oom: add per-zone locking
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28
29 int sysctl_panic_on_oom;
30 static DEFINE_MUTEX(zone_scan_mutex);
31 /* #define DEBUG */
32
33 /**
34 * badness - calculate a numeric value for how bad this task has been
35 * @p: task struct of which task we should calculate
36 * @uptime: current uptime in seconds
37 *
38 * The formula used is relatively simple and documented inline in the
39 * function. The main rationale is that we want to select a good task
40 * to kill when we run out of memory.
41 *
42 * Good in this context means that:
43 * 1) we lose the minimum amount of work done
44 * 2) we recover a large amount of memory
45 * 3) we don't kill anything innocent of eating tons of memory
46 * 4) we want to kill the minimum amount of processes (one)
47 * 5) we try to kill the process the user expects us to kill, this
48 * algorithm has been meticulously tuned to meet the principle
49 * of least surprise ... (be careful when you change it)
50 */
51
52 unsigned long badness(struct task_struct *p, unsigned long uptime)
53 {
54 unsigned long points, cpu_time, run_time, s;
55 struct mm_struct *mm;
56 struct task_struct *child;
57
58 task_lock(p);
59 mm = p->mm;
60 if (!mm) {
61 task_unlock(p);
62 return 0;
63 }
64
65 /*
66 * The memory size of the process is the basis for the badness.
67 */
68 points = mm->total_vm;
69
70 /*
71 * After this unlock we can no longer dereference local variable `mm'
72 */
73 task_unlock(p);
74
75 /*
76 * swapoff can easily use up all memory, so kill those first.
77 */
78 if (p->flags & PF_SWAPOFF)
79 return ULONG_MAX;
80
81 /*
82 * Processes which fork a lot of child processes are likely
83 * a good choice. We add half the vmsize of the children if they
84 * have an own mm. This prevents forking servers to flood the
85 * machine with an endless amount of children. In case a single
86 * child is eating the vast majority of memory, adding only half
87 * to the parents will make the child our kill candidate of choice.
88 */
89 list_for_each_entry(child, &p->children, sibling) {
90 task_lock(child);
91 if (child->mm != mm && child->mm)
92 points += child->mm->total_vm/2 + 1;
93 task_unlock(child);
94 }
95
96 /*
97 * CPU time is in tens of seconds and run time is in thousands
98 * of seconds. There is no particular reason for this other than
99 * that it turned out to work very well in practice.
100 */
101 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
102 >> (SHIFT_HZ + 3);
103
104 if (uptime >= p->start_time.tv_sec)
105 run_time = (uptime - p->start_time.tv_sec) >> 10;
106 else
107 run_time = 0;
108
109 s = int_sqrt(cpu_time);
110 if (s)
111 points /= s;
112 s = int_sqrt(int_sqrt(run_time));
113 if (s)
114 points /= s;
115
116 /*
117 * Niced processes are most likely less important, so double
118 * their badness points.
119 */
120 if (task_nice(p) > 0)
121 points *= 2;
122
123 /*
124 * Superuser processes are usually more important, so we make it
125 * less likely that we kill those.
126 */
127 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
128 p->uid == 0 || p->euid == 0)
129 points /= 4;
130
131 /*
132 * We don't want to kill a process with direct hardware access.
133 * Not only could that mess up the hardware, but usually users
134 * tend to only have this flag set on applications they think
135 * of as important.
136 */
137 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
138 points /= 4;
139
140 /*
141 * If p's nodes don't overlap ours, it may still help to kill p
142 * because p may have allocated or otherwise mapped memory on
143 * this node before. However it will be less likely.
144 */
145 if (!cpuset_excl_nodes_overlap(p))
146 points /= 8;
147
148 /*
149 * Adjust the score by oomkilladj.
150 */
151 if (p->oomkilladj) {
152 if (p->oomkilladj > 0) {
153 if (!points)
154 points = 1;
155 points <<= p->oomkilladj;
156 } else
157 points >>= -(p->oomkilladj);
158 }
159
160 #ifdef DEBUG
161 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
162 p->pid, p->comm, points);
163 #endif
164 return points;
165 }
166
167 /*
168 * Determine the type of allocation constraint.
169 */
170 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
171 gfp_t gfp_mask)
172 {
173 #ifdef CONFIG_NUMA
174 struct zone **z;
175 nodemask_t nodes = node_states[N_HIGH_MEMORY];
176
177 for (z = zonelist->zones; *z; z++)
178 if (cpuset_zone_allowed_softwall(*z, gfp_mask))
179 node_clear(zone_to_nid(*z), nodes);
180 else
181 return CONSTRAINT_CPUSET;
182
183 if (!nodes_empty(nodes))
184 return CONSTRAINT_MEMORY_POLICY;
185 #endif
186
187 return CONSTRAINT_NONE;
188 }
189
190 /*
191 * Simple selection loop. We chose the process with the highest
192 * number of 'points'. We expect the caller will lock the tasklist.
193 *
194 * (not docbooked, we don't want this one cluttering up the manual)
195 */
196 static struct task_struct *select_bad_process(unsigned long *ppoints)
197 {
198 struct task_struct *g, *p;
199 struct task_struct *chosen = NULL;
200 struct timespec uptime;
201 *ppoints = 0;
202
203 do_posix_clock_monotonic_gettime(&uptime);
204 do_each_thread(g, p) {
205 unsigned long points;
206
207 /*
208 * skip kernel threads and tasks which have already released
209 * their mm.
210 */
211 if (!p->mm)
212 continue;
213 /* skip the init task */
214 if (is_init(p))
215 continue;
216
217 /*
218 * This task already has access to memory reserves and is
219 * being killed. Don't allow any other task access to the
220 * memory reserve.
221 *
222 * Note: this may have a chance of deadlock if it gets
223 * blocked waiting for another task which itself is waiting
224 * for memory. Is there a better alternative?
225 */
226 if (test_tsk_thread_flag(p, TIF_MEMDIE))
227 return ERR_PTR(-1UL);
228
229 /*
230 * This is in the process of releasing memory so wait for it
231 * to finish before killing some other task by mistake.
232 *
233 * However, if p is the current task, we allow the 'kill' to
234 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
235 * which will allow it to gain access to memory reserves in
236 * the process of exiting and releasing its resources.
237 * Otherwise we could get an easy OOM deadlock.
238 */
239 if (p->flags & PF_EXITING) {
240 if (p != current)
241 return ERR_PTR(-1UL);
242
243 chosen = p;
244 *ppoints = ULONG_MAX;
245 }
246
247 if (p->oomkilladj == OOM_DISABLE)
248 continue;
249
250 points = badness(p, uptime.tv_sec);
251 if (points > *ppoints || !chosen) {
252 chosen = p;
253 *ppoints = points;
254 }
255 } while_each_thread(g, p);
256
257 return chosen;
258 }
259
260 /**
261 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
262 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
263 * set.
264 */
265 static void __oom_kill_task(struct task_struct *p, int verbose)
266 {
267 if (is_init(p)) {
268 WARN_ON(1);
269 printk(KERN_WARNING "tried to kill init!\n");
270 return;
271 }
272
273 if (!p->mm) {
274 WARN_ON(1);
275 printk(KERN_WARNING "tried to kill an mm-less task!\n");
276 return;
277 }
278
279 if (verbose)
280 printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
281
282 /*
283 * We give our sacrificial lamb high priority and access to
284 * all the memory it needs. That way it should be able to
285 * exit() and clear out its resources quickly...
286 */
287 p->time_slice = HZ;
288 set_tsk_thread_flag(p, TIF_MEMDIE);
289
290 force_sig(SIGKILL, p);
291 }
292
293 static int oom_kill_task(struct task_struct *p)
294 {
295 struct mm_struct *mm;
296 struct task_struct *g, *q;
297
298 mm = p->mm;
299
300 /* WARNING: mm may not be dereferenced since we did not obtain its
301 * value from get_task_mm(p). This is OK since all we need to do is
302 * compare mm to q->mm below.
303 *
304 * Furthermore, even if mm contains a non-NULL value, p->mm may
305 * change to NULL at any time since we do not hold task_lock(p).
306 * However, this is of no concern to us.
307 */
308
309 if (mm == NULL)
310 return 1;
311
312 /*
313 * Don't kill the process if any threads are set to OOM_DISABLE
314 */
315 do_each_thread(g, q) {
316 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
317 return 1;
318 } while_each_thread(g, q);
319
320 __oom_kill_task(p, 1);
321
322 /*
323 * kill all processes that share the ->mm (i.e. all threads),
324 * but are in a different thread group. Don't let them have access
325 * to memory reserves though, otherwise we might deplete all memory.
326 */
327 do_each_thread(g, q) {
328 if (q->mm == mm && q->tgid != p->tgid)
329 force_sig(SIGKILL, q);
330 } while_each_thread(g, q);
331
332 return 0;
333 }
334
335 static int oom_kill_process(struct task_struct *p, unsigned long points,
336 const char *message)
337 {
338 struct task_struct *c;
339 struct list_head *tsk;
340
341 /*
342 * If the task is already exiting, don't alarm the sysadmin or kill
343 * its children or threads, just set TIF_MEMDIE so it can die quickly
344 */
345 if (p->flags & PF_EXITING) {
346 __oom_kill_task(p, 0);
347 return 0;
348 }
349
350 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
351 message, p->pid, p->comm, points);
352
353 /* Try to kill a child first */
354 list_for_each(tsk, &p->children) {
355 c = list_entry(tsk, struct task_struct, sibling);
356 if (c->mm == p->mm)
357 continue;
358 if (!oom_kill_task(c))
359 return 0;
360 }
361 return oom_kill_task(p);
362 }
363
364 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
365
366 int register_oom_notifier(struct notifier_block *nb)
367 {
368 return blocking_notifier_chain_register(&oom_notify_list, nb);
369 }
370 EXPORT_SYMBOL_GPL(register_oom_notifier);
371
372 int unregister_oom_notifier(struct notifier_block *nb)
373 {
374 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
375 }
376 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
377
378 /*
379 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
380 * if a parallel OOM killing is already taking place that includes a zone in
381 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
382 */
383 int try_set_zone_oom(struct zonelist *zonelist)
384 {
385 struct zone **z;
386 int ret = 1;
387
388 z = zonelist->zones;
389
390 mutex_lock(&zone_scan_mutex);
391 do {
392 if (zone_is_oom_locked(*z)) {
393 ret = 0;
394 goto out;
395 }
396 } while (*(++z) != NULL);
397
398 /*
399 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
400 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
401 */
402 z = zonelist->zones;
403 do {
404 zone_set_flag(*z, ZONE_OOM_LOCKED);
405 } while (*(++z) != NULL);
406 out:
407 mutex_unlock(&zone_scan_mutex);
408 return ret;
409 }
410
411 /*
412 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
413 * allocation attempts with zonelists containing them may now recall the OOM
414 * killer, if necessary.
415 */
416 void clear_zonelist_oom(struct zonelist *zonelist)
417 {
418 struct zone **z;
419
420 z = zonelist->zones;
421
422 mutex_lock(&zone_scan_mutex);
423 do {
424 zone_clear_flag(*z, ZONE_OOM_LOCKED);
425 } while (*(++z) != NULL);
426 mutex_unlock(&zone_scan_mutex);
427 }
428
429 /**
430 * out_of_memory - kill the "best" process when we run out of memory
431 *
432 * If we run out of memory, we have the choice between either
433 * killing a random task (bad), letting the system crash (worse)
434 * OR try to be smart about which process to kill. Note that we
435 * don't have to be perfect here, we just have to be good.
436 */
437 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
438 {
439 struct task_struct *p;
440 unsigned long points = 0;
441 unsigned long freed = 0;
442 enum oom_constraint constraint;
443
444 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
445 if (freed > 0)
446 /* Got some memory back in the last second. */
447 return;
448
449 if (printk_ratelimit()) {
450 printk(KERN_WARNING "%s invoked oom-killer: "
451 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
452 current->comm, gfp_mask, order, current->oomkilladj);
453 dump_stack();
454 show_mem();
455 }
456
457 if (sysctl_panic_on_oom == 2)
458 panic("out of memory. Compulsory panic_on_oom is selected.\n");
459
460 /*
461 * Check if there were limitations on the allocation (only relevant for
462 * NUMA) that may require different handling.
463 */
464 constraint = constrained_alloc(zonelist, gfp_mask);
465 cpuset_lock();
466 read_lock(&tasklist_lock);
467
468 switch (constraint) {
469 case CONSTRAINT_MEMORY_POLICY:
470 oom_kill_process(current, points,
471 "No available memory (MPOL_BIND)");
472 break;
473
474 case CONSTRAINT_CPUSET:
475 oom_kill_process(current, points,
476 "No available memory in cpuset");
477 break;
478
479 case CONSTRAINT_NONE:
480 if (sysctl_panic_on_oom)
481 panic("out of memory. panic_on_oom is selected\n");
482 retry:
483 /*
484 * Rambo mode: Shoot down a process and hope it solves whatever
485 * issues we may have.
486 */
487 p = select_bad_process(&points);
488
489 if (PTR_ERR(p) == -1UL)
490 goto out;
491
492 /* Found nothing?!?! Either we hang forever, or we panic. */
493 if (!p) {
494 read_unlock(&tasklist_lock);
495 cpuset_unlock();
496 panic("Out of memory and no killable processes...\n");
497 }
498
499 if (oom_kill_process(p, points, "Out of memory"))
500 goto retry;
501
502 break;
503 }
504
505 out:
506 read_unlock(&tasklist_lock);
507 cpuset_unlock();
508
509 /*
510 * Give "p" a good chance of killing itself before we
511 * retry to allocate memory unless "p" is current
512 */
513 if (!test_thread_flag(TIF_MEMDIE))
514 schedule_timeout_uninterruptible(1);
515 }
This page took 0.041901 seconds and 6 git commands to generate.