writeback: add bg_threshold parameter to __bdi_update_bandwidth()
[deliverable/linux.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40 * Sleep at most 200ms at a time in balance_dirty_pages().
41 */
42 #define MAX_PAUSE max(HZ/5, 1)
43
44 /*
45 * Estimate write bandwidth at 200ms intervals.
46 */
47 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
48
49 #define RATELIMIT_CALC_SHIFT 10
50
51 /*
52 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
53 * will look to see if it needs to force writeback or throttling.
54 */
55 static long ratelimit_pages = 32;
56
57 /*
58 * When balance_dirty_pages decides that the caller needs to perform some
59 * non-background writeback, this is how many pages it will attempt to write.
60 * It should be somewhat larger than dirtied pages to ensure that reasonably
61 * large amounts of I/O are submitted.
62 */
63 static inline long sync_writeback_pages(unsigned long dirtied)
64 {
65 if (dirtied < ratelimit_pages)
66 dirtied = ratelimit_pages;
67
68 return dirtied + dirtied / 2;
69 }
70
71 /* The following parameters are exported via /proc/sys/vm */
72
73 /*
74 * Start background writeback (via writeback threads) at this percentage
75 */
76 int dirty_background_ratio = 10;
77
78 /*
79 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
80 * dirty_background_ratio * the amount of dirtyable memory
81 */
82 unsigned long dirty_background_bytes;
83
84 /*
85 * free highmem will not be subtracted from the total free memory
86 * for calculating free ratios if vm_highmem_is_dirtyable is true
87 */
88 int vm_highmem_is_dirtyable;
89
90 /*
91 * The generator of dirty data starts writeback at this percentage
92 */
93 int vm_dirty_ratio = 20;
94
95 /*
96 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
97 * vm_dirty_ratio * the amount of dirtyable memory
98 */
99 unsigned long vm_dirty_bytes;
100
101 /*
102 * The interval between `kupdate'-style writebacks
103 */
104 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114 int block_dump;
115
116 /*
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
119 */
120 int laptop_mode;
121
122 EXPORT_SYMBOL(laptop_mode);
123
124 /* End of sysctl-exported parameters */
125
126 unsigned long global_dirty_limit;
127
128 /*
129 * Scale the writeback cache size proportional to the relative writeout speeds.
130 *
131 * We do this by keeping a floating proportion between BDIs, based on page
132 * writeback completions [end_page_writeback()]. Those devices that write out
133 * pages fastest will get the larger share, while the slower will get a smaller
134 * share.
135 *
136 * We use page writeout completions because we are interested in getting rid of
137 * dirty pages. Having them written out is the primary goal.
138 *
139 * We introduce a concept of time, a period over which we measure these events,
140 * because demand can/will vary over time. The length of this period itself is
141 * measured in page writeback completions.
142 *
143 */
144 static struct prop_descriptor vm_completions;
145 static struct prop_descriptor vm_dirties;
146
147 /*
148 * couple the period to the dirty_ratio:
149 *
150 * period/2 ~ roundup_pow_of_two(dirty limit)
151 */
152 static int calc_period_shift(void)
153 {
154 unsigned long dirty_total;
155
156 if (vm_dirty_bytes)
157 dirty_total = vm_dirty_bytes / PAGE_SIZE;
158 else
159 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
160 100;
161 return 2 + ilog2(dirty_total - 1);
162 }
163
164 /*
165 * update the period when the dirty threshold changes.
166 */
167 static void update_completion_period(void)
168 {
169 int shift = calc_period_shift();
170 prop_change_shift(&vm_completions, shift);
171 prop_change_shift(&vm_dirties, shift);
172 }
173
174 int dirty_background_ratio_handler(struct ctl_table *table, int write,
175 void __user *buffer, size_t *lenp,
176 loff_t *ppos)
177 {
178 int ret;
179
180 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
181 if (ret == 0 && write)
182 dirty_background_bytes = 0;
183 return ret;
184 }
185
186 int dirty_background_bytes_handler(struct ctl_table *table, int write,
187 void __user *buffer, size_t *lenp,
188 loff_t *ppos)
189 {
190 int ret;
191
192 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193 if (ret == 0 && write)
194 dirty_background_ratio = 0;
195 return ret;
196 }
197
198 int dirty_ratio_handler(struct ctl_table *table, int write,
199 void __user *buffer, size_t *lenp,
200 loff_t *ppos)
201 {
202 int old_ratio = vm_dirty_ratio;
203 int ret;
204
205 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
206 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
207 update_completion_period();
208 vm_dirty_bytes = 0;
209 }
210 return ret;
211 }
212
213
214 int dirty_bytes_handler(struct ctl_table *table, int write,
215 void __user *buffer, size_t *lenp,
216 loff_t *ppos)
217 {
218 unsigned long old_bytes = vm_dirty_bytes;
219 int ret;
220
221 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
222 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
223 update_completion_period();
224 vm_dirty_ratio = 0;
225 }
226 return ret;
227 }
228
229 /*
230 * Increment the BDI's writeout completion count and the global writeout
231 * completion count. Called from test_clear_page_writeback().
232 */
233 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235 __inc_bdi_stat(bdi, BDI_WRITTEN);
236 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
237 bdi->max_prop_frac);
238 }
239
240 void bdi_writeout_inc(struct backing_dev_info *bdi)
241 {
242 unsigned long flags;
243
244 local_irq_save(flags);
245 __bdi_writeout_inc(bdi);
246 local_irq_restore(flags);
247 }
248 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
249
250 void task_dirty_inc(struct task_struct *tsk)
251 {
252 prop_inc_single(&vm_dirties, &tsk->dirties);
253 }
254
255 /*
256 * Obtain an accurate fraction of the BDI's portion.
257 */
258 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
259 long *numerator, long *denominator)
260 {
261 prop_fraction_percpu(&vm_completions, &bdi->completions,
262 numerator, denominator);
263 }
264
265 static inline void task_dirties_fraction(struct task_struct *tsk,
266 long *numerator, long *denominator)
267 {
268 prop_fraction_single(&vm_dirties, &tsk->dirties,
269 numerator, denominator);
270 }
271
272 /*
273 * task_dirty_limit - scale down dirty throttling threshold for one task
274 *
275 * task specific dirty limit:
276 *
277 * dirty -= (dirty/8) * p_{t}
278 *
279 * To protect light/slow dirtying tasks from heavier/fast ones, we start
280 * throttling individual tasks before reaching the bdi dirty limit.
281 * Relatively low thresholds will be allocated to heavy dirtiers. So when
282 * dirty pages grow large, heavy dirtiers will be throttled first, which will
283 * effectively curb the growth of dirty pages. Light dirtiers with high enough
284 * dirty threshold may never get throttled.
285 */
286 #define TASK_LIMIT_FRACTION 8
287 static unsigned long task_dirty_limit(struct task_struct *tsk,
288 unsigned long bdi_dirty)
289 {
290 long numerator, denominator;
291 unsigned long dirty = bdi_dirty;
292 u64 inv = dirty / TASK_LIMIT_FRACTION;
293
294 task_dirties_fraction(tsk, &numerator, &denominator);
295 inv *= numerator;
296 do_div(inv, denominator);
297
298 dirty -= inv;
299
300 return max(dirty, bdi_dirty/2);
301 }
302
303 /* Minimum limit for any task */
304 static unsigned long task_min_dirty_limit(unsigned long bdi_dirty)
305 {
306 return bdi_dirty - bdi_dirty / TASK_LIMIT_FRACTION;
307 }
308
309 /*
310 *
311 */
312 static unsigned int bdi_min_ratio;
313
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316 int ret = 0;
317
318 spin_lock_bh(&bdi_lock);
319 if (min_ratio > bdi->max_ratio) {
320 ret = -EINVAL;
321 } else {
322 min_ratio -= bdi->min_ratio;
323 if (bdi_min_ratio + min_ratio < 100) {
324 bdi_min_ratio += min_ratio;
325 bdi->min_ratio += min_ratio;
326 } else {
327 ret = -EINVAL;
328 }
329 }
330 spin_unlock_bh(&bdi_lock);
331
332 return ret;
333 }
334
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337 int ret = 0;
338
339 if (max_ratio > 100)
340 return -EINVAL;
341
342 spin_lock_bh(&bdi_lock);
343 if (bdi->min_ratio > max_ratio) {
344 ret = -EINVAL;
345 } else {
346 bdi->max_ratio = max_ratio;
347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 }
349 spin_unlock_bh(&bdi_lock);
350
351 return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354
355 /*
356 * Work out the current dirty-memory clamping and background writeout
357 * thresholds.
358 *
359 * The main aim here is to lower them aggressively if there is a lot of mapped
360 * memory around. To avoid stressing page reclaim with lots of unreclaimable
361 * pages. It is better to clamp down on writers than to start swapping, and
362 * performing lots of scanning.
363 *
364 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365 *
366 * We don't permit the clamping level to fall below 5% - that is getting rather
367 * excessive.
368 *
369 * We make sure that the background writeout level is below the adjusted
370 * clamping level.
371 */
372
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376 int node;
377 unsigned long x = 0;
378
379 for_each_node_state(node, N_HIGH_MEMORY) {
380 struct zone *z =
381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382
383 x += zone_page_state(z, NR_FREE_PAGES) +
384 zone_reclaimable_pages(z);
385 }
386 /*
387 * Make sure that the number of highmem pages is never larger
388 * than the number of the total dirtyable memory. This can only
389 * occur in very strange VM situations but we want to make sure
390 * that this does not occur.
391 */
392 return min(x, total);
393 #else
394 return 0;
395 #endif
396 }
397
398 /**
399 * determine_dirtyable_memory - amount of memory that may be used
400 *
401 * Returns the numebr of pages that can currently be freed and used
402 * by the kernel for direct mappings.
403 */
404 unsigned long determine_dirtyable_memory(void)
405 {
406 unsigned long x;
407
408 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
409
410 if (!vm_highmem_is_dirtyable)
411 x -= highmem_dirtyable_memory(x);
412
413 return x + 1; /* Ensure that we never return 0 */
414 }
415
416 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
417 unsigned long bg_thresh)
418 {
419 return (thresh + bg_thresh) / 2;
420 }
421
422 static unsigned long hard_dirty_limit(unsigned long thresh)
423 {
424 return max(thresh, global_dirty_limit);
425 }
426
427 /*
428 * global_dirty_limits - background-writeback and dirty-throttling thresholds
429 *
430 * Calculate the dirty thresholds based on sysctl parameters
431 * - vm.dirty_background_ratio or vm.dirty_background_bytes
432 * - vm.dirty_ratio or vm.dirty_bytes
433 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
434 * real-time tasks.
435 */
436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
437 {
438 unsigned long background;
439 unsigned long dirty;
440 unsigned long uninitialized_var(available_memory);
441 struct task_struct *tsk;
442
443 if (!vm_dirty_bytes || !dirty_background_bytes)
444 available_memory = determine_dirtyable_memory();
445
446 if (vm_dirty_bytes)
447 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
448 else
449 dirty = (vm_dirty_ratio * available_memory) / 100;
450
451 if (dirty_background_bytes)
452 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
453 else
454 background = (dirty_background_ratio * available_memory) / 100;
455
456 if (background >= dirty)
457 background = dirty / 2;
458 tsk = current;
459 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
460 background += background / 4;
461 dirty += dirty / 4;
462 }
463 *pbackground = background;
464 *pdirty = dirty;
465 trace_global_dirty_state(background, dirty);
466 }
467
468 /**
469 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
470 * @bdi: the backing_dev_info to query
471 * @dirty: global dirty limit in pages
472 *
473 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
474 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
475 * And the "limit" in the name is not seriously taken as hard limit in
476 * balance_dirty_pages().
477 *
478 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
479 * - starving fast devices
480 * - piling up dirty pages (that will take long time to sync) on slow devices
481 *
482 * The bdi's share of dirty limit will be adapting to its throughput and
483 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
484 */
485 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
486 {
487 u64 bdi_dirty;
488 long numerator, denominator;
489
490 /*
491 * Calculate this BDI's share of the dirty ratio.
492 */
493 bdi_writeout_fraction(bdi, &numerator, &denominator);
494
495 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
496 bdi_dirty *= numerator;
497 do_div(bdi_dirty, denominator);
498
499 bdi_dirty += (dirty * bdi->min_ratio) / 100;
500 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
501 bdi_dirty = dirty * bdi->max_ratio / 100;
502
503 return bdi_dirty;
504 }
505
506 /*
507 * Dirty position control.
508 *
509 * (o) global/bdi setpoints
510 *
511 * We want the dirty pages be balanced around the global/bdi setpoints.
512 * When the number of dirty pages is higher/lower than the setpoint, the
513 * dirty position control ratio (and hence task dirty ratelimit) will be
514 * decreased/increased to bring the dirty pages back to the setpoint.
515 *
516 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
517 *
518 * if (dirty < setpoint) scale up pos_ratio
519 * if (dirty > setpoint) scale down pos_ratio
520 *
521 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio
522 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio
523 *
524 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
525 *
526 * (o) global control line
527 *
528 * ^ pos_ratio
529 * |
530 * | |<===== global dirty control scope ======>|
531 * 2.0 .............*
532 * | .*
533 * | . *
534 * | . *
535 * | . *
536 * | . *
537 * | . *
538 * 1.0 ................................*
539 * | . . *
540 * | . . *
541 * | . . *
542 * | . . *
543 * | . . *
544 * 0 +------------.------------------.----------------------*------------->
545 * freerun^ setpoint^ limit^ dirty pages
546 *
547 * (o) bdi control line
548 *
549 * ^ pos_ratio
550 * |
551 * | *
552 * | *
553 * | *
554 * | *
555 * | * |<=========== span ============>|
556 * 1.0 .......................*
557 * | . *
558 * | . *
559 * | . *
560 * | . *
561 * | . *
562 * | . *
563 * | . *
564 * | . *
565 * | . *
566 * | . *
567 * | . *
568 * 1/4 ...............................................* * * * * * * * * * * *
569 * | . .
570 * | . .
571 * | . .
572 * 0 +----------------------.-------------------------------.------------->
573 * bdi_setpoint^ x_intercept^
574 *
575 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
576 * be smoothly throttled down to normal if it starts high in situations like
577 * - start writing to a slow SD card and a fast disk at the same time. The SD
578 * card's bdi_dirty may rush to many times higher than bdi_setpoint.
579 * - the bdi dirty thresh drops quickly due to change of JBOD workload
580 */
581 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
582 unsigned long thresh,
583 unsigned long bg_thresh,
584 unsigned long dirty,
585 unsigned long bdi_thresh,
586 unsigned long bdi_dirty)
587 {
588 unsigned long write_bw = bdi->avg_write_bandwidth;
589 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
590 unsigned long limit = hard_dirty_limit(thresh);
591 unsigned long x_intercept;
592 unsigned long setpoint; /* dirty pages' target balance point */
593 unsigned long bdi_setpoint;
594 unsigned long span;
595 long long pos_ratio; /* for scaling up/down the rate limit */
596 long x;
597
598 if (unlikely(dirty >= limit))
599 return 0;
600
601 /*
602 * global setpoint
603 *
604 * setpoint - dirty 3
605 * f(dirty) := 1.0 + (----------------)
606 * limit - setpoint
607 *
608 * it's a 3rd order polynomial that subjects to
609 *
610 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
611 * (2) f(setpoint) = 1.0 => the balance point
612 * (3) f(limit) = 0 => the hard limit
613 * (4) df/dx <= 0 => negative feedback control
614 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
615 * => fast response on large errors; small oscillation near setpoint
616 */
617 setpoint = (freerun + limit) / 2;
618 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
619 limit - setpoint + 1);
620 pos_ratio = x;
621 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
622 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
623 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
624
625 /*
626 * We have computed basic pos_ratio above based on global situation. If
627 * the bdi is over/under its share of dirty pages, we want to scale
628 * pos_ratio further down/up. That is done by the following mechanism.
629 */
630
631 /*
632 * bdi setpoint
633 *
634 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
635 *
636 * x_intercept - bdi_dirty
637 * := --------------------------
638 * x_intercept - bdi_setpoint
639 *
640 * The main bdi control line is a linear function that subjects to
641 *
642 * (1) f(bdi_setpoint) = 1.0
643 * (2) k = - 1 / (8 * write_bw) (in single bdi case)
644 * or equally: x_intercept = bdi_setpoint + 8 * write_bw
645 *
646 * For single bdi case, the dirty pages are observed to fluctuate
647 * regularly within range
648 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
649 * for various filesystems, where (2) can yield in a reasonable 12.5%
650 * fluctuation range for pos_ratio.
651 *
652 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
653 * own size, so move the slope over accordingly and choose a slope that
654 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
655 */
656 if (unlikely(bdi_thresh > thresh))
657 bdi_thresh = thresh;
658 /*
659 * scale global setpoint to bdi's:
660 * bdi_setpoint = setpoint * bdi_thresh / thresh
661 */
662 x = div_u64((u64)bdi_thresh << 16, thresh + 1);
663 bdi_setpoint = setpoint * (u64)x >> 16;
664 /*
665 * Use span=(8*write_bw) in single bdi case as indicated by
666 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
667 *
668 * bdi_thresh thresh - bdi_thresh
669 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
670 * thresh thresh
671 */
672 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
673 x_intercept = bdi_setpoint + span;
674
675 if (bdi_dirty < x_intercept - span / 4) {
676 pos_ratio *= x_intercept - bdi_dirty;
677 do_div(pos_ratio, x_intercept - bdi_setpoint + 1);
678 } else
679 pos_ratio /= 4;
680
681 return pos_ratio;
682 }
683
684 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
685 unsigned long elapsed,
686 unsigned long written)
687 {
688 const unsigned long period = roundup_pow_of_two(3 * HZ);
689 unsigned long avg = bdi->avg_write_bandwidth;
690 unsigned long old = bdi->write_bandwidth;
691 u64 bw;
692
693 /*
694 * bw = written * HZ / elapsed
695 *
696 * bw * elapsed + write_bandwidth * (period - elapsed)
697 * write_bandwidth = ---------------------------------------------------
698 * period
699 */
700 bw = written - bdi->written_stamp;
701 bw *= HZ;
702 if (unlikely(elapsed > period)) {
703 do_div(bw, elapsed);
704 avg = bw;
705 goto out;
706 }
707 bw += (u64)bdi->write_bandwidth * (period - elapsed);
708 bw >>= ilog2(period);
709
710 /*
711 * one more level of smoothing, for filtering out sudden spikes
712 */
713 if (avg > old && old >= (unsigned long)bw)
714 avg -= (avg - old) >> 3;
715
716 if (avg < old && old <= (unsigned long)bw)
717 avg += (old - avg) >> 3;
718
719 out:
720 bdi->write_bandwidth = bw;
721 bdi->avg_write_bandwidth = avg;
722 }
723
724 /*
725 * The global dirtyable memory and dirty threshold could be suddenly knocked
726 * down by a large amount (eg. on the startup of KVM in a swapless system).
727 * This may throw the system into deep dirty exceeded state and throttle
728 * heavy/light dirtiers alike. To retain good responsiveness, maintain
729 * global_dirty_limit for tracking slowly down to the knocked down dirty
730 * threshold.
731 */
732 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
733 {
734 unsigned long limit = global_dirty_limit;
735
736 /*
737 * Follow up in one step.
738 */
739 if (limit < thresh) {
740 limit = thresh;
741 goto update;
742 }
743
744 /*
745 * Follow down slowly. Use the higher one as the target, because thresh
746 * may drop below dirty. This is exactly the reason to introduce
747 * global_dirty_limit which is guaranteed to lie above the dirty pages.
748 */
749 thresh = max(thresh, dirty);
750 if (limit > thresh) {
751 limit -= (limit - thresh) >> 5;
752 goto update;
753 }
754 return;
755 update:
756 global_dirty_limit = limit;
757 }
758
759 static void global_update_bandwidth(unsigned long thresh,
760 unsigned long dirty,
761 unsigned long now)
762 {
763 static DEFINE_SPINLOCK(dirty_lock);
764 static unsigned long update_time;
765
766 /*
767 * check locklessly first to optimize away locking for the most time
768 */
769 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
770 return;
771
772 spin_lock(&dirty_lock);
773 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
774 update_dirty_limit(thresh, dirty);
775 update_time = now;
776 }
777 spin_unlock(&dirty_lock);
778 }
779
780 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
781 unsigned long thresh,
782 unsigned long bg_thresh,
783 unsigned long dirty,
784 unsigned long bdi_thresh,
785 unsigned long bdi_dirty,
786 unsigned long start_time)
787 {
788 unsigned long now = jiffies;
789 unsigned long elapsed = now - bdi->bw_time_stamp;
790 unsigned long written;
791
792 /*
793 * rate-limit, only update once every 200ms.
794 */
795 if (elapsed < BANDWIDTH_INTERVAL)
796 return;
797
798 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
799
800 /*
801 * Skip quiet periods when disk bandwidth is under-utilized.
802 * (at least 1s idle time between two flusher runs)
803 */
804 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
805 goto snapshot;
806
807 if (thresh)
808 global_update_bandwidth(thresh, dirty, now);
809
810 bdi_update_write_bandwidth(bdi, elapsed, written);
811
812 snapshot:
813 bdi->written_stamp = written;
814 bdi->bw_time_stamp = now;
815 }
816
817 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
818 unsigned long thresh,
819 unsigned long bg_thresh,
820 unsigned long dirty,
821 unsigned long bdi_thresh,
822 unsigned long bdi_dirty,
823 unsigned long start_time)
824 {
825 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
826 return;
827 spin_lock(&bdi->wb.list_lock);
828 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
829 bdi_thresh, bdi_dirty, start_time);
830 spin_unlock(&bdi->wb.list_lock);
831 }
832
833 /*
834 * balance_dirty_pages() must be called by processes which are generating dirty
835 * data. It looks at the number of dirty pages in the machine and will force
836 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
837 * If we're over `background_thresh' then the writeback threads are woken to
838 * perform some writeout.
839 */
840 static void balance_dirty_pages(struct address_space *mapping,
841 unsigned long write_chunk)
842 {
843 unsigned long nr_reclaimable, bdi_nr_reclaimable;
844 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
845 unsigned long bdi_dirty;
846 unsigned long freerun;
847 unsigned long background_thresh;
848 unsigned long dirty_thresh;
849 unsigned long bdi_thresh;
850 unsigned long task_bdi_thresh;
851 unsigned long min_task_bdi_thresh;
852 unsigned long pages_written = 0;
853 unsigned long pause = 1;
854 bool dirty_exceeded = false;
855 bool clear_dirty_exceeded = true;
856 struct backing_dev_info *bdi = mapping->backing_dev_info;
857 unsigned long start_time = jiffies;
858
859 for (;;) {
860 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
861 global_page_state(NR_UNSTABLE_NFS);
862 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
863
864 global_dirty_limits(&background_thresh, &dirty_thresh);
865
866 /*
867 * Throttle it only when the background writeback cannot
868 * catch-up. This avoids (excessively) small writeouts
869 * when the bdi limits are ramping up.
870 */
871 freerun = dirty_freerun_ceiling(dirty_thresh,
872 background_thresh);
873 if (nr_dirty <= freerun)
874 break;
875
876 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
877 min_task_bdi_thresh = task_min_dirty_limit(bdi_thresh);
878 task_bdi_thresh = task_dirty_limit(current, bdi_thresh);
879
880 /*
881 * In order to avoid the stacked BDI deadlock we need
882 * to ensure we accurately count the 'dirty' pages when
883 * the threshold is low.
884 *
885 * Otherwise it would be possible to get thresh+n pages
886 * reported dirty, even though there are thresh-m pages
887 * actually dirty; with m+n sitting in the percpu
888 * deltas.
889 */
890 if (task_bdi_thresh < 2 * bdi_stat_error(bdi)) {
891 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
892 bdi_dirty = bdi_nr_reclaimable +
893 bdi_stat_sum(bdi, BDI_WRITEBACK);
894 } else {
895 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
896 bdi_dirty = bdi_nr_reclaimable +
897 bdi_stat(bdi, BDI_WRITEBACK);
898 }
899
900 /*
901 * The bdi thresh is somehow "soft" limit derived from the
902 * global "hard" limit. The former helps to prevent heavy IO
903 * bdi or process from holding back light ones; The latter is
904 * the last resort safeguard.
905 */
906 dirty_exceeded = (bdi_dirty > task_bdi_thresh) ||
907 (nr_dirty > dirty_thresh);
908 clear_dirty_exceeded = (bdi_dirty <= min_task_bdi_thresh) &&
909 (nr_dirty <= dirty_thresh);
910
911 if (!dirty_exceeded)
912 break;
913
914 if (!bdi->dirty_exceeded)
915 bdi->dirty_exceeded = 1;
916
917 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
918 nr_dirty, bdi_thresh, bdi_dirty,
919 start_time);
920
921 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
922 * Unstable writes are a feature of certain networked
923 * filesystems (i.e. NFS) in which data may have been
924 * written to the server's write cache, but has not yet
925 * been flushed to permanent storage.
926 * Only move pages to writeback if this bdi is over its
927 * threshold otherwise wait until the disk writes catch
928 * up.
929 */
930 trace_balance_dirty_start(bdi);
931 if (bdi_nr_reclaimable > task_bdi_thresh) {
932 pages_written += writeback_inodes_wb(&bdi->wb,
933 write_chunk);
934 trace_balance_dirty_written(bdi, pages_written);
935 if (pages_written >= write_chunk)
936 break; /* We've done our duty */
937 }
938 __set_current_state(TASK_UNINTERRUPTIBLE);
939 io_schedule_timeout(pause);
940 trace_balance_dirty_wait(bdi);
941
942 dirty_thresh = hard_dirty_limit(dirty_thresh);
943 /*
944 * max-pause area. If dirty exceeded but still within this
945 * area, no need to sleep for more than 200ms: (a) 8 pages per
946 * 200ms is typically more than enough to curb heavy dirtiers;
947 * (b) the pause time limit makes the dirtiers more responsive.
948 */
949 if (nr_dirty < dirty_thresh &&
950 bdi_dirty < (task_bdi_thresh + bdi_thresh) / 2 &&
951 time_after(jiffies, start_time + MAX_PAUSE))
952 break;
953
954 /*
955 * Increase the delay for each loop, up to our previous
956 * default of taking a 100ms nap.
957 */
958 pause <<= 1;
959 if (pause > HZ / 10)
960 pause = HZ / 10;
961 }
962
963 /* Clear dirty_exceeded flag only when no task can exceed the limit */
964 if (clear_dirty_exceeded && bdi->dirty_exceeded)
965 bdi->dirty_exceeded = 0;
966
967 if (writeback_in_progress(bdi))
968 return;
969
970 /*
971 * In laptop mode, we wait until hitting the higher threshold before
972 * starting background writeout, and then write out all the way down
973 * to the lower threshold. So slow writers cause minimal disk activity.
974 *
975 * In normal mode, we start background writeout at the lower
976 * background_thresh, to keep the amount of dirty memory low.
977 */
978 if ((laptop_mode && pages_written) ||
979 (!laptop_mode && (nr_reclaimable > background_thresh)))
980 bdi_start_background_writeback(bdi);
981 }
982
983 void set_page_dirty_balance(struct page *page, int page_mkwrite)
984 {
985 if (set_page_dirty(page) || page_mkwrite) {
986 struct address_space *mapping = page_mapping(page);
987
988 if (mapping)
989 balance_dirty_pages_ratelimited(mapping);
990 }
991 }
992
993 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
994
995 /**
996 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
997 * @mapping: address_space which was dirtied
998 * @nr_pages_dirtied: number of pages which the caller has just dirtied
999 *
1000 * Processes which are dirtying memory should call in here once for each page
1001 * which was newly dirtied. The function will periodically check the system's
1002 * dirty state and will initiate writeback if needed.
1003 *
1004 * On really big machines, get_writeback_state is expensive, so try to avoid
1005 * calling it too often (ratelimiting). But once we're over the dirty memory
1006 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1007 * from overshooting the limit by (ratelimit_pages) each.
1008 */
1009 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1010 unsigned long nr_pages_dirtied)
1011 {
1012 struct backing_dev_info *bdi = mapping->backing_dev_info;
1013 unsigned long ratelimit;
1014 unsigned long *p;
1015
1016 if (!bdi_cap_account_dirty(bdi))
1017 return;
1018
1019 ratelimit = ratelimit_pages;
1020 if (mapping->backing_dev_info->dirty_exceeded)
1021 ratelimit = 8;
1022
1023 /*
1024 * Check the rate limiting. Also, we do not want to throttle real-time
1025 * tasks in balance_dirty_pages(). Period.
1026 */
1027 preempt_disable();
1028 p = &__get_cpu_var(bdp_ratelimits);
1029 *p += nr_pages_dirtied;
1030 if (unlikely(*p >= ratelimit)) {
1031 ratelimit = sync_writeback_pages(*p);
1032 *p = 0;
1033 preempt_enable();
1034 balance_dirty_pages(mapping, ratelimit);
1035 return;
1036 }
1037 preempt_enable();
1038 }
1039 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1040
1041 void throttle_vm_writeout(gfp_t gfp_mask)
1042 {
1043 unsigned long background_thresh;
1044 unsigned long dirty_thresh;
1045
1046 for ( ; ; ) {
1047 global_dirty_limits(&background_thresh, &dirty_thresh);
1048
1049 /*
1050 * Boost the allowable dirty threshold a bit for page
1051 * allocators so they don't get DoS'ed by heavy writers
1052 */
1053 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1054
1055 if (global_page_state(NR_UNSTABLE_NFS) +
1056 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1057 break;
1058 congestion_wait(BLK_RW_ASYNC, HZ/10);
1059
1060 /*
1061 * The caller might hold locks which can prevent IO completion
1062 * or progress in the filesystem. So we cannot just sit here
1063 * waiting for IO to complete.
1064 */
1065 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1066 break;
1067 }
1068 }
1069
1070 /*
1071 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1072 */
1073 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1074 void __user *buffer, size_t *length, loff_t *ppos)
1075 {
1076 proc_dointvec(table, write, buffer, length, ppos);
1077 bdi_arm_supers_timer();
1078 return 0;
1079 }
1080
1081 #ifdef CONFIG_BLOCK
1082 void laptop_mode_timer_fn(unsigned long data)
1083 {
1084 struct request_queue *q = (struct request_queue *)data;
1085 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1086 global_page_state(NR_UNSTABLE_NFS);
1087
1088 /*
1089 * We want to write everything out, not just down to the dirty
1090 * threshold
1091 */
1092 if (bdi_has_dirty_io(&q->backing_dev_info))
1093 bdi_start_writeback(&q->backing_dev_info, nr_pages);
1094 }
1095
1096 /*
1097 * We've spun up the disk and we're in laptop mode: schedule writeback
1098 * of all dirty data a few seconds from now. If the flush is already scheduled
1099 * then push it back - the user is still using the disk.
1100 */
1101 void laptop_io_completion(struct backing_dev_info *info)
1102 {
1103 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1104 }
1105
1106 /*
1107 * We're in laptop mode and we've just synced. The sync's writes will have
1108 * caused another writeback to be scheduled by laptop_io_completion.
1109 * Nothing needs to be written back anymore, so we unschedule the writeback.
1110 */
1111 void laptop_sync_completion(void)
1112 {
1113 struct backing_dev_info *bdi;
1114
1115 rcu_read_lock();
1116
1117 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1118 del_timer(&bdi->laptop_mode_wb_timer);
1119
1120 rcu_read_unlock();
1121 }
1122 #endif
1123
1124 /*
1125 * If ratelimit_pages is too high then we can get into dirty-data overload
1126 * if a large number of processes all perform writes at the same time.
1127 * If it is too low then SMP machines will call the (expensive)
1128 * get_writeback_state too often.
1129 *
1130 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1131 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1132 * thresholds before writeback cuts in.
1133 *
1134 * But the limit should not be set too high. Because it also controls the
1135 * amount of memory which the balance_dirty_pages() caller has to write back.
1136 * If this is too large then the caller will block on the IO queue all the
1137 * time. So limit it to four megabytes - the balance_dirty_pages() caller
1138 * will write six megabyte chunks, max.
1139 */
1140
1141 void writeback_set_ratelimit(void)
1142 {
1143 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
1144 if (ratelimit_pages < 16)
1145 ratelimit_pages = 16;
1146 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
1147 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
1148 }
1149
1150 static int __cpuinit
1151 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1152 {
1153 writeback_set_ratelimit();
1154 return NOTIFY_DONE;
1155 }
1156
1157 static struct notifier_block __cpuinitdata ratelimit_nb = {
1158 .notifier_call = ratelimit_handler,
1159 .next = NULL,
1160 };
1161
1162 /*
1163 * Called early on to tune the page writeback dirty limits.
1164 *
1165 * We used to scale dirty pages according to how total memory
1166 * related to pages that could be allocated for buffers (by
1167 * comparing nr_free_buffer_pages() to vm_total_pages.
1168 *
1169 * However, that was when we used "dirty_ratio" to scale with
1170 * all memory, and we don't do that any more. "dirty_ratio"
1171 * is now applied to total non-HIGHPAGE memory (by subtracting
1172 * totalhigh_pages from vm_total_pages), and as such we can't
1173 * get into the old insane situation any more where we had
1174 * large amounts of dirty pages compared to a small amount of
1175 * non-HIGHMEM memory.
1176 *
1177 * But we might still want to scale the dirty_ratio by how
1178 * much memory the box has..
1179 */
1180 void __init page_writeback_init(void)
1181 {
1182 int shift;
1183
1184 writeback_set_ratelimit();
1185 register_cpu_notifier(&ratelimit_nb);
1186
1187 shift = calc_period_shift();
1188 prop_descriptor_init(&vm_completions, shift);
1189 prop_descriptor_init(&vm_dirties, shift);
1190 }
1191
1192 /**
1193 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1194 * @mapping: address space structure to write
1195 * @start: starting page index
1196 * @end: ending page index (inclusive)
1197 *
1198 * This function scans the page range from @start to @end (inclusive) and tags
1199 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1200 * that write_cache_pages (or whoever calls this function) will then use
1201 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1202 * used to avoid livelocking of writeback by a process steadily creating new
1203 * dirty pages in the file (thus it is important for this function to be quick
1204 * so that it can tag pages faster than a dirtying process can create them).
1205 */
1206 /*
1207 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1208 */
1209 void tag_pages_for_writeback(struct address_space *mapping,
1210 pgoff_t start, pgoff_t end)
1211 {
1212 #define WRITEBACK_TAG_BATCH 4096
1213 unsigned long tagged;
1214
1215 do {
1216 spin_lock_irq(&mapping->tree_lock);
1217 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1218 &start, end, WRITEBACK_TAG_BATCH,
1219 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1220 spin_unlock_irq(&mapping->tree_lock);
1221 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1222 cond_resched();
1223 /* We check 'start' to handle wrapping when end == ~0UL */
1224 } while (tagged >= WRITEBACK_TAG_BATCH && start);
1225 }
1226 EXPORT_SYMBOL(tag_pages_for_writeback);
1227
1228 /**
1229 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1230 * @mapping: address space structure to write
1231 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1232 * @writepage: function called for each page
1233 * @data: data passed to writepage function
1234 *
1235 * If a page is already under I/O, write_cache_pages() skips it, even
1236 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1237 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1238 * and msync() need to guarantee that all the data which was dirty at the time
1239 * the call was made get new I/O started against them. If wbc->sync_mode is
1240 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1241 * existing IO to complete.
1242 *
1243 * To avoid livelocks (when other process dirties new pages), we first tag
1244 * pages which should be written back with TOWRITE tag and only then start
1245 * writing them. For data-integrity sync we have to be careful so that we do
1246 * not miss some pages (e.g., because some other process has cleared TOWRITE
1247 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1248 * by the process clearing the DIRTY tag (and submitting the page for IO).
1249 */
1250 int write_cache_pages(struct address_space *mapping,
1251 struct writeback_control *wbc, writepage_t writepage,
1252 void *data)
1253 {
1254 int ret = 0;
1255 int done = 0;
1256 struct pagevec pvec;
1257 int nr_pages;
1258 pgoff_t uninitialized_var(writeback_index);
1259 pgoff_t index;
1260 pgoff_t end; /* Inclusive */
1261 pgoff_t done_index;
1262 int cycled;
1263 int range_whole = 0;
1264 int tag;
1265
1266 pagevec_init(&pvec, 0);
1267 if (wbc->range_cyclic) {
1268 writeback_index = mapping->writeback_index; /* prev offset */
1269 index = writeback_index;
1270 if (index == 0)
1271 cycled = 1;
1272 else
1273 cycled = 0;
1274 end = -1;
1275 } else {
1276 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1277 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1278 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1279 range_whole = 1;
1280 cycled = 1; /* ignore range_cyclic tests */
1281 }
1282 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1283 tag = PAGECACHE_TAG_TOWRITE;
1284 else
1285 tag = PAGECACHE_TAG_DIRTY;
1286 retry:
1287 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1288 tag_pages_for_writeback(mapping, index, end);
1289 done_index = index;
1290 while (!done && (index <= end)) {
1291 int i;
1292
1293 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1294 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1295 if (nr_pages == 0)
1296 break;
1297
1298 for (i = 0; i < nr_pages; i++) {
1299 struct page *page = pvec.pages[i];
1300
1301 /*
1302 * At this point, the page may be truncated or
1303 * invalidated (changing page->mapping to NULL), or
1304 * even swizzled back from swapper_space to tmpfs file
1305 * mapping. However, page->index will not change
1306 * because we have a reference on the page.
1307 */
1308 if (page->index > end) {
1309 /*
1310 * can't be range_cyclic (1st pass) because
1311 * end == -1 in that case.
1312 */
1313 done = 1;
1314 break;
1315 }
1316
1317 done_index = page->index;
1318
1319 lock_page(page);
1320
1321 /*
1322 * Page truncated or invalidated. We can freely skip it
1323 * then, even for data integrity operations: the page
1324 * has disappeared concurrently, so there could be no
1325 * real expectation of this data interity operation
1326 * even if there is now a new, dirty page at the same
1327 * pagecache address.
1328 */
1329 if (unlikely(page->mapping != mapping)) {
1330 continue_unlock:
1331 unlock_page(page);
1332 continue;
1333 }
1334
1335 if (!PageDirty(page)) {
1336 /* someone wrote it for us */
1337 goto continue_unlock;
1338 }
1339
1340 if (PageWriteback(page)) {
1341 if (wbc->sync_mode != WB_SYNC_NONE)
1342 wait_on_page_writeback(page);
1343 else
1344 goto continue_unlock;
1345 }
1346
1347 BUG_ON(PageWriteback(page));
1348 if (!clear_page_dirty_for_io(page))
1349 goto continue_unlock;
1350
1351 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1352 ret = (*writepage)(page, wbc, data);
1353 if (unlikely(ret)) {
1354 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1355 unlock_page(page);
1356 ret = 0;
1357 } else {
1358 /*
1359 * done_index is set past this page,
1360 * so media errors will not choke
1361 * background writeout for the entire
1362 * file. This has consequences for
1363 * range_cyclic semantics (ie. it may
1364 * not be suitable for data integrity
1365 * writeout).
1366 */
1367 done_index = page->index + 1;
1368 done = 1;
1369 break;
1370 }
1371 }
1372
1373 /*
1374 * We stop writing back only if we are not doing
1375 * integrity sync. In case of integrity sync we have to
1376 * keep going until we have written all the pages
1377 * we tagged for writeback prior to entering this loop.
1378 */
1379 if (--wbc->nr_to_write <= 0 &&
1380 wbc->sync_mode == WB_SYNC_NONE) {
1381 done = 1;
1382 break;
1383 }
1384 }
1385 pagevec_release(&pvec);
1386 cond_resched();
1387 }
1388 if (!cycled && !done) {
1389 /*
1390 * range_cyclic:
1391 * We hit the last page and there is more work to be done: wrap
1392 * back to the start of the file
1393 */
1394 cycled = 1;
1395 index = 0;
1396 end = writeback_index - 1;
1397 goto retry;
1398 }
1399 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1400 mapping->writeback_index = done_index;
1401
1402 return ret;
1403 }
1404 EXPORT_SYMBOL(write_cache_pages);
1405
1406 /*
1407 * Function used by generic_writepages to call the real writepage
1408 * function and set the mapping flags on error
1409 */
1410 static int __writepage(struct page *page, struct writeback_control *wbc,
1411 void *data)
1412 {
1413 struct address_space *mapping = data;
1414 int ret = mapping->a_ops->writepage(page, wbc);
1415 mapping_set_error(mapping, ret);
1416 return ret;
1417 }
1418
1419 /**
1420 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1421 * @mapping: address space structure to write
1422 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1423 *
1424 * This is a library function, which implements the writepages()
1425 * address_space_operation.
1426 */
1427 int generic_writepages(struct address_space *mapping,
1428 struct writeback_control *wbc)
1429 {
1430 struct blk_plug plug;
1431 int ret;
1432
1433 /* deal with chardevs and other special file */
1434 if (!mapping->a_ops->writepage)
1435 return 0;
1436
1437 blk_start_plug(&plug);
1438 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1439 blk_finish_plug(&plug);
1440 return ret;
1441 }
1442
1443 EXPORT_SYMBOL(generic_writepages);
1444
1445 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1446 {
1447 int ret;
1448
1449 if (wbc->nr_to_write <= 0)
1450 return 0;
1451 if (mapping->a_ops->writepages)
1452 ret = mapping->a_ops->writepages(mapping, wbc);
1453 else
1454 ret = generic_writepages(mapping, wbc);
1455 return ret;
1456 }
1457
1458 /**
1459 * write_one_page - write out a single page and optionally wait on I/O
1460 * @page: the page to write
1461 * @wait: if true, wait on writeout
1462 *
1463 * The page must be locked by the caller and will be unlocked upon return.
1464 *
1465 * write_one_page() returns a negative error code if I/O failed.
1466 */
1467 int write_one_page(struct page *page, int wait)
1468 {
1469 struct address_space *mapping = page->mapping;
1470 int ret = 0;
1471 struct writeback_control wbc = {
1472 .sync_mode = WB_SYNC_ALL,
1473 .nr_to_write = 1,
1474 };
1475
1476 BUG_ON(!PageLocked(page));
1477
1478 if (wait)
1479 wait_on_page_writeback(page);
1480
1481 if (clear_page_dirty_for_io(page)) {
1482 page_cache_get(page);
1483 ret = mapping->a_ops->writepage(page, &wbc);
1484 if (ret == 0 && wait) {
1485 wait_on_page_writeback(page);
1486 if (PageError(page))
1487 ret = -EIO;
1488 }
1489 page_cache_release(page);
1490 } else {
1491 unlock_page(page);
1492 }
1493 return ret;
1494 }
1495 EXPORT_SYMBOL(write_one_page);
1496
1497 /*
1498 * For address_spaces which do not use buffers nor write back.
1499 */
1500 int __set_page_dirty_no_writeback(struct page *page)
1501 {
1502 if (!PageDirty(page))
1503 return !TestSetPageDirty(page);
1504 return 0;
1505 }
1506
1507 /*
1508 * Helper function for set_page_dirty family.
1509 * NOTE: This relies on being atomic wrt interrupts.
1510 */
1511 void account_page_dirtied(struct page *page, struct address_space *mapping)
1512 {
1513 if (mapping_cap_account_dirty(mapping)) {
1514 __inc_zone_page_state(page, NR_FILE_DIRTY);
1515 __inc_zone_page_state(page, NR_DIRTIED);
1516 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1517 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1518 task_dirty_inc(current);
1519 task_io_account_write(PAGE_CACHE_SIZE);
1520 }
1521 }
1522 EXPORT_SYMBOL(account_page_dirtied);
1523
1524 /*
1525 * Helper function for set_page_writeback family.
1526 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1527 * wrt interrupts.
1528 */
1529 void account_page_writeback(struct page *page)
1530 {
1531 inc_zone_page_state(page, NR_WRITEBACK);
1532 }
1533 EXPORT_SYMBOL(account_page_writeback);
1534
1535 /*
1536 * For address_spaces which do not use buffers. Just tag the page as dirty in
1537 * its radix tree.
1538 *
1539 * This is also used when a single buffer is being dirtied: we want to set the
1540 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1541 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1542 *
1543 * Most callers have locked the page, which pins the address_space in memory.
1544 * But zap_pte_range() does not lock the page, however in that case the
1545 * mapping is pinned by the vma's ->vm_file reference.
1546 *
1547 * We take care to handle the case where the page was truncated from the
1548 * mapping by re-checking page_mapping() inside tree_lock.
1549 */
1550 int __set_page_dirty_nobuffers(struct page *page)
1551 {
1552 if (!TestSetPageDirty(page)) {
1553 struct address_space *mapping = page_mapping(page);
1554 struct address_space *mapping2;
1555
1556 if (!mapping)
1557 return 1;
1558
1559 spin_lock_irq(&mapping->tree_lock);
1560 mapping2 = page_mapping(page);
1561 if (mapping2) { /* Race with truncate? */
1562 BUG_ON(mapping2 != mapping);
1563 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1564 account_page_dirtied(page, mapping);
1565 radix_tree_tag_set(&mapping->page_tree,
1566 page_index(page), PAGECACHE_TAG_DIRTY);
1567 }
1568 spin_unlock_irq(&mapping->tree_lock);
1569 if (mapping->host) {
1570 /* !PageAnon && !swapper_space */
1571 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1572 }
1573 return 1;
1574 }
1575 return 0;
1576 }
1577 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1578
1579 /*
1580 * When a writepage implementation decides that it doesn't want to write this
1581 * page for some reason, it should redirty the locked page via
1582 * redirty_page_for_writepage() and it should then unlock the page and return 0
1583 */
1584 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1585 {
1586 wbc->pages_skipped++;
1587 return __set_page_dirty_nobuffers(page);
1588 }
1589 EXPORT_SYMBOL(redirty_page_for_writepage);
1590
1591 /*
1592 * Dirty a page.
1593 *
1594 * For pages with a mapping this should be done under the page lock
1595 * for the benefit of asynchronous memory errors who prefer a consistent
1596 * dirty state. This rule can be broken in some special cases,
1597 * but should be better not to.
1598 *
1599 * If the mapping doesn't provide a set_page_dirty a_op, then
1600 * just fall through and assume that it wants buffer_heads.
1601 */
1602 int set_page_dirty(struct page *page)
1603 {
1604 struct address_space *mapping = page_mapping(page);
1605
1606 if (likely(mapping)) {
1607 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1608 /*
1609 * readahead/lru_deactivate_page could remain
1610 * PG_readahead/PG_reclaim due to race with end_page_writeback
1611 * About readahead, if the page is written, the flags would be
1612 * reset. So no problem.
1613 * About lru_deactivate_page, if the page is redirty, the flag
1614 * will be reset. So no problem. but if the page is used by readahead
1615 * it will confuse readahead and make it restart the size rampup
1616 * process. But it's a trivial problem.
1617 */
1618 ClearPageReclaim(page);
1619 #ifdef CONFIG_BLOCK
1620 if (!spd)
1621 spd = __set_page_dirty_buffers;
1622 #endif
1623 return (*spd)(page);
1624 }
1625 if (!PageDirty(page)) {
1626 if (!TestSetPageDirty(page))
1627 return 1;
1628 }
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(set_page_dirty);
1632
1633 /*
1634 * set_page_dirty() is racy if the caller has no reference against
1635 * page->mapping->host, and if the page is unlocked. This is because another
1636 * CPU could truncate the page off the mapping and then free the mapping.
1637 *
1638 * Usually, the page _is_ locked, or the caller is a user-space process which
1639 * holds a reference on the inode by having an open file.
1640 *
1641 * In other cases, the page should be locked before running set_page_dirty().
1642 */
1643 int set_page_dirty_lock(struct page *page)
1644 {
1645 int ret;
1646
1647 lock_page(page);
1648 ret = set_page_dirty(page);
1649 unlock_page(page);
1650 return ret;
1651 }
1652 EXPORT_SYMBOL(set_page_dirty_lock);
1653
1654 /*
1655 * Clear a page's dirty flag, while caring for dirty memory accounting.
1656 * Returns true if the page was previously dirty.
1657 *
1658 * This is for preparing to put the page under writeout. We leave the page
1659 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1660 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1661 * implementation will run either set_page_writeback() or set_page_dirty(),
1662 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1663 * back into sync.
1664 *
1665 * This incoherency between the page's dirty flag and radix-tree tag is
1666 * unfortunate, but it only exists while the page is locked.
1667 */
1668 int clear_page_dirty_for_io(struct page *page)
1669 {
1670 struct address_space *mapping = page_mapping(page);
1671
1672 BUG_ON(!PageLocked(page));
1673
1674 if (mapping && mapping_cap_account_dirty(mapping)) {
1675 /*
1676 * Yes, Virginia, this is indeed insane.
1677 *
1678 * We use this sequence to make sure that
1679 * (a) we account for dirty stats properly
1680 * (b) we tell the low-level filesystem to
1681 * mark the whole page dirty if it was
1682 * dirty in a pagetable. Only to then
1683 * (c) clean the page again and return 1 to
1684 * cause the writeback.
1685 *
1686 * This way we avoid all nasty races with the
1687 * dirty bit in multiple places and clearing
1688 * them concurrently from different threads.
1689 *
1690 * Note! Normally the "set_page_dirty(page)"
1691 * has no effect on the actual dirty bit - since
1692 * that will already usually be set. But we
1693 * need the side effects, and it can help us
1694 * avoid races.
1695 *
1696 * We basically use the page "master dirty bit"
1697 * as a serialization point for all the different
1698 * threads doing their things.
1699 */
1700 if (page_mkclean(page))
1701 set_page_dirty(page);
1702 /*
1703 * We carefully synchronise fault handlers against
1704 * installing a dirty pte and marking the page dirty
1705 * at this point. We do this by having them hold the
1706 * page lock at some point after installing their
1707 * pte, but before marking the page dirty.
1708 * Pages are always locked coming in here, so we get
1709 * the desired exclusion. See mm/memory.c:do_wp_page()
1710 * for more comments.
1711 */
1712 if (TestClearPageDirty(page)) {
1713 dec_zone_page_state(page, NR_FILE_DIRTY);
1714 dec_bdi_stat(mapping->backing_dev_info,
1715 BDI_RECLAIMABLE);
1716 return 1;
1717 }
1718 return 0;
1719 }
1720 return TestClearPageDirty(page);
1721 }
1722 EXPORT_SYMBOL(clear_page_dirty_for_io);
1723
1724 int test_clear_page_writeback(struct page *page)
1725 {
1726 struct address_space *mapping = page_mapping(page);
1727 int ret;
1728
1729 if (mapping) {
1730 struct backing_dev_info *bdi = mapping->backing_dev_info;
1731 unsigned long flags;
1732
1733 spin_lock_irqsave(&mapping->tree_lock, flags);
1734 ret = TestClearPageWriteback(page);
1735 if (ret) {
1736 radix_tree_tag_clear(&mapping->page_tree,
1737 page_index(page),
1738 PAGECACHE_TAG_WRITEBACK);
1739 if (bdi_cap_account_writeback(bdi)) {
1740 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1741 __bdi_writeout_inc(bdi);
1742 }
1743 }
1744 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1745 } else {
1746 ret = TestClearPageWriteback(page);
1747 }
1748 if (ret) {
1749 dec_zone_page_state(page, NR_WRITEBACK);
1750 inc_zone_page_state(page, NR_WRITTEN);
1751 }
1752 return ret;
1753 }
1754
1755 int test_set_page_writeback(struct page *page)
1756 {
1757 struct address_space *mapping = page_mapping(page);
1758 int ret;
1759
1760 if (mapping) {
1761 struct backing_dev_info *bdi = mapping->backing_dev_info;
1762 unsigned long flags;
1763
1764 spin_lock_irqsave(&mapping->tree_lock, flags);
1765 ret = TestSetPageWriteback(page);
1766 if (!ret) {
1767 radix_tree_tag_set(&mapping->page_tree,
1768 page_index(page),
1769 PAGECACHE_TAG_WRITEBACK);
1770 if (bdi_cap_account_writeback(bdi))
1771 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1772 }
1773 if (!PageDirty(page))
1774 radix_tree_tag_clear(&mapping->page_tree,
1775 page_index(page),
1776 PAGECACHE_TAG_DIRTY);
1777 radix_tree_tag_clear(&mapping->page_tree,
1778 page_index(page),
1779 PAGECACHE_TAG_TOWRITE);
1780 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1781 } else {
1782 ret = TestSetPageWriteback(page);
1783 }
1784 if (!ret)
1785 account_page_writeback(page);
1786 return ret;
1787
1788 }
1789 EXPORT_SYMBOL(test_set_page_writeback);
1790
1791 /*
1792 * Return true if any of the pages in the mapping are marked with the
1793 * passed tag.
1794 */
1795 int mapping_tagged(struct address_space *mapping, int tag)
1796 {
1797 return radix_tree_tagged(&mapping->page_tree, tag);
1798 }
1799 EXPORT_SYMBOL(mapping_tagged);
This page took 0.067653 seconds and 5 git commands to generate.