->vm_flags & VM_SHARED) {
2093 i_mmap_unlock_read(inode->i_mapping);
2094 up_write(&nommu_region_sem);
2095 return -ETXTBSY; /* not quite true, but near enough */
2096 }
2097 }
2098
2099 /* reduce any regions that overlap the dead zone - if in existence,
2100 * these will be pointed to by VMAs that don't overlap the dead zone
2101 *
2102 * we don't check for any regions that start beyond the EOF as there
2103 * shouldn't be any
2104 */
2105 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2106 if (!(vma->vm_flags & VM_SHARED))
2107 continue;
2108
2109 region = vma->vm_region;
2110 r_size = region->vm_top - region->vm_start;
2111 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2112
2113 if (r_top > newsize) {
2114 region->vm_top -= r_top - newsize;
2115 if (region->vm_end > region->vm_top)
2116 region->vm_end = region->vm_top;
2117 }
2118 }
2119
2120 i_mmap_unlock_read(inode->i_mapping);
2121 up_write(&nommu_region_sem);
2122 return 0;
2123 }
2124
2125 /*
2126 * Initialise sysctl_user_reserve_kbytes.
2127 *
2128 * This is intended to prevent a user from starting a single memory hogging
2129 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2130 * mode.
2131 *
2132 * The default value is min(3% of free memory, 128MB)
2133 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2134 */
2135 static int __meminit init_user_reserve(void)
2136 {
2137 unsigned long free_kbytes;
2138
2139 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2140
2141 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2142 return 0;
2143 }
2144 module_init(init_user_reserve)
2145
2146 /*
2147 * Initialise sysctl_admin_reserve_kbytes.
2148 *
2149 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2150 * to log in and kill a memory hogging process.
2151 *
2152 * Systems with more than 256MB will reserve 8MB, enough to recover
2153 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2154 * only reserve 3% of free pages by default.
2155 */
2156 static int __meminit init_admin_reserve(void)
2157 {
2158 unsigned long free_kbytes;
2159
2160 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2161
2162 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2163 return 0;
2164 }
2165 module_init(init_admin_reserve)
This page took 0.113885 seconds and 5 git commands to generate.