writeback: introduce smoothed global dirty limit
[deliverable/linux.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38
39 /*
40 * Estimate write bandwidth at 200ms intervals.
41 */
42 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
43
44 /*
45 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
46 * will look to see if it needs to force writeback or throttling.
47 */
48 static long ratelimit_pages = 32;
49
50 /*
51 * When balance_dirty_pages decides that the caller needs to perform some
52 * non-background writeback, this is how many pages it will attempt to write.
53 * It should be somewhat larger than dirtied pages to ensure that reasonably
54 * large amounts of I/O are submitted.
55 */
56 static inline long sync_writeback_pages(unsigned long dirtied)
57 {
58 if (dirtied < ratelimit_pages)
59 dirtied = ratelimit_pages;
60
61 return dirtied + dirtied / 2;
62 }
63
64 /* The following parameters are exported via /proc/sys/vm */
65
66 /*
67 * Start background writeback (via writeback threads) at this percentage
68 */
69 int dirty_background_ratio = 10;
70
71 /*
72 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73 * dirty_background_ratio * the amount of dirtyable memory
74 */
75 unsigned long dirty_background_bytes;
76
77 /*
78 * free highmem will not be subtracted from the total free memory
79 * for calculating free ratios if vm_highmem_is_dirtyable is true
80 */
81 int vm_highmem_is_dirtyable;
82
83 /*
84 * The generator of dirty data starts writeback at this percentage
85 */
86 int vm_dirty_ratio = 20;
87
88 /*
89 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90 * vm_dirty_ratio * the amount of dirtyable memory
91 */
92 unsigned long vm_dirty_bytes;
93
94 /*
95 * The interval between `kupdate'-style writebacks
96 */
97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
98
99 /*
100 * The longest time for which data is allowed to remain dirty
101 */
102 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
103
104 /*
105 * Flag that makes the machine dump writes/reads and block dirtyings.
106 */
107 int block_dump;
108
109 /*
110 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111 * a full sync is triggered after this time elapses without any disk activity.
112 */
113 int laptop_mode;
114
115 EXPORT_SYMBOL(laptop_mode);
116
117 /* End of sysctl-exported parameters */
118
119 unsigned long global_dirty_limit;
120
121 /*
122 * Scale the writeback cache size proportional to the relative writeout speeds.
123 *
124 * We do this by keeping a floating proportion between BDIs, based on page
125 * writeback completions [end_page_writeback()]. Those devices that write out
126 * pages fastest will get the larger share, while the slower will get a smaller
127 * share.
128 *
129 * We use page writeout completions because we are interested in getting rid of
130 * dirty pages. Having them written out is the primary goal.
131 *
132 * We introduce a concept of time, a period over which we measure these events,
133 * because demand can/will vary over time. The length of this period itself is
134 * measured in page writeback completions.
135 *
136 */
137 static struct prop_descriptor vm_completions;
138 static struct prop_descriptor vm_dirties;
139
140 /*
141 * couple the period to the dirty_ratio:
142 *
143 * period/2 ~ roundup_pow_of_two(dirty limit)
144 */
145 static int calc_period_shift(void)
146 {
147 unsigned long dirty_total;
148
149 if (vm_dirty_bytes)
150 dirty_total = vm_dirty_bytes / PAGE_SIZE;
151 else
152 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
153 100;
154 return 2 + ilog2(dirty_total - 1);
155 }
156
157 /*
158 * update the period when the dirty threshold changes.
159 */
160 static void update_completion_period(void)
161 {
162 int shift = calc_period_shift();
163 prop_change_shift(&vm_completions, shift);
164 prop_change_shift(&vm_dirties, shift);
165 }
166
167 int dirty_background_ratio_handler(struct ctl_table *table, int write,
168 void __user *buffer, size_t *lenp,
169 loff_t *ppos)
170 {
171 int ret;
172
173 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
174 if (ret == 0 && write)
175 dirty_background_bytes = 0;
176 return ret;
177 }
178
179 int dirty_background_bytes_handler(struct ctl_table *table, int write,
180 void __user *buffer, size_t *lenp,
181 loff_t *ppos)
182 {
183 int ret;
184
185 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
186 if (ret == 0 && write)
187 dirty_background_ratio = 0;
188 return ret;
189 }
190
191 int dirty_ratio_handler(struct ctl_table *table, int write,
192 void __user *buffer, size_t *lenp,
193 loff_t *ppos)
194 {
195 int old_ratio = vm_dirty_ratio;
196 int ret;
197
198 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
199 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
200 update_completion_period();
201 vm_dirty_bytes = 0;
202 }
203 return ret;
204 }
205
206
207 int dirty_bytes_handler(struct ctl_table *table, int write,
208 void __user *buffer, size_t *lenp,
209 loff_t *ppos)
210 {
211 unsigned long old_bytes = vm_dirty_bytes;
212 int ret;
213
214 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
215 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
216 update_completion_period();
217 vm_dirty_ratio = 0;
218 }
219 return ret;
220 }
221
222 /*
223 * Increment the BDI's writeout completion count and the global writeout
224 * completion count. Called from test_clear_page_writeback().
225 */
226 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 __inc_bdi_stat(bdi, BDI_WRITTEN);
229 __prop_inc_percpu_max(&vm_completions, &bdi->completions,
230 bdi->max_prop_frac);
231 }
232
233 void bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235 unsigned long flags;
236
237 local_irq_save(flags);
238 __bdi_writeout_inc(bdi);
239 local_irq_restore(flags);
240 }
241 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
242
243 void task_dirty_inc(struct task_struct *tsk)
244 {
245 prop_inc_single(&vm_dirties, &tsk->dirties);
246 }
247
248 /*
249 * Obtain an accurate fraction of the BDI's portion.
250 */
251 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252 long *numerator, long *denominator)
253 {
254 prop_fraction_percpu(&vm_completions, &bdi->completions,
255 numerator, denominator);
256 }
257
258 static inline void task_dirties_fraction(struct task_struct *tsk,
259 long *numerator, long *denominator)
260 {
261 prop_fraction_single(&vm_dirties, &tsk->dirties,
262 numerator, denominator);
263 }
264
265 /*
266 * task_dirty_limit - scale down dirty throttling threshold for one task
267 *
268 * task specific dirty limit:
269 *
270 * dirty -= (dirty/8) * p_{t}
271 *
272 * To protect light/slow dirtying tasks from heavier/fast ones, we start
273 * throttling individual tasks before reaching the bdi dirty limit.
274 * Relatively low thresholds will be allocated to heavy dirtiers. So when
275 * dirty pages grow large, heavy dirtiers will be throttled first, which will
276 * effectively curb the growth of dirty pages. Light dirtiers with high enough
277 * dirty threshold may never get throttled.
278 */
279 static unsigned long task_dirty_limit(struct task_struct *tsk,
280 unsigned long bdi_dirty)
281 {
282 long numerator, denominator;
283 unsigned long dirty = bdi_dirty;
284 u64 inv = dirty >> 3;
285
286 task_dirties_fraction(tsk, &numerator, &denominator);
287 inv *= numerator;
288 do_div(inv, denominator);
289
290 dirty -= inv;
291
292 return max(dirty, bdi_dirty/2);
293 }
294
295 /*
296 *
297 */
298 static unsigned int bdi_min_ratio;
299
300 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
301 {
302 int ret = 0;
303
304 spin_lock_bh(&bdi_lock);
305 if (min_ratio > bdi->max_ratio) {
306 ret = -EINVAL;
307 } else {
308 min_ratio -= bdi->min_ratio;
309 if (bdi_min_ratio + min_ratio < 100) {
310 bdi_min_ratio += min_ratio;
311 bdi->min_ratio += min_ratio;
312 } else {
313 ret = -EINVAL;
314 }
315 }
316 spin_unlock_bh(&bdi_lock);
317
318 return ret;
319 }
320
321 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
322 {
323 int ret = 0;
324
325 if (max_ratio > 100)
326 return -EINVAL;
327
328 spin_lock_bh(&bdi_lock);
329 if (bdi->min_ratio > max_ratio) {
330 ret = -EINVAL;
331 } else {
332 bdi->max_ratio = max_ratio;
333 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
334 }
335 spin_unlock_bh(&bdi_lock);
336
337 return ret;
338 }
339 EXPORT_SYMBOL(bdi_set_max_ratio);
340
341 /*
342 * Work out the current dirty-memory clamping and background writeout
343 * thresholds.
344 *
345 * The main aim here is to lower them aggressively if there is a lot of mapped
346 * memory around. To avoid stressing page reclaim with lots of unreclaimable
347 * pages. It is better to clamp down on writers than to start swapping, and
348 * performing lots of scanning.
349 *
350 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
351 *
352 * We don't permit the clamping level to fall below 5% - that is getting rather
353 * excessive.
354 *
355 * We make sure that the background writeout level is below the adjusted
356 * clamping level.
357 */
358
359 static unsigned long highmem_dirtyable_memory(unsigned long total)
360 {
361 #ifdef CONFIG_HIGHMEM
362 int node;
363 unsigned long x = 0;
364
365 for_each_node_state(node, N_HIGH_MEMORY) {
366 struct zone *z =
367 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
368
369 x += zone_page_state(z, NR_FREE_PAGES) +
370 zone_reclaimable_pages(z);
371 }
372 /*
373 * Make sure that the number of highmem pages is never larger
374 * than the number of the total dirtyable memory. This can only
375 * occur in very strange VM situations but we want to make sure
376 * that this does not occur.
377 */
378 return min(x, total);
379 #else
380 return 0;
381 #endif
382 }
383
384 /**
385 * determine_dirtyable_memory - amount of memory that may be used
386 *
387 * Returns the numebr of pages that can currently be freed and used
388 * by the kernel for direct mappings.
389 */
390 unsigned long determine_dirtyable_memory(void)
391 {
392 unsigned long x;
393
394 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
395
396 if (!vm_highmem_is_dirtyable)
397 x -= highmem_dirtyable_memory(x);
398
399 return x + 1; /* Ensure that we never return 0 */
400 }
401
402 /*
403 * global_dirty_limits - background-writeback and dirty-throttling thresholds
404 *
405 * Calculate the dirty thresholds based on sysctl parameters
406 * - vm.dirty_background_ratio or vm.dirty_background_bytes
407 * - vm.dirty_ratio or vm.dirty_bytes
408 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
409 * real-time tasks.
410 */
411 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
412 {
413 unsigned long background;
414 unsigned long dirty;
415 unsigned long uninitialized_var(available_memory);
416 struct task_struct *tsk;
417
418 if (!vm_dirty_bytes || !dirty_background_bytes)
419 available_memory = determine_dirtyable_memory();
420
421 if (vm_dirty_bytes)
422 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
423 else
424 dirty = (vm_dirty_ratio * available_memory) / 100;
425
426 if (dirty_background_bytes)
427 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
428 else
429 background = (dirty_background_ratio * available_memory) / 100;
430
431 if (background >= dirty)
432 background = dirty / 2;
433 tsk = current;
434 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
435 background += background / 4;
436 dirty += dirty / 4;
437 }
438 *pbackground = background;
439 *pdirty = dirty;
440 }
441
442 /**
443 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
444 * @bdi: the backing_dev_info to query
445 * @dirty: global dirty limit in pages
446 *
447 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
448 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
449 * And the "limit" in the name is not seriously taken as hard limit in
450 * balance_dirty_pages().
451 *
452 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
453 * - starving fast devices
454 * - piling up dirty pages (that will take long time to sync) on slow devices
455 *
456 * The bdi's share of dirty limit will be adapting to its throughput and
457 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
458 */
459 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
460 {
461 u64 bdi_dirty;
462 long numerator, denominator;
463
464 /*
465 * Calculate this BDI's share of the dirty ratio.
466 */
467 bdi_writeout_fraction(bdi, &numerator, &denominator);
468
469 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
470 bdi_dirty *= numerator;
471 do_div(bdi_dirty, denominator);
472
473 bdi_dirty += (dirty * bdi->min_ratio) / 100;
474 if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
475 bdi_dirty = dirty * bdi->max_ratio / 100;
476
477 return bdi_dirty;
478 }
479
480 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
481 unsigned long elapsed,
482 unsigned long written)
483 {
484 const unsigned long period = roundup_pow_of_two(3 * HZ);
485 unsigned long avg = bdi->avg_write_bandwidth;
486 unsigned long old = bdi->write_bandwidth;
487 u64 bw;
488
489 /*
490 * bw = written * HZ / elapsed
491 *
492 * bw * elapsed + write_bandwidth * (period - elapsed)
493 * write_bandwidth = ---------------------------------------------------
494 * period
495 */
496 bw = written - bdi->written_stamp;
497 bw *= HZ;
498 if (unlikely(elapsed > period)) {
499 do_div(bw, elapsed);
500 avg = bw;
501 goto out;
502 }
503 bw += (u64)bdi->write_bandwidth * (period - elapsed);
504 bw >>= ilog2(period);
505
506 /*
507 * one more level of smoothing, for filtering out sudden spikes
508 */
509 if (avg > old && old >= (unsigned long)bw)
510 avg -= (avg - old) >> 3;
511
512 if (avg < old && old <= (unsigned long)bw)
513 avg += (old - avg) >> 3;
514
515 out:
516 bdi->write_bandwidth = bw;
517 bdi->avg_write_bandwidth = avg;
518 }
519
520 /*
521 * The global dirtyable memory and dirty threshold could be suddenly knocked
522 * down by a large amount (eg. on the startup of KVM in a swapless system).
523 * This may throw the system into deep dirty exceeded state and throttle
524 * heavy/light dirtiers alike. To retain good responsiveness, maintain
525 * global_dirty_limit for tracking slowly down to the knocked down dirty
526 * threshold.
527 */
528 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
529 {
530 unsigned long limit = global_dirty_limit;
531
532 /*
533 * Follow up in one step.
534 */
535 if (limit < thresh) {
536 limit = thresh;
537 goto update;
538 }
539
540 /*
541 * Follow down slowly. Use the higher one as the target, because thresh
542 * may drop below dirty. This is exactly the reason to introduce
543 * global_dirty_limit which is guaranteed to lie above the dirty pages.
544 */
545 thresh = max(thresh, dirty);
546 if (limit > thresh) {
547 limit -= (limit - thresh) >> 5;
548 goto update;
549 }
550 return;
551 update:
552 global_dirty_limit = limit;
553 }
554
555 static void global_update_bandwidth(unsigned long thresh,
556 unsigned long dirty,
557 unsigned long now)
558 {
559 static DEFINE_SPINLOCK(dirty_lock);
560 static unsigned long update_time;
561
562 /*
563 * check locklessly first to optimize away locking for the most time
564 */
565 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
566 return;
567
568 spin_lock(&dirty_lock);
569 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
570 update_dirty_limit(thresh, dirty);
571 update_time = now;
572 }
573 spin_unlock(&dirty_lock);
574 }
575
576 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
577 unsigned long thresh,
578 unsigned long dirty,
579 unsigned long bdi_thresh,
580 unsigned long bdi_dirty,
581 unsigned long start_time)
582 {
583 unsigned long now = jiffies;
584 unsigned long elapsed = now - bdi->bw_time_stamp;
585 unsigned long written;
586
587 /*
588 * rate-limit, only update once every 200ms.
589 */
590 if (elapsed < BANDWIDTH_INTERVAL)
591 return;
592
593 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
594
595 /*
596 * Skip quiet periods when disk bandwidth is under-utilized.
597 * (at least 1s idle time between two flusher runs)
598 */
599 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
600 goto snapshot;
601
602 if (thresh)
603 global_update_bandwidth(thresh, dirty, now);
604
605 bdi_update_write_bandwidth(bdi, elapsed, written);
606
607 snapshot:
608 bdi->written_stamp = written;
609 bdi->bw_time_stamp = now;
610 }
611
612 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
613 unsigned long thresh,
614 unsigned long dirty,
615 unsigned long bdi_thresh,
616 unsigned long bdi_dirty,
617 unsigned long start_time)
618 {
619 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
620 return;
621 spin_lock(&bdi->wb.list_lock);
622 __bdi_update_bandwidth(bdi, thresh, dirty, bdi_thresh, bdi_dirty,
623 start_time);
624 spin_unlock(&bdi->wb.list_lock);
625 }
626
627 /*
628 * balance_dirty_pages() must be called by processes which are generating dirty
629 * data. It looks at the number of dirty pages in the machine and will force
630 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
631 * If we're over `background_thresh' then the writeback threads are woken to
632 * perform some writeout.
633 */
634 static void balance_dirty_pages(struct address_space *mapping,
635 unsigned long write_chunk)
636 {
637 unsigned long nr_reclaimable, bdi_nr_reclaimable;
638 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
639 unsigned long bdi_dirty;
640 unsigned long background_thresh;
641 unsigned long dirty_thresh;
642 unsigned long bdi_thresh;
643 unsigned long pages_written = 0;
644 unsigned long pause = 1;
645 bool dirty_exceeded = false;
646 struct backing_dev_info *bdi = mapping->backing_dev_info;
647 unsigned long start_time = jiffies;
648
649 for (;;) {
650 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
651 global_page_state(NR_UNSTABLE_NFS);
652 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
653
654 global_dirty_limits(&background_thresh, &dirty_thresh);
655
656 /*
657 * Throttle it only when the background writeback cannot
658 * catch-up. This avoids (excessively) small writeouts
659 * when the bdi limits are ramping up.
660 */
661 if (nr_dirty <= (background_thresh + dirty_thresh) / 2)
662 break;
663
664 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
665 bdi_thresh = task_dirty_limit(current, bdi_thresh);
666
667 /*
668 * In order to avoid the stacked BDI deadlock we need
669 * to ensure we accurately count the 'dirty' pages when
670 * the threshold is low.
671 *
672 * Otherwise it would be possible to get thresh+n pages
673 * reported dirty, even though there are thresh-m pages
674 * actually dirty; with m+n sitting in the percpu
675 * deltas.
676 */
677 if (bdi_thresh < 2*bdi_stat_error(bdi)) {
678 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
679 bdi_dirty = bdi_nr_reclaimable +
680 bdi_stat_sum(bdi, BDI_WRITEBACK);
681 } else {
682 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
683 bdi_dirty = bdi_nr_reclaimable +
684 bdi_stat(bdi, BDI_WRITEBACK);
685 }
686
687 /*
688 * The bdi thresh is somehow "soft" limit derived from the
689 * global "hard" limit. The former helps to prevent heavy IO
690 * bdi or process from holding back light ones; The latter is
691 * the last resort safeguard.
692 */
693 dirty_exceeded = (bdi_dirty > bdi_thresh) ||
694 (nr_dirty > dirty_thresh);
695
696 if (!dirty_exceeded)
697 break;
698
699 if (!bdi->dirty_exceeded)
700 bdi->dirty_exceeded = 1;
701
702 bdi_update_bandwidth(bdi, dirty_thresh, nr_dirty,
703 bdi_thresh, bdi_dirty, start_time);
704
705 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
706 * Unstable writes are a feature of certain networked
707 * filesystems (i.e. NFS) in which data may have been
708 * written to the server's write cache, but has not yet
709 * been flushed to permanent storage.
710 * Only move pages to writeback if this bdi is over its
711 * threshold otherwise wait until the disk writes catch
712 * up.
713 */
714 trace_balance_dirty_start(bdi);
715 if (bdi_nr_reclaimable > bdi_thresh) {
716 pages_written += writeback_inodes_wb(&bdi->wb,
717 write_chunk);
718 trace_balance_dirty_written(bdi, pages_written);
719 if (pages_written >= write_chunk)
720 break; /* We've done our duty */
721 }
722 __set_current_state(TASK_UNINTERRUPTIBLE);
723 io_schedule_timeout(pause);
724 trace_balance_dirty_wait(bdi);
725
726 /*
727 * Increase the delay for each loop, up to our previous
728 * default of taking a 100ms nap.
729 */
730 pause <<= 1;
731 if (pause > HZ / 10)
732 pause = HZ / 10;
733 }
734
735 if (!dirty_exceeded && bdi->dirty_exceeded)
736 bdi->dirty_exceeded = 0;
737
738 if (writeback_in_progress(bdi))
739 return;
740
741 /*
742 * In laptop mode, we wait until hitting the higher threshold before
743 * starting background writeout, and then write out all the way down
744 * to the lower threshold. So slow writers cause minimal disk activity.
745 *
746 * In normal mode, we start background writeout at the lower
747 * background_thresh, to keep the amount of dirty memory low.
748 */
749 if ((laptop_mode && pages_written) ||
750 (!laptop_mode && (nr_reclaimable > background_thresh)))
751 bdi_start_background_writeback(bdi);
752 }
753
754 void set_page_dirty_balance(struct page *page, int page_mkwrite)
755 {
756 if (set_page_dirty(page) || page_mkwrite) {
757 struct address_space *mapping = page_mapping(page);
758
759 if (mapping)
760 balance_dirty_pages_ratelimited(mapping);
761 }
762 }
763
764 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
765
766 /**
767 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
768 * @mapping: address_space which was dirtied
769 * @nr_pages_dirtied: number of pages which the caller has just dirtied
770 *
771 * Processes which are dirtying memory should call in here once for each page
772 * which was newly dirtied. The function will periodically check the system's
773 * dirty state and will initiate writeback if needed.
774 *
775 * On really big machines, get_writeback_state is expensive, so try to avoid
776 * calling it too often (ratelimiting). But once we're over the dirty memory
777 * limit we decrease the ratelimiting by a lot, to prevent individual processes
778 * from overshooting the limit by (ratelimit_pages) each.
779 */
780 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
781 unsigned long nr_pages_dirtied)
782 {
783 struct backing_dev_info *bdi = mapping->backing_dev_info;
784 unsigned long ratelimit;
785 unsigned long *p;
786
787 if (!bdi_cap_account_dirty(bdi))
788 return;
789
790 ratelimit = ratelimit_pages;
791 if (mapping->backing_dev_info->dirty_exceeded)
792 ratelimit = 8;
793
794 /*
795 * Check the rate limiting. Also, we do not want to throttle real-time
796 * tasks in balance_dirty_pages(). Period.
797 */
798 preempt_disable();
799 p = &__get_cpu_var(bdp_ratelimits);
800 *p += nr_pages_dirtied;
801 if (unlikely(*p >= ratelimit)) {
802 ratelimit = sync_writeback_pages(*p);
803 *p = 0;
804 preempt_enable();
805 balance_dirty_pages(mapping, ratelimit);
806 return;
807 }
808 preempt_enable();
809 }
810 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
811
812 void throttle_vm_writeout(gfp_t gfp_mask)
813 {
814 unsigned long background_thresh;
815 unsigned long dirty_thresh;
816
817 for ( ; ; ) {
818 global_dirty_limits(&background_thresh, &dirty_thresh);
819
820 /*
821 * Boost the allowable dirty threshold a bit for page
822 * allocators so they don't get DoS'ed by heavy writers
823 */
824 dirty_thresh += dirty_thresh / 10; /* wheeee... */
825
826 if (global_page_state(NR_UNSTABLE_NFS) +
827 global_page_state(NR_WRITEBACK) <= dirty_thresh)
828 break;
829 congestion_wait(BLK_RW_ASYNC, HZ/10);
830
831 /*
832 * The caller might hold locks which can prevent IO completion
833 * or progress in the filesystem. So we cannot just sit here
834 * waiting for IO to complete.
835 */
836 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
837 break;
838 }
839 }
840
841 /*
842 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
843 */
844 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
845 void __user *buffer, size_t *length, loff_t *ppos)
846 {
847 proc_dointvec(table, write, buffer, length, ppos);
848 bdi_arm_supers_timer();
849 return 0;
850 }
851
852 #ifdef CONFIG_BLOCK
853 void laptop_mode_timer_fn(unsigned long data)
854 {
855 struct request_queue *q = (struct request_queue *)data;
856 int nr_pages = global_page_state(NR_FILE_DIRTY) +
857 global_page_state(NR_UNSTABLE_NFS);
858
859 /*
860 * We want to write everything out, not just down to the dirty
861 * threshold
862 */
863 if (bdi_has_dirty_io(&q->backing_dev_info))
864 bdi_start_writeback(&q->backing_dev_info, nr_pages);
865 }
866
867 /*
868 * We've spun up the disk and we're in laptop mode: schedule writeback
869 * of all dirty data a few seconds from now. If the flush is already scheduled
870 * then push it back - the user is still using the disk.
871 */
872 void laptop_io_completion(struct backing_dev_info *info)
873 {
874 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
875 }
876
877 /*
878 * We're in laptop mode and we've just synced. The sync's writes will have
879 * caused another writeback to be scheduled by laptop_io_completion.
880 * Nothing needs to be written back anymore, so we unschedule the writeback.
881 */
882 void laptop_sync_completion(void)
883 {
884 struct backing_dev_info *bdi;
885
886 rcu_read_lock();
887
888 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
889 del_timer(&bdi->laptop_mode_wb_timer);
890
891 rcu_read_unlock();
892 }
893 #endif
894
895 /*
896 * If ratelimit_pages is too high then we can get into dirty-data overload
897 * if a large number of processes all perform writes at the same time.
898 * If it is too low then SMP machines will call the (expensive)
899 * get_writeback_state too often.
900 *
901 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
902 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
903 * thresholds before writeback cuts in.
904 *
905 * But the limit should not be set too high. Because it also controls the
906 * amount of memory which the balance_dirty_pages() caller has to write back.
907 * If this is too large then the caller will block on the IO queue all the
908 * time. So limit it to four megabytes - the balance_dirty_pages() caller
909 * will write six megabyte chunks, max.
910 */
911
912 void writeback_set_ratelimit(void)
913 {
914 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
915 if (ratelimit_pages < 16)
916 ratelimit_pages = 16;
917 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
918 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
919 }
920
921 static int __cpuinit
922 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
923 {
924 writeback_set_ratelimit();
925 return NOTIFY_DONE;
926 }
927
928 static struct notifier_block __cpuinitdata ratelimit_nb = {
929 .notifier_call = ratelimit_handler,
930 .next = NULL,
931 };
932
933 /*
934 * Called early on to tune the page writeback dirty limits.
935 *
936 * We used to scale dirty pages according to how total memory
937 * related to pages that could be allocated for buffers (by
938 * comparing nr_free_buffer_pages() to vm_total_pages.
939 *
940 * However, that was when we used "dirty_ratio" to scale with
941 * all memory, and we don't do that any more. "dirty_ratio"
942 * is now applied to total non-HIGHPAGE memory (by subtracting
943 * totalhigh_pages from vm_total_pages), and as such we can't
944 * get into the old insane situation any more where we had
945 * large amounts of dirty pages compared to a small amount of
946 * non-HIGHMEM memory.
947 *
948 * But we might still want to scale the dirty_ratio by how
949 * much memory the box has..
950 */
951 void __init page_writeback_init(void)
952 {
953 int shift;
954
955 writeback_set_ratelimit();
956 register_cpu_notifier(&ratelimit_nb);
957
958 shift = calc_period_shift();
959 prop_descriptor_init(&vm_completions, shift);
960 prop_descriptor_init(&vm_dirties, shift);
961 }
962
963 /**
964 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
965 * @mapping: address space structure to write
966 * @start: starting page index
967 * @end: ending page index (inclusive)
968 *
969 * This function scans the page range from @start to @end (inclusive) and tags
970 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
971 * that write_cache_pages (or whoever calls this function) will then use
972 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
973 * used to avoid livelocking of writeback by a process steadily creating new
974 * dirty pages in the file (thus it is important for this function to be quick
975 * so that it can tag pages faster than a dirtying process can create them).
976 */
977 /*
978 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
979 */
980 void tag_pages_for_writeback(struct address_space *mapping,
981 pgoff_t start, pgoff_t end)
982 {
983 #define WRITEBACK_TAG_BATCH 4096
984 unsigned long tagged;
985
986 do {
987 spin_lock_irq(&mapping->tree_lock);
988 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
989 &start, end, WRITEBACK_TAG_BATCH,
990 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
991 spin_unlock_irq(&mapping->tree_lock);
992 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
993 cond_resched();
994 /* We check 'start' to handle wrapping when end == ~0UL */
995 } while (tagged >= WRITEBACK_TAG_BATCH && start);
996 }
997 EXPORT_SYMBOL(tag_pages_for_writeback);
998
999 /**
1000 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1001 * @mapping: address space structure to write
1002 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1003 * @writepage: function called for each page
1004 * @data: data passed to writepage function
1005 *
1006 * If a page is already under I/O, write_cache_pages() skips it, even
1007 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1008 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1009 * and msync() need to guarantee that all the data which was dirty at the time
1010 * the call was made get new I/O started against them. If wbc->sync_mode is
1011 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1012 * existing IO to complete.
1013 *
1014 * To avoid livelocks (when other process dirties new pages), we first tag
1015 * pages which should be written back with TOWRITE tag and only then start
1016 * writing them. For data-integrity sync we have to be careful so that we do
1017 * not miss some pages (e.g., because some other process has cleared TOWRITE
1018 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1019 * by the process clearing the DIRTY tag (and submitting the page for IO).
1020 */
1021 int write_cache_pages(struct address_space *mapping,
1022 struct writeback_control *wbc, writepage_t writepage,
1023 void *data)
1024 {
1025 int ret = 0;
1026 int done = 0;
1027 struct pagevec pvec;
1028 int nr_pages;
1029 pgoff_t uninitialized_var(writeback_index);
1030 pgoff_t index;
1031 pgoff_t end; /* Inclusive */
1032 pgoff_t done_index;
1033 int cycled;
1034 int range_whole = 0;
1035 int tag;
1036
1037 pagevec_init(&pvec, 0);
1038 if (wbc->range_cyclic) {
1039 writeback_index = mapping->writeback_index; /* prev offset */
1040 index = writeback_index;
1041 if (index == 0)
1042 cycled = 1;
1043 else
1044 cycled = 0;
1045 end = -1;
1046 } else {
1047 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1048 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1049 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1050 range_whole = 1;
1051 cycled = 1; /* ignore range_cyclic tests */
1052 }
1053 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1054 tag = PAGECACHE_TAG_TOWRITE;
1055 else
1056 tag = PAGECACHE_TAG_DIRTY;
1057 retry:
1058 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1059 tag_pages_for_writeback(mapping, index, end);
1060 done_index = index;
1061 while (!done && (index <= end)) {
1062 int i;
1063
1064 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1065 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1066 if (nr_pages == 0)
1067 break;
1068
1069 for (i = 0; i < nr_pages; i++) {
1070 struct page *page = pvec.pages[i];
1071
1072 /*
1073 * At this point, the page may be truncated or
1074 * invalidated (changing page->mapping to NULL), or
1075 * even swizzled back from swapper_space to tmpfs file
1076 * mapping. However, page->index will not change
1077 * because we have a reference on the page.
1078 */
1079 if (page->index > end) {
1080 /*
1081 * can't be range_cyclic (1st pass) because
1082 * end == -1 in that case.
1083 */
1084 done = 1;
1085 break;
1086 }
1087
1088 done_index = page->index;
1089
1090 lock_page(page);
1091
1092 /*
1093 * Page truncated or invalidated. We can freely skip it
1094 * then, even for data integrity operations: the page
1095 * has disappeared concurrently, so there could be no
1096 * real expectation of this data interity operation
1097 * even if there is now a new, dirty page at the same
1098 * pagecache address.
1099 */
1100 if (unlikely(page->mapping != mapping)) {
1101 continue_unlock:
1102 unlock_page(page);
1103 continue;
1104 }
1105
1106 if (!PageDirty(page)) {
1107 /* someone wrote it for us */
1108 goto continue_unlock;
1109 }
1110
1111 if (PageWriteback(page)) {
1112 if (wbc->sync_mode != WB_SYNC_NONE)
1113 wait_on_page_writeback(page);
1114 else
1115 goto continue_unlock;
1116 }
1117
1118 BUG_ON(PageWriteback(page));
1119 if (!clear_page_dirty_for_io(page))
1120 goto continue_unlock;
1121
1122 trace_wbc_writepage(wbc, mapping->backing_dev_info);
1123 ret = (*writepage)(page, wbc, data);
1124 if (unlikely(ret)) {
1125 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1126 unlock_page(page);
1127 ret = 0;
1128 } else {
1129 /*
1130 * done_index is set past this page,
1131 * so media errors will not choke
1132 * background writeout for the entire
1133 * file. This has consequences for
1134 * range_cyclic semantics (ie. it may
1135 * not be suitable for data integrity
1136 * writeout).
1137 */
1138 done_index = page->index + 1;
1139 done = 1;
1140 break;
1141 }
1142 }
1143
1144 /*
1145 * We stop writing back only if we are not doing
1146 * integrity sync. In case of integrity sync we have to
1147 * keep going until we have written all the pages
1148 * we tagged for writeback prior to entering this loop.
1149 */
1150 if (--wbc->nr_to_write <= 0 &&
1151 wbc->sync_mode == WB_SYNC_NONE) {
1152 done = 1;
1153 break;
1154 }
1155 }
1156 pagevec_release(&pvec);
1157 cond_resched();
1158 }
1159 if (!cycled && !done) {
1160 /*
1161 * range_cyclic:
1162 * We hit the last page and there is more work to be done: wrap
1163 * back to the start of the file
1164 */
1165 cycled = 1;
1166 index = 0;
1167 end = writeback_index - 1;
1168 goto retry;
1169 }
1170 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1171 mapping->writeback_index = done_index;
1172
1173 return ret;
1174 }
1175 EXPORT_SYMBOL(write_cache_pages);
1176
1177 /*
1178 * Function used by generic_writepages to call the real writepage
1179 * function and set the mapping flags on error
1180 */
1181 static int __writepage(struct page *page, struct writeback_control *wbc,
1182 void *data)
1183 {
1184 struct address_space *mapping = data;
1185 int ret = mapping->a_ops->writepage(page, wbc);
1186 mapping_set_error(mapping, ret);
1187 return ret;
1188 }
1189
1190 /**
1191 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1192 * @mapping: address space structure to write
1193 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1194 *
1195 * This is a library function, which implements the writepages()
1196 * address_space_operation.
1197 */
1198 int generic_writepages(struct address_space *mapping,
1199 struct writeback_control *wbc)
1200 {
1201 struct blk_plug plug;
1202 int ret;
1203
1204 /* deal with chardevs and other special file */
1205 if (!mapping->a_ops->writepage)
1206 return 0;
1207
1208 blk_start_plug(&plug);
1209 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1210 blk_finish_plug(&plug);
1211 return ret;
1212 }
1213
1214 EXPORT_SYMBOL(generic_writepages);
1215
1216 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1217 {
1218 int ret;
1219
1220 if (wbc->nr_to_write <= 0)
1221 return 0;
1222 if (mapping->a_ops->writepages)
1223 ret = mapping->a_ops->writepages(mapping, wbc);
1224 else
1225 ret = generic_writepages(mapping, wbc);
1226 return ret;
1227 }
1228
1229 /**
1230 * write_one_page - write out a single page and optionally wait on I/O
1231 * @page: the page to write
1232 * @wait: if true, wait on writeout
1233 *
1234 * The page must be locked by the caller and will be unlocked upon return.
1235 *
1236 * write_one_page() returns a negative error code if I/O failed.
1237 */
1238 int write_one_page(struct page *page, int wait)
1239 {
1240 struct address_space *mapping = page->mapping;
1241 int ret = 0;
1242 struct writeback_control wbc = {
1243 .sync_mode = WB_SYNC_ALL,
1244 .nr_to_write = 1,
1245 };
1246
1247 BUG_ON(!PageLocked(page));
1248
1249 if (wait)
1250 wait_on_page_writeback(page);
1251
1252 if (clear_page_dirty_for_io(page)) {
1253 page_cache_get(page);
1254 ret = mapping->a_ops->writepage(page, &wbc);
1255 if (ret == 0 && wait) {
1256 wait_on_page_writeback(page);
1257 if (PageError(page))
1258 ret = -EIO;
1259 }
1260 page_cache_release(page);
1261 } else {
1262 unlock_page(page);
1263 }
1264 return ret;
1265 }
1266 EXPORT_SYMBOL(write_one_page);
1267
1268 /*
1269 * For address_spaces which do not use buffers nor write back.
1270 */
1271 int __set_page_dirty_no_writeback(struct page *page)
1272 {
1273 if (!PageDirty(page))
1274 return !TestSetPageDirty(page);
1275 return 0;
1276 }
1277
1278 /*
1279 * Helper function for set_page_dirty family.
1280 * NOTE: This relies on being atomic wrt interrupts.
1281 */
1282 void account_page_dirtied(struct page *page, struct address_space *mapping)
1283 {
1284 if (mapping_cap_account_dirty(mapping)) {
1285 __inc_zone_page_state(page, NR_FILE_DIRTY);
1286 __inc_zone_page_state(page, NR_DIRTIED);
1287 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1288 task_dirty_inc(current);
1289 task_io_account_write(PAGE_CACHE_SIZE);
1290 }
1291 }
1292 EXPORT_SYMBOL(account_page_dirtied);
1293
1294 /*
1295 * Helper function for set_page_writeback family.
1296 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1297 * wrt interrupts.
1298 */
1299 void account_page_writeback(struct page *page)
1300 {
1301 inc_zone_page_state(page, NR_WRITEBACK);
1302 inc_zone_page_state(page, NR_WRITTEN);
1303 }
1304 EXPORT_SYMBOL(account_page_writeback);
1305
1306 /*
1307 * For address_spaces which do not use buffers. Just tag the page as dirty in
1308 * its radix tree.
1309 *
1310 * This is also used when a single buffer is being dirtied: we want to set the
1311 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1312 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1313 *
1314 * Most callers have locked the page, which pins the address_space in memory.
1315 * But zap_pte_range() does not lock the page, however in that case the
1316 * mapping is pinned by the vma's ->vm_file reference.
1317 *
1318 * We take care to handle the case where the page was truncated from the
1319 * mapping by re-checking page_mapping() inside tree_lock.
1320 */
1321 int __set_page_dirty_nobuffers(struct page *page)
1322 {
1323 if (!TestSetPageDirty(page)) {
1324 struct address_space *mapping = page_mapping(page);
1325 struct address_space *mapping2;
1326
1327 if (!mapping)
1328 return 1;
1329
1330 spin_lock_irq(&mapping->tree_lock);
1331 mapping2 = page_mapping(page);
1332 if (mapping2) { /* Race with truncate? */
1333 BUG_ON(mapping2 != mapping);
1334 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1335 account_page_dirtied(page, mapping);
1336 radix_tree_tag_set(&mapping->page_tree,
1337 page_index(page), PAGECACHE_TAG_DIRTY);
1338 }
1339 spin_unlock_irq(&mapping->tree_lock);
1340 if (mapping->host) {
1341 /* !PageAnon && !swapper_space */
1342 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1343 }
1344 return 1;
1345 }
1346 return 0;
1347 }
1348 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1349
1350 /*
1351 * When a writepage implementation decides that it doesn't want to write this
1352 * page for some reason, it should redirty the locked page via
1353 * redirty_page_for_writepage() and it should then unlock the page and return 0
1354 */
1355 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1356 {
1357 wbc->pages_skipped++;
1358 return __set_page_dirty_nobuffers(page);
1359 }
1360 EXPORT_SYMBOL(redirty_page_for_writepage);
1361
1362 /*
1363 * Dirty a page.
1364 *
1365 * For pages with a mapping this should be done under the page lock
1366 * for the benefit of asynchronous memory errors who prefer a consistent
1367 * dirty state. This rule can be broken in some special cases,
1368 * but should be better not to.
1369 *
1370 * If the mapping doesn't provide a set_page_dirty a_op, then
1371 * just fall through and assume that it wants buffer_heads.
1372 */
1373 int set_page_dirty(struct page *page)
1374 {
1375 struct address_space *mapping = page_mapping(page);
1376
1377 if (likely(mapping)) {
1378 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1379 /*
1380 * readahead/lru_deactivate_page could remain
1381 * PG_readahead/PG_reclaim due to race with end_page_writeback
1382 * About readahead, if the page is written, the flags would be
1383 * reset. So no problem.
1384 * About lru_deactivate_page, if the page is redirty, the flag
1385 * will be reset. So no problem. but if the page is used by readahead
1386 * it will confuse readahead and make it restart the size rampup
1387 * process. But it's a trivial problem.
1388 */
1389 ClearPageReclaim(page);
1390 #ifdef CONFIG_BLOCK
1391 if (!spd)
1392 spd = __set_page_dirty_buffers;
1393 #endif
1394 return (*spd)(page);
1395 }
1396 if (!PageDirty(page)) {
1397 if (!TestSetPageDirty(page))
1398 return 1;
1399 }
1400 return 0;
1401 }
1402 EXPORT_SYMBOL(set_page_dirty);
1403
1404 /*
1405 * set_page_dirty() is racy if the caller has no reference against
1406 * page->mapping->host, and if the page is unlocked. This is because another
1407 * CPU could truncate the page off the mapping and then free the mapping.
1408 *
1409 * Usually, the page _is_ locked, or the caller is a user-space process which
1410 * holds a reference on the inode by having an open file.
1411 *
1412 * In other cases, the page should be locked before running set_page_dirty().
1413 */
1414 int set_page_dirty_lock(struct page *page)
1415 {
1416 int ret;
1417
1418 lock_page(page);
1419 ret = set_page_dirty(page);
1420 unlock_page(page);
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(set_page_dirty_lock);
1424
1425 /*
1426 * Clear a page's dirty flag, while caring for dirty memory accounting.
1427 * Returns true if the page was previously dirty.
1428 *
1429 * This is for preparing to put the page under writeout. We leave the page
1430 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1431 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1432 * implementation will run either set_page_writeback() or set_page_dirty(),
1433 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1434 * back into sync.
1435 *
1436 * This incoherency between the page's dirty flag and radix-tree tag is
1437 * unfortunate, but it only exists while the page is locked.
1438 */
1439 int clear_page_dirty_for_io(struct page *page)
1440 {
1441 struct address_space *mapping = page_mapping(page);
1442
1443 BUG_ON(!PageLocked(page));
1444
1445 if (mapping && mapping_cap_account_dirty(mapping)) {
1446 /*
1447 * Yes, Virginia, this is indeed insane.
1448 *
1449 * We use this sequence to make sure that
1450 * (a) we account for dirty stats properly
1451 * (b) we tell the low-level filesystem to
1452 * mark the whole page dirty if it was
1453 * dirty in a pagetable. Only to then
1454 * (c) clean the page again and return 1 to
1455 * cause the writeback.
1456 *
1457 * This way we avoid all nasty races with the
1458 * dirty bit in multiple places and clearing
1459 * them concurrently from different threads.
1460 *
1461 * Note! Normally the "set_page_dirty(page)"
1462 * has no effect on the actual dirty bit - since
1463 * that will already usually be set. But we
1464 * need the side effects, and it can help us
1465 * avoid races.
1466 *
1467 * We basically use the page "master dirty bit"
1468 * as a serialization point for all the different
1469 * threads doing their things.
1470 */
1471 if (page_mkclean(page))
1472 set_page_dirty(page);
1473 /*
1474 * We carefully synchronise fault handlers against
1475 * installing a dirty pte and marking the page dirty
1476 * at this point. We do this by having them hold the
1477 * page lock at some point after installing their
1478 * pte, but before marking the page dirty.
1479 * Pages are always locked coming in here, so we get
1480 * the desired exclusion. See mm/memory.c:do_wp_page()
1481 * for more comments.
1482 */
1483 if (TestClearPageDirty(page)) {
1484 dec_zone_page_state(page, NR_FILE_DIRTY);
1485 dec_bdi_stat(mapping->backing_dev_info,
1486 BDI_RECLAIMABLE);
1487 return 1;
1488 }
1489 return 0;
1490 }
1491 return TestClearPageDirty(page);
1492 }
1493 EXPORT_SYMBOL(clear_page_dirty_for_io);
1494
1495 int test_clear_page_writeback(struct page *page)
1496 {
1497 struct address_space *mapping = page_mapping(page);
1498 int ret;
1499
1500 if (mapping) {
1501 struct backing_dev_info *bdi = mapping->backing_dev_info;
1502 unsigned long flags;
1503
1504 spin_lock_irqsave(&mapping->tree_lock, flags);
1505 ret = TestClearPageWriteback(page);
1506 if (ret) {
1507 radix_tree_tag_clear(&mapping->page_tree,
1508 page_index(page),
1509 PAGECACHE_TAG_WRITEBACK);
1510 if (bdi_cap_account_writeback(bdi)) {
1511 __dec_bdi_stat(bdi, BDI_WRITEBACK);
1512 __bdi_writeout_inc(bdi);
1513 }
1514 }
1515 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1516 } else {
1517 ret = TestClearPageWriteback(page);
1518 }
1519 if (ret)
1520 dec_zone_page_state(page, NR_WRITEBACK);
1521 return ret;
1522 }
1523
1524 int test_set_page_writeback(struct page *page)
1525 {
1526 struct address_space *mapping = page_mapping(page);
1527 int ret;
1528
1529 if (mapping) {
1530 struct backing_dev_info *bdi = mapping->backing_dev_info;
1531 unsigned long flags;
1532
1533 spin_lock_irqsave(&mapping->tree_lock, flags);
1534 ret = TestSetPageWriteback(page);
1535 if (!ret) {
1536 radix_tree_tag_set(&mapping->page_tree,
1537 page_index(page),
1538 PAGECACHE_TAG_WRITEBACK);
1539 if (bdi_cap_account_writeback(bdi))
1540 __inc_bdi_stat(bdi, BDI_WRITEBACK);
1541 }
1542 if (!PageDirty(page))
1543 radix_tree_tag_clear(&mapping->page_tree,
1544 page_index(page),
1545 PAGECACHE_TAG_DIRTY);
1546 radix_tree_tag_clear(&mapping->page_tree,
1547 page_index(page),
1548 PAGECACHE_TAG_TOWRITE);
1549 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1550 } else {
1551 ret = TestSetPageWriteback(page);
1552 }
1553 if (!ret)
1554 account_page_writeback(page);
1555 return ret;
1556
1557 }
1558 EXPORT_SYMBOL(test_set_page_writeback);
1559
1560 /*
1561 * Return true if any of the pages in the mapping are marked with the
1562 * passed tag.
1563 */
1564 int mapping_tagged(struct address_space *mapping, int tag)
1565 {
1566 int ret;
1567 rcu_read_lock();
1568 ret = radix_tree_tagged(&mapping->page_tree, tag);
1569 rcu_read_unlock();
1570 return ret;
1571 }
1572 EXPORT_SYMBOL(mapping_tagged);
This page took 0.065259 seconds and 6 git commands to generate.