[PATCH] zoned vm counters: conversion of nr_dirty to per zone counter
[deliverable/linux.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c.
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * Contains functions related to writing back dirty pages at the
7 * address_space level.
8 *
9 * 10Apr2002 akpm@zip.com.au
10 * Initial version
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/spinlock.h>
16 #include <linux/fs.h>
17 #include <linux/mm.h>
18 #include <linux/swap.h>
19 #include <linux/slab.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/init.h>
23 #include <linux/backing-dev.h>
24 #include <linux/blkdev.h>
25 #include <linux/mpage.h>
26 #include <linux/percpu.h>
27 #include <linux/notifier.h>
28 #include <linux/smp.h>
29 #include <linux/sysctl.h>
30 #include <linux/cpu.h>
31 #include <linux/syscalls.h>
32
33 /*
34 * The maximum number of pages to writeout in a single bdflush/kupdate
35 * operation. We do this so we don't hold I_LOCK against an inode for
36 * enormous amounts of time, which would block a userspace task which has
37 * been forced to throttle against that inode. Also, the code reevaluates
38 * the dirty each time it has written this many pages.
39 */
40 #define MAX_WRITEBACK_PAGES 1024
41
42 /*
43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
44 * will look to see if it needs to force writeback or throttling.
45 */
46 static long ratelimit_pages = 32;
47
48 static long total_pages; /* The total number of pages in the machine. */
49 static int dirty_exceeded __cacheline_aligned_in_smp; /* Dirty mem may be over limit */
50
51 /*
52 * When balance_dirty_pages decides that the caller needs to perform some
53 * non-background writeback, this is how many pages it will attempt to write.
54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
55 * large amounts of I/O are submitted.
56 */
57 static inline long sync_writeback_pages(void)
58 {
59 return ratelimit_pages + ratelimit_pages / 2;
60 }
61
62 /* The following parameters are exported via /proc/sys/vm */
63
64 /*
65 * Start background writeback (via pdflush) at this percentage
66 */
67 int dirty_background_ratio = 10;
68
69 /*
70 * The generator of dirty data starts writeback at this percentage
71 */
72 int vm_dirty_ratio = 40;
73
74 /*
75 * The interval between `kupdate'-style writebacks, in jiffies
76 */
77 int dirty_writeback_interval = 5 * HZ;
78
79 /*
80 * The longest number of jiffies for which data is allowed to remain dirty
81 */
82 int dirty_expire_interval = 30 * HZ;
83
84 /*
85 * Flag that makes the machine dump writes/reads and block dirtyings.
86 */
87 int block_dump;
88
89 /*
90 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
91 * a full sync is triggered after this time elapses without any disk activity.
92 */
93 int laptop_mode;
94
95 EXPORT_SYMBOL(laptop_mode);
96
97 /* End of sysctl-exported parameters */
98
99
100 static void background_writeout(unsigned long _min_pages);
101
102 struct writeback_state
103 {
104 unsigned long nr_dirty;
105 unsigned long nr_unstable;
106 unsigned long nr_mapped;
107 unsigned long nr_writeback;
108 };
109
110 static void get_writeback_state(struct writeback_state *wbs)
111 {
112 wbs->nr_dirty = global_page_state(NR_FILE_DIRTY);
113 wbs->nr_unstable = read_page_state(nr_unstable);
114 wbs->nr_mapped = global_page_state(NR_FILE_MAPPED) +
115 global_page_state(NR_ANON_PAGES);
116 wbs->nr_writeback = read_page_state(nr_writeback);
117 }
118
119 /*
120 * Work out the current dirty-memory clamping and background writeout
121 * thresholds.
122 *
123 * The main aim here is to lower them aggressively if there is a lot of mapped
124 * memory around. To avoid stressing page reclaim with lots of unreclaimable
125 * pages. It is better to clamp down on writers than to start swapping, and
126 * performing lots of scanning.
127 *
128 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
129 *
130 * We don't permit the clamping level to fall below 5% - that is getting rather
131 * excessive.
132 *
133 * We make sure that the background writeout level is below the adjusted
134 * clamping level.
135 */
136 static void
137 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
138 struct address_space *mapping)
139 {
140 int background_ratio; /* Percentages */
141 int dirty_ratio;
142 int unmapped_ratio;
143 long background;
144 long dirty;
145 unsigned long available_memory = total_pages;
146 struct task_struct *tsk;
147
148 get_writeback_state(wbs);
149
150 #ifdef CONFIG_HIGHMEM
151 /*
152 * If this mapping can only allocate from low memory,
153 * we exclude high memory from our count.
154 */
155 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
156 available_memory -= totalhigh_pages;
157 #endif
158
159
160 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
161
162 dirty_ratio = vm_dirty_ratio;
163 if (dirty_ratio > unmapped_ratio / 2)
164 dirty_ratio = unmapped_ratio / 2;
165
166 if (dirty_ratio < 5)
167 dirty_ratio = 5;
168
169 background_ratio = dirty_background_ratio;
170 if (background_ratio >= dirty_ratio)
171 background_ratio = dirty_ratio / 2;
172
173 background = (background_ratio * available_memory) / 100;
174 dirty = (dirty_ratio * available_memory) / 100;
175 tsk = current;
176 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
177 background += background / 4;
178 dirty += dirty / 4;
179 }
180 *pbackground = background;
181 *pdirty = dirty;
182 }
183
184 /*
185 * balance_dirty_pages() must be called by processes which are generating dirty
186 * data. It looks at the number of dirty pages in the machine and will force
187 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
188 * If we're over `background_thresh' then pdflush is woken to perform some
189 * writeout.
190 */
191 static void balance_dirty_pages(struct address_space *mapping)
192 {
193 struct writeback_state wbs;
194 long nr_reclaimable;
195 long background_thresh;
196 long dirty_thresh;
197 unsigned long pages_written = 0;
198 unsigned long write_chunk = sync_writeback_pages();
199
200 struct backing_dev_info *bdi = mapping->backing_dev_info;
201
202 for (;;) {
203 struct writeback_control wbc = {
204 .bdi = bdi,
205 .sync_mode = WB_SYNC_NONE,
206 .older_than_this = NULL,
207 .nr_to_write = write_chunk,
208 .range_cyclic = 1,
209 };
210
211 get_dirty_limits(&wbs, &background_thresh,
212 &dirty_thresh, mapping);
213 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
214 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
215 break;
216
217 if (!dirty_exceeded)
218 dirty_exceeded = 1;
219
220 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
221 * Unstable writes are a feature of certain networked
222 * filesystems (i.e. NFS) in which data may have been
223 * written to the server's write cache, but has not yet
224 * been flushed to permanent storage.
225 */
226 if (nr_reclaimable) {
227 writeback_inodes(&wbc);
228 get_dirty_limits(&wbs, &background_thresh,
229 &dirty_thresh, mapping);
230 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
231 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
232 break;
233 pages_written += write_chunk - wbc.nr_to_write;
234 if (pages_written >= write_chunk)
235 break; /* We've done our duty */
236 }
237 blk_congestion_wait(WRITE, HZ/10);
238 }
239
240 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh && dirty_exceeded)
241 dirty_exceeded = 0;
242
243 if (writeback_in_progress(bdi))
244 return; /* pdflush is already working this queue */
245
246 /*
247 * In laptop mode, we wait until hitting the higher threshold before
248 * starting background writeout, and then write out all the way down
249 * to the lower threshold. So slow writers cause minimal disk activity.
250 *
251 * In normal mode, we start background writeout at the lower
252 * background_thresh, to keep the amount of dirty memory low.
253 */
254 if ((laptop_mode && pages_written) ||
255 (!laptop_mode && (nr_reclaimable > background_thresh)))
256 pdflush_operation(background_writeout, 0);
257 }
258
259 /**
260 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
261 * @mapping: address_space which was dirtied
262 * @nr_pages_dirtied: number of pages which the caller has just dirtied
263 *
264 * Processes which are dirtying memory should call in here once for each page
265 * which was newly dirtied. The function will periodically check the system's
266 * dirty state and will initiate writeback if needed.
267 *
268 * On really big machines, get_writeback_state is expensive, so try to avoid
269 * calling it too often (ratelimiting). But once we're over the dirty memory
270 * limit we decrease the ratelimiting by a lot, to prevent individual processes
271 * from overshooting the limit by (ratelimit_pages) each.
272 */
273 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
274 unsigned long nr_pages_dirtied)
275 {
276 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
277 unsigned long ratelimit;
278 unsigned long *p;
279
280 ratelimit = ratelimit_pages;
281 if (dirty_exceeded)
282 ratelimit = 8;
283
284 /*
285 * Check the rate limiting. Also, we do not want to throttle real-time
286 * tasks in balance_dirty_pages(). Period.
287 */
288 preempt_disable();
289 p = &__get_cpu_var(ratelimits);
290 *p += nr_pages_dirtied;
291 if (unlikely(*p >= ratelimit)) {
292 *p = 0;
293 preempt_enable();
294 balance_dirty_pages(mapping);
295 return;
296 }
297 preempt_enable();
298 }
299 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
300
301 void throttle_vm_writeout(void)
302 {
303 struct writeback_state wbs;
304 long background_thresh;
305 long dirty_thresh;
306
307 for ( ; ; ) {
308 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
309
310 /*
311 * Boost the allowable dirty threshold a bit for page
312 * allocators so they don't get DoS'ed by heavy writers
313 */
314 dirty_thresh += dirty_thresh / 10; /* wheeee... */
315
316 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
317 break;
318 blk_congestion_wait(WRITE, HZ/10);
319 }
320 }
321
322
323 /*
324 * writeback at least _min_pages, and keep writing until the amount of dirty
325 * memory is less than the background threshold, or until we're all clean.
326 */
327 static void background_writeout(unsigned long _min_pages)
328 {
329 long min_pages = _min_pages;
330 struct writeback_control wbc = {
331 .bdi = NULL,
332 .sync_mode = WB_SYNC_NONE,
333 .older_than_this = NULL,
334 .nr_to_write = 0,
335 .nonblocking = 1,
336 .range_cyclic = 1,
337 };
338
339 for ( ; ; ) {
340 struct writeback_state wbs;
341 long background_thresh;
342 long dirty_thresh;
343
344 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
345 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
346 && min_pages <= 0)
347 break;
348 wbc.encountered_congestion = 0;
349 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
350 wbc.pages_skipped = 0;
351 writeback_inodes(&wbc);
352 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
353 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
354 /* Wrote less than expected */
355 blk_congestion_wait(WRITE, HZ/10);
356 if (!wbc.encountered_congestion)
357 break;
358 }
359 }
360 }
361
362 /*
363 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
364 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
365 * -1 if all pdflush threads were busy.
366 */
367 int wakeup_pdflush(long nr_pages)
368 {
369 if (nr_pages == 0) {
370 struct writeback_state wbs;
371
372 get_writeback_state(&wbs);
373 nr_pages = wbs.nr_dirty + wbs.nr_unstable;
374 }
375 return pdflush_operation(background_writeout, nr_pages);
376 }
377
378 static void wb_timer_fn(unsigned long unused);
379 static void laptop_timer_fn(unsigned long unused);
380
381 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
382 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
383
384 /*
385 * Periodic writeback of "old" data.
386 *
387 * Define "old": the first time one of an inode's pages is dirtied, we mark the
388 * dirtying-time in the inode's address_space. So this periodic writeback code
389 * just walks the superblock inode list, writing back any inodes which are
390 * older than a specific point in time.
391 *
392 * Try to run once per dirty_writeback_interval. But if a writeback event
393 * takes longer than a dirty_writeback_interval interval, then leave a
394 * one-second gap.
395 *
396 * older_than_this takes precedence over nr_to_write. So we'll only write back
397 * all dirty pages if they are all attached to "old" mappings.
398 */
399 static void wb_kupdate(unsigned long arg)
400 {
401 unsigned long oldest_jif;
402 unsigned long start_jif;
403 unsigned long next_jif;
404 long nr_to_write;
405 struct writeback_state wbs;
406 struct writeback_control wbc = {
407 .bdi = NULL,
408 .sync_mode = WB_SYNC_NONE,
409 .older_than_this = &oldest_jif,
410 .nr_to_write = 0,
411 .nonblocking = 1,
412 .for_kupdate = 1,
413 .range_cyclic = 1,
414 };
415
416 sync_supers();
417
418 get_writeback_state(&wbs);
419 oldest_jif = jiffies - dirty_expire_interval;
420 start_jif = jiffies;
421 next_jif = start_jif + dirty_writeback_interval;
422 nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
423 (inodes_stat.nr_inodes - inodes_stat.nr_unused);
424 while (nr_to_write > 0) {
425 wbc.encountered_congestion = 0;
426 wbc.nr_to_write = MAX_WRITEBACK_PAGES;
427 writeback_inodes(&wbc);
428 if (wbc.nr_to_write > 0) {
429 if (wbc.encountered_congestion)
430 blk_congestion_wait(WRITE, HZ/10);
431 else
432 break; /* All the old data is written */
433 }
434 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
435 }
436 if (time_before(next_jif, jiffies + HZ))
437 next_jif = jiffies + HZ;
438 if (dirty_writeback_interval)
439 mod_timer(&wb_timer, next_jif);
440 }
441
442 /*
443 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
444 */
445 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
446 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
447 {
448 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
449 if (dirty_writeback_interval) {
450 mod_timer(&wb_timer,
451 jiffies + dirty_writeback_interval);
452 } else {
453 del_timer(&wb_timer);
454 }
455 return 0;
456 }
457
458 static void wb_timer_fn(unsigned long unused)
459 {
460 if (pdflush_operation(wb_kupdate, 0) < 0)
461 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
462 }
463
464 static void laptop_flush(unsigned long unused)
465 {
466 sys_sync();
467 }
468
469 static void laptop_timer_fn(unsigned long unused)
470 {
471 pdflush_operation(laptop_flush, 0);
472 }
473
474 /*
475 * We've spun up the disk and we're in laptop mode: schedule writeback
476 * of all dirty data a few seconds from now. If the flush is already scheduled
477 * then push it back - the user is still using the disk.
478 */
479 void laptop_io_completion(void)
480 {
481 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
482 }
483
484 /*
485 * We're in laptop mode and we've just synced. The sync's writes will have
486 * caused another writeback to be scheduled by laptop_io_completion.
487 * Nothing needs to be written back anymore, so we unschedule the writeback.
488 */
489 void laptop_sync_completion(void)
490 {
491 del_timer(&laptop_mode_wb_timer);
492 }
493
494 /*
495 * If ratelimit_pages is too high then we can get into dirty-data overload
496 * if a large number of processes all perform writes at the same time.
497 * If it is too low then SMP machines will call the (expensive)
498 * get_writeback_state too often.
499 *
500 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
501 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
502 * thresholds before writeback cuts in.
503 *
504 * But the limit should not be set too high. Because it also controls the
505 * amount of memory which the balance_dirty_pages() caller has to write back.
506 * If this is too large then the caller will block on the IO queue all the
507 * time. So limit it to four megabytes - the balance_dirty_pages() caller
508 * will write six megabyte chunks, max.
509 */
510
511 static void set_ratelimit(void)
512 {
513 ratelimit_pages = total_pages / (num_online_cpus() * 32);
514 if (ratelimit_pages < 16)
515 ratelimit_pages = 16;
516 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
517 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
518 }
519
520 static int __cpuinit
521 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
522 {
523 set_ratelimit();
524 return 0;
525 }
526
527 static struct notifier_block __cpuinitdata ratelimit_nb = {
528 .notifier_call = ratelimit_handler,
529 .next = NULL,
530 };
531
532 /*
533 * If the machine has a large highmem:lowmem ratio then scale back the default
534 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
535 * number of buffer_heads.
536 */
537 void __init page_writeback_init(void)
538 {
539 long buffer_pages = nr_free_buffer_pages();
540 long correction;
541
542 total_pages = nr_free_pagecache_pages();
543
544 correction = (100 * 4 * buffer_pages) / total_pages;
545
546 if (correction < 100) {
547 dirty_background_ratio *= correction;
548 dirty_background_ratio /= 100;
549 vm_dirty_ratio *= correction;
550 vm_dirty_ratio /= 100;
551
552 if (dirty_background_ratio <= 0)
553 dirty_background_ratio = 1;
554 if (vm_dirty_ratio <= 0)
555 vm_dirty_ratio = 1;
556 }
557 mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
558 set_ratelimit();
559 register_cpu_notifier(&ratelimit_nb);
560 }
561
562 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
563 {
564 int ret;
565
566 if (wbc->nr_to_write <= 0)
567 return 0;
568 wbc->for_writepages = 1;
569 if (mapping->a_ops->writepages)
570 ret = mapping->a_ops->writepages(mapping, wbc);
571 else
572 ret = generic_writepages(mapping, wbc);
573 wbc->for_writepages = 0;
574 return ret;
575 }
576
577 /**
578 * write_one_page - write out a single page and optionally wait on I/O
579 *
580 * @page: the page to write
581 * @wait: if true, wait on writeout
582 *
583 * The page must be locked by the caller and will be unlocked upon return.
584 *
585 * write_one_page() returns a negative error code if I/O failed.
586 */
587 int write_one_page(struct page *page, int wait)
588 {
589 struct address_space *mapping = page->mapping;
590 int ret = 0;
591 struct writeback_control wbc = {
592 .sync_mode = WB_SYNC_ALL,
593 .nr_to_write = 1,
594 };
595
596 BUG_ON(!PageLocked(page));
597
598 if (wait)
599 wait_on_page_writeback(page);
600
601 if (clear_page_dirty_for_io(page)) {
602 page_cache_get(page);
603 ret = mapping->a_ops->writepage(page, &wbc);
604 if (ret == 0 && wait) {
605 wait_on_page_writeback(page);
606 if (PageError(page))
607 ret = -EIO;
608 }
609 page_cache_release(page);
610 } else {
611 unlock_page(page);
612 }
613 return ret;
614 }
615 EXPORT_SYMBOL(write_one_page);
616
617 /*
618 * For address_spaces which do not use buffers. Just tag the page as dirty in
619 * its radix tree.
620 *
621 * This is also used when a single buffer is being dirtied: we want to set the
622 * page dirty in that case, but not all the buffers. This is a "bottom-up"
623 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
624 *
625 * Most callers have locked the page, which pins the address_space in memory.
626 * But zap_pte_range() does not lock the page, however in that case the
627 * mapping is pinned by the vma's ->vm_file reference.
628 *
629 * We take care to handle the case where the page was truncated from the
630 * mapping by re-checking page_mapping() insode tree_lock.
631 */
632 int __set_page_dirty_nobuffers(struct page *page)
633 {
634 if (!TestSetPageDirty(page)) {
635 struct address_space *mapping = page_mapping(page);
636 struct address_space *mapping2;
637
638 if (mapping) {
639 write_lock_irq(&mapping->tree_lock);
640 mapping2 = page_mapping(page);
641 if (mapping2) { /* Race with truncate? */
642 BUG_ON(mapping2 != mapping);
643 if (mapping_cap_account_dirty(mapping))
644 __inc_zone_page_state(page,
645 NR_FILE_DIRTY);
646 radix_tree_tag_set(&mapping->page_tree,
647 page_index(page), PAGECACHE_TAG_DIRTY);
648 }
649 write_unlock_irq(&mapping->tree_lock);
650 if (mapping->host) {
651 /* !PageAnon && !swapper_space */
652 __mark_inode_dirty(mapping->host,
653 I_DIRTY_PAGES);
654 }
655 }
656 return 1;
657 }
658 return 0;
659 }
660 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
661
662 /*
663 * When a writepage implementation decides that it doesn't want to write this
664 * page for some reason, it should redirty the locked page via
665 * redirty_page_for_writepage() and it should then unlock the page and return 0
666 */
667 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
668 {
669 wbc->pages_skipped++;
670 return __set_page_dirty_nobuffers(page);
671 }
672 EXPORT_SYMBOL(redirty_page_for_writepage);
673
674 /*
675 * If the mapping doesn't provide a set_page_dirty a_op, then
676 * just fall through and assume that it wants buffer_heads.
677 */
678 int fastcall set_page_dirty(struct page *page)
679 {
680 struct address_space *mapping = page_mapping(page);
681
682 if (likely(mapping)) {
683 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
684 if (spd)
685 return (*spd)(page);
686 return __set_page_dirty_buffers(page);
687 }
688 if (!PageDirty(page)) {
689 if (!TestSetPageDirty(page))
690 return 1;
691 }
692 return 0;
693 }
694 EXPORT_SYMBOL(set_page_dirty);
695
696 /*
697 * set_page_dirty() is racy if the caller has no reference against
698 * page->mapping->host, and if the page is unlocked. This is because another
699 * CPU could truncate the page off the mapping and then free the mapping.
700 *
701 * Usually, the page _is_ locked, or the caller is a user-space process which
702 * holds a reference on the inode by having an open file.
703 *
704 * In other cases, the page should be locked before running set_page_dirty().
705 */
706 int set_page_dirty_lock(struct page *page)
707 {
708 int ret;
709
710 lock_page(page);
711 ret = set_page_dirty(page);
712 unlock_page(page);
713 return ret;
714 }
715 EXPORT_SYMBOL(set_page_dirty_lock);
716
717 /*
718 * Clear a page's dirty flag, while caring for dirty memory accounting.
719 * Returns true if the page was previously dirty.
720 */
721 int test_clear_page_dirty(struct page *page)
722 {
723 struct address_space *mapping = page_mapping(page);
724 unsigned long flags;
725
726 if (mapping) {
727 write_lock_irqsave(&mapping->tree_lock, flags);
728 if (TestClearPageDirty(page)) {
729 radix_tree_tag_clear(&mapping->page_tree,
730 page_index(page),
731 PAGECACHE_TAG_DIRTY);
732 if (mapping_cap_account_dirty(mapping))
733 __dec_zone_page_state(page, NR_FILE_DIRTY);
734 write_unlock_irqrestore(&mapping->tree_lock, flags);
735 return 1;
736 }
737 write_unlock_irqrestore(&mapping->tree_lock, flags);
738 return 0;
739 }
740 return TestClearPageDirty(page);
741 }
742 EXPORT_SYMBOL(test_clear_page_dirty);
743
744 /*
745 * Clear a page's dirty flag, while caring for dirty memory accounting.
746 * Returns true if the page was previously dirty.
747 *
748 * This is for preparing to put the page under writeout. We leave the page
749 * tagged as dirty in the radix tree so that a concurrent write-for-sync
750 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
751 * implementation will run either set_page_writeback() or set_page_dirty(),
752 * at which stage we bring the page's dirty flag and radix-tree dirty tag
753 * back into sync.
754 *
755 * This incoherency between the page's dirty flag and radix-tree tag is
756 * unfortunate, but it only exists while the page is locked.
757 */
758 int clear_page_dirty_for_io(struct page *page)
759 {
760 struct address_space *mapping = page_mapping(page);
761
762 if (mapping) {
763 if (TestClearPageDirty(page)) {
764 if (mapping_cap_account_dirty(mapping))
765 dec_zone_page_state(page, NR_FILE_DIRTY);
766 return 1;
767 }
768 return 0;
769 }
770 return TestClearPageDirty(page);
771 }
772 EXPORT_SYMBOL(clear_page_dirty_for_io);
773
774 int test_clear_page_writeback(struct page *page)
775 {
776 struct address_space *mapping = page_mapping(page);
777 int ret;
778
779 if (mapping) {
780 unsigned long flags;
781
782 write_lock_irqsave(&mapping->tree_lock, flags);
783 ret = TestClearPageWriteback(page);
784 if (ret)
785 radix_tree_tag_clear(&mapping->page_tree,
786 page_index(page),
787 PAGECACHE_TAG_WRITEBACK);
788 write_unlock_irqrestore(&mapping->tree_lock, flags);
789 } else {
790 ret = TestClearPageWriteback(page);
791 }
792 return ret;
793 }
794
795 int test_set_page_writeback(struct page *page)
796 {
797 struct address_space *mapping = page_mapping(page);
798 int ret;
799
800 if (mapping) {
801 unsigned long flags;
802
803 write_lock_irqsave(&mapping->tree_lock, flags);
804 ret = TestSetPageWriteback(page);
805 if (!ret)
806 radix_tree_tag_set(&mapping->page_tree,
807 page_index(page),
808 PAGECACHE_TAG_WRITEBACK);
809 if (!PageDirty(page))
810 radix_tree_tag_clear(&mapping->page_tree,
811 page_index(page),
812 PAGECACHE_TAG_DIRTY);
813 write_unlock_irqrestore(&mapping->tree_lock, flags);
814 } else {
815 ret = TestSetPageWriteback(page);
816 }
817 return ret;
818
819 }
820 EXPORT_SYMBOL(test_set_page_writeback);
821
822 /*
823 * Return true if any of the pages in the mapping are marged with the
824 * passed tag.
825 */
826 int mapping_tagged(struct address_space *mapping, int tag)
827 {
828 unsigned long flags;
829 int ret;
830
831 read_lock_irqsave(&mapping->tree_lock, flags);
832 ret = radix_tree_tagged(&mapping->page_tree, tag);
833 read_unlock_irqrestore(&mapping->tree_lock, flags);
834 return ret;
835 }
836 EXPORT_SYMBOL(mapping_tagged);
This page took 0.047819 seconds and 5 git commands to generate.