oom: move oom_adj value from task_struct to signal_struct
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29 #include <linux/security.h>
30
31 int sysctl_panic_on_oom;
32 int sysctl_oom_kill_allocating_task;
33 int sysctl_oom_dump_tasks;
34 static DEFINE_SPINLOCK(zone_scan_lock);
35 /* #define DEBUG */
36
37 /**
38 * badness - calculate a numeric value for how bad this task has been
39 * @p: task struct of which task we should calculate
40 * @uptime: current uptime in seconds
41 *
42 * The formula used is relatively simple and documented inline in the
43 * function. The main rationale is that we want to select a good task
44 * to kill when we run out of memory.
45 *
46 * Good in this context means that:
47 * 1) we lose the minimum amount of work done
48 * 2) we recover a large amount of memory
49 * 3) we don't kill anything innocent of eating tons of memory
50 * 4) we want to kill the minimum amount of processes (one)
51 * 5) we try to kill the process the user expects us to kill, this
52 * algorithm has been meticulously tuned to meet the principle
53 * of least surprise ... (be careful when you change it)
54 */
55
56 unsigned long badness(struct task_struct *p, unsigned long uptime)
57 {
58 unsigned long points, cpu_time, run_time;
59 struct mm_struct *mm;
60 struct task_struct *child;
61 int oom_adj = p->signal->oom_adj;
62
63 if (oom_adj == OOM_DISABLE)
64 return 0;
65
66 task_lock(p);
67 mm = p->mm;
68 if (!mm) {
69 task_unlock(p);
70 return 0;
71 }
72
73 /*
74 * The memory size of the process is the basis for the badness.
75 */
76 points = mm->total_vm;
77
78 /*
79 * After this unlock we can no longer dereference local variable `mm'
80 */
81 task_unlock(p);
82
83 /*
84 * swapoff can easily use up all memory, so kill those first.
85 */
86 if (p->flags & PF_OOM_ORIGIN)
87 return ULONG_MAX;
88
89 /*
90 * Processes which fork a lot of child processes are likely
91 * a good choice. We add half the vmsize of the children if they
92 * have an own mm. This prevents forking servers to flood the
93 * machine with an endless amount of children. In case a single
94 * child is eating the vast majority of memory, adding only half
95 * to the parents will make the child our kill candidate of choice.
96 */
97 list_for_each_entry(child, &p->children, sibling) {
98 task_lock(child);
99 if (child->mm != mm && child->mm)
100 points += child->mm->total_vm/2 + 1;
101 task_unlock(child);
102 }
103
104 /*
105 * CPU time is in tens of seconds and run time is in thousands
106 * of seconds. There is no particular reason for this other than
107 * that it turned out to work very well in practice.
108 */
109 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
110 >> (SHIFT_HZ + 3);
111
112 if (uptime >= p->start_time.tv_sec)
113 run_time = (uptime - p->start_time.tv_sec) >> 10;
114 else
115 run_time = 0;
116
117 if (cpu_time)
118 points /= int_sqrt(cpu_time);
119 if (run_time)
120 points /= int_sqrt(int_sqrt(run_time));
121
122 /*
123 * Niced processes are most likely less important, so double
124 * their badness points.
125 */
126 if (task_nice(p) > 0)
127 points *= 2;
128
129 /*
130 * Superuser processes are usually more important, so we make it
131 * less likely that we kill those.
132 */
133 if (has_capability_noaudit(p, CAP_SYS_ADMIN) ||
134 has_capability_noaudit(p, CAP_SYS_RESOURCE))
135 points /= 4;
136
137 /*
138 * We don't want to kill a process with direct hardware access.
139 * Not only could that mess up the hardware, but usually users
140 * tend to only have this flag set on applications they think
141 * of as important.
142 */
143 if (has_capability_noaudit(p, CAP_SYS_RAWIO))
144 points /= 4;
145
146 /*
147 * If p's nodes don't overlap ours, it may still help to kill p
148 * because p may have allocated or otherwise mapped memory on
149 * this node before. However it will be less likely.
150 */
151 if (!cpuset_mems_allowed_intersects(current, p))
152 points /= 8;
153
154 /*
155 * Adjust the score by oom_adj.
156 */
157 if (oom_adj) {
158 if (oom_adj > 0) {
159 if (!points)
160 points = 1;
161 points <<= oom_adj;
162 } else
163 points >>= -(oom_adj);
164 }
165
166 #ifdef DEBUG
167 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
168 p->pid, p->comm, points);
169 #endif
170 return points;
171 }
172
173 /*
174 * Determine the type of allocation constraint.
175 */
176 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
177 gfp_t gfp_mask)
178 {
179 #ifdef CONFIG_NUMA
180 struct zone *zone;
181 struct zoneref *z;
182 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
183 nodemask_t nodes = node_states[N_HIGH_MEMORY];
184
185 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
186 if (cpuset_zone_allowed_softwall(zone, gfp_mask))
187 node_clear(zone_to_nid(zone), nodes);
188 else
189 return CONSTRAINT_CPUSET;
190
191 if (!nodes_empty(nodes))
192 return CONSTRAINT_MEMORY_POLICY;
193 #endif
194
195 return CONSTRAINT_NONE;
196 }
197
198 /*
199 * Simple selection loop. We chose the process with the highest
200 * number of 'points'. We expect the caller will lock the tasklist.
201 *
202 * (not docbooked, we don't want this one cluttering up the manual)
203 */
204 static struct task_struct *select_bad_process(unsigned long *ppoints,
205 struct mem_cgroup *mem)
206 {
207 struct task_struct *g, *p;
208 struct task_struct *chosen = NULL;
209 struct timespec uptime;
210 *ppoints = 0;
211
212 do_posix_clock_monotonic_gettime(&uptime);
213 do_each_thread(g, p) {
214 unsigned long points;
215
216 /*
217 * skip kernel threads and tasks which have already released
218 * their mm.
219 */
220 if (!p->mm)
221 continue;
222 /* skip the init task */
223 if (is_global_init(p))
224 continue;
225 if (mem && !task_in_mem_cgroup(p, mem))
226 continue;
227
228 /*
229 * This task already has access to memory reserves and is
230 * being killed. Don't allow any other task access to the
231 * memory reserve.
232 *
233 * Note: this may have a chance of deadlock if it gets
234 * blocked waiting for another task which itself is waiting
235 * for memory. Is there a better alternative?
236 */
237 if (test_tsk_thread_flag(p, TIF_MEMDIE))
238 return ERR_PTR(-1UL);
239
240 /*
241 * This is in the process of releasing memory so wait for it
242 * to finish before killing some other task by mistake.
243 *
244 * However, if p is the current task, we allow the 'kill' to
245 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
246 * which will allow it to gain access to memory reserves in
247 * the process of exiting and releasing its resources.
248 * Otherwise we could get an easy OOM deadlock.
249 */
250 if (p->flags & PF_EXITING) {
251 if (p != current)
252 return ERR_PTR(-1UL);
253
254 chosen = p;
255 *ppoints = ULONG_MAX;
256 }
257
258 if (p->signal->oom_adj == OOM_DISABLE)
259 continue;
260
261 points = badness(p, uptime.tv_sec);
262 if (points > *ppoints || !chosen) {
263 chosen = p;
264 *ppoints = points;
265 }
266 } while_each_thread(g, p);
267
268 return chosen;
269 }
270
271 /**
272 * dump_tasks - dump current memory state of all system tasks
273 * @mem: target memory controller
274 *
275 * Dumps the current memory state of all system tasks, excluding kernel threads.
276 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
277 * score, and name.
278 *
279 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
280 * shown.
281 *
282 * Call with tasklist_lock read-locked.
283 */
284 static void dump_tasks(const struct mem_cgroup *mem)
285 {
286 struct task_struct *g, *p;
287
288 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
289 "name\n");
290 do_each_thread(g, p) {
291 struct mm_struct *mm;
292
293 if (mem && !task_in_mem_cgroup(p, mem))
294 continue;
295 if (!thread_group_leader(p))
296 continue;
297
298 task_lock(p);
299 mm = p->mm;
300 if (!mm) {
301 /*
302 * total_vm and rss sizes do not exist for tasks with no
303 * mm so there's no need to report them; they can't be
304 * oom killed anyway.
305 */
306 task_unlock(p);
307 continue;
308 }
309 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
310 p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm,
311 get_mm_rss(mm), (int)task_cpu(p), p->signal->oom_adj,
312 p->comm);
313 task_unlock(p);
314 } while_each_thread(g, p);
315 }
316
317 /*
318 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
319 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
320 * set.
321 */
322 static void __oom_kill_task(struct task_struct *p, int verbose)
323 {
324 if (is_global_init(p)) {
325 WARN_ON(1);
326 printk(KERN_WARNING "tried to kill init!\n");
327 return;
328 }
329
330 if (!p->mm) {
331 WARN_ON(1);
332 printk(KERN_WARNING "tried to kill an mm-less task!\n");
333 return;
334 }
335
336 if (verbose)
337 printk(KERN_ERR "Killed process %d (%s)\n",
338 task_pid_nr(p), p->comm);
339
340 /*
341 * We give our sacrificial lamb high priority and access to
342 * all the memory it needs. That way it should be able to
343 * exit() and clear out its resources quickly...
344 */
345 p->rt.time_slice = HZ;
346 set_tsk_thread_flag(p, TIF_MEMDIE);
347
348 force_sig(SIGKILL, p);
349 }
350
351 static int oom_kill_task(struct task_struct *p)
352 {
353 struct mm_struct *mm;
354 struct task_struct *g, *q;
355
356 mm = p->mm;
357
358 /* WARNING: mm may not be dereferenced since we did not obtain its
359 * value from get_task_mm(p). This is OK since all we need to do is
360 * compare mm to q->mm below.
361 *
362 * Furthermore, even if mm contains a non-NULL value, p->mm may
363 * change to NULL at any time since we do not hold task_lock(p).
364 * However, this is of no concern to us.
365 */
366 if (!mm || p->signal->oom_adj == OOM_DISABLE)
367 return 1;
368
369 __oom_kill_task(p, 1);
370
371 /*
372 * kill all processes that share the ->mm (i.e. all threads),
373 * but are in a different thread group. Don't let them have access
374 * to memory reserves though, otherwise we might deplete all memory.
375 */
376 do_each_thread(g, q) {
377 if (q->mm == mm && !same_thread_group(q, p))
378 force_sig(SIGKILL, q);
379 } while_each_thread(g, q);
380
381 return 0;
382 }
383
384 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
385 unsigned long points, struct mem_cgroup *mem,
386 const char *message)
387 {
388 struct task_struct *c;
389
390 if (printk_ratelimit()) {
391 printk(KERN_WARNING "%s invoked oom-killer: "
392 "gfp_mask=0x%x, order=%d, oom_adj=%d\n",
393 current->comm, gfp_mask, order,
394 current->signal->oom_adj);
395 task_lock(current);
396 cpuset_print_task_mems_allowed(current);
397 task_unlock(current);
398 dump_stack();
399 mem_cgroup_print_oom_info(mem, current);
400 show_mem();
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(mem);
403 }
404
405 /*
406 * If the task is already exiting, don't alarm the sysadmin or kill
407 * its children or threads, just set TIF_MEMDIE so it can die quickly
408 */
409 if (p->flags & PF_EXITING) {
410 __oom_kill_task(p, 0);
411 return 0;
412 }
413
414 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
415 message, task_pid_nr(p), p->comm, points);
416
417 /* Try to kill a child first */
418 list_for_each_entry(c, &p->children, sibling) {
419 if (c->mm == p->mm)
420 continue;
421 if (!oom_kill_task(c))
422 return 0;
423 }
424 return oom_kill_task(p);
425 }
426
427 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
428 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
429 {
430 unsigned long points = 0;
431 struct task_struct *p;
432
433 read_lock(&tasklist_lock);
434 retry:
435 p = select_bad_process(&points, mem);
436 if (PTR_ERR(p) == -1UL)
437 goto out;
438
439 if (!p)
440 p = current;
441
442 if (oom_kill_process(p, gfp_mask, 0, points, mem,
443 "Memory cgroup out of memory"))
444 goto retry;
445 out:
446 read_unlock(&tasklist_lock);
447 }
448 #endif
449
450 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
451
452 int register_oom_notifier(struct notifier_block *nb)
453 {
454 return blocking_notifier_chain_register(&oom_notify_list, nb);
455 }
456 EXPORT_SYMBOL_GPL(register_oom_notifier);
457
458 int unregister_oom_notifier(struct notifier_block *nb)
459 {
460 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
461 }
462 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
463
464 /*
465 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
466 * if a parallel OOM killing is already taking place that includes a zone in
467 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
468 */
469 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
470 {
471 struct zoneref *z;
472 struct zone *zone;
473 int ret = 1;
474
475 spin_lock(&zone_scan_lock);
476 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
477 if (zone_is_oom_locked(zone)) {
478 ret = 0;
479 goto out;
480 }
481 }
482
483 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
484 /*
485 * Lock each zone in the zonelist under zone_scan_lock so a
486 * parallel invocation of try_set_zone_oom() doesn't succeed
487 * when it shouldn't.
488 */
489 zone_set_flag(zone, ZONE_OOM_LOCKED);
490 }
491
492 out:
493 spin_unlock(&zone_scan_lock);
494 return ret;
495 }
496
497 /*
498 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
499 * allocation attempts with zonelists containing them may now recall the OOM
500 * killer, if necessary.
501 */
502 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
503 {
504 struct zoneref *z;
505 struct zone *zone;
506
507 spin_lock(&zone_scan_lock);
508 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
509 zone_clear_flag(zone, ZONE_OOM_LOCKED);
510 }
511 spin_unlock(&zone_scan_lock);
512 }
513
514 /*
515 * Must be called with tasklist_lock held for read.
516 */
517 static void __out_of_memory(gfp_t gfp_mask, int order)
518 {
519 struct task_struct *p;
520 unsigned long points;
521
522 if (sysctl_oom_kill_allocating_task)
523 if (!oom_kill_process(current, gfp_mask, order, 0, NULL,
524 "Out of memory (oom_kill_allocating_task)"))
525 return;
526 retry:
527 /*
528 * Rambo mode: Shoot down a process and hope it solves whatever
529 * issues we may have.
530 */
531 p = select_bad_process(&points, NULL);
532
533 if (PTR_ERR(p) == -1UL)
534 return;
535
536 /* Found nothing?!?! Either we hang forever, or we panic. */
537 if (!p) {
538 read_unlock(&tasklist_lock);
539 panic("Out of memory and no killable processes...\n");
540 }
541
542 if (oom_kill_process(p, gfp_mask, order, points, NULL,
543 "Out of memory"))
544 goto retry;
545 }
546
547 /*
548 * pagefault handler calls into here because it is out of memory but
549 * doesn't know exactly how or why.
550 */
551 void pagefault_out_of_memory(void)
552 {
553 unsigned long freed = 0;
554
555 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
556 if (freed > 0)
557 /* Got some memory back in the last second. */
558 return;
559
560 /*
561 * If this is from memcg, oom-killer is already invoked.
562 * and not worth to go system-wide-oom.
563 */
564 if (mem_cgroup_oom_called(current))
565 goto rest_and_return;
566
567 if (sysctl_panic_on_oom)
568 panic("out of memory from page fault. panic_on_oom is selected.\n");
569
570 read_lock(&tasklist_lock);
571 __out_of_memory(0, 0); /* unknown gfp_mask and order */
572 read_unlock(&tasklist_lock);
573
574 /*
575 * Give "p" a good chance of killing itself before we
576 * retry to allocate memory.
577 */
578 rest_and_return:
579 if (!test_thread_flag(TIF_MEMDIE))
580 schedule_timeout_uninterruptible(1);
581 }
582
583 /**
584 * out_of_memory - kill the "best" process when we run out of memory
585 * @zonelist: zonelist pointer
586 * @gfp_mask: memory allocation flags
587 * @order: amount of memory being requested as a power of 2
588 *
589 * If we run out of memory, we have the choice between either
590 * killing a random task (bad), letting the system crash (worse)
591 * OR try to be smart about which process to kill. Note that we
592 * don't have to be perfect here, we just have to be good.
593 */
594 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
595 {
596 unsigned long freed = 0;
597 enum oom_constraint constraint;
598
599 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
600 if (freed > 0)
601 /* Got some memory back in the last second. */
602 return;
603
604 if (sysctl_panic_on_oom == 2)
605 panic("out of memory. Compulsory panic_on_oom is selected.\n");
606
607 /*
608 * Check if there were limitations on the allocation (only relevant for
609 * NUMA) that may require different handling.
610 */
611 constraint = constrained_alloc(zonelist, gfp_mask);
612 read_lock(&tasklist_lock);
613
614 switch (constraint) {
615 case CONSTRAINT_MEMORY_POLICY:
616 oom_kill_process(current, gfp_mask, order, 0, NULL,
617 "No available memory (MPOL_BIND)");
618 break;
619
620 case CONSTRAINT_NONE:
621 if (sysctl_panic_on_oom)
622 panic("out of memory. panic_on_oom is selected\n");
623 /* Fall-through */
624 case CONSTRAINT_CPUSET:
625 __out_of_memory(gfp_mask, order);
626 break;
627 }
628
629 read_unlock(&tasklist_lock);
630
631 /*
632 * Give "p" a good chance of killing itself before we
633 * retry to allocate memory unless "p" is current
634 */
635 if (!test_thread_flag(TIF_MEMDIE))
636 schedule_timeout_uninterruptible(1);
637 }
This page took 0.043924 seconds and 5 git commands to generate.