Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/egtvedt...
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/export.h>
19 #include <linux/mm.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/tlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
43 #include "internal.h"
44
45 #if 0
46 #define kenter(FMT, ...) \
47 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
48 #define kleave(FMT, ...) \
49 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
50 #define kdebug(FMT, ...) \
51 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
52 #else
53 #define kenter(FMT, ...) \
54 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
55 #define kleave(FMT, ...) \
56 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
57 #define kdebug(FMT, ...) \
58 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
59 #endif
60
61 void *high_memory;
62 EXPORT_SYMBOL(high_memory);
63 struct page *mem_map;
64 unsigned long max_mapnr;
65 unsigned long highest_memmap_pfn;
66 struct percpu_counter vm_committed_as;
67 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
68 int sysctl_overcommit_ratio = 50; /* default is 50% */
69 unsigned long sysctl_overcommit_kbytes __read_mostly;
70 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
71 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
72 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
73 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
74 int heap_stack_gap = 0;
75
76 atomic_long_t mmap_pages_allocated;
77
78 /*
79 * The global memory commitment made in the system can be a metric
80 * that can be used to drive ballooning decisions when Linux is hosted
81 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
82 * balancing memory across competing virtual machines that are hosted.
83 * Several metrics drive this policy engine including the guest reported
84 * memory commitment.
85 */
86 unsigned long vm_memory_committed(void)
87 {
88 return percpu_counter_read_positive(&vm_committed_as);
89 }
90
91 EXPORT_SYMBOL_GPL(vm_memory_committed);
92
93 EXPORT_SYMBOL(mem_map);
94
95 /* list of mapped, potentially shareable regions */
96 static struct kmem_cache *vm_region_jar;
97 struct rb_root nommu_region_tree = RB_ROOT;
98 DECLARE_RWSEM(nommu_region_sem);
99
100 const struct vm_operations_struct generic_file_vm_ops = {
101 };
102
103 /*
104 * Return the total memory allocated for this pointer, not
105 * just what the caller asked for.
106 *
107 * Doesn't have to be accurate, i.e. may have races.
108 */
109 unsigned int kobjsize(const void *objp)
110 {
111 struct page *page;
112
113 /*
114 * If the object we have should not have ksize performed on it,
115 * return size of 0
116 */
117 if (!objp || !virt_addr_valid(objp))
118 return 0;
119
120 page = virt_to_head_page(objp);
121
122 /*
123 * If the allocator sets PageSlab, we know the pointer came from
124 * kmalloc().
125 */
126 if (PageSlab(page))
127 return ksize(objp);
128
129 /*
130 * If it's not a compound page, see if we have a matching VMA
131 * region. This test is intentionally done in reverse order,
132 * so if there's no VMA, we still fall through and hand back
133 * PAGE_SIZE for 0-order pages.
134 */
135 if (!PageCompound(page)) {
136 struct vm_area_struct *vma;
137
138 vma = find_vma(current->mm, (unsigned long)objp);
139 if (vma)
140 return vma->vm_end - vma->vm_start;
141 }
142
143 /*
144 * The ksize() function is only guaranteed to work for pointers
145 * returned by kmalloc(). So handle arbitrary pointers here.
146 */
147 return PAGE_SIZE << compound_order(page);
148 }
149
150 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
151 unsigned long start, unsigned long nr_pages,
152 unsigned int foll_flags, struct page **pages,
153 struct vm_area_struct **vmas, int *nonblocking)
154 {
155 struct vm_area_struct *vma;
156 unsigned long vm_flags;
157 int i;
158
159 /* calculate required read or write permissions.
160 * If FOLL_FORCE is set, we only require the "MAY" flags.
161 */
162 vm_flags = (foll_flags & FOLL_WRITE) ?
163 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
164 vm_flags &= (foll_flags & FOLL_FORCE) ?
165 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
166
167 for (i = 0; i < nr_pages; i++) {
168 vma = find_vma(mm, start);
169 if (!vma)
170 goto finish_or_fault;
171
172 /* protect what we can, including chardevs */
173 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
174 !(vm_flags & vma->vm_flags))
175 goto finish_or_fault;
176
177 if (pages) {
178 pages[i] = virt_to_page(start);
179 if (pages[i])
180 page_cache_get(pages[i]);
181 }
182 if (vmas)
183 vmas[i] = vma;
184 start = (start + PAGE_SIZE) & PAGE_MASK;
185 }
186
187 return i;
188
189 finish_or_fault:
190 return i ? : -EFAULT;
191 }
192
193 /*
194 * get a list of pages in an address range belonging to the specified process
195 * and indicate the VMA that covers each page
196 * - this is potentially dodgy as we may end incrementing the page count of a
197 * slab page or a secondary page from a compound page
198 * - don't permit access to VMAs that don't support it, such as I/O mappings
199 */
200 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
201 unsigned long start, unsigned long nr_pages,
202 int write, int force, struct page **pages,
203 struct vm_area_struct **vmas)
204 {
205 int flags = 0;
206
207 if (write)
208 flags |= FOLL_WRITE;
209 if (force)
210 flags |= FOLL_FORCE;
211
212 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
213 NULL);
214 }
215 EXPORT_SYMBOL(get_user_pages);
216
217 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
218 unsigned long start, unsigned long nr_pages,
219 int write, int force, struct page **pages,
220 int *locked)
221 {
222 return get_user_pages(tsk, mm, start, nr_pages, write, force,
223 pages, NULL);
224 }
225 EXPORT_SYMBOL(get_user_pages_locked);
226
227 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
228 unsigned long start, unsigned long nr_pages,
229 int write, int force, struct page **pages,
230 unsigned int gup_flags)
231 {
232 long ret;
233 down_read(&mm->mmap_sem);
234 ret = get_user_pages(tsk, mm, start, nr_pages, write, force,
235 pages, NULL);
236 up_read(&mm->mmap_sem);
237 return ret;
238 }
239 EXPORT_SYMBOL(__get_user_pages_unlocked);
240
241 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
242 unsigned long start, unsigned long nr_pages,
243 int write, int force, struct page **pages)
244 {
245 return __get_user_pages_unlocked(tsk, mm, start, nr_pages, write,
246 force, pages, 0);
247 }
248 EXPORT_SYMBOL(get_user_pages_unlocked);
249
250 /**
251 * follow_pfn - look up PFN at a user virtual address
252 * @vma: memory mapping
253 * @address: user virtual address
254 * @pfn: location to store found PFN
255 *
256 * Only IO mappings and raw PFN mappings are allowed.
257 *
258 * Returns zero and the pfn at @pfn on success, -ve otherwise.
259 */
260 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
261 unsigned long *pfn)
262 {
263 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
264 return -EINVAL;
265
266 *pfn = address >> PAGE_SHIFT;
267 return 0;
268 }
269 EXPORT_SYMBOL(follow_pfn);
270
271 LIST_HEAD(vmap_area_list);
272
273 void vfree(const void *addr)
274 {
275 kfree(addr);
276 }
277 EXPORT_SYMBOL(vfree);
278
279 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
280 {
281 /*
282 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
283 * returns only a logical address.
284 */
285 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
286 }
287 EXPORT_SYMBOL(__vmalloc);
288
289 void *vmalloc_user(unsigned long size)
290 {
291 void *ret;
292
293 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
294 PAGE_KERNEL);
295 if (ret) {
296 struct vm_area_struct *vma;
297
298 down_write(&current->mm->mmap_sem);
299 vma = find_vma(current->mm, (unsigned long)ret);
300 if (vma)
301 vma->vm_flags |= VM_USERMAP;
302 up_write(&current->mm->mmap_sem);
303 }
304
305 return ret;
306 }
307 EXPORT_SYMBOL(vmalloc_user);
308
309 struct page *vmalloc_to_page(const void *addr)
310 {
311 return virt_to_page(addr);
312 }
313 EXPORT_SYMBOL(vmalloc_to_page);
314
315 unsigned long vmalloc_to_pfn(const void *addr)
316 {
317 return page_to_pfn(virt_to_page(addr));
318 }
319 EXPORT_SYMBOL(vmalloc_to_pfn);
320
321 long vread(char *buf, char *addr, unsigned long count)
322 {
323 /* Don't allow overflow */
324 if ((unsigned long) buf + count < count)
325 count = -(unsigned long) buf;
326
327 memcpy(buf, addr, count);
328 return count;
329 }
330
331 long vwrite(char *buf, char *addr, unsigned long count)
332 {
333 /* Don't allow overflow */
334 if ((unsigned long) addr + count < count)
335 count = -(unsigned long) addr;
336
337 memcpy(addr, buf, count);
338 return count;
339 }
340
341 /*
342 * vmalloc - allocate virtually continguos memory
343 *
344 * @size: allocation size
345 *
346 * Allocate enough pages to cover @size from the page level
347 * allocator and map them into continguos kernel virtual space.
348 *
349 * For tight control over page level allocator and protection flags
350 * use __vmalloc() instead.
351 */
352 void *vmalloc(unsigned long size)
353 {
354 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
355 }
356 EXPORT_SYMBOL(vmalloc);
357
358 /*
359 * vzalloc - allocate virtually continguos memory with zero fill
360 *
361 * @size: allocation size
362 *
363 * Allocate enough pages to cover @size from the page level
364 * allocator and map them into continguos kernel virtual space.
365 * The memory allocated is set to zero.
366 *
367 * For tight control over page level allocator and protection flags
368 * use __vmalloc() instead.
369 */
370 void *vzalloc(unsigned long size)
371 {
372 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
373 PAGE_KERNEL);
374 }
375 EXPORT_SYMBOL(vzalloc);
376
377 /**
378 * vmalloc_node - allocate memory on a specific node
379 * @size: allocation size
380 * @node: numa node
381 *
382 * Allocate enough pages to cover @size from the page level
383 * allocator and map them into contiguous kernel virtual space.
384 *
385 * For tight control over page level allocator and protection flags
386 * use __vmalloc() instead.
387 */
388 void *vmalloc_node(unsigned long size, int node)
389 {
390 return vmalloc(size);
391 }
392 EXPORT_SYMBOL(vmalloc_node);
393
394 /**
395 * vzalloc_node - allocate memory on a specific node with zero fill
396 * @size: allocation size
397 * @node: numa node
398 *
399 * Allocate enough pages to cover @size from the page level
400 * allocator and map them into contiguous kernel virtual space.
401 * The memory allocated is set to zero.
402 *
403 * For tight control over page level allocator and protection flags
404 * use __vmalloc() instead.
405 */
406 void *vzalloc_node(unsigned long size, int node)
407 {
408 return vzalloc(size);
409 }
410 EXPORT_SYMBOL(vzalloc_node);
411
412 #ifndef PAGE_KERNEL_EXEC
413 # define PAGE_KERNEL_EXEC PAGE_KERNEL
414 #endif
415
416 /**
417 * vmalloc_exec - allocate virtually contiguous, executable memory
418 * @size: allocation size
419 *
420 * Kernel-internal function to allocate enough pages to cover @size
421 * the page level allocator and map them into contiguous and
422 * executable kernel virtual space.
423 *
424 * For tight control over page level allocator and protection flags
425 * use __vmalloc() instead.
426 */
427
428 void *vmalloc_exec(unsigned long size)
429 {
430 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
431 }
432
433 /**
434 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
435 * @size: allocation size
436 *
437 * Allocate enough 32bit PA addressable pages to cover @size from the
438 * page level allocator and map them into continguos kernel virtual space.
439 */
440 void *vmalloc_32(unsigned long size)
441 {
442 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
443 }
444 EXPORT_SYMBOL(vmalloc_32);
445
446 /**
447 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
448 * @size: allocation size
449 *
450 * The resulting memory area is 32bit addressable and zeroed so it can be
451 * mapped to userspace without leaking data.
452 *
453 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
454 * remap_vmalloc_range() are permissible.
455 */
456 void *vmalloc_32_user(unsigned long size)
457 {
458 /*
459 * We'll have to sort out the ZONE_DMA bits for 64-bit,
460 * but for now this can simply use vmalloc_user() directly.
461 */
462 return vmalloc_user(size);
463 }
464 EXPORT_SYMBOL(vmalloc_32_user);
465
466 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
467 {
468 BUG();
469 return NULL;
470 }
471 EXPORT_SYMBOL(vmap);
472
473 void vunmap(const void *addr)
474 {
475 BUG();
476 }
477 EXPORT_SYMBOL(vunmap);
478
479 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
480 {
481 BUG();
482 return NULL;
483 }
484 EXPORT_SYMBOL(vm_map_ram);
485
486 void vm_unmap_ram(const void *mem, unsigned int count)
487 {
488 BUG();
489 }
490 EXPORT_SYMBOL(vm_unmap_ram);
491
492 void vm_unmap_aliases(void)
493 {
494 }
495 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
496
497 /*
498 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
499 * have one.
500 */
501 void __weak vmalloc_sync_all(void)
502 {
503 }
504
505 /**
506 * alloc_vm_area - allocate a range of kernel address space
507 * @size: size of the area
508 *
509 * Returns: NULL on failure, vm_struct on success
510 *
511 * This function reserves a range of kernel address space, and
512 * allocates pagetables to map that range. No actual mappings
513 * are created. If the kernel address space is not shared
514 * between processes, it syncs the pagetable across all
515 * processes.
516 */
517 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
518 {
519 BUG();
520 return NULL;
521 }
522 EXPORT_SYMBOL_GPL(alloc_vm_area);
523
524 void free_vm_area(struct vm_struct *area)
525 {
526 BUG();
527 }
528 EXPORT_SYMBOL_GPL(free_vm_area);
529
530 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
531 struct page *page)
532 {
533 return -EINVAL;
534 }
535 EXPORT_SYMBOL(vm_insert_page);
536
537 /*
538 * sys_brk() for the most part doesn't need the global kernel
539 * lock, except when an application is doing something nasty
540 * like trying to un-brk an area that has already been mapped
541 * to a regular file. in this case, the unmapping will need
542 * to invoke file system routines that need the global lock.
543 */
544 SYSCALL_DEFINE1(brk, unsigned long, brk)
545 {
546 struct mm_struct *mm = current->mm;
547
548 if (brk < mm->start_brk || brk > mm->context.end_brk)
549 return mm->brk;
550
551 if (mm->brk == brk)
552 return mm->brk;
553
554 /*
555 * Always allow shrinking brk
556 */
557 if (brk <= mm->brk) {
558 mm->brk = brk;
559 return brk;
560 }
561
562 /*
563 * Ok, looks good - let it rip.
564 */
565 flush_icache_range(mm->brk, brk);
566 return mm->brk = brk;
567 }
568
569 /*
570 * initialise the VMA and region record slabs
571 */
572 void __init mmap_init(void)
573 {
574 int ret;
575
576 ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
577 VM_BUG_ON(ret);
578 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
579 }
580
581 /*
582 * validate the region tree
583 * - the caller must hold the region lock
584 */
585 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
586 static noinline void validate_nommu_regions(void)
587 {
588 struct vm_region *region, *last;
589 struct rb_node *p, *lastp;
590
591 lastp = rb_first(&nommu_region_tree);
592 if (!lastp)
593 return;
594
595 last = rb_entry(lastp, struct vm_region, vm_rb);
596 BUG_ON(unlikely(last->vm_end <= last->vm_start));
597 BUG_ON(unlikely(last->vm_top < last->vm_end));
598
599 while ((p = rb_next(lastp))) {
600 region = rb_entry(p, struct vm_region, vm_rb);
601 last = rb_entry(lastp, struct vm_region, vm_rb);
602
603 BUG_ON(unlikely(region->vm_end <= region->vm_start));
604 BUG_ON(unlikely(region->vm_top < region->vm_end));
605 BUG_ON(unlikely(region->vm_start < last->vm_top));
606
607 lastp = p;
608 }
609 }
610 #else
611 static void validate_nommu_regions(void)
612 {
613 }
614 #endif
615
616 /*
617 * add a region into the global tree
618 */
619 static void add_nommu_region(struct vm_region *region)
620 {
621 struct vm_region *pregion;
622 struct rb_node **p, *parent;
623
624 validate_nommu_regions();
625
626 parent = NULL;
627 p = &nommu_region_tree.rb_node;
628 while (*p) {
629 parent = *p;
630 pregion = rb_entry(parent, struct vm_region, vm_rb);
631 if (region->vm_start < pregion->vm_start)
632 p = &(*p)->rb_left;
633 else if (region->vm_start > pregion->vm_start)
634 p = &(*p)->rb_right;
635 else if (pregion == region)
636 return;
637 else
638 BUG();
639 }
640
641 rb_link_node(&region->vm_rb, parent, p);
642 rb_insert_color(&region->vm_rb, &nommu_region_tree);
643
644 validate_nommu_regions();
645 }
646
647 /*
648 * delete a region from the global tree
649 */
650 static void delete_nommu_region(struct vm_region *region)
651 {
652 BUG_ON(!nommu_region_tree.rb_node);
653
654 validate_nommu_regions();
655 rb_erase(&region->vm_rb, &nommu_region_tree);
656 validate_nommu_regions();
657 }
658
659 /*
660 * free a contiguous series of pages
661 */
662 static void free_page_series(unsigned long from, unsigned long to)
663 {
664 for (; from < to; from += PAGE_SIZE) {
665 struct page *page = virt_to_page(from);
666
667 kdebug("- free %lx", from);
668 atomic_long_dec(&mmap_pages_allocated);
669 if (page_count(page) != 1)
670 kdebug("free page %p: refcount not one: %d",
671 page, page_count(page));
672 put_page(page);
673 }
674 }
675
676 /*
677 * release a reference to a region
678 * - the caller must hold the region semaphore for writing, which this releases
679 * - the region may not have been added to the tree yet, in which case vm_top
680 * will equal vm_start
681 */
682 static void __put_nommu_region(struct vm_region *region)
683 __releases(nommu_region_sem)
684 {
685 kenter("%p{%d}", region, region->vm_usage);
686
687 BUG_ON(!nommu_region_tree.rb_node);
688
689 if (--region->vm_usage == 0) {
690 if (region->vm_top > region->vm_start)
691 delete_nommu_region(region);
692 up_write(&nommu_region_sem);
693
694 if (region->vm_file)
695 fput(region->vm_file);
696
697 /* IO memory and memory shared directly out of the pagecache
698 * from ramfs/tmpfs mustn't be released here */
699 if (region->vm_flags & VM_MAPPED_COPY) {
700 kdebug("free series");
701 free_page_series(region->vm_start, region->vm_top);
702 }
703 kmem_cache_free(vm_region_jar, region);
704 } else {
705 up_write(&nommu_region_sem);
706 }
707 }
708
709 /*
710 * release a reference to a region
711 */
712 static void put_nommu_region(struct vm_region *region)
713 {
714 down_write(&nommu_region_sem);
715 __put_nommu_region(region);
716 }
717
718 /*
719 * update protection on a vma
720 */
721 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
722 {
723 #ifdef CONFIG_MPU
724 struct mm_struct *mm = vma->vm_mm;
725 long start = vma->vm_start & PAGE_MASK;
726 while (start < vma->vm_end) {
727 protect_page(mm, start, flags);
728 start += PAGE_SIZE;
729 }
730 update_protections(mm);
731 #endif
732 }
733
734 /*
735 * add a VMA into a process's mm_struct in the appropriate place in the list
736 * and tree and add to the address space's page tree also if not an anonymous
737 * page
738 * - should be called with mm->mmap_sem held writelocked
739 */
740 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
741 {
742 struct vm_area_struct *pvma, *prev;
743 struct address_space *mapping;
744 struct rb_node **p, *parent, *rb_prev;
745
746 kenter(",%p", vma);
747
748 BUG_ON(!vma->vm_region);
749
750 mm->map_count++;
751 vma->vm_mm = mm;
752
753 protect_vma(vma, vma->vm_flags);
754
755 /* add the VMA to the mapping */
756 if (vma->vm_file) {
757 mapping = vma->vm_file->f_mapping;
758
759 i_mmap_lock_write(mapping);
760 flush_dcache_mmap_lock(mapping);
761 vma_interval_tree_insert(vma, &mapping->i_mmap);
762 flush_dcache_mmap_unlock(mapping);
763 i_mmap_unlock_write(mapping);
764 }
765
766 /* add the VMA to the tree */
767 parent = rb_prev = NULL;
768 p = &mm->mm_rb.rb_node;
769 while (*p) {
770 parent = *p;
771 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
772
773 /* sort by: start addr, end addr, VMA struct addr in that order
774 * (the latter is necessary as we may get identical VMAs) */
775 if (vma->vm_start < pvma->vm_start)
776 p = &(*p)->rb_left;
777 else if (vma->vm_start > pvma->vm_start) {
778 rb_prev = parent;
779 p = &(*p)->rb_right;
780 } else if (vma->vm_end < pvma->vm_end)
781 p = &(*p)->rb_left;
782 else if (vma->vm_end > pvma->vm_end) {
783 rb_prev = parent;
784 p = &(*p)->rb_right;
785 } else if (vma < pvma)
786 p = &(*p)->rb_left;
787 else if (vma > pvma) {
788 rb_prev = parent;
789 p = &(*p)->rb_right;
790 } else
791 BUG();
792 }
793
794 rb_link_node(&vma->vm_rb, parent, p);
795 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
796
797 /* add VMA to the VMA list also */
798 prev = NULL;
799 if (rb_prev)
800 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
801
802 __vma_link_list(mm, vma, prev, parent);
803 }
804
805 /*
806 * delete a VMA from its owning mm_struct and address space
807 */
808 static void delete_vma_from_mm(struct vm_area_struct *vma)
809 {
810 int i;
811 struct address_space *mapping;
812 struct mm_struct *mm = vma->vm_mm;
813 struct task_struct *curr = current;
814
815 kenter("%p", vma);
816
817 protect_vma(vma, 0);
818
819 mm->map_count--;
820 for (i = 0; i < VMACACHE_SIZE; i++) {
821 /* if the vma is cached, invalidate the entire cache */
822 if (curr->vmacache[i] == vma) {
823 vmacache_invalidate(mm);
824 break;
825 }
826 }
827
828 /* remove the VMA from the mapping */
829 if (vma->vm_file) {
830 mapping = vma->vm_file->f_mapping;
831
832 i_mmap_lock_write(mapping);
833 flush_dcache_mmap_lock(mapping);
834 vma_interval_tree_remove(vma, &mapping->i_mmap);
835 flush_dcache_mmap_unlock(mapping);
836 i_mmap_unlock_write(mapping);
837 }
838
839 /* remove from the MM's tree and list */
840 rb_erase(&vma->vm_rb, &mm->mm_rb);
841
842 if (vma->vm_prev)
843 vma->vm_prev->vm_next = vma->vm_next;
844 else
845 mm->mmap = vma->vm_next;
846
847 if (vma->vm_next)
848 vma->vm_next->vm_prev = vma->vm_prev;
849 }
850
851 /*
852 * destroy a VMA record
853 */
854 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
855 {
856 kenter("%p", vma);
857 if (vma->vm_ops && vma->vm_ops->close)
858 vma->vm_ops->close(vma);
859 if (vma->vm_file)
860 fput(vma->vm_file);
861 put_nommu_region(vma->vm_region);
862 kmem_cache_free(vm_area_cachep, vma);
863 }
864
865 /*
866 * look up the first VMA in which addr resides, NULL if none
867 * - should be called with mm->mmap_sem at least held readlocked
868 */
869 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
870 {
871 struct vm_area_struct *vma;
872
873 /* check the cache first */
874 vma = vmacache_find(mm, addr);
875 if (likely(vma))
876 return vma;
877
878 /* trawl the list (there may be multiple mappings in which addr
879 * resides) */
880 for (vma = mm->mmap; vma; vma = vma->vm_next) {
881 if (vma->vm_start > addr)
882 return NULL;
883 if (vma->vm_end > addr) {
884 vmacache_update(addr, vma);
885 return vma;
886 }
887 }
888
889 return NULL;
890 }
891 EXPORT_SYMBOL(find_vma);
892
893 /*
894 * find a VMA
895 * - we don't extend stack VMAs under NOMMU conditions
896 */
897 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
898 {
899 return find_vma(mm, addr);
900 }
901
902 /*
903 * expand a stack to a given address
904 * - not supported under NOMMU conditions
905 */
906 int expand_stack(struct vm_area_struct *vma, unsigned long address)
907 {
908 return -ENOMEM;
909 }
910
911 /*
912 * look up the first VMA exactly that exactly matches addr
913 * - should be called with mm->mmap_sem at least held readlocked
914 */
915 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
916 unsigned long addr,
917 unsigned long len)
918 {
919 struct vm_area_struct *vma;
920 unsigned long end = addr + len;
921
922 /* check the cache first */
923 vma = vmacache_find_exact(mm, addr, end);
924 if (vma)
925 return vma;
926
927 /* trawl the list (there may be multiple mappings in which addr
928 * resides) */
929 for (vma = mm->mmap; vma; vma = vma->vm_next) {
930 if (vma->vm_start < addr)
931 continue;
932 if (vma->vm_start > addr)
933 return NULL;
934 if (vma->vm_end == end) {
935 vmacache_update(addr, vma);
936 return vma;
937 }
938 }
939
940 return NULL;
941 }
942
943 /*
944 * determine whether a mapping should be permitted and, if so, what sort of
945 * mapping we're capable of supporting
946 */
947 static int validate_mmap_request(struct file *file,
948 unsigned long addr,
949 unsigned long len,
950 unsigned long prot,
951 unsigned long flags,
952 unsigned long pgoff,
953 unsigned long *_capabilities)
954 {
955 unsigned long capabilities, rlen;
956 int ret;
957
958 /* do the simple checks first */
959 if (flags & MAP_FIXED) {
960 printk(KERN_DEBUG
961 "%d: Can't do fixed-address/overlay mmap of RAM\n",
962 current->pid);
963 return -EINVAL;
964 }
965
966 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
967 (flags & MAP_TYPE) != MAP_SHARED)
968 return -EINVAL;
969
970 if (!len)
971 return -EINVAL;
972
973 /* Careful about overflows.. */
974 rlen = PAGE_ALIGN(len);
975 if (!rlen || rlen > TASK_SIZE)
976 return -ENOMEM;
977
978 /* offset overflow? */
979 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
980 return -EOVERFLOW;
981
982 if (file) {
983 /* validate file mapping requests */
984 struct address_space *mapping;
985
986 /* files must support mmap */
987 if (!file->f_op->mmap)
988 return -ENODEV;
989
990 /* work out if what we've got could possibly be shared
991 * - we support chardevs that provide their own "memory"
992 * - we support files/blockdevs that are memory backed
993 */
994 mapping = file->f_mapping;
995 if (!mapping)
996 mapping = file_inode(file)->i_mapping;
997
998 capabilities = 0;
999 if (mapping && mapping->backing_dev_info)
1000 capabilities = mapping->backing_dev_info->capabilities;
1001
1002 if (!capabilities) {
1003 /* no explicit capabilities set, so assume some
1004 * defaults */
1005 switch (file_inode(file)->i_mode & S_IFMT) {
1006 case S_IFREG:
1007 case S_IFBLK:
1008 capabilities = BDI_CAP_MAP_COPY;
1009 break;
1010
1011 case S_IFCHR:
1012 capabilities =
1013 BDI_CAP_MAP_DIRECT |
1014 BDI_CAP_READ_MAP |
1015 BDI_CAP_WRITE_MAP;
1016 break;
1017
1018 default:
1019 return -EINVAL;
1020 }
1021 }
1022
1023 /* eliminate any capabilities that we can't support on this
1024 * device */
1025 if (!file->f_op->get_unmapped_area)
1026 capabilities &= ~BDI_CAP_MAP_DIRECT;
1027 if (!file->f_op->read)
1028 capabilities &= ~BDI_CAP_MAP_COPY;
1029
1030 /* The file shall have been opened with read permission. */
1031 if (!(file->f_mode & FMODE_READ))
1032 return -EACCES;
1033
1034 if (flags & MAP_SHARED) {
1035 /* do checks for writing, appending and locking */
1036 if ((prot & PROT_WRITE) &&
1037 !(file->f_mode & FMODE_WRITE))
1038 return -EACCES;
1039
1040 if (IS_APPEND(file_inode(file)) &&
1041 (file->f_mode & FMODE_WRITE))
1042 return -EACCES;
1043
1044 if (locks_verify_locked(file))
1045 return -EAGAIN;
1046
1047 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1048 return -ENODEV;
1049
1050 /* we mustn't privatise shared mappings */
1051 capabilities &= ~BDI_CAP_MAP_COPY;
1052 } else {
1053 /* we're going to read the file into private memory we
1054 * allocate */
1055 if (!(capabilities & BDI_CAP_MAP_COPY))
1056 return -ENODEV;
1057
1058 /* we don't permit a private writable mapping to be
1059 * shared with the backing device */
1060 if (prot & PROT_WRITE)
1061 capabilities &= ~BDI_CAP_MAP_DIRECT;
1062 }
1063
1064 if (capabilities & BDI_CAP_MAP_DIRECT) {
1065 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1066 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1067 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1068 ) {
1069 capabilities &= ~BDI_CAP_MAP_DIRECT;
1070 if (flags & MAP_SHARED) {
1071 printk(KERN_WARNING
1072 "MAP_SHARED not completely supported on !MMU\n");
1073 return -EINVAL;
1074 }
1075 }
1076 }
1077
1078 /* handle executable mappings and implied executable
1079 * mappings */
1080 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1081 if (prot & PROT_EXEC)
1082 return -EPERM;
1083 } else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1084 /* handle implication of PROT_EXEC by PROT_READ */
1085 if (current->personality & READ_IMPLIES_EXEC) {
1086 if (capabilities & BDI_CAP_EXEC_MAP)
1087 prot |= PROT_EXEC;
1088 }
1089 } else if ((prot & PROT_READ) &&
1090 (prot & PROT_EXEC) &&
1091 !(capabilities & BDI_CAP_EXEC_MAP)
1092 ) {
1093 /* backing file is not executable, try to copy */
1094 capabilities &= ~BDI_CAP_MAP_DIRECT;
1095 }
1096 } else {
1097 /* anonymous mappings are always memory backed and can be
1098 * privately mapped
1099 */
1100 capabilities = BDI_CAP_MAP_COPY;
1101
1102 /* handle PROT_EXEC implication by PROT_READ */
1103 if ((prot & PROT_READ) &&
1104 (current->personality & READ_IMPLIES_EXEC))
1105 prot |= PROT_EXEC;
1106 }
1107
1108 /* allow the security API to have its say */
1109 ret = security_mmap_addr(addr);
1110 if (ret < 0)
1111 return ret;
1112
1113 /* looks okay */
1114 *_capabilities = capabilities;
1115 return 0;
1116 }
1117
1118 /*
1119 * we've determined that we can make the mapping, now translate what we
1120 * now know into VMA flags
1121 */
1122 static unsigned long determine_vm_flags(struct file *file,
1123 unsigned long prot,
1124 unsigned long flags,
1125 unsigned long capabilities)
1126 {
1127 unsigned long vm_flags;
1128
1129 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1130 /* vm_flags |= mm->def_flags; */
1131
1132 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1133 /* attempt to share read-only copies of mapped file chunks */
1134 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1135 if (file && !(prot & PROT_WRITE))
1136 vm_flags |= VM_MAYSHARE;
1137 } else {
1138 /* overlay a shareable mapping on the backing device or inode
1139 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1140 * romfs/cramfs */
1141 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1142 if (flags & MAP_SHARED)
1143 vm_flags |= VM_SHARED;
1144 }
1145
1146 /* refuse to let anyone share private mappings with this process if
1147 * it's being traced - otherwise breakpoints set in it may interfere
1148 * with another untraced process
1149 */
1150 if ((flags & MAP_PRIVATE) && current->ptrace)
1151 vm_flags &= ~VM_MAYSHARE;
1152
1153 return vm_flags;
1154 }
1155
1156 /*
1157 * set up a shared mapping on a file (the driver or filesystem provides and
1158 * pins the storage)
1159 */
1160 static int do_mmap_shared_file(struct vm_area_struct *vma)
1161 {
1162 int ret;
1163
1164 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1165 if (ret == 0) {
1166 vma->vm_region->vm_top = vma->vm_region->vm_end;
1167 return 0;
1168 }
1169 if (ret != -ENOSYS)
1170 return ret;
1171
1172 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1173 * opposed to tried but failed) so we can only give a suitable error as
1174 * it's not possible to make a private copy if MAP_SHARED was given */
1175 return -ENODEV;
1176 }
1177
1178 /*
1179 * set up a private mapping or an anonymous shared mapping
1180 */
1181 static int do_mmap_private(struct vm_area_struct *vma,
1182 struct vm_region *region,
1183 unsigned long len,
1184 unsigned long capabilities)
1185 {
1186 unsigned long total, point;
1187 void *base;
1188 int ret, order;
1189
1190 /* invoke the file's mapping function so that it can keep track of
1191 * shared mappings on devices or memory
1192 * - VM_MAYSHARE will be set if it may attempt to share
1193 */
1194 if (capabilities & BDI_CAP_MAP_DIRECT) {
1195 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1196 if (ret == 0) {
1197 /* shouldn't return success if we're not sharing */
1198 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1199 vma->vm_region->vm_top = vma->vm_region->vm_end;
1200 return 0;
1201 }
1202 if (ret != -ENOSYS)
1203 return ret;
1204
1205 /* getting an ENOSYS error indicates that direct mmap isn't
1206 * possible (as opposed to tried but failed) so we'll try to
1207 * make a private copy of the data and map that instead */
1208 }
1209
1210
1211 /* allocate some memory to hold the mapping
1212 * - note that this may not return a page-aligned address if the object
1213 * we're allocating is smaller than a page
1214 */
1215 order = get_order(len);
1216 kdebug("alloc order %d for %lx", order, len);
1217
1218 total = 1 << order;
1219 point = len >> PAGE_SHIFT;
1220
1221 /* we don't want to allocate a power-of-2 sized page set */
1222 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1223 total = point;
1224 kdebug("try to alloc exact %lu pages", total);
1225 base = alloc_pages_exact(len, GFP_KERNEL);
1226 } else {
1227 base = (void *)__get_free_pages(GFP_KERNEL, order);
1228 }
1229
1230 if (!base)
1231 goto enomem;
1232
1233 atomic_long_add(total, &mmap_pages_allocated);
1234
1235 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1236 region->vm_start = (unsigned long) base;
1237 region->vm_end = region->vm_start + len;
1238 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1239
1240 vma->vm_start = region->vm_start;
1241 vma->vm_end = region->vm_start + len;
1242
1243 if (vma->vm_file) {
1244 /* read the contents of a file into the copy */
1245 mm_segment_t old_fs;
1246 loff_t fpos;
1247
1248 fpos = vma->vm_pgoff;
1249 fpos <<= PAGE_SHIFT;
1250
1251 old_fs = get_fs();
1252 set_fs(KERNEL_DS);
1253 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1254 set_fs(old_fs);
1255
1256 if (ret < 0)
1257 goto error_free;
1258
1259 /* clear the last little bit */
1260 if (ret < len)
1261 memset(base + ret, 0, len - ret);
1262
1263 }
1264
1265 return 0;
1266
1267 error_free:
1268 free_page_series(region->vm_start, region->vm_top);
1269 region->vm_start = vma->vm_start = 0;
1270 region->vm_end = vma->vm_end = 0;
1271 region->vm_top = 0;
1272 return ret;
1273
1274 enomem:
1275 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1276 len, current->pid, current->comm);
1277 show_free_areas(0);
1278 return -ENOMEM;
1279 }
1280
1281 /*
1282 * handle mapping creation for uClinux
1283 */
1284 unsigned long do_mmap_pgoff(struct file *file,
1285 unsigned long addr,
1286 unsigned long len,
1287 unsigned long prot,
1288 unsigned long flags,
1289 unsigned long pgoff,
1290 unsigned long *populate)
1291 {
1292 struct vm_area_struct *vma;
1293 struct vm_region *region;
1294 struct rb_node *rb;
1295 unsigned long capabilities, vm_flags, result;
1296 int ret;
1297
1298 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1299
1300 *populate = 0;
1301
1302 /* decide whether we should attempt the mapping, and if so what sort of
1303 * mapping */
1304 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1305 &capabilities);
1306 if (ret < 0) {
1307 kleave(" = %d [val]", ret);
1308 return ret;
1309 }
1310
1311 /* we ignore the address hint */
1312 addr = 0;
1313 len = PAGE_ALIGN(len);
1314
1315 /* we've determined that we can make the mapping, now translate what we
1316 * now know into VMA flags */
1317 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1318
1319 /* we're going to need to record the mapping */
1320 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1321 if (!region)
1322 goto error_getting_region;
1323
1324 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1325 if (!vma)
1326 goto error_getting_vma;
1327
1328 region->vm_usage = 1;
1329 region->vm_flags = vm_flags;
1330 region->vm_pgoff = pgoff;
1331
1332 INIT_LIST_HEAD(&vma->anon_vma_chain);
1333 vma->vm_flags = vm_flags;
1334 vma->vm_pgoff = pgoff;
1335
1336 if (file) {
1337 region->vm_file = get_file(file);
1338 vma->vm_file = get_file(file);
1339 }
1340
1341 down_write(&nommu_region_sem);
1342
1343 /* if we want to share, we need to check for regions created by other
1344 * mmap() calls that overlap with our proposed mapping
1345 * - we can only share with a superset match on most regular files
1346 * - shared mappings on character devices and memory backed files are
1347 * permitted to overlap inexactly as far as we are concerned for in
1348 * these cases, sharing is handled in the driver or filesystem rather
1349 * than here
1350 */
1351 if (vm_flags & VM_MAYSHARE) {
1352 struct vm_region *pregion;
1353 unsigned long pglen, rpglen, pgend, rpgend, start;
1354
1355 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1356 pgend = pgoff + pglen;
1357
1358 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1359 pregion = rb_entry(rb, struct vm_region, vm_rb);
1360
1361 if (!(pregion->vm_flags & VM_MAYSHARE))
1362 continue;
1363
1364 /* search for overlapping mappings on the same file */
1365 if (file_inode(pregion->vm_file) !=
1366 file_inode(file))
1367 continue;
1368
1369 if (pregion->vm_pgoff >= pgend)
1370 continue;
1371
1372 rpglen = pregion->vm_end - pregion->vm_start;
1373 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1374 rpgend = pregion->vm_pgoff + rpglen;
1375 if (pgoff >= rpgend)
1376 continue;
1377
1378 /* handle inexactly overlapping matches between
1379 * mappings */
1380 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1381 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1382 /* new mapping is not a subset of the region */
1383 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1384 goto sharing_violation;
1385 continue;
1386 }
1387
1388 /* we've found a region we can share */
1389 pregion->vm_usage++;
1390 vma->vm_region = pregion;
1391 start = pregion->vm_start;
1392 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1393 vma->vm_start = start;
1394 vma->vm_end = start + len;
1395
1396 if (pregion->vm_flags & VM_MAPPED_COPY) {
1397 kdebug("share copy");
1398 vma->vm_flags |= VM_MAPPED_COPY;
1399 } else {
1400 kdebug("share mmap");
1401 ret = do_mmap_shared_file(vma);
1402 if (ret < 0) {
1403 vma->vm_region = NULL;
1404 vma->vm_start = 0;
1405 vma->vm_end = 0;
1406 pregion->vm_usage--;
1407 pregion = NULL;
1408 goto error_just_free;
1409 }
1410 }
1411 fput(region->vm_file);
1412 kmem_cache_free(vm_region_jar, region);
1413 region = pregion;
1414 result = start;
1415 goto share;
1416 }
1417
1418 /* obtain the address at which to make a shared mapping
1419 * - this is the hook for quasi-memory character devices to
1420 * tell us the location of a shared mapping
1421 */
1422 if (capabilities & BDI_CAP_MAP_DIRECT) {
1423 addr = file->f_op->get_unmapped_area(file, addr, len,
1424 pgoff, flags);
1425 if (IS_ERR_VALUE(addr)) {
1426 ret = addr;
1427 if (ret != -ENOSYS)
1428 goto error_just_free;
1429
1430 /* the driver refused to tell us where to site
1431 * the mapping so we'll have to attempt to copy
1432 * it */
1433 ret = -ENODEV;
1434 if (!(capabilities & BDI_CAP_MAP_COPY))
1435 goto error_just_free;
1436
1437 capabilities &= ~BDI_CAP_MAP_DIRECT;
1438 } else {
1439 vma->vm_start = region->vm_start = addr;
1440 vma->vm_end = region->vm_end = addr + len;
1441 }
1442 }
1443 }
1444
1445 vma->vm_region = region;
1446
1447 /* set up the mapping
1448 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1449 */
1450 if (file && vma->vm_flags & VM_SHARED)
1451 ret = do_mmap_shared_file(vma);
1452 else
1453 ret = do_mmap_private(vma, region, len, capabilities);
1454 if (ret < 0)
1455 goto error_just_free;
1456 add_nommu_region(region);
1457
1458 /* clear anonymous mappings that don't ask for uninitialized data */
1459 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1460 memset((void *)region->vm_start, 0,
1461 region->vm_end - region->vm_start);
1462
1463 /* okay... we have a mapping; now we have to register it */
1464 result = vma->vm_start;
1465
1466 current->mm->total_vm += len >> PAGE_SHIFT;
1467
1468 share:
1469 add_vma_to_mm(current->mm, vma);
1470
1471 /* we flush the region from the icache only when the first executable
1472 * mapping of it is made */
1473 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1474 flush_icache_range(region->vm_start, region->vm_end);
1475 region->vm_icache_flushed = true;
1476 }
1477
1478 up_write(&nommu_region_sem);
1479
1480 kleave(" = %lx", result);
1481 return result;
1482
1483 error_just_free:
1484 up_write(&nommu_region_sem);
1485 error:
1486 if (region->vm_file)
1487 fput(region->vm_file);
1488 kmem_cache_free(vm_region_jar, region);
1489 if (vma->vm_file)
1490 fput(vma->vm_file);
1491 kmem_cache_free(vm_area_cachep, vma);
1492 kleave(" = %d", ret);
1493 return ret;
1494
1495 sharing_violation:
1496 up_write(&nommu_region_sem);
1497 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1498 ret = -EINVAL;
1499 goto error;
1500
1501 error_getting_vma:
1502 kmem_cache_free(vm_region_jar, region);
1503 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1504 " from process %d failed\n",
1505 len, current->pid);
1506 show_free_areas(0);
1507 return -ENOMEM;
1508
1509 error_getting_region:
1510 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1511 " from process %d failed\n",
1512 len, current->pid);
1513 show_free_areas(0);
1514 return -ENOMEM;
1515 }
1516
1517 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1518 unsigned long, prot, unsigned long, flags,
1519 unsigned long, fd, unsigned long, pgoff)
1520 {
1521 struct file *file = NULL;
1522 unsigned long retval = -EBADF;
1523
1524 audit_mmap_fd(fd, flags);
1525 if (!(flags & MAP_ANONYMOUS)) {
1526 file = fget(fd);
1527 if (!file)
1528 goto out;
1529 }
1530
1531 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1532
1533 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1534
1535 if (file)
1536 fput(file);
1537 out:
1538 return retval;
1539 }
1540
1541 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1542 struct mmap_arg_struct {
1543 unsigned long addr;
1544 unsigned long len;
1545 unsigned long prot;
1546 unsigned long flags;
1547 unsigned long fd;
1548 unsigned long offset;
1549 };
1550
1551 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1552 {
1553 struct mmap_arg_struct a;
1554
1555 if (copy_from_user(&a, arg, sizeof(a)))
1556 return -EFAULT;
1557 if (a.offset & ~PAGE_MASK)
1558 return -EINVAL;
1559
1560 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1561 a.offset >> PAGE_SHIFT);
1562 }
1563 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1564
1565 /*
1566 * split a vma into two pieces at address 'addr', a new vma is allocated either
1567 * for the first part or the tail.
1568 */
1569 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1570 unsigned long addr, int new_below)
1571 {
1572 struct vm_area_struct *new;
1573 struct vm_region *region;
1574 unsigned long npages;
1575
1576 kenter("");
1577
1578 /* we're only permitted to split anonymous regions (these should have
1579 * only a single usage on the region) */
1580 if (vma->vm_file)
1581 return -ENOMEM;
1582
1583 if (mm->map_count >= sysctl_max_map_count)
1584 return -ENOMEM;
1585
1586 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1587 if (!region)
1588 return -ENOMEM;
1589
1590 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1591 if (!new) {
1592 kmem_cache_free(vm_region_jar, region);
1593 return -ENOMEM;
1594 }
1595
1596 /* most fields are the same, copy all, and then fixup */
1597 *new = *vma;
1598 *region = *vma->vm_region;
1599 new->vm_region = region;
1600
1601 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1602
1603 if (new_below) {
1604 region->vm_top = region->vm_end = new->vm_end = addr;
1605 } else {
1606 region->vm_start = new->vm_start = addr;
1607 region->vm_pgoff = new->vm_pgoff += npages;
1608 }
1609
1610 if (new->vm_ops && new->vm_ops->open)
1611 new->vm_ops->open(new);
1612
1613 delete_vma_from_mm(vma);
1614 down_write(&nommu_region_sem);
1615 delete_nommu_region(vma->vm_region);
1616 if (new_below) {
1617 vma->vm_region->vm_start = vma->vm_start = addr;
1618 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1619 } else {
1620 vma->vm_region->vm_end = vma->vm_end = addr;
1621 vma->vm_region->vm_top = addr;
1622 }
1623 add_nommu_region(vma->vm_region);
1624 add_nommu_region(new->vm_region);
1625 up_write(&nommu_region_sem);
1626 add_vma_to_mm(mm, vma);
1627 add_vma_to_mm(mm, new);
1628 return 0;
1629 }
1630
1631 /*
1632 * shrink a VMA by removing the specified chunk from either the beginning or
1633 * the end
1634 */
1635 static int shrink_vma(struct mm_struct *mm,
1636 struct vm_area_struct *vma,
1637 unsigned long from, unsigned long to)
1638 {
1639 struct vm_region *region;
1640
1641 kenter("");
1642
1643 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1644 * and list */
1645 delete_vma_from_mm(vma);
1646 if (from > vma->vm_start)
1647 vma->vm_end = from;
1648 else
1649 vma->vm_start = to;
1650 add_vma_to_mm(mm, vma);
1651
1652 /* cut the backing region down to size */
1653 region = vma->vm_region;
1654 BUG_ON(region->vm_usage != 1);
1655
1656 down_write(&nommu_region_sem);
1657 delete_nommu_region(region);
1658 if (from > region->vm_start) {
1659 to = region->vm_top;
1660 region->vm_top = region->vm_end = from;
1661 } else {
1662 region->vm_start = to;
1663 }
1664 add_nommu_region(region);
1665 up_write(&nommu_region_sem);
1666
1667 free_page_series(from, to);
1668 return 0;
1669 }
1670
1671 /*
1672 * release a mapping
1673 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1674 * VMA, though it need not cover the whole VMA
1675 */
1676 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1677 {
1678 struct vm_area_struct *vma;
1679 unsigned long end;
1680 int ret;
1681
1682 kenter(",%lx,%zx", start, len);
1683
1684 len = PAGE_ALIGN(len);
1685 if (len == 0)
1686 return -EINVAL;
1687
1688 end = start + len;
1689
1690 /* find the first potentially overlapping VMA */
1691 vma = find_vma(mm, start);
1692 if (!vma) {
1693 static int limit;
1694 if (limit < 5) {
1695 printk(KERN_WARNING
1696 "munmap of memory not mmapped by process %d"
1697 " (%s): 0x%lx-0x%lx\n",
1698 current->pid, current->comm,
1699 start, start + len - 1);
1700 limit++;
1701 }
1702 return -EINVAL;
1703 }
1704
1705 /* we're allowed to split an anonymous VMA but not a file-backed one */
1706 if (vma->vm_file) {
1707 do {
1708 if (start > vma->vm_start) {
1709 kleave(" = -EINVAL [miss]");
1710 return -EINVAL;
1711 }
1712 if (end == vma->vm_end)
1713 goto erase_whole_vma;
1714 vma = vma->vm_next;
1715 } while (vma);
1716 kleave(" = -EINVAL [split file]");
1717 return -EINVAL;
1718 } else {
1719 /* the chunk must be a subset of the VMA found */
1720 if (start == vma->vm_start && end == vma->vm_end)
1721 goto erase_whole_vma;
1722 if (start < vma->vm_start || end > vma->vm_end) {
1723 kleave(" = -EINVAL [superset]");
1724 return -EINVAL;
1725 }
1726 if (start & ~PAGE_MASK) {
1727 kleave(" = -EINVAL [unaligned start]");
1728 return -EINVAL;
1729 }
1730 if (end != vma->vm_end && end & ~PAGE_MASK) {
1731 kleave(" = -EINVAL [unaligned split]");
1732 return -EINVAL;
1733 }
1734 if (start != vma->vm_start && end != vma->vm_end) {
1735 ret = split_vma(mm, vma, start, 1);
1736 if (ret < 0) {
1737 kleave(" = %d [split]", ret);
1738 return ret;
1739 }
1740 }
1741 return shrink_vma(mm, vma, start, end);
1742 }
1743
1744 erase_whole_vma:
1745 delete_vma_from_mm(vma);
1746 delete_vma(mm, vma);
1747 kleave(" = 0");
1748 return 0;
1749 }
1750 EXPORT_SYMBOL(do_munmap);
1751
1752 int vm_munmap(unsigned long addr, size_t len)
1753 {
1754 struct mm_struct *mm = current->mm;
1755 int ret;
1756
1757 down_write(&mm->mmap_sem);
1758 ret = do_munmap(mm, addr, len);
1759 up_write(&mm->mmap_sem);
1760 return ret;
1761 }
1762 EXPORT_SYMBOL(vm_munmap);
1763
1764 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1765 {
1766 return vm_munmap(addr, len);
1767 }
1768
1769 /*
1770 * release all the mappings made in a process's VM space
1771 */
1772 void exit_mmap(struct mm_struct *mm)
1773 {
1774 struct vm_area_struct *vma;
1775
1776 if (!mm)
1777 return;
1778
1779 kenter("");
1780
1781 mm->total_vm = 0;
1782
1783 while ((vma = mm->mmap)) {
1784 mm->mmap = vma->vm_next;
1785 delete_vma_from_mm(vma);
1786 delete_vma(mm, vma);
1787 cond_resched();
1788 }
1789
1790 kleave("");
1791 }
1792
1793 unsigned long vm_brk(unsigned long addr, unsigned long len)
1794 {
1795 return -ENOMEM;
1796 }
1797
1798 /*
1799 * expand (or shrink) an existing mapping, potentially moving it at the same
1800 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1801 *
1802 * under NOMMU conditions, we only permit changing a mapping's size, and only
1803 * as long as it stays within the region allocated by do_mmap_private() and the
1804 * block is not shareable
1805 *
1806 * MREMAP_FIXED is not supported under NOMMU conditions
1807 */
1808 static unsigned long do_mremap(unsigned long addr,
1809 unsigned long old_len, unsigned long new_len,
1810 unsigned long flags, unsigned long new_addr)
1811 {
1812 struct vm_area_struct *vma;
1813
1814 /* insanity checks first */
1815 old_len = PAGE_ALIGN(old_len);
1816 new_len = PAGE_ALIGN(new_len);
1817 if (old_len == 0 || new_len == 0)
1818 return (unsigned long) -EINVAL;
1819
1820 if (addr & ~PAGE_MASK)
1821 return -EINVAL;
1822
1823 if (flags & MREMAP_FIXED && new_addr != addr)
1824 return (unsigned long) -EINVAL;
1825
1826 vma = find_vma_exact(current->mm, addr, old_len);
1827 if (!vma)
1828 return (unsigned long) -EINVAL;
1829
1830 if (vma->vm_end != vma->vm_start + old_len)
1831 return (unsigned long) -EFAULT;
1832
1833 if (vma->vm_flags & VM_MAYSHARE)
1834 return (unsigned long) -EPERM;
1835
1836 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1837 return (unsigned long) -ENOMEM;
1838
1839 /* all checks complete - do it */
1840 vma->vm_end = vma->vm_start + new_len;
1841 return vma->vm_start;
1842 }
1843
1844 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1845 unsigned long, new_len, unsigned long, flags,
1846 unsigned long, new_addr)
1847 {
1848 unsigned long ret;
1849
1850 down_write(&current->mm->mmap_sem);
1851 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1852 up_write(&current->mm->mmap_sem);
1853 return ret;
1854 }
1855
1856 struct page *follow_page_mask(struct vm_area_struct *vma,
1857 unsigned long address, unsigned int flags,
1858 unsigned int *page_mask)
1859 {
1860 *page_mask = 0;
1861 return NULL;
1862 }
1863
1864 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1865 unsigned long pfn, unsigned long size, pgprot_t prot)
1866 {
1867 if (addr != (pfn << PAGE_SHIFT))
1868 return -EINVAL;
1869
1870 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1871 return 0;
1872 }
1873 EXPORT_SYMBOL(remap_pfn_range);
1874
1875 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1876 {
1877 unsigned long pfn = start >> PAGE_SHIFT;
1878 unsigned long vm_len = vma->vm_end - vma->vm_start;
1879
1880 pfn += vma->vm_pgoff;
1881 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1882 }
1883 EXPORT_SYMBOL(vm_iomap_memory);
1884
1885 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1886 unsigned long pgoff)
1887 {
1888 unsigned int size = vma->vm_end - vma->vm_start;
1889
1890 if (!(vma->vm_flags & VM_USERMAP))
1891 return -EINVAL;
1892
1893 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1894 vma->vm_end = vma->vm_start + size;
1895
1896 return 0;
1897 }
1898 EXPORT_SYMBOL(remap_vmalloc_range);
1899
1900 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1901 unsigned long len, unsigned long pgoff, unsigned long flags)
1902 {
1903 return -ENOMEM;
1904 }
1905
1906 void unmap_mapping_range(struct address_space *mapping,
1907 loff_t const holebegin, loff_t const holelen,
1908 int even_cows)
1909 {
1910 }
1911 EXPORT_SYMBOL(unmap_mapping_range);
1912
1913 /*
1914 * Check that a process has enough memory to allocate a new virtual
1915 * mapping. 0 means there is enough memory for the allocation to
1916 * succeed and -ENOMEM implies there is not.
1917 *
1918 * We currently support three overcommit policies, which are set via the
1919 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1920 *
1921 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1922 * Additional code 2002 Jul 20 by Robert Love.
1923 *
1924 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1925 *
1926 * Note this is a helper function intended to be used by LSMs which
1927 * wish to use this logic.
1928 */
1929 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1930 {
1931 long free, allowed, reserve;
1932
1933 vm_acct_memory(pages);
1934
1935 /*
1936 * Sometimes we want to use more memory than we have
1937 */
1938 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1939 return 0;
1940
1941 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1942 free = global_page_state(NR_FREE_PAGES);
1943 free += global_page_state(NR_FILE_PAGES);
1944
1945 /*
1946 * shmem pages shouldn't be counted as free in this
1947 * case, they can't be purged, only swapped out, and
1948 * that won't affect the overall amount of available
1949 * memory in the system.
1950 */
1951 free -= global_page_state(NR_SHMEM);
1952
1953 free += get_nr_swap_pages();
1954
1955 /*
1956 * Any slabs which are created with the
1957 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1958 * which are reclaimable, under pressure. The dentry
1959 * cache and most inode caches should fall into this
1960 */
1961 free += global_page_state(NR_SLAB_RECLAIMABLE);
1962
1963 /*
1964 * Leave reserved pages. The pages are not for anonymous pages.
1965 */
1966 if (free <= totalreserve_pages)
1967 goto error;
1968 else
1969 free -= totalreserve_pages;
1970
1971 /*
1972 * Reserve some for root
1973 */
1974 if (!cap_sys_admin)
1975 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1976
1977 if (free > pages)
1978 return 0;
1979
1980 goto error;
1981 }
1982
1983 allowed = vm_commit_limit();
1984 /*
1985 * Reserve some 3% for root
1986 */
1987 if (!cap_sys_admin)
1988 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1989
1990 /*
1991 * Don't let a single process grow so big a user can't recover
1992 */
1993 if (mm) {
1994 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1995 allowed -= min_t(long, mm->total_vm / 32, reserve);
1996 }
1997
1998 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1999 return 0;
2000
2001 error:
2002 vm_unacct_memory(pages);
2003
2004 return -ENOMEM;
2005 }
2006
2007 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2008 {
2009 BUG();
2010 return 0;
2011 }
2012 EXPORT_SYMBOL(filemap_fault);
2013
2014 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2015 {
2016 BUG();
2017 }
2018 EXPORT_SYMBOL(filemap_map_pages);
2019
2020 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
2021 unsigned long addr, void *buf, int len, int write)
2022 {
2023 struct vm_area_struct *vma;
2024
2025 down_read(&mm->mmap_sem);
2026
2027 /* the access must start within one of the target process's mappings */
2028 vma = find_vma(mm, addr);
2029 if (vma) {
2030 /* don't overrun this mapping */
2031 if (addr + len >= vma->vm_end)
2032 len = vma->vm_end - addr;
2033
2034 /* only read or write mappings where it is permitted */
2035 if (write && vma->vm_flags & VM_MAYWRITE)
2036 copy_to_user_page(vma, NULL, addr,
2037 (void *) addr, buf, len);
2038 else if (!write && vma->vm_flags & VM_MAYREAD)
2039 copy_from_user_page(vma, NULL, addr,
2040 buf, (void *) addr, len);
2041 else
2042 len = 0;
2043 } else {
2044 len = 0;
2045 }
2046
2047 up_read(&mm->mmap_sem);
2048
2049 return len;
2050 }
2051
2052 /**
2053 * @access_remote_vm - access another process' address space
2054 * @mm: the mm_struct of the target address space
2055 * @addr: start address to access
2056 * @buf: source or destination buffer
2057 * @len: number of bytes to transfer
2058 * @write: whether the access is a write
2059 *
2060 * The caller must hold a reference on @mm.
2061 */
2062 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2063 void *buf, int len, int write)
2064 {
2065 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2066 }
2067
2068 /*
2069 * Access another process' address space.
2070 * - source/target buffer must be kernel space
2071 */
2072 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2073 {
2074 struct mm_struct *mm;
2075
2076 if (addr + len < addr)
2077 return 0;
2078
2079 mm = get_task_mm(tsk);
2080 if (!mm)
2081 return 0;
2082
2083 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2084
2085 mmput(mm);
2086 return len;
2087 }
2088
2089 /**
2090 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2091 * @inode: The inode to check
2092 * @size: The current filesize of the inode
2093 * @newsize: The proposed filesize of the inode
2094 *
2095 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2096 * make sure that that any outstanding VMAs aren't broken and then shrink the
2097 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2098 * automatically grant mappings that are too large.
2099 */
2100 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2101 size_t newsize)
2102 {
2103 struct vm_area_struct *vma;
2104 struct vm_region *region;
2105 pgoff_t low, high;
2106 size_t r_size, r_top;
2107
2108 low = newsize >> PAGE_SHIFT;
2109 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2110
2111 down_write(&nommu_region_sem);
2112 i_mmap_lock_read(inode->i_mapping);
2113
2114 /* search for VMAs that fall within the dead zone */
2115 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2116 /* found one - only interested if it's shared out of the page
2117 * cache */
2118 if (vma->vm_flags & VM_SHARED) {
2119 i_mmap_unlock_read(inode->i_mapping);
2120 up_write(&nommu_region_sem);
2121 return -ETXTBSY; /* not quite true, but near enough */
2122 }
2123 }
2124
2125 /* reduce any regions that overlap the dead zone - if in existence,
2126 * these will be pointed to by VMAs that don't overlap the dead zone
2127 *
2128 * we don't check for any regions that start beyond the EOF as there
2129 * shouldn't be any
2130 */
2131 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, 0, ULONG_MAX) {
2132 if (!(vma->vm_flags & VM_SHARED))
2133 continue;
2134
2135 region = vma->vm_region;
2136 r_size = region->vm_top - region->vm_start;
2137 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2138
2139 if (r_top > newsize) {
2140 region->vm_top -= r_top - newsize;
2141 if (region->vm_end > region->vm_top)
2142 region->vm_end = region->vm_top;
2143 }
2144 }
2145
2146 i_mmap_unlock_read(inode->i_mapping);
2147 up_write(&nommu_region_sem);
2148 return 0;
2149 }
2150
2151 /*
2152 * Initialise sysctl_user_reserve_kbytes.
2153 *
2154 * This is intended to prevent a user from starting a single memory hogging
2155 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2156 * mode.
2157 *
2158 * The default value is min(3% of free memory, 128MB)
2159 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2160 */
2161 static int __meminit init_user_reserve(void)
2162 {
2163 unsigned long free_kbytes;
2164
2165 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2166
2167 sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
2168 return 0;
2169 }
2170 module_init(init_user_reserve)
2171
2172 /*
2173 * Initialise sysctl_admin_reserve_kbytes.
2174 *
2175 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2176 * to log in and kill a memory hogging process.
2177 *
2178 * Systems with more than 256MB will reserve 8MB, enough to recover
2179 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2180 * only reserve 3% of free pages by default.
2181 */
2182 static int __meminit init_admin_reserve(void)
2183 {
2184 unsigned long free_kbytes;
2185
2186 free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
2187
2188 sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
2189 return 0;
2190 }
2191 module_init(init_admin_reserve)
This page took 0.076717 seconds and 6 git commands to generate.