159f815777747f67ef76cac82649f0ad835b102d
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 /* Movable memory ranges, will also be used by memblock subsystem. */
206 struct movablemem_map movablemem_map = {
207 .acpi = false,
208 .nr_map = 0,
209 };
210
211 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
212 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
213 static unsigned long __initdata required_kernelcore;
214 static unsigned long __initdata required_movablecore;
215 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
216 static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
217
218 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219 int movable_zone;
220 EXPORT_SYMBOL(movable_zone);
221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
222
223 #if MAX_NUMNODES > 1
224 int nr_node_ids __read_mostly = MAX_NUMNODES;
225 int nr_online_nodes __read_mostly = 1;
226 EXPORT_SYMBOL(nr_node_ids);
227 EXPORT_SYMBOL(nr_online_nodes);
228 #endif
229
230 int page_group_by_mobility_disabled __read_mostly;
231
232 void set_pageblock_migratetype(struct page *page, int migratetype)
233 {
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240 }
241
242 bool oom_killer_disabled __read_mostly;
243
244 #ifdef CONFIG_DEBUG_VM
245 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
246 {
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
250 unsigned long sp, start_pfn;
251
252 do {
253 seq = zone_span_seqbegin(zone);
254 start_pfn = zone->zone_start_pfn;
255 sp = zone->spanned_pages;
256 if (!zone_spans_pfn(zone, pfn))
257 ret = 1;
258 } while (zone_span_seqretry(zone, seq));
259
260 if (ret)
261 pr_err("page %lu outside zone [ %lu - %lu ]\n",
262 pfn, start_pfn, start_pfn + sp);
263
264 return ret;
265 }
266
267 static int page_is_consistent(struct zone *zone, struct page *page)
268 {
269 if (!pfn_valid_within(page_to_pfn(page)))
270 return 0;
271 if (zone != page_zone(page))
272 return 0;
273
274 return 1;
275 }
276 /*
277 * Temporary debugging check for pages not lying within a given zone.
278 */
279 static int bad_range(struct zone *zone, struct page *page)
280 {
281 if (page_outside_zone_boundaries(zone, page))
282 return 1;
283 if (!page_is_consistent(zone, page))
284 return 1;
285
286 return 0;
287 }
288 #else
289 static inline int bad_range(struct zone *zone, struct page *page)
290 {
291 return 0;
292 }
293 #endif
294
295 static void bad_page(struct page *page)
296 {
297 static unsigned long resume;
298 static unsigned long nr_shown;
299 static unsigned long nr_unshown;
300
301 /* Don't complain about poisoned pages */
302 if (PageHWPoison(page)) {
303 page_mapcount_reset(page); /* remove PageBuddy */
304 return;
305 }
306
307 /*
308 * Allow a burst of 60 reports, then keep quiet for that minute;
309 * or allow a steady drip of one report per second.
310 */
311 if (nr_shown == 60) {
312 if (time_before(jiffies, resume)) {
313 nr_unshown++;
314 goto out;
315 }
316 if (nr_unshown) {
317 printk(KERN_ALERT
318 "BUG: Bad page state: %lu messages suppressed\n",
319 nr_unshown);
320 nr_unshown = 0;
321 }
322 nr_shown = 0;
323 }
324 if (nr_shown++ == 0)
325 resume = jiffies + 60 * HZ;
326
327 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
328 current->comm, page_to_pfn(page));
329 dump_page(page);
330
331 print_modules();
332 dump_stack();
333 out:
334 /* Leave bad fields for debug, except PageBuddy could make trouble */
335 page_mapcount_reset(page); /* remove PageBuddy */
336 add_taint(TAINT_BAD_PAGE);
337 }
338
339 /*
340 * Higher-order pages are called "compound pages". They are structured thusly:
341 *
342 * The first PAGE_SIZE page is called the "head page".
343 *
344 * The remaining PAGE_SIZE pages are called "tail pages".
345 *
346 * All pages have PG_compound set. All tail pages have their ->first_page
347 * pointing at the head page.
348 *
349 * The first tail page's ->lru.next holds the address of the compound page's
350 * put_page() function. Its ->lru.prev holds the order of allocation.
351 * This usage means that zero-order pages may not be compound.
352 */
353
354 static void free_compound_page(struct page *page)
355 {
356 __free_pages_ok(page, compound_order(page));
357 }
358
359 void prep_compound_page(struct page *page, unsigned long order)
360 {
361 int i;
362 int nr_pages = 1 << order;
363
364 set_compound_page_dtor(page, free_compound_page);
365 set_compound_order(page, order);
366 __SetPageHead(page);
367 for (i = 1; i < nr_pages; i++) {
368 struct page *p = page + i;
369 __SetPageTail(p);
370 set_page_count(p, 0);
371 p->first_page = page;
372 }
373 }
374
375 /* update __split_huge_page_refcount if you change this function */
376 static int destroy_compound_page(struct page *page, unsigned long order)
377 {
378 int i;
379 int nr_pages = 1 << order;
380 int bad = 0;
381
382 if (unlikely(compound_order(page) != order)) {
383 bad_page(page);
384 bad++;
385 }
386
387 __ClearPageHead(page);
388
389 for (i = 1; i < nr_pages; i++) {
390 struct page *p = page + i;
391
392 if (unlikely(!PageTail(p) || (p->first_page != page))) {
393 bad_page(page);
394 bad++;
395 }
396 __ClearPageTail(p);
397 }
398
399 return bad;
400 }
401
402 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
403 {
404 int i;
405
406 /*
407 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
408 * and __GFP_HIGHMEM from hard or soft interrupt context.
409 */
410 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
411 for (i = 0; i < (1 << order); i++)
412 clear_highpage(page + i);
413 }
414
415 #ifdef CONFIG_DEBUG_PAGEALLOC
416 unsigned int _debug_guardpage_minorder;
417
418 static int __init debug_guardpage_minorder_setup(char *buf)
419 {
420 unsigned long res;
421
422 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
423 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
424 return 0;
425 }
426 _debug_guardpage_minorder = res;
427 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
428 return 0;
429 }
430 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
431
432 static inline void set_page_guard_flag(struct page *page)
433 {
434 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435 }
436
437 static inline void clear_page_guard_flag(struct page *page)
438 {
439 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
440 }
441 #else
442 static inline void set_page_guard_flag(struct page *page) { }
443 static inline void clear_page_guard_flag(struct page *page) { }
444 #endif
445
446 static inline void set_page_order(struct page *page, int order)
447 {
448 set_page_private(page, order);
449 __SetPageBuddy(page);
450 }
451
452 static inline void rmv_page_order(struct page *page)
453 {
454 __ClearPageBuddy(page);
455 set_page_private(page, 0);
456 }
457
458 /*
459 * Locate the struct page for both the matching buddy in our
460 * pair (buddy1) and the combined O(n+1) page they form (page).
461 *
462 * 1) Any buddy B1 will have an order O twin B2 which satisfies
463 * the following equation:
464 * B2 = B1 ^ (1 << O)
465 * For example, if the starting buddy (buddy2) is #8 its order
466 * 1 buddy is #10:
467 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
468 *
469 * 2) Any buddy B will have an order O+1 parent P which
470 * satisfies the following equation:
471 * P = B & ~(1 << O)
472 *
473 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
474 */
475 static inline unsigned long
476 __find_buddy_index(unsigned long page_idx, unsigned int order)
477 {
478 return page_idx ^ (1 << order);
479 }
480
481 /*
482 * This function checks whether a page is free && is the buddy
483 * we can do coalesce a page and its buddy if
484 * (a) the buddy is not in a hole &&
485 * (b) the buddy is in the buddy system &&
486 * (c) a page and its buddy have the same order &&
487 * (d) a page and its buddy are in the same zone.
488 *
489 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
490 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
491 *
492 * For recording page's order, we use page_private(page).
493 */
494 static inline int page_is_buddy(struct page *page, struct page *buddy,
495 int order)
496 {
497 if (!pfn_valid_within(page_to_pfn(buddy)))
498 return 0;
499
500 if (page_zone_id(page) != page_zone_id(buddy))
501 return 0;
502
503 if (page_is_guard(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507
508 if (PageBuddy(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512 return 0;
513 }
514
515 /*
516 * Freeing function for a buddy system allocator.
517 *
518 * The concept of a buddy system is to maintain direct-mapped table
519 * (containing bit values) for memory blocks of various "orders".
520 * The bottom level table contains the map for the smallest allocatable
521 * units of memory (here, pages), and each level above it describes
522 * pairs of units from the levels below, hence, "buddies".
523 * At a high level, all that happens here is marking the table entry
524 * at the bottom level available, and propagating the changes upward
525 * as necessary, plus some accounting needed to play nicely with other
526 * parts of the VM system.
527 * At each level, we keep a list of pages, which are heads of continuous
528 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
529 * order is recorded in page_private(page) field.
530 * So when we are allocating or freeing one, we can derive the state of the
531 * other. That is, if we allocate a small block, and both were
532 * free, the remainder of the region must be split into blocks.
533 * If a block is freed, and its buddy is also free, then this
534 * triggers coalescing into a block of larger size.
535 *
536 * -- nyc
537 */
538
539 static inline void __free_one_page(struct page *page,
540 struct zone *zone, unsigned int order,
541 int migratetype)
542 {
543 unsigned long page_idx;
544 unsigned long combined_idx;
545 unsigned long uninitialized_var(buddy_idx);
546 struct page *buddy;
547
548 VM_BUG_ON(!zone_is_initialized(zone));
549
550 if (unlikely(PageCompound(page)))
551 if (unlikely(destroy_compound_page(page, order)))
552 return;
553
554 VM_BUG_ON(migratetype == -1);
555
556 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
557
558 VM_BUG_ON(page_idx & ((1 << order) - 1));
559 VM_BUG_ON(bad_range(zone, page));
560
561 while (order < MAX_ORDER-1) {
562 buddy_idx = __find_buddy_index(page_idx, order);
563 buddy = page + (buddy_idx - page_idx);
564 if (!page_is_buddy(page, buddy, order))
565 break;
566 /*
567 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
568 * merge with it and move up one order.
569 */
570 if (page_is_guard(buddy)) {
571 clear_page_guard_flag(buddy);
572 set_page_private(page, 0);
573 __mod_zone_freepage_state(zone, 1 << order,
574 migratetype);
575 } else {
576 list_del(&buddy->lru);
577 zone->free_area[order].nr_free--;
578 rmv_page_order(buddy);
579 }
580 combined_idx = buddy_idx & page_idx;
581 page = page + (combined_idx - page_idx);
582 page_idx = combined_idx;
583 order++;
584 }
585 set_page_order(page, order);
586
587 /*
588 * If this is not the largest possible page, check if the buddy
589 * of the next-highest order is free. If it is, it's possible
590 * that pages are being freed that will coalesce soon. In case,
591 * that is happening, add the free page to the tail of the list
592 * so it's less likely to be used soon and more likely to be merged
593 * as a higher order page
594 */
595 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
596 struct page *higher_page, *higher_buddy;
597 combined_idx = buddy_idx & page_idx;
598 higher_page = page + (combined_idx - page_idx);
599 buddy_idx = __find_buddy_index(combined_idx, order + 1);
600 higher_buddy = higher_page + (buddy_idx - combined_idx);
601 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
602 list_add_tail(&page->lru,
603 &zone->free_area[order].free_list[migratetype]);
604 goto out;
605 }
606 }
607
608 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
609 out:
610 zone->free_area[order].nr_free++;
611 }
612
613 static inline int free_pages_check(struct page *page)
614 {
615 if (unlikely(page_mapcount(page) |
616 (page->mapping != NULL) |
617 (atomic_read(&page->_count) != 0) |
618 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
619 (mem_cgroup_bad_page_check(page)))) {
620 bad_page(page);
621 return 1;
622 }
623 page_nid_reset_last(page);
624 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
625 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
626 return 0;
627 }
628
629 /*
630 * Frees a number of pages from the PCP lists
631 * Assumes all pages on list are in same zone, and of same order.
632 * count is the number of pages to free.
633 *
634 * If the zone was previously in an "all pages pinned" state then look to
635 * see if this freeing clears that state.
636 *
637 * And clear the zone's pages_scanned counter, to hold off the "all pages are
638 * pinned" detection logic.
639 */
640 static void free_pcppages_bulk(struct zone *zone, int count,
641 struct per_cpu_pages *pcp)
642 {
643 int migratetype = 0;
644 int batch_free = 0;
645 int to_free = count;
646
647 spin_lock(&zone->lock);
648 zone->all_unreclaimable = 0;
649 zone->pages_scanned = 0;
650
651 while (to_free) {
652 struct page *page;
653 struct list_head *list;
654
655 /*
656 * Remove pages from lists in a round-robin fashion. A
657 * batch_free count is maintained that is incremented when an
658 * empty list is encountered. This is so more pages are freed
659 * off fuller lists instead of spinning excessively around empty
660 * lists
661 */
662 do {
663 batch_free++;
664 if (++migratetype == MIGRATE_PCPTYPES)
665 migratetype = 0;
666 list = &pcp->lists[migratetype];
667 } while (list_empty(list));
668
669 /* This is the only non-empty list. Free them all. */
670 if (batch_free == MIGRATE_PCPTYPES)
671 batch_free = to_free;
672
673 do {
674 int mt; /* migratetype of the to-be-freed page */
675
676 page = list_entry(list->prev, struct page, lru);
677 /* must delete as __free_one_page list manipulates */
678 list_del(&page->lru);
679 mt = get_freepage_migratetype(page);
680 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
681 __free_one_page(page, zone, 0, mt);
682 trace_mm_page_pcpu_drain(page, 0, mt);
683 if (likely(!is_migrate_isolate_page(page))) {
684 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
685 if (is_migrate_cma(mt))
686 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
687 }
688 } while (--to_free && --batch_free && !list_empty(list));
689 }
690 spin_unlock(&zone->lock);
691 }
692
693 static void free_one_page(struct zone *zone, struct page *page, int order,
694 int migratetype)
695 {
696 spin_lock(&zone->lock);
697 zone->all_unreclaimable = 0;
698 zone->pages_scanned = 0;
699
700 __free_one_page(page, zone, order, migratetype);
701 if (unlikely(!is_migrate_isolate(migratetype)))
702 __mod_zone_freepage_state(zone, 1 << order, migratetype);
703 spin_unlock(&zone->lock);
704 }
705
706 static bool free_pages_prepare(struct page *page, unsigned int order)
707 {
708 int i;
709 int bad = 0;
710
711 trace_mm_page_free(page, order);
712 kmemcheck_free_shadow(page, order);
713
714 if (PageAnon(page))
715 page->mapping = NULL;
716 for (i = 0; i < (1 << order); i++)
717 bad += free_pages_check(page + i);
718 if (bad)
719 return false;
720
721 if (!PageHighMem(page)) {
722 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
723 debug_check_no_obj_freed(page_address(page),
724 PAGE_SIZE << order);
725 }
726 arch_free_page(page, order);
727 kernel_map_pages(page, 1 << order, 0);
728
729 return true;
730 }
731
732 static void __free_pages_ok(struct page *page, unsigned int order)
733 {
734 unsigned long flags;
735 int migratetype;
736
737 if (!free_pages_prepare(page, order))
738 return;
739
740 local_irq_save(flags);
741 __count_vm_events(PGFREE, 1 << order);
742 migratetype = get_pageblock_migratetype(page);
743 set_freepage_migratetype(page, migratetype);
744 free_one_page(page_zone(page), page, order, migratetype);
745 local_irq_restore(flags);
746 }
747
748 /*
749 * Read access to zone->managed_pages is safe because it's unsigned long,
750 * but we still need to serialize writers. Currently all callers of
751 * __free_pages_bootmem() except put_page_bootmem() should only be used
752 * at boot time. So for shorter boot time, we shift the burden to
753 * put_page_bootmem() to serialize writers.
754 */
755 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
756 {
757 unsigned int nr_pages = 1 << order;
758 unsigned int loop;
759
760 prefetchw(page);
761 for (loop = 0; loop < nr_pages; loop++) {
762 struct page *p = &page[loop];
763
764 if (loop + 1 < nr_pages)
765 prefetchw(p + 1);
766 __ClearPageReserved(p);
767 set_page_count(p, 0);
768 }
769
770 page_zone(page)->managed_pages += 1 << order;
771 set_page_refcounted(page);
772 __free_pages(page, order);
773 }
774
775 #ifdef CONFIG_CMA
776 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
777 void __init init_cma_reserved_pageblock(struct page *page)
778 {
779 unsigned i = pageblock_nr_pages;
780 struct page *p = page;
781
782 do {
783 __ClearPageReserved(p);
784 set_page_count(p, 0);
785 } while (++p, --i);
786
787 set_page_refcounted(page);
788 set_pageblock_migratetype(page, MIGRATE_CMA);
789 __free_pages(page, pageblock_order);
790 totalram_pages += pageblock_nr_pages;
791 #ifdef CONFIG_HIGHMEM
792 if (PageHighMem(page))
793 totalhigh_pages += pageblock_nr_pages;
794 #endif
795 }
796 #endif
797
798 /*
799 * The order of subdivision here is critical for the IO subsystem.
800 * Please do not alter this order without good reasons and regression
801 * testing. Specifically, as large blocks of memory are subdivided,
802 * the order in which smaller blocks are delivered depends on the order
803 * they're subdivided in this function. This is the primary factor
804 * influencing the order in which pages are delivered to the IO
805 * subsystem according to empirical testing, and this is also justified
806 * by considering the behavior of a buddy system containing a single
807 * large block of memory acted on by a series of small allocations.
808 * This behavior is a critical factor in sglist merging's success.
809 *
810 * -- nyc
811 */
812 static inline void expand(struct zone *zone, struct page *page,
813 int low, int high, struct free_area *area,
814 int migratetype)
815 {
816 unsigned long size = 1 << high;
817
818 while (high > low) {
819 area--;
820 high--;
821 size >>= 1;
822 VM_BUG_ON(bad_range(zone, &page[size]));
823
824 #ifdef CONFIG_DEBUG_PAGEALLOC
825 if (high < debug_guardpage_minorder()) {
826 /*
827 * Mark as guard pages (or page), that will allow to
828 * merge back to allocator when buddy will be freed.
829 * Corresponding page table entries will not be touched,
830 * pages will stay not present in virtual address space
831 */
832 INIT_LIST_HEAD(&page[size].lru);
833 set_page_guard_flag(&page[size]);
834 set_page_private(&page[size], high);
835 /* Guard pages are not available for any usage */
836 __mod_zone_freepage_state(zone, -(1 << high),
837 migratetype);
838 continue;
839 }
840 #endif
841 list_add(&page[size].lru, &area->free_list[migratetype]);
842 area->nr_free++;
843 set_page_order(&page[size], high);
844 }
845 }
846
847 /*
848 * This page is about to be returned from the page allocator
849 */
850 static inline int check_new_page(struct page *page)
851 {
852 if (unlikely(page_mapcount(page) |
853 (page->mapping != NULL) |
854 (atomic_read(&page->_count) != 0) |
855 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
856 (mem_cgroup_bad_page_check(page)))) {
857 bad_page(page);
858 return 1;
859 }
860 return 0;
861 }
862
863 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
864 {
865 int i;
866
867 for (i = 0; i < (1 << order); i++) {
868 struct page *p = page + i;
869 if (unlikely(check_new_page(p)))
870 return 1;
871 }
872
873 set_page_private(page, 0);
874 set_page_refcounted(page);
875
876 arch_alloc_page(page, order);
877 kernel_map_pages(page, 1 << order, 1);
878
879 if (gfp_flags & __GFP_ZERO)
880 prep_zero_page(page, order, gfp_flags);
881
882 if (order && (gfp_flags & __GFP_COMP))
883 prep_compound_page(page, order);
884
885 return 0;
886 }
887
888 /*
889 * Go through the free lists for the given migratetype and remove
890 * the smallest available page from the freelists
891 */
892 static inline
893 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
894 int migratetype)
895 {
896 unsigned int current_order;
897 struct free_area * area;
898 struct page *page;
899
900 /* Find a page of the appropriate size in the preferred list */
901 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
902 area = &(zone->free_area[current_order]);
903 if (list_empty(&area->free_list[migratetype]))
904 continue;
905
906 page = list_entry(area->free_list[migratetype].next,
907 struct page, lru);
908 list_del(&page->lru);
909 rmv_page_order(page);
910 area->nr_free--;
911 expand(zone, page, order, current_order, area, migratetype);
912 return page;
913 }
914
915 return NULL;
916 }
917
918
919 /*
920 * This array describes the order lists are fallen back to when
921 * the free lists for the desirable migrate type are depleted
922 */
923 static int fallbacks[MIGRATE_TYPES][4] = {
924 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
925 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
926 #ifdef CONFIG_CMA
927 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
928 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
929 #else
930 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
931 #endif
932 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
933 #ifdef CONFIG_MEMORY_ISOLATION
934 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
935 #endif
936 };
937
938 /*
939 * Move the free pages in a range to the free lists of the requested type.
940 * Note that start_page and end_pages are not aligned on a pageblock
941 * boundary. If alignment is required, use move_freepages_block()
942 */
943 int move_freepages(struct zone *zone,
944 struct page *start_page, struct page *end_page,
945 int migratetype)
946 {
947 struct page *page;
948 unsigned long order;
949 int pages_moved = 0;
950
951 #ifndef CONFIG_HOLES_IN_ZONE
952 /*
953 * page_zone is not safe to call in this context when
954 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
955 * anyway as we check zone boundaries in move_freepages_block().
956 * Remove at a later date when no bug reports exist related to
957 * grouping pages by mobility
958 */
959 BUG_ON(page_zone(start_page) != page_zone(end_page));
960 #endif
961
962 for (page = start_page; page <= end_page;) {
963 /* Make sure we are not inadvertently changing nodes */
964 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
965
966 if (!pfn_valid_within(page_to_pfn(page))) {
967 page++;
968 continue;
969 }
970
971 if (!PageBuddy(page)) {
972 page++;
973 continue;
974 }
975
976 order = page_order(page);
977 list_move(&page->lru,
978 &zone->free_area[order].free_list[migratetype]);
979 set_freepage_migratetype(page, migratetype);
980 page += 1 << order;
981 pages_moved += 1 << order;
982 }
983
984 return pages_moved;
985 }
986
987 int move_freepages_block(struct zone *zone, struct page *page,
988 int migratetype)
989 {
990 unsigned long start_pfn, end_pfn;
991 struct page *start_page, *end_page;
992
993 start_pfn = page_to_pfn(page);
994 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
995 start_page = pfn_to_page(start_pfn);
996 end_page = start_page + pageblock_nr_pages - 1;
997 end_pfn = start_pfn + pageblock_nr_pages - 1;
998
999 /* Do not cross zone boundaries */
1000 if (!zone_spans_pfn(zone, start_pfn))
1001 start_page = page;
1002 if (!zone_spans_pfn(zone, end_pfn))
1003 return 0;
1004
1005 return move_freepages(zone, start_page, end_page, migratetype);
1006 }
1007
1008 static void change_pageblock_range(struct page *pageblock_page,
1009 int start_order, int migratetype)
1010 {
1011 int nr_pageblocks = 1 << (start_order - pageblock_order);
1012
1013 while (nr_pageblocks--) {
1014 set_pageblock_migratetype(pageblock_page, migratetype);
1015 pageblock_page += pageblock_nr_pages;
1016 }
1017 }
1018
1019 /* Remove an element from the buddy allocator from the fallback list */
1020 static inline struct page *
1021 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1022 {
1023 struct free_area * area;
1024 int current_order;
1025 struct page *page;
1026 int migratetype, i;
1027
1028 /* Find the largest possible block of pages in the other list */
1029 for (current_order = MAX_ORDER-1; current_order >= order;
1030 --current_order) {
1031 for (i = 0;; i++) {
1032 migratetype = fallbacks[start_migratetype][i];
1033
1034 /* MIGRATE_RESERVE handled later if necessary */
1035 if (migratetype == MIGRATE_RESERVE)
1036 break;
1037
1038 area = &(zone->free_area[current_order]);
1039 if (list_empty(&area->free_list[migratetype]))
1040 continue;
1041
1042 page = list_entry(area->free_list[migratetype].next,
1043 struct page, lru);
1044 area->nr_free--;
1045
1046 /*
1047 * If breaking a large block of pages, move all free
1048 * pages to the preferred allocation list. If falling
1049 * back for a reclaimable kernel allocation, be more
1050 * aggressive about taking ownership of free pages
1051 *
1052 * On the other hand, never change migration
1053 * type of MIGRATE_CMA pageblocks nor move CMA
1054 * pages on different free lists. We don't
1055 * want unmovable pages to be allocated from
1056 * MIGRATE_CMA areas.
1057 */
1058 if (!is_migrate_cma(migratetype) &&
1059 (unlikely(current_order >= pageblock_order / 2) ||
1060 start_migratetype == MIGRATE_RECLAIMABLE ||
1061 page_group_by_mobility_disabled)) {
1062 int pages;
1063 pages = move_freepages_block(zone, page,
1064 start_migratetype);
1065
1066 /* Claim the whole block if over half of it is free */
1067 if (pages >= (1 << (pageblock_order-1)) ||
1068 page_group_by_mobility_disabled)
1069 set_pageblock_migratetype(page,
1070 start_migratetype);
1071
1072 migratetype = start_migratetype;
1073 }
1074
1075 /* Remove the page from the freelists */
1076 list_del(&page->lru);
1077 rmv_page_order(page);
1078
1079 /* Take ownership for orders >= pageblock_order */
1080 if (current_order >= pageblock_order &&
1081 !is_migrate_cma(migratetype))
1082 change_pageblock_range(page, current_order,
1083 start_migratetype);
1084
1085 expand(zone, page, order, current_order, area,
1086 is_migrate_cma(migratetype)
1087 ? migratetype : start_migratetype);
1088
1089 trace_mm_page_alloc_extfrag(page, order, current_order,
1090 start_migratetype, migratetype);
1091
1092 return page;
1093 }
1094 }
1095
1096 return NULL;
1097 }
1098
1099 /*
1100 * Do the hard work of removing an element from the buddy allocator.
1101 * Call me with the zone->lock already held.
1102 */
1103 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1104 int migratetype)
1105 {
1106 struct page *page;
1107
1108 retry_reserve:
1109 page = __rmqueue_smallest(zone, order, migratetype);
1110
1111 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1112 page = __rmqueue_fallback(zone, order, migratetype);
1113
1114 /*
1115 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1116 * is used because __rmqueue_smallest is an inline function
1117 * and we want just one call site
1118 */
1119 if (!page) {
1120 migratetype = MIGRATE_RESERVE;
1121 goto retry_reserve;
1122 }
1123 }
1124
1125 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1126 return page;
1127 }
1128
1129 /*
1130 * Obtain a specified number of elements from the buddy allocator, all under
1131 * a single hold of the lock, for efficiency. Add them to the supplied list.
1132 * Returns the number of new pages which were placed at *list.
1133 */
1134 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1135 unsigned long count, struct list_head *list,
1136 int migratetype, int cold)
1137 {
1138 int mt = migratetype, i;
1139
1140 spin_lock(&zone->lock);
1141 for (i = 0; i < count; ++i) {
1142 struct page *page = __rmqueue(zone, order, migratetype);
1143 if (unlikely(page == NULL))
1144 break;
1145
1146 /*
1147 * Split buddy pages returned by expand() are received here
1148 * in physical page order. The page is added to the callers and
1149 * list and the list head then moves forward. From the callers
1150 * perspective, the linked list is ordered by page number in
1151 * some conditions. This is useful for IO devices that can
1152 * merge IO requests if the physical pages are ordered
1153 * properly.
1154 */
1155 if (likely(cold == 0))
1156 list_add(&page->lru, list);
1157 else
1158 list_add_tail(&page->lru, list);
1159 if (IS_ENABLED(CONFIG_CMA)) {
1160 mt = get_pageblock_migratetype(page);
1161 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1162 mt = migratetype;
1163 }
1164 set_freepage_migratetype(page, mt);
1165 list = &page->lru;
1166 if (is_migrate_cma(mt))
1167 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1168 -(1 << order));
1169 }
1170 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1171 spin_unlock(&zone->lock);
1172 return i;
1173 }
1174
1175 #ifdef CONFIG_NUMA
1176 /*
1177 * Called from the vmstat counter updater to drain pagesets of this
1178 * currently executing processor on remote nodes after they have
1179 * expired.
1180 *
1181 * Note that this function must be called with the thread pinned to
1182 * a single processor.
1183 */
1184 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1185 {
1186 unsigned long flags;
1187 int to_drain;
1188
1189 local_irq_save(flags);
1190 if (pcp->count >= pcp->batch)
1191 to_drain = pcp->batch;
1192 else
1193 to_drain = pcp->count;
1194 if (to_drain > 0) {
1195 free_pcppages_bulk(zone, to_drain, pcp);
1196 pcp->count -= to_drain;
1197 }
1198 local_irq_restore(flags);
1199 }
1200 #endif
1201
1202 /*
1203 * Drain pages of the indicated processor.
1204 *
1205 * The processor must either be the current processor and the
1206 * thread pinned to the current processor or a processor that
1207 * is not online.
1208 */
1209 static void drain_pages(unsigned int cpu)
1210 {
1211 unsigned long flags;
1212 struct zone *zone;
1213
1214 for_each_populated_zone(zone) {
1215 struct per_cpu_pageset *pset;
1216 struct per_cpu_pages *pcp;
1217
1218 local_irq_save(flags);
1219 pset = per_cpu_ptr(zone->pageset, cpu);
1220
1221 pcp = &pset->pcp;
1222 if (pcp->count) {
1223 free_pcppages_bulk(zone, pcp->count, pcp);
1224 pcp->count = 0;
1225 }
1226 local_irq_restore(flags);
1227 }
1228 }
1229
1230 /*
1231 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1232 */
1233 void drain_local_pages(void *arg)
1234 {
1235 drain_pages(smp_processor_id());
1236 }
1237
1238 /*
1239 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1240 *
1241 * Note that this code is protected against sending an IPI to an offline
1242 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1243 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1244 * nothing keeps CPUs from showing up after we populated the cpumask and
1245 * before the call to on_each_cpu_mask().
1246 */
1247 void drain_all_pages(void)
1248 {
1249 int cpu;
1250 struct per_cpu_pageset *pcp;
1251 struct zone *zone;
1252
1253 /*
1254 * Allocate in the BSS so we wont require allocation in
1255 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1256 */
1257 static cpumask_t cpus_with_pcps;
1258
1259 /*
1260 * We don't care about racing with CPU hotplug event
1261 * as offline notification will cause the notified
1262 * cpu to drain that CPU pcps and on_each_cpu_mask
1263 * disables preemption as part of its processing
1264 */
1265 for_each_online_cpu(cpu) {
1266 bool has_pcps = false;
1267 for_each_populated_zone(zone) {
1268 pcp = per_cpu_ptr(zone->pageset, cpu);
1269 if (pcp->pcp.count) {
1270 has_pcps = true;
1271 break;
1272 }
1273 }
1274 if (has_pcps)
1275 cpumask_set_cpu(cpu, &cpus_with_pcps);
1276 else
1277 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1278 }
1279 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1280 }
1281
1282 #ifdef CONFIG_HIBERNATION
1283
1284 void mark_free_pages(struct zone *zone)
1285 {
1286 unsigned long pfn, max_zone_pfn;
1287 unsigned long flags;
1288 int order, t;
1289 struct list_head *curr;
1290
1291 if (!zone->spanned_pages)
1292 return;
1293
1294 spin_lock_irqsave(&zone->lock, flags);
1295
1296 max_zone_pfn = zone_end_pfn(zone);
1297 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1298 if (pfn_valid(pfn)) {
1299 struct page *page = pfn_to_page(pfn);
1300
1301 if (!swsusp_page_is_forbidden(page))
1302 swsusp_unset_page_free(page);
1303 }
1304
1305 for_each_migratetype_order(order, t) {
1306 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1307 unsigned long i;
1308
1309 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1310 for (i = 0; i < (1UL << order); i++)
1311 swsusp_set_page_free(pfn_to_page(pfn + i));
1312 }
1313 }
1314 spin_unlock_irqrestore(&zone->lock, flags);
1315 }
1316 #endif /* CONFIG_PM */
1317
1318 /*
1319 * Free a 0-order page
1320 * cold == 1 ? free a cold page : free a hot page
1321 */
1322 void free_hot_cold_page(struct page *page, int cold)
1323 {
1324 struct zone *zone = page_zone(page);
1325 struct per_cpu_pages *pcp;
1326 unsigned long flags;
1327 int migratetype;
1328
1329 if (!free_pages_prepare(page, 0))
1330 return;
1331
1332 migratetype = get_pageblock_migratetype(page);
1333 set_freepage_migratetype(page, migratetype);
1334 local_irq_save(flags);
1335 __count_vm_event(PGFREE);
1336
1337 /*
1338 * We only track unmovable, reclaimable and movable on pcp lists.
1339 * Free ISOLATE pages back to the allocator because they are being
1340 * offlined but treat RESERVE as movable pages so we can get those
1341 * areas back if necessary. Otherwise, we may have to free
1342 * excessively into the page allocator
1343 */
1344 if (migratetype >= MIGRATE_PCPTYPES) {
1345 if (unlikely(is_migrate_isolate(migratetype))) {
1346 free_one_page(zone, page, 0, migratetype);
1347 goto out;
1348 }
1349 migratetype = MIGRATE_MOVABLE;
1350 }
1351
1352 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1353 if (cold)
1354 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1355 else
1356 list_add(&page->lru, &pcp->lists[migratetype]);
1357 pcp->count++;
1358 if (pcp->count >= pcp->high) {
1359 free_pcppages_bulk(zone, pcp->batch, pcp);
1360 pcp->count -= pcp->batch;
1361 }
1362
1363 out:
1364 local_irq_restore(flags);
1365 }
1366
1367 /*
1368 * Free a list of 0-order pages
1369 */
1370 void free_hot_cold_page_list(struct list_head *list, int cold)
1371 {
1372 struct page *page, *next;
1373
1374 list_for_each_entry_safe(page, next, list, lru) {
1375 trace_mm_page_free_batched(page, cold);
1376 free_hot_cold_page(page, cold);
1377 }
1378 }
1379
1380 /*
1381 * split_page takes a non-compound higher-order page, and splits it into
1382 * n (1<<order) sub-pages: page[0..n]
1383 * Each sub-page must be freed individually.
1384 *
1385 * Note: this is probably too low level an operation for use in drivers.
1386 * Please consult with lkml before using this in your driver.
1387 */
1388 void split_page(struct page *page, unsigned int order)
1389 {
1390 int i;
1391
1392 VM_BUG_ON(PageCompound(page));
1393 VM_BUG_ON(!page_count(page));
1394
1395 #ifdef CONFIG_KMEMCHECK
1396 /*
1397 * Split shadow pages too, because free(page[0]) would
1398 * otherwise free the whole shadow.
1399 */
1400 if (kmemcheck_page_is_tracked(page))
1401 split_page(virt_to_page(page[0].shadow), order);
1402 #endif
1403
1404 for (i = 1; i < (1 << order); i++)
1405 set_page_refcounted(page + i);
1406 }
1407
1408 static int __isolate_free_page(struct page *page, unsigned int order)
1409 {
1410 unsigned long watermark;
1411 struct zone *zone;
1412 int mt;
1413
1414 BUG_ON(!PageBuddy(page));
1415
1416 zone = page_zone(page);
1417 mt = get_pageblock_migratetype(page);
1418
1419 if (!is_migrate_isolate(mt)) {
1420 /* Obey watermarks as if the page was being allocated */
1421 watermark = low_wmark_pages(zone) + (1 << order);
1422 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1423 return 0;
1424
1425 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1426 }
1427
1428 /* Remove page from free list */
1429 list_del(&page->lru);
1430 zone->free_area[order].nr_free--;
1431 rmv_page_order(page);
1432
1433 /* Set the pageblock if the isolated page is at least a pageblock */
1434 if (order >= pageblock_order - 1) {
1435 struct page *endpage = page + (1 << order) - 1;
1436 for (; page < endpage; page += pageblock_nr_pages) {
1437 int mt = get_pageblock_migratetype(page);
1438 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1439 set_pageblock_migratetype(page,
1440 MIGRATE_MOVABLE);
1441 }
1442 }
1443
1444 return 1UL << order;
1445 }
1446
1447 /*
1448 * Similar to split_page except the page is already free. As this is only
1449 * being used for migration, the migratetype of the block also changes.
1450 * As this is called with interrupts disabled, the caller is responsible
1451 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1452 * are enabled.
1453 *
1454 * Note: this is probably too low level an operation for use in drivers.
1455 * Please consult with lkml before using this in your driver.
1456 */
1457 int split_free_page(struct page *page)
1458 {
1459 unsigned int order;
1460 int nr_pages;
1461
1462 order = page_order(page);
1463
1464 nr_pages = __isolate_free_page(page, order);
1465 if (!nr_pages)
1466 return 0;
1467
1468 /* Split into individual pages */
1469 set_page_refcounted(page);
1470 split_page(page, order);
1471 return nr_pages;
1472 }
1473
1474 /*
1475 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1476 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1477 * or two.
1478 */
1479 static inline
1480 struct page *buffered_rmqueue(struct zone *preferred_zone,
1481 struct zone *zone, int order, gfp_t gfp_flags,
1482 int migratetype)
1483 {
1484 unsigned long flags;
1485 struct page *page;
1486 int cold = !!(gfp_flags & __GFP_COLD);
1487
1488 again:
1489 if (likely(order == 0)) {
1490 struct per_cpu_pages *pcp;
1491 struct list_head *list;
1492
1493 local_irq_save(flags);
1494 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1495 list = &pcp->lists[migratetype];
1496 if (list_empty(list)) {
1497 pcp->count += rmqueue_bulk(zone, 0,
1498 pcp->batch, list,
1499 migratetype, cold);
1500 if (unlikely(list_empty(list)))
1501 goto failed;
1502 }
1503
1504 if (cold)
1505 page = list_entry(list->prev, struct page, lru);
1506 else
1507 page = list_entry(list->next, struct page, lru);
1508
1509 list_del(&page->lru);
1510 pcp->count--;
1511 } else {
1512 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1513 /*
1514 * __GFP_NOFAIL is not to be used in new code.
1515 *
1516 * All __GFP_NOFAIL callers should be fixed so that they
1517 * properly detect and handle allocation failures.
1518 *
1519 * We most definitely don't want callers attempting to
1520 * allocate greater than order-1 page units with
1521 * __GFP_NOFAIL.
1522 */
1523 WARN_ON_ONCE(order > 1);
1524 }
1525 spin_lock_irqsave(&zone->lock, flags);
1526 page = __rmqueue(zone, order, migratetype);
1527 spin_unlock(&zone->lock);
1528 if (!page)
1529 goto failed;
1530 __mod_zone_freepage_state(zone, -(1 << order),
1531 get_pageblock_migratetype(page));
1532 }
1533
1534 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1535 zone_statistics(preferred_zone, zone, gfp_flags);
1536 local_irq_restore(flags);
1537
1538 VM_BUG_ON(bad_range(zone, page));
1539 if (prep_new_page(page, order, gfp_flags))
1540 goto again;
1541 return page;
1542
1543 failed:
1544 local_irq_restore(flags);
1545 return NULL;
1546 }
1547
1548 #ifdef CONFIG_FAIL_PAGE_ALLOC
1549
1550 static struct {
1551 struct fault_attr attr;
1552
1553 u32 ignore_gfp_highmem;
1554 u32 ignore_gfp_wait;
1555 u32 min_order;
1556 } fail_page_alloc = {
1557 .attr = FAULT_ATTR_INITIALIZER,
1558 .ignore_gfp_wait = 1,
1559 .ignore_gfp_highmem = 1,
1560 .min_order = 1,
1561 };
1562
1563 static int __init setup_fail_page_alloc(char *str)
1564 {
1565 return setup_fault_attr(&fail_page_alloc.attr, str);
1566 }
1567 __setup("fail_page_alloc=", setup_fail_page_alloc);
1568
1569 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1570 {
1571 if (order < fail_page_alloc.min_order)
1572 return false;
1573 if (gfp_mask & __GFP_NOFAIL)
1574 return false;
1575 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1576 return false;
1577 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1578 return false;
1579
1580 return should_fail(&fail_page_alloc.attr, 1 << order);
1581 }
1582
1583 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1584
1585 static int __init fail_page_alloc_debugfs(void)
1586 {
1587 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1588 struct dentry *dir;
1589
1590 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1591 &fail_page_alloc.attr);
1592 if (IS_ERR(dir))
1593 return PTR_ERR(dir);
1594
1595 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1596 &fail_page_alloc.ignore_gfp_wait))
1597 goto fail;
1598 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1599 &fail_page_alloc.ignore_gfp_highmem))
1600 goto fail;
1601 if (!debugfs_create_u32("min-order", mode, dir,
1602 &fail_page_alloc.min_order))
1603 goto fail;
1604
1605 return 0;
1606 fail:
1607 debugfs_remove_recursive(dir);
1608
1609 return -ENOMEM;
1610 }
1611
1612 late_initcall(fail_page_alloc_debugfs);
1613
1614 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1615
1616 #else /* CONFIG_FAIL_PAGE_ALLOC */
1617
1618 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1619 {
1620 return false;
1621 }
1622
1623 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1624
1625 /*
1626 * Return true if free pages are above 'mark'. This takes into account the order
1627 * of the allocation.
1628 */
1629 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1630 int classzone_idx, int alloc_flags, long free_pages)
1631 {
1632 /* free_pages my go negative - that's OK */
1633 long min = mark;
1634 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1635 int o;
1636
1637 free_pages -= (1 << order) - 1;
1638 if (alloc_flags & ALLOC_HIGH)
1639 min -= min / 2;
1640 if (alloc_flags & ALLOC_HARDER)
1641 min -= min / 4;
1642 #ifdef CONFIG_CMA
1643 /* If allocation can't use CMA areas don't use free CMA pages */
1644 if (!(alloc_flags & ALLOC_CMA))
1645 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1646 #endif
1647 if (free_pages <= min + lowmem_reserve)
1648 return false;
1649 for (o = 0; o < order; o++) {
1650 /* At the next order, this order's pages become unavailable */
1651 free_pages -= z->free_area[o].nr_free << o;
1652
1653 /* Require fewer higher order pages to be free */
1654 min >>= 1;
1655
1656 if (free_pages <= min)
1657 return false;
1658 }
1659 return true;
1660 }
1661
1662 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1663 int classzone_idx, int alloc_flags)
1664 {
1665 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1666 zone_page_state(z, NR_FREE_PAGES));
1667 }
1668
1669 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1670 int classzone_idx, int alloc_flags)
1671 {
1672 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1673
1674 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1675 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1676
1677 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1678 free_pages);
1679 }
1680
1681 #ifdef CONFIG_NUMA
1682 /*
1683 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1684 * skip over zones that are not allowed by the cpuset, or that have
1685 * been recently (in last second) found to be nearly full. See further
1686 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1687 * that have to skip over a lot of full or unallowed zones.
1688 *
1689 * If the zonelist cache is present in the passed in zonelist, then
1690 * returns a pointer to the allowed node mask (either the current
1691 * tasks mems_allowed, or node_states[N_MEMORY].)
1692 *
1693 * If the zonelist cache is not available for this zonelist, does
1694 * nothing and returns NULL.
1695 *
1696 * If the fullzones BITMAP in the zonelist cache is stale (more than
1697 * a second since last zap'd) then we zap it out (clear its bits.)
1698 *
1699 * We hold off even calling zlc_setup, until after we've checked the
1700 * first zone in the zonelist, on the theory that most allocations will
1701 * be satisfied from that first zone, so best to examine that zone as
1702 * quickly as we can.
1703 */
1704 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1705 {
1706 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1707 nodemask_t *allowednodes; /* zonelist_cache approximation */
1708
1709 zlc = zonelist->zlcache_ptr;
1710 if (!zlc)
1711 return NULL;
1712
1713 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1714 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1715 zlc->last_full_zap = jiffies;
1716 }
1717
1718 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1719 &cpuset_current_mems_allowed :
1720 &node_states[N_MEMORY];
1721 return allowednodes;
1722 }
1723
1724 /*
1725 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1726 * if it is worth looking at further for free memory:
1727 * 1) Check that the zone isn't thought to be full (doesn't have its
1728 * bit set in the zonelist_cache fullzones BITMAP).
1729 * 2) Check that the zones node (obtained from the zonelist_cache
1730 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1731 * Return true (non-zero) if zone is worth looking at further, or
1732 * else return false (zero) if it is not.
1733 *
1734 * This check -ignores- the distinction between various watermarks,
1735 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1736 * found to be full for any variation of these watermarks, it will
1737 * be considered full for up to one second by all requests, unless
1738 * we are so low on memory on all allowed nodes that we are forced
1739 * into the second scan of the zonelist.
1740 *
1741 * In the second scan we ignore this zonelist cache and exactly
1742 * apply the watermarks to all zones, even it is slower to do so.
1743 * We are low on memory in the second scan, and should leave no stone
1744 * unturned looking for a free page.
1745 */
1746 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1747 nodemask_t *allowednodes)
1748 {
1749 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1750 int i; /* index of *z in zonelist zones */
1751 int n; /* node that zone *z is on */
1752
1753 zlc = zonelist->zlcache_ptr;
1754 if (!zlc)
1755 return 1;
1756
1757 i = z - zonelist->_zonerefs;
1758 n = zlc->z_to_n[i];
1759
1760 /* This zone is worth trying if it is allowed but not full */
1761 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1762 }
1763
1764 /*
1765 * Given 'z' scanning a zonelist, set the corresponding bit in
1766 * zlc->fullzones, so that subsequent attempts to allocate a page
1767 * from that zone don't waste time re-examining it.
1768 */
1769 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1770 {
1771 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1772 int i; /* index of *z in zonelist zones */
1773
1774 zlc = zonelist->zlcache_ptr;
1775 if (!zlc)
1776 return;
1777
1778 i = z - zonelist->_zonerefs;
1779
1780 set_bit(i, zlc->fullzones);
1781 }
1782
1783 /*
1784 * clear all zones full, called after direct reclaim makes progress so that
1785 * a zone that was recently full is not skipped over for up to a second
1786 */
1787 static void zlc_clear_zones_full(struct zonelist *zonelist)
1788 {
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790
1791 zlc = zonelist->zlcache_ptr;
1792 if (!zlc)
1793 return;
1794
1795 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1796 }
1797
1798 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1799 {
1800 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1801 }
1802
1803 static void __paginginit init_zone_allows_reclaim(int nid)
1804 {
1805 int i;
1806
1807 for_each_online_node(i)
1808 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1809 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1810 else
1811 zone_reclaim_mode = 1;
1812 }
1813
1814 #else /* CONFIG_NUMA */
1815
1816 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1817 {
1818 return NULL;
1819 }
1820
1821 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1822 nodemask_t *allowednodes)
1823 {
1824 return 1;
1825 }
1826
1827 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1828 {
1829 }
1830
1831 static void zlc_clear_zones_full(struct zonelist *zonelist)
1832 {
1833 }
1834
1835 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1836 {
1837 return true;
1838 }
1839
1840 static inline void init_zone_allows_reclaim(int nid)
1841 {
1842 }
1843 #endif /* CONFIG_NUMA */
1844
1845 /*
1846 * get_page_from_freelist goes through the zonelist trying to allocate
1847 * a page.
1848 */
1849 static struct page *
1850 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1851 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1852 struct zone *preferred_zone, int migratetype)
1853 {
1854 struct zoneref *z;
1855 struct page *page = NULL;
1856 int classzone_idx;
1857 struct zone *zone;
1858 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1859 int zlc_active = 0; /* set if using zonelist_cache */
1860 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1861
1862 classzone_idx = zone_idx(preferred_zone);
1863 zonelist_scan:
1864 /*
1865 * Scan zonelist, looking for a zone with enough free.
1866 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1867 */
1868 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1869 high_zoneidx, nodemask) {
1870 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1871 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1872 continue;
1873 if ((alloc_flags & ALLOC_CPUSET) &&
1874 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1875 continue;
1876 /*
1877 * When allocating a page cache page for writing, we
1878 * want to get it from a zone that is within its dirty
1879 * limit, such that no single zone holds more than its
1880 * proportional share of globally allowed dirty pages.
1881 * The dirty limits take into account the zone's
1882 * lowmem reserves and high watermark so that kswapd
1883 * should be able to balance it without having to
1884 * write pages from its LRU list.
1885 *
1886 * This may look like it could increase pressure on
1887 * lower zones by failing allocations in higher zones
1888 * before they are full. But the pages that do spill
1889 * over are limited as the lower zones are protected
1890 * by this very same mechanism. It should not become
1891 * a practical burden to them.
1892 *
1893 * XXX: For now, allow allocations to potentially
1894 * exceed the per-zone dirty limit in the slowpath
1895 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1896 * which is important when on a NUMA setup the allowed
1897 * zones are together not big enough to reach the
1898 * global limit. The proper fix for these situations
1899 * will require awareness of zones in the
1900 * dirty-throttling and the flusher threads.
1901 */
1902 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1903 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1904 goto this_zone_full;
1905
1906 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1907 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1908 unsigned long mark;
1909 int ret;
1910
1911 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1912 if (zone_watermark_ok(zone, order, mark,
1913 classzone_idx, alloc_flags))
1914 goto try_this_zone;
1915
1916 if (IS_ENABLED(CONFIG_NUMA) &&
1917 !did_zlc_setup && nr_online_nodes > 1) {
1918 /*
1919 * we do zlc_setup if there are multiple nodes
1920 * and before considering the first zone allowed
1921 * by the cpuset.
1922 */
1923 allowednodes = zlc_setup(zonelist, alloc_flags);
1924 zlc_active = 1;
1925 did_zlc_setup = 1;
1926 }
1927
1928 if (zone_reclaim_mode == 0 ||
1929 !zone_allows_reclaim(preferred_zone, zone))
1930 goto this_zone_full;
1931
1932 /*
1933 * As we may have just activated ZLC, check if the first
1934 * eligible zone has failed zone_reclaim recently.
1935 */
1936 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1937 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1938 continue;
1939
1940 ret = zone_reclaim(zone, gfp_mask, order);
1941 switch (ret) {
1942 case ZONE_RECLAIM_NOSCAN:
1943 /* did not scan */
1944 continue;
1945 case ZONE_RECLAIM_FULL:
1946 /* scanned but unreclaimable */
1947 continue;
1948 default:
1949 /* did we reclaim enough */
1950 if (!zone_watermark_ok(zone, order, mark,
1951 classzone_idx, alloc_flags))
1952 goto this_zone_full;
1953 }
1954 }
1955
1956 try_this_zone:
1957 page = buffered_rmqueue(preferred_zone, zone, order,
1958 gfp_mask, migratetype);
1959 if (page)
1960 break;
1961 this_zone_full:
1962 if (IS_ENABLED(CONFIG_NUMA))
1963 zlc_mark_zone_full(zonelist, z);
1964 }
1965
1966 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1967 /* Disable zlc cache for second zonelist scan */
1968 zlc_active = 0;
1969 goto zonelist_scan;
1970 }
1971
1972 if (page)
1973 /*
1974 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1975 * necessary to allocate the page. The expectation is
1976 * that the caller is taking steps that will free more
1977 * memory. The caller should avoid the page being used
1978 * for !PFMEMALLOC purposes.
1979 */
1980 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1981
1982 return page;
1983 }
1984
1985 /*
1986 * Large machines with many possible nodes should not always dump per-node
1987 * meminfo in irq context.
1988 */
1989 static inline bool should_suppress_show_mem(void)
1990 {
1991 bool ret = false;
1992
1993 #if NODES_SHIFT > 8
1994 ret = in_interrupt();
1995 #endif
1996 return ret;
1997 }
1998
1999 static DEFINE_RATELIMIT_STATE(nopage_rs,
2000 DEFAULT_RATELIMIT_INTERVAL,
2001 DEFAULT_RATELIMIT_BURST);
2002
2003 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2004 {
2005 unsigned int filter = SHOW_MEM_FILTER_NODES;
2006
2007 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2008 debug_guardpage_minorder() > 0)
2009 return;
2010
2011 /*
2012 * This documents exceptions given to allocations in certain
2013 * contexts that are allowed to allocate outside current's set
2014 * of allowed nodes.
2015 */
2016 if (!(gfp_mask & __GFP_NOMEMALLOC))
2017 if (test_thread_flag(TIF_MEMDIE) ||
2018 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2019 filter &= ~SHOW_MEM_FILTER_NODES;
2020 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2021 filter &= ~SHOW_MEM_FILTER_NODES;
2022
2023 if (fmt) {
2024 struct va_format vaf;
2025 va_list args;
2026
2027 va_start(args, fmt);
2028
2029 vaf.fmt = fmt;
2030 vaf.va = &args;
2031
2032 pr_warn("%pV", &vaf);
2033
2034 va_end(args);
2035 }
2036
2037 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2038 current->comm, order, gfp_mask);
2039
2040 dump_stack();
2041 if (!should_suppress_show_mem())
2042 show_mem(filter);
2043 }
2044
2045 static inline int
2046 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2047 unsigned long did_some_progress,
2048 unsigned long pages_reclaimed)
2049 {
2050 /* Do not loop if specifically requested */
2051 if (gfp_mask & __GFP_NORETRY)
2052 return 0;
2053
2054 /* Always retry if specifically requested */
2055 if (gfp_mask & __GFP_NOFAIL)
2056 return 1;
2057
2058 /*
2059 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2060 * making forward progress without invoking OOM. Suspend also disables
2061 * storage devices so kswapd will not help. Bail if we are suspending.
2062 */
2063 if (!did_some_progress && pm_suspended_storage())
2064 return 0;
2065
2066 /*
2067 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2068 * means __GFP_NOFAIL, but that may not be true in other
2069 * implementations.
2070 */
2071 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2072 return 1;
2073
2074 /*
2075 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2076 * specified, then we retry until we no longer reclaim any pages
2077 * (above), or we've reclaimed an order of pages at least as
2078 * large as the allocation's order. In both cases, if the
2079 * allocation still fails, we stop retrying.
2080 */
2081 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2082 return 1;
2083
2084 return 0;
2085 }
2086
2087 static inline struct page *
2088 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2089 struct zonelist *zonelist, enum zone_type high_zoneidx,
2090 nodemask_t *nodemask, struct zone *preferred_zone,
2091 int migratetype)
2092 {
2093 struct page *page;
2094
2095 /* Acquire the OOM killer lock for the zones in zonelist */
2096 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2097 schedule_timeout_uninterruptible(1);
2098 return NULL;
2099 }
2100
2101 /*
2102 * Go through the zonelist yet one more time, keep very high watermark
2103 * here, this is only to catch a parallel oom killing, we must fail if
2104 * we're still under heavy pressure.
2105 */
2106 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2107 order, zonelist, high_zoneidx,
2108 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2109 preferred_zone, migratetype);
2110 if (page)
2111 goto out;
2112
2113 if (!(gfp_mask & __GFP_NOFAIL)) {
2114 /* The OOM killer will not help higher order allocs */
2115 if (order > PAGE_ALLOC_COSTLY_ORDER)
2116 goto out;
2117 /* The OOM killer does not needlessly kill tasks for lowmem */
2118 if (high_zoneidx < ZONE_NORMAL)
2119 goto out;
2120 /*
2121 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2122 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2123 * The caller should handle page allocation failure by itself if
2124 * it specifies __GFP_THISNODE.
2125 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2126 */
2127 if (gfp_mask & __GFP_THISNODE)
2128 goto out;
2129 }
2130 /* Exhausted what can be done so it's blamo time */
2131 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2132
2133 out:
2134 clear_zonelist_oom(zonelist, gfp_mask);
2135 return page;
2136 }
2137
2138 #ifdef CONFIG_COMPACTION
2139 /* Try memory compaction for high-order allocations before reclaim */
2140 static struct page *
2141 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2142 struct zonelist *zonelist, enum zone_type high_zoneidx,
2143 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2144 int migratetype, bool sync_migration,
2145 bool *contended_compaction, bool *deferred_compaction,
2146 unsigned long *did_some_progress)
2147 {
2148 if (!order)
2149 return NULL;
2150
2151 if (compaction_deferred(preferred_zone, order)) {
2152 *deferred_compaction = true;
2153 return NULL;
2154 }
2155
2156 current->flags |= PF_MEMALLOC;
2157 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2158 nodemask, sync_migration,
2159 contended_compaction);
2160 current->flags &= ~PF_MEMALLOC;
2161
2162 if (*did_some_progress != COMPACT_SKIPPED) {
2163 struct page *page;
2164
2165 /* Page migration frees to the PCP lists but we want merging */
2166 drain_pages(get_cpu());
2167 put_cpu();
2168
2169 page = get_page_from_freelist(gfp_mask, nodemask,
2170 order, zonelist, high_zoneidx,
2171 alloc_flags & ~ALLOC_NO_WATERMARKS,
2172 preferred_zone, migratetype);
2173 if (page) {
2174 preferred_zone->compact_blockskip_flush = false;
2175 preferred_zone->compact_considered = 0;
2176 preferred_zone->compact_defer_shift = 0;
2177 if (order >= preferred_zone->compact_order_failed)
2178 preferred_zone->compact_order_failed = order + 1;
2179 count_vm_event(COMPACTSUCCESS);
2180 return page;
2181 }
2182
2183 /*
2184 * It's bad if compaction run occurs and fails.
2185 * The most likely reason is that pages exist,
2186 * but not enough to satisfy watermarks.
2187 */
2188 count_vm_event(COMPACTFAIL);
2189
2190 /*
2191 * As async compaction considers a subset of pageblocks, only
2192 * defer if the failure was a sync compaction failure.
2193 */
2194 if (sync_migration)
2195 defer_compaction(preferred_zone, order);
2196
2197 cond_resched();
2198 }
2199
2200 return NULL;
2201 }
2202 #else
2203 static inline struct page *
2204 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2205 struct zonelist *zonelist, enum zone_type high_zoneidx,
2206 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2207 int migratetype, bool sync_migration,
2208 bool *contended_compaction, bool *deferred_compaction,
2209 unsigned long *did_some_progress)
2210 {
2211 return NULL;
2212 }
2213 #endif /* CONFIG_COMPACTION */
2214
2215 /* Perform direct synchronous page reclaim */
2216 static int
2217 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2218 nodemask_t *nodemask)
2219 {
2220 struct reclaim_state reclaim_state;
2221 int progress;
2222
2223 cond_resched();
2224
2225 /* We now go into synchronous reclaim */
2226 cpuset_memory_pressure_bump();
2227 current->flags |= PF_MEMALLOC;
2228 lockdep_set_current_reclaim_state(gfp_mask);
2229 reclaim_state.reclaimed_slab = 0;
2230 current->reclaim_state = &reclaim_state;
2231
2232 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2233
2234 current->reclaim_state = NULL;
2235 lockdep_clear_current_reclaim_state();
2236 current->flags &= ~PF_MEMALLOC;
2237
2238 cond_resched();
2239
2240 return progress;
2241 }
2242
2243 /* The really slow allocator path where we enter direct reclaim */
2244 static inline struct page *
2245 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2246 struct zonelist *zonelist, enum zone_type high_zoneidx,
2247 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2248 int migratetype, unsigned long *did_some_progress)
2249 {
2250 struct page *page = NULL;
2251 bool drained = false;
2252
2253 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2254 nodemask);
2255 if (unlikely(!(*did_some_progress)))
2256 return NULL;
2257
2258 /* After successful reclaim, reconsider all zones for allocation */
2259 if (IS_ENABLED(CONFIG_NUMA))
2260 zlc_clear_zones_full(zonelist);
2261
2262 retry:
2263 page = get_page_from_freelist(gfp_mask, nodemask, order,
2264 zonelist, high_zoneidx,
2265 alloc_flags & ~ALLOC_NO_WATERMARKS,
2266 preferred_zone, migratetype);
2267
2268 /*
2269 * If an allocation failed after direct reclaim, it could be because
2270 * pages are pinned on the per-cpu lists. Drain them and try again
2271 */
2272 if (!page && !drained) {
2273 drain_all_pages();
2274 drained = true;
2275 goto retry;
2276 }
2277
2278 return page;
2279 }
2280
2281 /*
2282 * This is called in the allocator slow-path if the allocation request is of
2283 * sufficient urgency to ignore watermarks and take other desperate measures
2284 */
2285 static inline struct page *
2286 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2287 struct zonelist *zonelist, enum zone_type high_zoneidx,
2288 nodemask_t *nodemask, struct zone *preferred_zone,
2289 int migratetype)
2290 {
2291 struct page *page;
2292
2293 do {
2294 page = get_page_from_freelist(gfp_mask, nodemask, order,
2295 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2296 preferred_zone, migratetype);
2297
2298 if (!page && gfp_mask & __GFP_NOFAIL)
2299 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2300 } while (!page && (gfp_mask & __GFP_NOFAIL));
2301
2302 return page;
2303 }
2304
2305 static inline
2306 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2307 enum zone_type high_zoneidx,
2308 enum zone_type classzone_idx)
2309 {
2310 struct zoneref *z;
2311 struct zone *zone;
2312
2313 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2314 wakeup_kswapd(zone, order, classzone_idx);
2315 }
2316
2317 static inline int
2318 gfp_to_alloc_flags(gfp_t gfp_mask)
2319 {
2320 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2321 const gfp_t wait = gfp_mask & __GFP_WAIT;
2322
2323 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2324 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2325
2326 /*
2327 * The caller may dip into page reserves a bit more if the caller
2328 * cannot run direct reclaim, or if the caller has realtime scheduling
2329 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2330 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2331 */
2332 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2333
2334 if (!wait) {
2335 /*
2336 * Not worth trying to allocate harder for
2337 * __GFP_NOMEMALLOC even if it can't schedule.
2338 */
2339 if (!(gfp_mask & __GFP_NOMEMALLOC))
2340 alloc_flags |= ALLOC_HARDER;
2341 /*
2342 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2343 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2344 */
2345 alloc_flags &= ~ALLOC_CPUSET;
2346 } else if (unlikely(rt_task(current)) && !in_interrupt())
2347 alloc_flags |= ALLOC_HARDER;
2348
2349 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2350 if (gfp_mask & __GFP_MEMALLOC)
2351 alloc_flags |= ALLOC_NO_WATERMARKS;
2352 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2353 alloc_flags |= ALLOC_NO_WATERMARKS;
2354 else if (!in_interrupt() &&
2355 ((current->flags & PF_MEMALLOC) ||
2356 unlikely(test_thread_flag(TIF_MEMDIE))))
2357 alloc_flags |= ALLOC_NO_WATERMARKS;
2358 }
2359 #ifdef CONFIG_CMA
2360 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2361 alloc_flags |= ALLOC_CMA;
2362 #endif
2363 return alloc_flags;
2364 }
2365
2366 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2367 {
2368 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2369 }
2370
2371 static inline struct page *
2372 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2373 struct zonelist *zonelist, enum zone_type high_zoneidx,
2374 nodemask_t *nodemask, struct zone *preferred_zone,
2375 int migratetype)
2376 {
2377 const gfp_t wait = gfp_mask & __GFP_WAIT;
2378 struct page *page = NULL;
2379 int alloc_flags;
2380 unsigned long pages_reclaimed = 0;
2381 unsigned long did_some_progress;
2382 bool sync_migration = false;
2383 bool deferred_compaction = false;
2384 bool contended_compaction = false;
2385
2386 /*
2387 * In the slowpath, we sanity check order to avoid ever trying to
2388 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2389 * be using allocators in order of preference for an area that is
2390 * too large.
2391 */
2392 if (order >= MAX_ORDER) {
2393 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2394 return NULL;
2395 }
2396
2397 /*
2398 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2399 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2400 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2401 * using a larger set of nodes after it has established that the
2402 * allowed per node queues are empty and that nodes are
2403 * over allocated.
2404 */
2405 if (IS_ENABLED(CONFIG_NUMA) &&
2406 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2407 goto nopage;
2408
2409 restart:
2410 if (!(gfp_mask & __GFP_NO_KSWAPD))
2411 wake_all_kswapd(order, zonelist, high_zoneidx,
2412 zone_idx(preferred_zone));
2413
2414 /*
2415 * OK, we're below the kswapd watermark and have kicked background
2416 * reclaim. Now things get more complex, so set up alloc_flags according
2417 * to how we want to proceed.
2418 */
2419 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2420
2421 /*
2422 * Find the true preferred zone if the allocation is unconstrained by
2423 * cpusets.
2424 */
2425 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2426 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2427 &preferred_zone);
2428
2429 rebalance:
2430 /* This is the last chance, in general, before the goto nopage. */
2431 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2432 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2433 preferred_zone, migratetype);
2434 if (page)
2435 goto got_pg;
2436
2437 /* Allocate without watermarks if the context allows */
2438 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2439 /*
2440 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2441 * the allocation is high priority and these type of
2442 * allocations are system rather than user orientated
2443 */
2444 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2445
2446 page = __alloc_pages_high_priority(gfp_mask, order,
2447 zonelist, high_zoneidx, nodemask,
2448 preferred_zone, migratetype);
2449 if (page) {
2450 goto got_pg;
2451 }
2452 }
2453
2454 /* Atomic allocations - we can't balance anything */
2455 if (!wait)
2456 goto nopage;
2457
2458 /* Avoid recursion of direct reclaim */
2459 if (current->flags & PF_MEMALLOC)
2460 goto nopage;
2461
2462 /* Avoid allocations with no watermarks from looping endlessly */
2463 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2464 goto nopage;
2465
2466 /*
2467 * Try direct compaction. The first pass is asynchronous. Subsequent
2468 * attempts after direct reclaim are synchronous
2469 */
2470 page = __alloc_pages_direct_compact(gfp_mask, order,
2471 zonelist, high_zoneidx,
2472 nodemask,
2473 alloc_flags, preferred_zone,
2474 migratetype, sync_migration,
2475 &contended_compaction,
2476 &deferred_compaction,
2477 &did_some_progress);
2478 if (page)
2479 goto got_pg;
2480 sync_migration = true;
2481
2482 /*
2483 * If compaction is deferred for high-order allocations, it is because
2484 * sync compaction recently failed. In this is the case and the caller
2485 * requested a movable allocation that does not heavily disrupt the
2486 * system then fail the allocation instead of entering direct reclaim.
2487 */
2488 if ((deferred_compaction || contended_compaction) &&
2489 (gfp_mask & __GFP_NO_KSWAPD))
2490 goto nopage;
2491
2492 /* Try direct reclaim and then allocating */
2493 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2494 zonelist, high_zoneidx,
2495 nodemask,
2496 alloc_flags, preferred_zone,
2497 migratetype, &did_some_progress);
2498 if (page)
2499 goto got_pg;
2500
2501 /*
2502 * If we failed to make any progress reclaiming, then we are
2503 * running out of options and have to consider going OOM
2504 */
2505 if (!did_some_progress) {
2506 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2507 if (oom_killer_disabled)
2508 goto nopage;
2509 /* Coredumps can quickly deplete all memory reserves */
2510 if ((current->flags & PF_DUMPCORE) &&
2511 !(gfp_mask & __GFP_NOFAIL))
2512 goto nopage;
2513 page = __alloc_pages_may_oom(gfp_mask, order,
2514 zonelist, high_zoneidx,
2515 nodemask, preferred_zone,
2516 migratetype);
2517 if (page)
2518 goto got_pg;
2519
2520 if (!(gfp_mask & __GFP_NOFAIL)) {
2521 /*
2522 * The oom killer is not called for high-order
2523 * allocations that may fail, so if no progress
2524 * is being made, there are no other options and
2525 * retrying is unlikely to help.
2526 */
2527 if (order > PAGE_ALLOC_COSTLY_ORDER)
2528 goto nopage;
2529 /*
2530 * The oom killer is not called for lowmem
2531 * allocations to prevent needlessly killing
2532 * innocent tasks.
2533 */
2534 if (high_zoneidx < ZONE_NORMAL)
2535 goto nopage;
2536 }
2537
2538 goto restart;
2539 }
2540 }
2541
2542 /* Check if we should retry the allocation */
2543 pages_reclaimed += did_some_progress;
2544 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2545 pages_reclaimed)) {
2546 /* Wait for some write requests to complete then retry */
2547 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2548 goto rebalance;
2549 } else {
2550 /*
2551 * High-order allocations do not necessarily loop after
2552 * direct reclaim and reclaim/compaction depends on compaction
2553 * being called after reclaim so call directly if necessary
2554 */
2555 page = __alloc_pages_direct_compact(gfp_mask, order,
2556 zonelist, high_zoneidx,
2557 nodemask,
2558 alloc_flags, preferred_zone,
2559 migratetype, sync_migration,
2560 &contended_compaction,
2561 &deferred_compaction,
2562 &did_some_progress);
2563 if (page)
2564 goto got_pg;
2565 }
2566
2567 nopage:
2568 warn_alloc_failed(gfp_mask, order, NULL);
2569 return page;
2570 got_pg:
2571 if (kmemcheck_enabled)
2572 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2573
2574 return page;
2575 }
2576
2577 /*
2578 * This is the 'heart' of the zoned buddy allocator.
2579 */
2580 struct page *
2581 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2582 struct zonelist *zonelist, nodemask_t *nodemask)
2583 {
2584 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2585 struct zone *preferred_zone;
2586 struct page *page = NULL;
2587 int migratetype = allocflags_to_migratetype(gfp_mask);
2588 unsigned int cpuset_mems_cookie;
2589 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2590 struct mem_cgroup *memcg = NULL;
2591
2592 gfp_mask &= gfp_allowed_mask;
2593
2594 lockdep_trace_alloc(gfp_mask);
2595
2596 might_sleep_if(gfp_mask & __GFP_WAIT);
2597
2598 if (should_fail_alloc_page(gfp_mask, order))
2599 return NULL;
2600
2601 /*
2602 * Check the zones suitable for the gfp_mask contain at least one
2603 * valid zone. It's possible to have an empty zonelist as a result
2604 * of GFP_THISNODE and a memoryless node
2605 */
2606 if (unlikely(!zonelist->_zonerefs->zone))
2607 return NULL;
2608
2609 /*
2610 * Will only have any effect when __GFP_KMEMCG is set. This is
2611 * verified in the (always inline) callee
2612 */
2613 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2614 return NULL;
2615
2616 retry_cpuset:
2617 cpuset_mems_cookie = get_mems_allowed();
2618
2619 /* The preferred zone is used for statistics later */
2620 first_zones_zonelist(zonelist, high_zoneidx,
2621 nodemask ? : &cpuset_current_mems_allowed,
2622 &preferred_zone);
2623 if (!preferred_zone)
2624 goto out;
2625
2626 #ifdef CONFIG_CMA
2627 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 alloc_flags |= ALLOC_CMA;
2629 #endif
2630 /* First allocation attempt */
2631 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2632 zonelist, high_zoneidx, alloc_flags,
2633 preferred_zone, migratetype);
2634 if (unlikely(!page)) {
2635 /*
2636 * Runtime PM, block IO and its error handling path
2637 * can deadlock because I/O on the device might not
2638 * complete.
2639 */
2640 gfp_mask = memalloc_noio_flags(gfp_mask);
2641 page = __alloc_pages_slowpath(gfp_mask, order,
2642 zonelist, high_zoneidx, nodemask,
2643 preferred_zone, migratetype);
2644 }
2645
2646 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2647
2648 out:
2649 /*
2650 * When updating a task's mems_allowed, it is possible to race with
2651 * parallel threads in such a way that an allocation can fail while
2652 * the mask is being updated. If a page allocation is about to fail,
2653 * check if the cpuset changed during allocation and if so, retry.
2654 */
2655 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2656 goto retry_cpuset;
2657
2658 memcg_kmem_commit_charge(page, memcg, order);
2659
2660 return page;
2661 }
2662 EXPORT_SYMBOL(__alloc_pages_nodemask);
2663
2664 /*
2665 * Common helper functions.
2666 */
2667 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2668 {
2669 struct page *page;
2670
2671 /*
2672 * __get_free_pages() returns a 32-bit address, which cannot represent
2673 * a highmem page
2674 */
2675 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2676
2677 page = alloc_pages(gfp_mask, order);
2678 if (!page)
2679 return 0;
2680 return (unsigned long) page_address(page);
2681 }
2682 EXPORT_SYMBOL(__get_free_pages);
2683
2684 unsigned long get_zeroed_page(gfp_t gfp_mask)
2685 {
2686 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2687 }
2688 EXPORT_SYMBOL(get_zeroed_page);
2689
2690 void __free_pages(struct page *page, unsigned int order)
2691 {
2692 if (put_page_testzero(page)) {
2693 if (order == 0)
2694 free_hot_cold_page(page, 0);
2695 else
2696 __free_pages_ok(page, order);
2697 }
2698 }
2699
2700 EXPORT_SYMBOL(__free_pages);
2701
2702 void free_pages(unsigned long addr, unsigned int order)
2703 {
2704 if (addr != 0) {
2705 VM_BUG_ON(!virt_addr_valid((void *)addr));
2706 __free_pages(virt_to_page((void *)addr), order);
2707 }
2708 }
2709
2710 EXPORT_SYMBOL(free_pages);
2711
2712 /*
2713 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2714 * pages allocated with __GFP_KMEMCG.
2715 *
2716 * Those pages are accounted to a particular memcg, embedded in the
2717 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2718 * for that information only to find out that it is NULL for users who have no
2719 * interest in that whatsoever, we provide these functions.
2720 *
2721 * The caller knows better which flags it relies on.
2722 */
2723 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2724 {
2725 memcg_kmem_uncharge_pages(page, order);
2726 __free_pages(page, order);
2727 }
2728
2729 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2730 {
2731 if (addr != 0) {
2732 VM_BUG_ON(!virt_addr_valid((void *)addr));
2733 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2734 }
2735 }
2736
2737 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2738 {
2739 if (addr) {
2740 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2741 unsigned long used = addr + PAGE_ALIGN(size);
2742
2743 split_page(virt_to_page((void *)addr), order);
2744 while (used < alloc_end) {
2745 free_page(used);
2746 used += PAGE_SIZE;
2747 }
2748 }
2749 return (void *)addr;
2750 }
2751
2752 /**
2753 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2754 * @size: the number of bytes to allocate
2755 * @gfp_mask: GFP flags for the allocation
2756 *
2757 * This function is similar to alloc_pages(), except that it allocates the
2758 * minimum number of pages to satisfy the request. alloc_pages() can only
2759 * allocate memory in power-of-two pages.
2760 *
2761 * This function is also limited by MAX_ORDER.
2762 *
2763 * Memory allocated by this function must be released by free_pages_exact().
2764 */
2765 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2766 {
2767 unsigned int order = get_order(size);
2768 unsigned long addr;
2769
2770 addr = __get_free_pages(gfp_mask, order);
2771 return make_alloc_exact(addr, order, size);
2772 }
2773 EXPORT_SYMBOL(alloc_pages_exact);
2774
2775 /**
2776 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2777 * pages on a node.
2778 * @nid: the preferred node ID where memory should be allocated
2779 * @size: the number of bytes to allocate
2780 * @gfp_mask: GFP flags for the allocation
2781 *
2782 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2783 * back.
2784 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2785 * but is not exact.
2786 */
2787 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2788 {
2789 unsigned order = get_order(size);
2790 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2791 if (!p)
2792 return NULL;
2793 return make_alloc_exact((unsigned long)page_address(p), order, size);
2794 }
2795 EXPORT_SYMBOL(alloc_pages_exact_nid);
2796
2797 /**
2798 * free_pages_exact - release memory allocated via alloc_pages_exact()
2799 * @virt: the value returned by alloc_pages_exact.
2800 * @size: size of allocation, same value as passed to alloc_pages_exact().
2801 *
2802 * Release the memory allocated by a previous call to alloc_pages_exact.
2803 */
2804 void free_pages_exact(void *virt, size_t size)
2805 {
2806 unsigned long addr = (unsigned long)virt;
2807 unsigned long end = addr + PAGE_ALIGN(size);
2808
2809 while (addr < end) {
2810 free_page(addr);
2811 addr += PAGE_SIZE;
2812 }
2813 }
2814 EXPORT_SYMBOL(free_pages_exact);
2815
2816 static unsigned int nr_free_zone_pages(int offset)
2817 {
2818 struct zoneref *z;
2819 struct zone *zone;
2820
2821 /* Just pick one node, since fallback list is circular */
2822 unsigned int sum = 0;
2823
2824 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2825
2826 for_each_zone_zonelist(zone, z, zonelist, offset) {
2827 unsigned long size = zone->managed_pages;
2828 unsigned long high = high_wmark_pages(zone);
2829 if (size > high)
2830 sum += size - high;
2831 }
2832
2833 return sum;
2834 }
2835
2836 /*
2837 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2838 */
2839 unsigned int nr_free_buffer_pages(void)
2840 {
2841 return nr_free_zone_pages(gfp_zone(GFP_USER));
2842 }
2843 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2844
2845 /*
2846 * Amount of free RAM allocatable within all zones
2847 */
2848 unsigned int nr_free_pagecache_pages(void)
2849 {
2850 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2851 }
2852
2853 static inline void show_node(struct zone *zone)
2854 {
2855 if (IS_ENABLED(CONFIG_NUMA))
2856 printk("Node %d ", zone_to_nid(zone));
2857 }
2858
2859 void si_meminfo(struct sysinfo *val)
2860 {
2861 val->totalram = totalram_pages;
2862 val->sharedram = 0;
2863 val->freeram = global_page_state(NR_FREE_PAGES);
2864 val->bufferram = nr_blockdev_pages();
2865 val->totalhigh = totalhigh_pages;
2866 val->freehigh = nr_free_highpages();
2867 val->mem_unit = PAGE_SIZE;
2868 }
2869
2870 EXPORT_SYMBOL(si_meminfo);
2871
2872 #ifdef CONFIG_NUMA
2873 void si_meminfo_node(struct sysinfo *val, int nid)
2874 {
2875 pg_data_t *pgdat = NODE_DATA(nid);
2876
2877 val->totalram = pgdat->node_present_pages;
2878 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2879 #ifdef CONFIG_HIGHMEM
2880 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2881 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2882 NR_FREE_PAGES);
2883 #else
2884 val->totalhigh = 0;
2885 val->freehigh = 0;
2886 #endif
2887 val->mem_unit = PAGE_SIZE;
2888 }
2889 #endif
2890
2891 /*
2892 * Determine whether the node should be displayed or not, depending on whether
2893 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2894 */
2895 bool skip_free_areas_node(unsigned int flags, int nid)
2896 {
2897 bool ret = false;
2898 unsigned int cpuset_mems_cookie;
2899
2900 if (!(flags & SHOW_MEM_FILTER_NODES))
2901 goto out;
2902
2903 do {
2904 cpuset_mems_cookie = get_mems_allowed();
2905 ret = !node_isset(nid, cpuset_current_mems_allowed);
2906 } while (!put_mems_allowed(cpuset_mems_cookie));
2907 out:
2908 return ret;
2909 }
2910
2911 #define K(x) ((x) << (PAGE_SHIFT-10))
2912
2913 static void show_migration_types(unsigned char type)
2914 {
2915 static const char types[MIGRATE_TYPES] = {
2916 [MIGRATE_UNMOVABLE] = 'U',
2917 [MIGRATE_RECLAIMABLE] = 'E',
2918 [MIGRATE_MOVABLE] = 'M',
2919 [MIGRATE_RESERVE] = 'R',
2920 #ifdef CONFIG_CMA
2921 [MIGRATE_CMA] = 'C',
2922 #endif
2923 #ifdef CONFIG_MEMORY_ISOLATION
2924 [MIGRATE_ISOLATE] = 'I',
2925 #endif
2926 };
2927 char tmp[MIGRATE_TYPES + 1];
2928 char *p = tmp;
2929 int i;
2930
2931 for (i = 0; i < MIGRATE_TYPES; i++) {
2932 if (type & (1 << i))
2933 *p++ = types[i];
2934 }
2935
2936 *p = '\0';
2937 printk("(%s) ", tmp);
2938 }
2939
2940 /*
2941 * Show free area list (used inside shift_scroll-lock stuff)
2942 * We also calculate the percentage fragmentation. We do this by counting the
2943 * memory on each free list with the exception of the first item on the list.
2944 * Suppresses nodes that are not allowed by current's cpuset if
2945 * SHOW_MEM_FILTER_NODES is passed.
2946 */
2947 void show_free_areas(unsigned int filter)
2948 {
2949 int cpu;
2950 struct zone *zone;
2951
2952 for_each_populated_zone(zone) {
2953 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2954 continue;
2955 show_node(zone);
2956 printk("%s per-cpu:\n", zone->name);
2957
2958 for_each_online_cpu(cpu) {
2959 struct per_cpu_pageset *pageset;
2960
2961 pageset = per_cpu_ptr(zone->pageset, cpu);
2962
2963 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2964 cpu, pageset->pcp.high,
2965 pageset->pcp.batch, pageset->pcp.count);
2966 }
2967 }
2968
2969 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2970 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2971 " unevictable:%lu"
2972 " dirty:%lu writeback:%lu unstable:%lu\n"
2973 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2974 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2975 " free_cma:%lu\n",
2976 global_page_state(NR_ACTIVE_ANON),
2977 global_page_state(NR_INACTIVE_ANON),
2978 global_page_state(NR_ISOLATED_ANON),
2979 global_page_state(NR_ACTIVE_FILE),
2980 global_page_state(NR_INACTIVE_FILE),
2981 global_page_state(NR_ISOLATED_FILE),
2982 global_page_state(NR_UNEVICTABLE),
2983 global_page_state(NR_FILE_DIRTY),
2984 global_page_state(NR_WRITEBACK),
2985 global_page_state(NR_UNSTABLE_NFS),
2986 global_page_state(NR_FREE_PAGES),
2987 global_page_state(NR_SLAB_RECLAIMABLE),
2988 global_page_state(NR_SLAB_UNRECLAIMABLE),
2989 global_page_state(NR_FILE_MAPPED),
2990 global_page_state(NR_SHMEM),
2991 global_page_state(NR_PAGETABLE),
2992 global_page_state(NR_BOUNCE),
2993 global_page_state(NR_FREE_CMA_PAGES));
2994
2995 for_each_populated_zone(zone) {
2996 int i;
2997
2998 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2999 continue;
3000 show_node(zone);
3001 printk("%s"
3002 " free:%lukB"
3003 " min:%lukB"
3004 " low:%lukB"
3005 " high:%lukB"
3006 " active_anon:%lukB"
3007 " inactive_anon:%lukB"
3008 " active_file:%lukB"
3009 " inactive_file:%lukB"
3010 " unevictable:%lukB"
3011 " isolated(anon):%lukB"
3012 " isolated(file):%lukB"
3013 " present:%lukB"
3014 " managed:%lukB"
3015 " mlocked:%lukB"
3016 " dirty:%lukB"
3017 " writeback:%lukB"
3018 " mapped:%lukB"
3019 " shmem:%lukB"
3020 " slab_reclaimable:%lukB"
3021 " slab_unreclaimable:%lukB"
3022 " kernel_stack:%lukB"
3023 " pagetables:%lukB"
3024 " unstable:%lukB"
3025 " bounce:%lukB"
3026 " free_cma:%lukB"
3027 " writeback_tmp:%lukB"
3028 " pages_scanned:%lu"
3029 " all_unreclaimable? %s"
3030 "\n",
3031 zone->name,
3032 K(zone_page_state(zone, NR_FREE_PAGES)),
3033 K(min_wmark_pages(zone)),
3034 K(low_wmark_pages(zone)),
3035 K(high_wmark_pages(zone)),
3036 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3037 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3038 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3039 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3040 K(zone_page_state(zone, NR_UNEVICTABLE)),
3041 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3042 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3043 K(zone->present_pages),
3044 K(zone->managed_pages),
3045 K(zone_page_state(zone, NR_MLOCK)),
3046 K(zone_page_state(zone, NR_FILE_DIRTY)),
3047 K(zone_page_state(zone, NR_WRITEBACK)),
3048 K(zone_page_state(zone, NR_FILE_MAPPED)),
3049 K(zone_page_state(zone, NR_SHMEM)),
3050 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3051 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3052 zone_page_state(zone, NR_KERNEL_STACK) *
3053 THREAD_SIZE / 1024,
3054 K(zone_page_state(zone, NR_PAGETABLE)),
3055 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3056 K(zone_page_state(zone, NR_BOUNCE)),
3057 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3058 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3059 zone->pages_scanned,
3060 (zone->all_unreclaimable ? "yes" : "no")
3061 );
3062 printk("lowmem_reserve[]:");
3063 for (i = 0; i < MAX_NR_ZONES; i++)
3064 printk(" %lu", zone->lowmem_reserve[i]);
3065 printk("\n");
3066 }
3067
3068 for_each_populated_zone(zone) {
3069 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3070 unsigned char types[MAX_ORDER];
3071
3072 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3073 continue;
3074 show_node(zone);
3075 printk("%s: ", zone->name);
3076
3077 spin_lock_irqsave(&zone->lock, flags);
3078 for (order = 0; order < MAX_ORDER; order++) {
3079 struct free_area *area = &zone->free_area[order];
3080 int type;
3081
3082 nr[order] = area->nr_free;
3083 total += nr[order] << order;
3084
3085 types[order] = 0;
3086 for (type = 0; type < MIGRATE_TYPES; type++) {
3087 if (!list_empty(&area->free_list[type]))
3088 types[order] |= 1 << type;
3089 }
3090 }
3091 spin_unlock_irqrestore(&zone->lock, flags);
3092 for (order = 0; order < MAX_ORDER; order++) {
3093 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3094 if (nr[order])
3095 show_migration_types(types[order]);
3096 }
3097 printk("= %lukB\n", K(total));
3098 }
3099
3100 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3101
3102 show_swap_cache_info();
3103 }
3104
3105 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3106 {
3107 zoneref->zone = zone;
3108 zoneref->zone_idx = zone_idx(zone);
3109 }
3110
3111 /*
3112 * Builds allocation fallback zone lists.
3113 *
3114 * Add all populated zones of a node to the zonelist.
3115 */
3116 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3117 int nr_zones, enum zone_type zone_type)
3118 {
3119 struct zone *zone;
3120
3121 BUG_ON(zone_type >= MAX_NR_ZONES);
3122 zone_type++;
3123
3124 do {
3125 zone_type--;
3126 zone = pgdat->node_zones + zone_type;
3127 if (populated_zone(zone)) {
3128 zoneref_set_zone(zone,
3129 &zonelist->_zonerefs[nr_zones++]);
3130 check_highest_zone(zone_type);
3131 }
3132
3133 } while (zone_type);
3134 return nr_zones;
3135 }
3136
3137
3138 /*
3139 * zonelist_order:
3140 * 0 = automatic detection of better ordering.
3141 * 1 = order by ([node] distance, -zonetype)
3142 * 2 = order by (-zonetype, [node] distance)
3143 *
3144 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3145 * the same zonelist. So only NUMA can configure this param.
3146 */
3147 #define ZONELIST_ORDER_DEFAULT 0
3148 #define ZONELIST_ORDER_NODE 1
3149 #define ZONELIST_ORDER_ZONE 2
3150
3151 /* zonelist order in the kernel.
3152 * set_zonelist_order() will set this to NODE or ZONE.
3153 */
3154 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3155 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3156
3157
3158 #ifdef CONFIG_NUMA
3159 /* The value user specified ....changed by config */
3160 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3161 /* string for sysctl */
3162 #define NUMA_ZONELIST_ORDER_LEN 16
3163 char numa_zonelist_order[16] = "default";
3164
3165 /*
3166 * interface for configure zonelist ordering.
3167 * command line option "numa_zonelist_order"
3168 * = "[dD]efault - default, automatic configuration.
3169 * = "[nN]ode - order by node locality, then by zone within node
3170 * = "[zZ]one - order by zone, then by locality within zone
3171 */
3172
3173 static int __parse_numa_zonelist_order(char *s)
3174 {
3175 if (*s == 'd' || *s == 'D') {
3176 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3177 } else if (*s == 'n' || *s == 'N') {
3178 user_zonelist_order = ZONELIST_ORDER_NODE;
3179 } else if (*s == 'z' || *s == 'Z') {
3180 user_zonelist_order = ZONELIST_ORDER_ZONE;
3181 } else {
3182 printk(KERN_WARNING
3183 "Ignoring invalid numa_zonelist_order value: "
3184 "%s\n", s);
3185 return -EINVAL;
3186 }
3187 return 0;
3188 }
3189
3190 static __init int setup_numa_zonelist_order(char *s)
3191 {
3192 int ret;
3193
3194 if (!s)
3195 return 0;
3196
3197 ret = __parse_numa_zonelist_order(s);
3198 if (ret == 0)
3199 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3200
3201 return ret;
3202 }
3203 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3204
3205 /*
3206 * sysctl handler for numa_zonelist_order
3207 */
3208 int numa_zonelist_order_handler(ctl_table *table, int write,
3209 void __user *buffer, size_t *length,
3210 loff_t *ppos)
3211 {
3212 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3213 int ret;
3214 static DEFINE_MUTEX(zl_order_mutex);
3215
3216 mutex_lock(&zl_order_mutex);
3217 if (write)
3218 strcpy(saved_string, (char*)table->data);
3219 ret = proc_dostring(table, write, buffer, length, ppos);
3220 if (ret)
3221 goto out;
3222 if (write) {
3223 int oldval = user_zonelist_order;
3224 if (__parse_numa_zonelist_order((char*)table->data)) {
3225 /*
3226 * bogus value. restore saved string
3227 */
3228 strncpy((char*)table->data, saved_string,
3229 NUMA_ZONELIST_ORDER_LEN);
3230 user_zonelist_order = oldval;
3231 } else if (oldval != user_zonelist_order) {
3232 mutex_lock(&zonelists_mutex);
3233 build_all_zonelists(NULL, NULL);
3234 mutex_unlock(&zonelists_mutex);
3235 }
3236 }
3237 out:
3238 mutex_unlock(&zl_order_mutex);
3239 return ret;
3240 }
3241
3242
3243 #define MAX_NODE_LOAD (nr_online_nodes)
3244 static int node_load[MAX_NUMNODES];
3245
3246 /**
3247 * find_next_best_node - find the next node that should appear in a given node's fallback list
3248 * @node: node whose fallback list we're appending
3249 * @used_node_mask: nodemask_t of already used nodes
3250 *
3251 * We use a number of factors to determine which is the next node that should
3252 * appear on a given node's fallback list. The node should not have appeared
3253 * already in @node's fallback list, and it should be the next closest node
3254 * according to the distance array (which contains arbitrary distance values
3255 * from each node to each node in the system), and should also prefer nodes
3256 * with no CPUs, since presumably they'll have very little allocation pressure
3257 * on them otherwise.
3258 * It returns -1 if no node is found.
3259 */
3260 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3261 {
3262 int n, val;
3263 int min_val = INT_MAX;
3264 int best_node = NUMA_NO_NODE;
3265 const struct cpumask *tmp = cpumask_of_node(0);
3266
3267 /* Use the local node if we haven't already */
3268 if (!node_isset(node, *used_node_mask)) {
3269 node_set(node, *used_node_mask);
3270 return node;
3271 }
3272
3273 for_each_node_state(n, N_MEMORY) {
3274
3275 /* Don't want a node to appear more than once */
3276 if (node_isset(n, *used_node_mask))
3277 continue;
3278
3279 /* Use the distance array to find the distance */
3280 val = node_distance(node, n);
3281
3282 /* Penalize nodes under us ("prefer the next node") */
3283 val += (n < node);
3284
3285 /* Give preference to headless and unused nodes */
3286 tmp = cpumask_of_node(n);
3287 if (!cpumask_empty(tmp))
3288 val += PENALTY_FOR_NODE_WITH_CPUS;
3289
3290 /* Slight preference for less loaded node */
3291 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3292 val += node_load[n];
3293
3294 if (val < min_val) {
3295 min_val = val;
3296 best_node = n;
3297 }
3298 }
3299
3300 if (best_node >= 0)
3301 node_set(best_node, *used_node_mask);
3302
3303 return best_node;
3304 }
3305
3306
3307 /*
3308 * Build zonelists ordered by node and zones within node.
3309 * This results in maximum locality--normal zone overflows into local
3310 * DMA zone, if any--but risks exhausting DMA zone.
3311 */
3312 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3313 {
3314 int j;
3315 struct zonelist *zonelist;
3316
3317 zonelist = &pgdat->node_zonelists[0];
3318 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3319 ;
3320 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3321 MAX_NR_ZONES - 1);
3322 zonelist->_zonerefs[j].zone = NULL;
3323 zonelist->_zonerefs[j].zone_idx = 0;
3324 }
3325
3326 /*
3327 * Build gfp_thisnode zonelists
3328 */
3329 static void build_thisnode_zonelists(pg_data_t *pgdat)
3330 {
3331 int j;
3332 struct zonelist *zonelist;
3333
3334 zonelist = &pgdat->node_zonelists[1];
3335 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3336 zonelist->_zonerefs[j].zone = NULL;
3337 zonelist->_zonerefs[j].zone_idx = 0;
3338 }
3339
3340 /*
3341 * Build zonelists ordered by zone and nodes within zones.
3342 * This results in conserving DMA zone[s] until all Normal memory is
3343 * exhausted, but results in overflowing to remote node while memory
3344 * may still exist in local DMA zone.
3345 */
3346 static int node_order[MAX_NUMNODES];
3347
3348 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3349 {
3350 int pos, j, node;
3351 int zone_type; /* needs to be signed */
3352 struct zone *z;
3353 struct zonelist *zonelist;
3354
3355 zonelist = &pgdat->node_zonelists[0];
3356 pos = 0;
3357 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3358 for (j = 0; j < nr_nodes; j++) {
3359 node = node_order[j];
3360 z = &NODE_DATA(node)->node_zones[zone_type];
3361 if (populated_zone(z)) {
3362 zoneref_set_zone(z,
3363 &zonelist->_zonerefs[pos++]);
3364 check_highest_zone(zone_type);
3365 }
3366 }
3367 }
3368 zonelist->_zonerefs[pos].zone = NULL;
3369 zonelist->_zonerefs[pos].zone_idx = 0;
3370 }
3371
3372 static int default_zonelist_order(void)
3373 {
3374 int nid, zone_type;
3375 unsigned long low_kmem_size,total_size;
3376 struct zone *z;
3377 int average_size;
3378 /*
3379 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3380 * If they are really small and used heavily, the system can fall
3381 * into OOM very easily.
3382 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3383 */
3384 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3385 low_kmem_size = 0;
3386 total_size = 0;
3387 for_each_online_node(nid) {
3388 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3389 z = &NODE_DATA(nid)->node_zones[zone_type];
3390 if (populated_zone(z)) {
3391 if (zone_type < ZONE_NORMAL)
3392 low_kmem_size += z->present_pages;
3393 total_size += z->present_pages;
3394 } else if (zone_type == ZONE_NORMAL) {
3395 /*
3396 * If any node has only lowmem, then node order
3397 * is preferred to allow kernel allocations
3398 * locally; otherwise, they can easily infringe
3399 * on other nodes when there is an abundance of
3400 * lowmem available to allocate from.
3401 */
3402 return ZONELIST_ORDER_NODE;
3403 }
3404 }
3405 }
3406 if (!low_kmem_size || /* there are no DMA area. */
3407 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3408 return ZONELIST_ORDER_NODE;
3409 /*
3410 * look into each node's config.
3411 * If there is a node whose DMA/DMA32 memory is very big area on
3412 * local memory, NODE_ORDER may be suitable.
3413 */
3414 average_size = total_size /
3415 (nodes_weight(node_states[N_MEMORY]) + 1);
3416 for_each_online_node(nid) {
3417 low_kmem_size = 0;
3418 total_size = 0;
3419 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3420 z = &NODE_DATA(nid)->node_zones[zone_type];
3421 if (populated_zone(z)) {
3422 if (zone_type < ZONE_NORMAL)
3423 low_kmem_size += z->present_pages;
3424 total_size += z->present_pages;
3425 }
3426 }
3427 if (low_kmem_size &&
3428 total_size > average_size && /* ignore small node */
3429 low_kmem_size > total_size * 70/100)
3430 return ZONELIST_ORDER_NODE;
3431 }
3432 return ZONELIST_ORDER_ZONE;
3433 }
3434
3435 static void set_zonelist_order(void)
3436 {
3437 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3438 current_zonelist_order = default_zonelist_order();
3439 else
3440 current_zonelist_order = user_zonelist_order;
3441 }
3442
3443 static void build_zonelists(pg_data_t *pgdat)
3444 {
3445 int j, node, load;
3446 enum zone_type i;
3447 nodemask_t used_mask;
3448 int local_node, prev_node;
3449 struct zonelist *zonelist;
3450 int order = current_zonelist_order;
3451
3452 /* initialize zonelists */
3453 for (i = 0; i < MAX_ZONELISTS; i++) {
3454 zonelist = pgdat->node_zonelists + i;
3455 zonelist->_zonerefs[0].zone = NULL;
3456 zonelist->_zonerefs[0].zone_idx = 0;
3457 }
3458
3459 /* NUMA-aware ordering of nodes */
3460 local_node = pgdat->node_id;
3461 load = nr_online_nodes;
3462 prev_node = local_node;
3463 nodes_clear(used_mask);
3464
3465 memset(node_order, 0, sizeof(node_order));
3466 j = 0;
3467
3468 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3469 /*
3470 * We don't want to pressure a particular node.
3471 * So adding penalty to the first node in same
3472 * distance group to make it round-robin.
3473 */
3474 if (node_distance(local_node, node) !=
3475 node_distance(local_node, prev_node))
3476 node_load[node] = load;
3477
3478 prev_node = node;
3479 load--;
3480 if (order == ZONELIST_ORDER_NODE)
3481 build_zonelists_in_node_order(pgdat, node);
3482 else
3483 node_order[j++] = node; /* remember order */
3484 }
3485
3486 if (order == ZONELIST_ORDER_ZONE) {
3487 /* calculate node order -- i.e., DMA last! */
3488 build_zonelists_in_zone_order(pgdat, j);
3489 }
3490
3491 build_thisnode_zonelists(pgdat);
3492 }
3493
3494 /* Construct the zonelist performance cache - see further mmzone.h */
3495 static void build_zonelist_cache(pg_data_t *pgdat)
3496 {
3497 struct zonelist *zonelist;
3498 struct zonelist_cache *zlc;
3499 struct zoneref *z;
3500
3501 zonelist = &pgdat->node_zonelists[0];
3502 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3503 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3504 for (z = zonelist->_zonerefs; z->zone; z++)
3505 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3506 }
3507
3508 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3509 /*
3510 * Return node id of node used for "local" allocations.
3511 * I.e., first node id of first zone in arg node's generic zonelist.
3512 * Used for initializing percpu 'numa_mem', which is used primarily
3513 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3514 */
3515 int local_memory_node(int node)
3516 {
3517 struct zone *zone;
3518
3519 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3520 gfp_zone(GFP_KERNEL),
3521 NULL,
3522 &zone);
3523 return zone->node;
3524 }
3525 #endif
3526
3527 #else /* CONFIG_NUMA */
3528
3529 static void set_zonelist_order(void)
3530 {
3531 current_zonelist_order = ZONELIST_ORDER_ZONE;
3532 }
3533
3534 static void build_zonelists(pg_data_t *pgdat)
3535 {
3536 int node, local_node;
3537 enum zone_type j;
3538 struct zonelist *zonelist;
3539
3540 local_node = pgdat->node_id;
3541
3542 zonelist = &pgdat->node_zonelists[0];
3543 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3544
3545 /*
3546 * Now we build the zonelist so that it contains the zones
3547 * of all the other nodes.
3548 * We don't want to pressure a particular node, so when
3549 * building the zones for node N, we make sure that the
3550 * zones coming right after the local ones are those from
3551 * node N+1 (modulo N)
3552 */
3553 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3554 if (!node_online(node))
3555 continue;
3556 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3557 MAX_NR_ZONES - 1);
3558 }
3559 for (node = 0; node < local_node; node++) {
3560 if (!node_online(node))
3561 continue;
3562 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3563 MAX_NR_ZONES - 1);
3564 }
3565
3566 zonelist->_zonerefs[j].zone = NULL;
3567 zonelist->_zonerefs[j].zone_idx = 0;
3568 }
3569
3570 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3571 static void build_zonelist_cache(pg_data_t *pgdat)
3572 {
3573 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3574 }
3575
3576 #endif /* CONFIG_NUMA */
3577
3578 /*
3579 * Boot pageset table. One per cpu which is going to be used for all
3580 * zones and all nodes. The parameters will be set in such a way
3581 * that an item put on a list will immediately be handed over to
3582 * the buddy list. This is safe since pageset manipulation is done
3583 * with interrupts disabled.
3584 *
3585 * The boot_pagesets must be kept even after bootup is complete for
3586 * unused processors and/or zones. They do play a role for bootstrapping
3587 * hotplugged processors.
3588 *
3589 * zoneinfo_show() and maybe other functions do
3590 * not check if the processor is online before following the pageset pointer.
3591 * Other parts of the kernel may not check if the zone is available.
3592 */
3593 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3594 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3595 static void setup_zone_pageset(struct zone *zone);
3596
3597 /*
3598 * Global mutex to protect against size modification of zonelists
3599 * as well as to serialize pageset setup for the new populated zone.
3600 */
3601 DEFINE_MUTEX(zonelists_mutex);
3602
3603 /* return values int ....just for stop_machine() */
3604 static int __build_all_zonelists(void *data)
3605 {
3606 int nid;
3607 int cpu;
3608 pg_data_t *self = data;
3609
3610 #ifdef CONFIG_NUMA
3611 memset(node_load, 0, sizeof(node_load));
3612 #endif
3613
3614 if (self && !node_online(self->node_id)) {
3615 build_zonelists(self);
3616 build_zonelist_cache(self);
3617 }
3618
3619 for_each_online_node(nid) {
3620 pg_data_t *pgdat = NODE_DATA(nid);
3621
3622 build_zonelists(pgdat);
3623 build_zonelist_cache(pgdat);
3624 }
3625
3626 /*
3627 * Initialize the boot_pagesets that are going to be used
3628 * for bootstrapping processors. The real pagesets for
3629 * each zone will be allocated later when the per cpu
3630 * allocator is available.
3631 *
3632 * boot_pagesets are used also for bootstrapping offline
3633 * cpus if the system is already booted because the pagesets
3634 * are needed to initialize allocators on a specific cpu too.
3635 * F.e. the percpu allocator needs the page allocator which
3636 * needs the percpu allocator in order to allocate its pagesets
3637 * (a chicken-egg dilemma).
3638 */
3639 for_each_possible_cpu(cpu) {
3640 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3641
3642 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3643 /*
3644 * We now know the "local memory node" for each node--
3645 * i.e., the node of the first zone in the generic zonelist.
3646 * Set up numa_mem percpu variable for on-line cpus. During
3647 * boot, only the boot cpu should be on-line; we'll init the
3648 * secondary cpus' numa_mem as they come on-line. During
3649 * node/memory hotplug, we'll fixup all on-line cpus.
3650 */
3651 if (cpu_online(cpu))
3652 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3653 #endif
3654 }
3655
3656 return 0;
3657 }
3658
3659 /*
3660 * Called with zonelists_mutex held always
3661 * unless system_state == SYSTEM_BOOTING.
3662 */
3663 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3664 {
3665 set_zonelist_order();
3666
3667 if (system_state == SYSTEM_BOOTING) {
3668 __build_all_zonelists(NULL);
3669 mminit_verify_zonelist();
3670 cpuset_init_current_mems_allowed();
3671 } else {
3672 /* we have to stop all cpus to guarantee there is no user
3673 of zonelist */
3674 #ifdef CONFIG_MEMORY_HOTPLUG
3675 if (zone)
3676 setup_zone_pageset(zone);
3677 #endif
3678 stop_machine(__build_all_zonelists, pgdat, NULL);
3679 /* cpuset refresh routine should be here */
3680 }
3681 vm_total_pages = nr_free_pagecache_pages();
3682 /*
3683 * Disable grouping by mobility if the number of pages in the
3684 * system is too low to allow the mechanism to work. It would be
3685 * more accurate, but expensive to check per-zone. This check is
3686 * made on memory-hotadd so a system can start with mobility
3687 * disabled and enable it later
3688 */
3689 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3690 page_group_by_mobility_disabled = 1;
3691 else
3692 page_group_by_mobility_disabled = 0;
3693
3694 printk("Built %i zonelists in %s order, mobility grouping %s. "
3695 "Total pages: %ld\n",
3696 nr_online_nodes,
3697 zonelist_order_name[current_zonelist_order],
3698 page_group_by_mobility_disabled ? "off" : "on",
3699 vm_total_pages);
3700 #ifdef CONFIG_NUMA
3701 printk("Policy zone: %s\n", zone_names[policy_zone]);
3702 #endif
3703 }
3704
3705 /*
3706 * Helper functions to size the waitqueue hash table.
3707 * Essentially these want to choose hash table sizes sufficiently
3708 * large so that collisions trying to wait on pages are rare.
3709 * But in fact, the number of active page waitqueues on typical
3710 * systems is ridiculously low, less than 200. So this is even
3711 * conservative, even though it seems large.
3712 *
3713 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3714 * waitqueues, i.e. the size of the waitq table given the number of pages.
3715 */
3716 #define PAGES_PER_WAITQUEUE 256
3717
3718 #ifndef CONFIG_MEMORY_HOTPLUG
3719 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3720 {
3721 unsigned long size = 1;
3722
3723 pages /= PAGES_PER_WAITQUEUE;
3724
3725 while (size < pages)
3726 size <<= 1;
3727
3728 /*
3729 * Once we have dozens or even hundreds of threads sleeping
3730 * on IO we've got bigger problems than wait queue collision.
3731 * Limit the size of the wait table to a reasonable size.
3732 */
3733 size = min(size, 4096UL);
3734
3735 return max(size, 4UL);
3736 }
3737 #else
3738 /*
3739 * A zone's size might be changed by hot-add, so it is not possible to determine
3740 * a suitable size for its wait_table. So we use the maximum size now.
3741 *
3742 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3743 *
3744 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3745 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3746 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3747 *
3748 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3749 * or more by the traditional way. (See above). It equals:
3750 *
3751 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3752 * ia64(16K page size) : = ( 8G + 4M)byte.
3753 * powerpc (64K page size) : = (32G +16M)byte.
3754 */
3755 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3756 {
3757 return 4096UL;
3758 }
3759 #endif
3760
3761 /*
3762 * This is an integer logarithm so that shifts can be used later
3763 * to extract the more random high bits from the multiplicative
3764 * hash function before the remainder is taken.
3765 */
3766 static inline unsigned long wait_table_bits(unsigned long size)
3767 {
3768 return ffz(~size);
3769 }
3770
3771 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3772
3773 /*
3774 * Check if a pageblock contains reserved pages
3775 */
3776 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3777 {
3778 unsigned long pfn;
3779
3780 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3781 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3782 return 1;
3783 }
3784 return 0;
3785 }
3786
3787 /*
3788 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3789 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3790 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3791 * higher will lead to a bigger reserve which will get freed as contiguous
3792 * blocks as reclaim kicks in
3793 */
3794 static void setup_zone_migrate_reserve(struct zone *zone)
3795 {
3796 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3797 struct page *page;
3798 unsigned long block_migratetype;
3799 int reserve;
3800
3801 /*
3802 * Get the start pfn, end pfn and the number of blocks to reserve
3803 * We have to be careful to be aligned to pageblock_nr_pages to
3804 * make sure that we always check pfn_valid for the first page in
3805 * the block.
3806 */
3807 start_pfn = zone->zone_start_pfn;
3808 end_pfn = zone_end_pfn(zone);
3809 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3810 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3811 pageblock_order;
3812
3813 /*
3814 * Reserve blocks are generally in place to help high-order atomic
3815 * allocations that are short-lived. A min_free_kbytes value that
3816 * would result in more than 2 reserve blocks for atomic allocations
3817 * is assumed to be in place to help anti-fragmentation for the
3818 * future allocation of hugepages at runtime.
3819 */
3820 reserve = min(2, reserve);
3821
3822 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3823 if (!pfn_valid(pfn))
3824 continue;
3825 page = pfn_to_page(pfn);
3826
3827 /* Watch out for overlapping nodes */
3828 if (page_to_nid(page) != zone_to_nid(zone))
3829 continue;
3830
3831 block_migratetype = get_pageblock_migratetype(page);
3832
3833 /* Only test what is necessary when the reserves are not met */
3834 if (reserve > 0) {
3835 /*
3836 * Blocks with reserved pages will never free, skip
3837 * them.
3838 */
3839 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3840 if (pageblock_is_reserved(pfn, block_end_pfn))
3841 continue;
3842
3843 /* If this block is reserved, account for it */
3844 if (block_migratetype == MIGRATE_RESERVE) {
3845 reserve--;
3846 continue;
3847 }
3848
3849 /* Suitable for reserving if this block is movable */
3850 if (block_migratetype == MIGRATE_MOVABLE) {
3851 set_pageblock_migratetype(page,
3852 MIGRATE_RESERVE);
3853 move_freepages_block(zone, page,
3854 MIGRATE_RESERVE);
3855 reserve--;
3856 continue;
3857 }
3858 }
3859
3860 /*
3861 * If the reserve is met and this is a previous reserved block,
3862 * take it back
3863 */
3864 if (block_migratetype == MIGRATE_RESERVE) {
3865 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3866 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3867 }
3868 }
3869 }
3870
3871 /*
3872 * Initially all pages are reserved - free ones are freed
3873 * up by free_all_bootmem() once the early boot process is
3874 * done. Non-atomic initialization, single-pass.
3875 */
3876 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3877 unsigned long start_pfn, enum memmap_context context)
3878 {
3879 struct page *page;
3880 unsigned long end_pfn = start_pfn + size;
3881 unsigned long pfn;
3882 struct zone *z;
3883
3884 if (highest_memmap_pfn < end_pfn - 1)
3885 highest_memmap_pfn = end_pfn - 1;
3886
3887 z = &NODE_DATA(nid)->node_zones[zone];
3888 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3889 /*
3890 * There can be holes in boot-time mem_map[]s
3891 * handed to this function. They do not
3892 * exist on hotplugged memory.
3893 */
3894 if (context == MEMMAP_EARLY) {
3895 if (!early_pfn_valid(pfn))
3896 continue;
3897 if (!early_pfn_in_nid(pfn, nid))
3898 continue;
3899 }
3900 page = pfn_to_page(pfn);
3901 set_page_links(page, zone, nid, pfn);
3902 mminit_verify_page_links(page, zone, nid, pfn);
3903 init_page_count(page);
3904 page_mapcount_reset(page);
3905 page_nid_reset_last(page);
3906 SetPageReserved(page);
3907 /*
3908 * Mark the block movable so that blocks are reserved for
3909 * movable at startup. This will force kernel allocations
3910 * to reserve their blocks rather than leaking throughout
3911 * the address space during boot when many long-lived
3912 * kernel allocations are made. Later some blocks near
3913 * the start are marked MIGRATE_RESERVE by
3914 * setup_zone_migrate_reserve()
3915 *
3916 * bitmap is created for zone's valid pfn range. but memmap
3917 * can be created for invalid pages (for alignment)
3918 * check here not to call set_pageblock_migratetype() against
3919 * pfn out of zone.
3920 */
3921 if ((z->zone_start_pfn <= pfn)
3922 && (pfn < zone_end_pfn(z))
3923 && !(pfn & (pageblock_nr_pages - 1)))
3924 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3925
3926 INIT_LIST_HEAD(&page->lru);
3927 #ifdef WANT_PAGE_VIRTUAL
3928 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3929 if (!is_highmem_idx(zone))
3930 set_page_address(page, __va(pfn << PAGE_SHIFT));
3931 #endif
3932 }
3933 }
3934
3935 static void __meminit zone_init_free_lists(struct zone *zone)
3936 {
3937 int order, t;
3938 for_each_migratetype_order(order, t) {
3939 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3940 zone->free_area[order].nr_free = 0;
3941 }
3942 }
3943
3944 #ifndef __HAVE_ARCH_MEMMAP_INIT
3945 #define memmap_init(size, nid, zone, start_pfn) \
3946 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3947 #endif
3948
3949 static int __meminit zone_batchsize(struct zone *zone)
3950 {
3951 #ifdef CONFIG_MMU
3952 int batch;
3953
3954 /*
3955 * The per-cpu-pages pools are set to around 1000th of the
3956 * size of the zone. But no more than 1/2 of a meg.
3957 *
3958 * OK, so we don't know how big the cache is. So guess.
3959 */
3960 batch = zone->managed_pages / 1024;
3961 if (batch * PAGE_SIZE > 512 * 1024)
3962 batch = (512 * 1024) / PAGE_SIZE;
3963 batch /= 4; /* We effectively *= 4 below */
3964 if (batch < 1)
3965 batch = 1;
3966
3967 /*
3968 * Clamp the batch to a 2^n - 1 value. Having a power
3969 * of 2 value was found to be more likely to have
3970 * suboptimal cache aliasing properties in some cases.
3971 *
3972 * For example if 2 tasks are alternately allocating
3973 * batches of pages, one task can end up with a lot
3974 * of pages of one half of the possible page colors
3975 * and the other with pages of the other colors.
3976 */
3977 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3978
3979 return batch;
3980
3981 #else
3982 /* The deferral and batching of frees should be suppressed under NOMMU
3983 * conditions.
3984 *
3985 * The problem is that NOMMU needs to be able to allocate large chunks
3986 * of contiguous memory as there's no hardware page translation to
3987 * assemble apparent contiguous memory from discontiguous pages.
3988 *
3989 * Queueing large contiguous runs of pages for batching, however,
3990 * causes the pages to actually be freed in smaller chunks. As there
3991 * can be a significant delay between the individual batches being
3992 * recycled, this leads to the once large chunks of space being
3993 * fragmented and becoming unavailable for high-order allocations.
3994 */
3995 return 0;
3996 #endif
3997 }
3998
3999 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4000 {
4001 struct per_cpu_pages *pcp;
4002 int migratetype;
4003
4004 memset(p, 0, sizeof(*p));
4005
4006 pcp = &p->pcp;
4007 pcp->count = 0;
4008 pcp->high = 6 * batch;
4009 pcp->batch = max(1UL, 1 * batch);
4010 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4011 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4012 }
4013
4014 /*
4015 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4016 * to the value high for the pageset p.
4017 */
4018
4019 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4020 unsigned long high)
4021 {
4022 struct per_cpu_pages *pcp;
4023
4024 pcp = &p->pcp;
4025 pcp->high = high;
4026 pcp->batch = max(1UL, high/4);
4027 if ((high/4) > (PAGE_SHIFT * 8))
4028 pcp->batch = PAGE_SHIFT * 8;
4029 }
4030
4031 static void __meminit setup_zone_pageset(struct zone *zone)
4032 {
4033 int cpu;
4034
4035 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4036
4037 for_each_possible_cpu(cpu) {
4038 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4039
4040 setup_pageset(pcp, zone_batchsize(zone));
4041
4042 if (percpu_pagelist_fraction)
4043 setup_pagelist_highmark(pcp,
4044 (zone->managed_pages /
4045 percpu_pagelist_fraction));
4046 }
4047 }
4048
4049 /*
4050 * Allocate per cpu pagesets and initialize them.
4051 * Before this call only boot pagesets were available.
4052 */
4053 void __init setup_per_cpu_pageset(void)
4054 {
4055 struct zone *zone;
4056
4057 for_each_populated_zone(zone)
4058 setup_zone_pageset(zone);
4059 }
4060
4061 static noinline __init_refok
4062 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4063 {
4064 int i;
4065 struct pglist_data *pgdat = zone->zone_pgdat;
4066 size_t alloc_size;
4067
4068 /*
4069 * The per-page waitqueue mechanism uses hashed waitqueues
4070 * per zone.
4071 */
4072 zone->wait_table_hash_nr_entries =
4073 wait_table_hash_nr_entries(zone_size_pages);
4074 zone->wait_table_bits =
4075 wait_table_bits(zone->wait_table_hash_nr_entries);
4076 alloc_size = zone->wait_table_hash_nr_entries
4077 * sizeof(wait_queue_head_t);
4078
4079 if (!slab_is_available()) {
4080 zone->wait_table = (wait_queue_head_t *)
4081 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4082 } else {
4083 /*
4084 * This case means that a zone whose size was 0 gets new memory
4085 * via memory hot-add.
4086 * But it may be the case that a new node was hot-added. In
4087 * this case vmalloc() will not be able to use this new node's
4088 * memory - this wait_table must be initialized to use this new
4089 * node itself as well.
4090 * To use this new node's memory, further consideration will be
4091 * necessary.
4092 */
4093 zone->wait_table = vmalloc(alloc_size);
4094 }
4095 if (!zone->wait_table)
4096 return -ENOMEM;
4097
4098 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4099 init_waitqueue_head(zone->wait_table + i);
4100
4101 return 0;
4102 }
4103
4104 static __meminit void zone_pcp_init(struct zone *zone)
4105 {
4106 /*
4107 * per cpu subsystem is not up at this point. The following code
4108 * relies on the ability of the linker to provide the
4109 * offset of a (static) per cpu variable into the per cpu area.
4110 */
4111 zone->pageset = &boot_pageset;
4112
4113 if (zone->present_pages)
4114 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4115 zone->name, zone->present_pages,
4116 zone_batchsize(zone));
4117 }
4118
4119 int __meminit init_currently_empty_zone(struct zone *zone,
4120 unsigned long zone_start_pfn,
4121 unsigned long size,
4122 enum memmap_context context)
4123 {
4124 struct pglist_data *pgdat = zone->zone_pgdat;
4125 int ret;
4126 ret = zone_wait_table_init(zone, size);
4127 if (ret)
4128 return ret;
4129 pgdat->nr_zones = zone_idx(zone) + 1;
4130
4131 zone->zone_start_pfn = zone_start_pfn;
4132
4133 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4134 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4135 pgdat->node_id,
4136 (unsigned long)zone_idx(zone),
4137 zone_start_pfn, (zone_start_pfn + size));
4138
4139 zone_init_free_lists(zone);
4140
4141 return 0;
4142 }
4143
4144 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4145 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4146 /*
4147 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4148 * Architectures may implement their own version but if add_active_range()
4149 * was used and there are no special requirements, this is a convenient
4150 * alternative
4151 */
4152 int __meminit __early_pfn_to_nid(unsigned long pfn)
4153 {
4154 unsigned long start_pfn, end_pfn;
4155 int i, nid;
4156
4157 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4158 if (start_pfn <= pfn && pfn < end_pfn)
4159 return nid;
4160 /* This is a memory hole */
4161 return -1;
4162 }
4163 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4164
4165 int __meminit early_pfn_to_nid(unsigned long pfn)
4166 {
4167 int nid;
4168
4169 nid = __early_pfn_to_nid(pfn);
4170 if (nid >= 0)
4171 return nid;
4172 /* just returns 0 */
4173 return 0;
4174 }
4175
4176 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4177 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4178 {
4179 int nid;
4180
4181 nid = __early_pfn_to_nid(pfn);
4182 if (nid >= 0 && nid != node)
4183 return false;
4184 return true;
4185 }
4186 #endif
4187
4188 /**
4189 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4190 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4191 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4192 *
4193 * If an architecture guarantees that all ranges registered with
4194 * add_active_ranges() contain no holes and may be freed, this
4195 * this function may be used instead of calling free_bootmem() manually.
4196 */
4197 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4198 {
4199 unsigned long start_pfn, end_pfn;
4200 int i, this_nid;
4201
4202 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4203 start_pfn = min(start_pfn, max_low_pfn);
4204 end_pfn = min(end_pfn, max_low_pfn);
4205
4206 if (start_pfn < end_pfn)
4207 free_bootmem_node(NODE_DATA(this_nid),
4208 PFN_PHYS(start_pfn),
4209 (end_pfn - start_pfn) << PAGE_SHIFT);
4210 }
4211 }
4212
4213 /**
4214 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4215 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4216 *
4217 * If an architecture guarantees that all ranges registered with
4218 * add_active_ranges() contain no holes and may be freed, this
4219 * function may be used instead of calling memory_present() manually.
4220 */
4221 void __init sparse_memory_present_with_active_regions(int nid)
4222 {
4223 unsigned long start_pfn, end_pfn;
4224 int i, this_nid;
4225
4226 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4227 memory_present(this_nid, start_pfn, end_pfn);
4228 }
4229
4230 /**
4231 * get_pfn_range_for_nid - Return the start and end page frames for a node
4232 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4233 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4234 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4235 *
4236 * It returns the start and end page frame of a node based on information
4237 * provided by an arch calling add_active_range(). If called for a node
4238 * with no available memory, a warning is printed and the start and end
4239 * PFNs will be 0.
4240 */
4241 void __meminit get_pfn_range_for_nid(unsigned int nid,
4242 unsigned long *start_pfn, unsigned long *end_pfn)
4243 {
4244 unsigned long this_start_pfn, this_end_pfn;
4245 int i;
4246
4247 *start_pfn = -1UL;
4248 *end_pfn = 0;
4249
4250 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4251 *start_pfn = min(*start_pfn, this_start_pfn);
4252 *end_pfn = max(*end_pfn, this_end_pfn);
4253 }
4254
4255 if (*start_pfn == -1UL)
4256 *start_pfn = 0;
4257 }
4258
4259 /*
4260 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4261 * assumption is made that zones within a node are ordered in monotonic
4262 * increasing memory addresses so that the "highest" populated zone is used
4263 */
4264 static void __init find_usable_zone_for_movable(void)
4265 {
4266 int zone_index;
4267 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4268 if (zone_index == ZONE_MOVABLE)
4269 continue;
4270
4271 if (arch_zone_highest_possible_pfn[zone_index] >
4272 arch_zone_lowest_possible_pfn[zone_index])
4273 break;
4274 }
4275
4276 VM_BUG_ON(zone_index == -1);
4277 movable_zone = zone_index;
4278 }
4279
4280 /*
4281 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4282 * because it is sized independent of architecture. Unlike the other zones,
4283 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4284 * in each node depending on the size of each node and how evenly kernelcore
4285 * is distributed. This helper function adjusts the zone ranges
4286 * provided by the architecture for a given node by using the end of the
4287 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4288 * zones within a node are in order of monotonic increases memory addresses
4289 */
4290 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4291 unsigned long zone_type,
4292 unsigned long node_start_pfn,
4293 unsigned long node_end_pfn,
4294 unsigned long *zone_start_pfn,
4295 unsigned long *zone_end_pfn)
4296 {
4297 /* Only adjust if ZONE_MOVABLE is on this node */
4298 if (zone_movable_pfn[nid]) {
4299 /* Size ZONE_MOVABLE */
4300 if (zone_type == ZONE_MOVABLE) {
4301 *zone_start_pfn = zone_movable_pfn[nid];
4302 *zone_end_pfn = min(node_end_pfn,
4303 arch_zone_highest_possible_pfn[movable_zone]);
4304
4305 /* Adjust for ZONE_MOVABLE starting within this range */
4306 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4307 *zone_end_pfn > zone_movable_pfn[nid]) {
4308 *zone_end_pfn = zone_movable_pfn[nid];
4309
4310 /* Check if this whole range is within ZONE_MOVABLE */
4311 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4312 *zone_start_pfn = *zone_end_pfn;
4313 }
4314 }
4315
4316 /*
4317 * Return the number of pages a zone spans in a node, including holes
4318 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4319 */
4320 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4321 unsigned long zone_type,
4322 unsigned long *ignored)
4323 {
4324 unsigned long node_start_pfn, node_end_pfn;
4325 unsigned long zone_start_pfn, zone_end_pfn;
4326
4327 /* Get the start and end of the node and zone */
4328 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4329 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4330 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4331 adjust_zone_range_for_zone_movable(nid, zone_type,
4332 node_start_pfn, node_end_pfn,
4333 &zone_start_pfn, &zone_end_pfn);
4334
4335 /* Check that this node has pages within the zone's required range */
4336 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4337 return 0;
4338
4339 /* Move the zone boundaries inside the node if necessary */
4340 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4341 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4342
4343 /* Return the spanned pages */
4344 return zone_end_pfn - zone_start_pfn;
4345 }
4346
4347 /*
4348 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4349 * then all holes in the requested range will be accounted for.
4350 */
4351 unsigned long __meminit __absent_pages_in_range(int nid,
4352 unsigned long range_start_pfn,
4353 unsigned long range_end_pfn)
4354 {
4355 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4356 unsigned long start_pfn, end_pfn;
4357 int i;
4358
4359 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4360 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4361 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4362 nr_absent -= end_pfn - start_pfn;
4363 }
4364 return nr_absent;
4365 }
4366
4367 /**
4368 * absent_pages_in_range - Return number of page frames in holes within a range
4369 * @start_pfn: The start PFN to start searching for holes
4370 * @end_pfn: The end PFN to stop searching for holes
4371 *
4372 * It returns the number of pages frames in memory holes within a range.
4373 */
4374 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4375 unsigned long end_pfn)
4376 {
4377 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4378 }
4379
4380 /* Return the number of page frames in holes in a zone on a node */
4381 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4382 unsigned long zone_type,
4383 unsigned long *ignored)
4384 {
4385 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4386 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4387 unsigned long node_start_pfn, node_end_pfn;
4388 unsigned long zone_start_pfn, zone_end_pfn;
4389
4390 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4391 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4392 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4393
4394 adjust_zone_range_for_zone_movable(nid, zone_type,
4395 node_start_pfn, node_end_pfn,
4396 &zone_start_pfn, &zone_end_pfn);
4397 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4398 }
4399
4400 /**
4401 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4402 *
4403 * zone_movable_limit is initialized as 0. This function will try to get
4404 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4405 * assigne them to zone_movable_limit.
4406 * zone_movable_limit[nid] == 0 means no limit for the node.
4407 *
4408 * Note: Each range is represented as [start_pfn, end_pfn)
4409 */
4410 static void __meminit sanitize_zone_movable_limit(void)
4411 {
4412 int map_pos = 0, i, nid;
4413 unsigned long start_pfn, end_pfn;
4414
4415 if (!movablemem_map.nr_map)
4416 return;
4417
4418 /* Iterate all ranges from minimum to maximum */
4419 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4420 /*
4421 * If we have found lowest pfn of ZONE_MOVABLE of the node
4422 * specified by user, just go on to check next range.
4423 */
4424 if (zone_movable_limit[nid])
4425 continue;
4426
4427 #ifdef CONFIG_ZONE_DMA
4428 /* Skip DMA memory. */
4429 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4430 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4431 #endif
4432
4433 #ifdef CONFIG_ZONE_DMA32
4434 /* Skip DMA32 memory. */
4435 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4436 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4437 #endif
4438
4439 #ifdef CONFIG_HIGHMEM
4440 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4441 if (zone_movable_is_highmem() &&
4442 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4443 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4444 #endif
4445
4446 if (start_pfn >= end_pfn)
4447 continue;
4448
4449 while (map_pos < movablemem_map.nr_map) {
4450 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4451 break;
4452
4453 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4454 map_pos++;
4455 continue;
4456 }
4457
4458 /*
4459 * The start_pfn of ZONE_MOVABLE is either the minimum
4460 * pfn specified by movablemem_map, or 0, which means
4461 * the node has no ZONE_MOVABLE.
4462 */
4463 zone_movable_limit[nid] = max(start_pfn,
4464 movablemem_map.map[map_pos].start_pfn);
4465
4466 break;
4467 }
4468 }
4469 }
4470
4471 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4472 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4473 unsigned long zone_type,
4474 unsigned long *zones_size)
4475 {
4476 return zones_size[zone_type];
4477 }
4478
4479 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4480 unsigned long zone_type,
4481 unsigned long *zholes_size)
4482 {
4483 if (!zholes_size)
4484 return 0;
4485
4486 return zholes_size[zone_type];
4487 }
4488 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4489
4490 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4491 unsigned long *zones_size, unsigned long *zholes_size)
4492 {
4493 unsigned long realtotalpages, totalpages = 0;
4494 enum zone_type i;
4495
4496 for (i = 0; i < MAX_NR_ZONES; i++)
4497 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4498 zones_size);
4499 pgdat->node_spanned_pages = totalpages;
4500
4501 realtotalpages = totalpages;
4502 for (i = 0; i < MAX_NR_ZONES; i++)
4503 realtotalpages -=
4504 zone_absent_pages_in_node(pgdat->node_id, i,
4505 zholes_size);
4506 pgdat->node_present_pages = realtotalpages;
4507 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4508 realtotalpages);
4509 }
4510
4511 #ifndef CONFIG_SPARSEMEM
4512 /*
4513 * Calculate the size of the zone->blockflags rounded to an unsigned long
4514 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4515 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4516 * round what is now in bits to nearest long in bits, then return it in
4517 * bytes.
4518 */
4519 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4520 {
4521 unsigned long usemapsize;
4522
4523 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4524 usemapsize = roundup(zonesize, pageblock_nr_pages);
4525 usemapsize = usemapsize >> pageblock_order;
4526 usemapsize *= NR_PAGEBLOCK_BITS;
4527 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4528
4529 return usemapsize / 8;
4530 }
4531
4532 static void __init setup_usemap(struct pglist_data *pgdat,
4533 struct zone *zone,
4534 unsigned long zone_start_pfn,
4535 unsigned long zonesize)
4536 {
4537 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4538 zone->pageblock_flags = NULL;
4539 if (usemapsize)
4540 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4541 usemapsize);
4542 }
4543 #else
4544 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4545 unsigned long zone_start_pfn, unsigned long zonesize) {}
4546 #endif /* CONFIG_SPARSEMEM */
4547
4548 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4549
4550 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4551 void __init set_pageblock_order(void)
4552 {
4553 unsigned int order;
4554
4555 /* Check that pageblock_nr_pages has not already been setup */
4556 if (pageblock_order)
4557 return;
4558
4559 if (HPAGE_SHIFT > PAGE_SHIFT)
4560 order = HUGETLB_PAGE_ORDER;
4561 else
4562 order = MAX_ORDER - 1;
4563
4564 /*
4565 * Assume the largest contiguous order of interest is a huge page.
4566 * This value may be variable depending on boot parameters on IA64 and
4567 * powerpc.
4568 */
4569 pageblock_order = order;
4570 }
4571 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4572
4573 /*
4574 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4575 * is unused as pageblock_order is set at compile-time. See
4576 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4577 * the kernel config
4578 */
4579 void __init set_pageblock_order(void)
4580 {
4581 }
4582
4583 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4584
4585 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4586 unsigned long present_pages)
4587 {
4588 unsigned long pages = spanned_pages;
4589
4590 /*
4591 * Provide a more accurate estimation if there are holes within
4592 * the zone and SPARSEMEM is in use. If there are holes within the
4593 * zone, each populated memory region may cost us one or two extra
4594 * memmap pages due to alignment because memmap pages for each
4595 * populated regions may not naturally algined on page boundary.
4596 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4597 */
4598 if (spanned_pages > present_pages + (present_pages >> 4) &&
4599 IS_ENABLED(CONFIG_SPARSEMEM))
4600 pages = present_pages;
4601
4602 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4603 }
4604
4605 /*
4606 * Set up the zone data structures:
4607 * - mark all pages reserved
4608 * - mark all memory queues empty
4609 * - clear the memory bitmaps
4610 *
4611 * NOTE: pgdat should get zeroed by caller.
4612 */
4613 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4614 unsigned long *zones_size, unsigned long *zholes_size)
4615 {
4616 enum zone_type j;
4617 int nid = pgdat->node_id;
4618 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4619 int ret;
4620
4621 pgdat_resize_init(pgdat);
4622 #ifdef CONFIG_NUMA_BALANCING
4623 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4624 pgdat->numabalancing_migrate_nr_pages = 0;
4625 pgdat->numabalancing_migrate_next_window = jiffies;
4626 #endif
4627 init_waitqueue_head(&pgdat->kswapd_wait);
4628 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4629 pgdat_page_cgroup_init(pgdat);
4630
4631 for (j = 0; j < MAX_NR_ZONES; j++) {
4632 struct zone *zone = pgdat->node_zones + j;
4633 unsigned long size, realsize, freesize, memmap_pages;
4634
4635 size = zone_spanned_pages_in_node(nid, j, zones_size);
4636 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4637 zholes_size);
4638
4639 /*
4640 * Adjust freesize so that it accounts for how much memory
4641 * is used by this zone for memmap. This affects the watermark
4642 * and per-cpu initialisations
4643 */
4644 memmap_pages = calc_memmap_size(size, realsize);
4645 if (freesize >= memmap_pages) {
4646 freesize -= memmap_pages;
4647 if (memmap_pages)
4648 printk(KERN_DEBUG
4649 " %s zone: %lu pages used for memmap\n",
4650 zone_names[j], memmap_pages);
4651 } else
4652 printk(KERN_WARNING
4653 " %s zone: %lu pages exceeds freesize %lu\n",
4654 zone_names[j], memmap_pages, freesize);
4655
4656 /* Account for reserved pages */
4657 if (j == 0 && freesize > dma_reserve) {
4658 freesize -= dma_reserve;
4659 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4660 zone_names[0], dma_reserve);
4661 }
4662
4663 if (!is_highmem_idx(j))
4664 nr_kernel_pages += freesize;
4665 /* Charge for highmem memmap if there are enough kernel pages */
4666 else if (nr_kernel_pages > memmap_pages * 2)
4667 nr_kernel_pages -= memmap_pages;
4668 nr_all_pages += freesize;
4669
4670 zone->spanned_pages = size;
4671 zone->present_pages = realsize;
4672 /*
4673 * Set an approximate value for lowmem here, it will be adjusted
4674 * when the bootmem allocator frees pages into the buddy system.
4675 * And all highmem pages will be managed by the buddy system.
4676 */
4677 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4678 #ifdef CONFIG_NUMA
4679 zone->node = nid;
4680 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4681 / 100;
4682 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4683 #endif
4684 zone->name = zone_names[j];
4685 spin_lock_init(&zone->lock);
4686 spin_lock_init(&zone->lru_lock);
4687 zone_seqlock_init(zone);
4688 zone->zone_pgdat = pgdat;
4689
4690 zone_pcp_init(zone);
4691 lruvec_init(&zone->lruvec);
4692 if (!size)
4693 continue;
4694
4695 set_pageblock_order();
4696 setup_usemap(pgdat, zone, zone_start_pfn, size);
4697 ret = init_currently_empty_zone(zone, zone_start_pfn,
4698 size, MEMMAP_EARLY);
4699 BUG_ON(ret);
4700 memmap_init(size, nid, j, zone_start_pfn);
4701 zone_start_pfn += size;
4702 }
4703 }
4704
4705 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4706 {
4707 /* Skip empty nodes */
4708 if (!pgdat->node_spanned_pages)
4709 return;
4710
4711 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4712 /* ia64 gets its own node_mem_map, before this, without bootmem */
4713 if (!pgdat->node_mem_map) {
4714 unsigned long size, start, end;
4715 struct page *map;
4716
4717 /*
4718 * The zone's endpoints aren't required to be MAX_ORDER
4719 * aligned but the node_mem_map endpoints must be in order
4720 * for the buddy allocator to function correctly.
4721 */
4722 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4723 end = pgdat_end_pfn(pgdat);
4724 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4725 size = (end - start) * sizeof(struct page);
4726 map = alloc_remap(pgdat->node_id, size);
4727 if (!map)
4728 map = alloc_bootmem_node_nopanic(pgdat, size);
4729 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4730 }
4731 #ifndef CONFIG_NEED_MULTIPLE_NODES
4732 /*
4733 * With no DISCONTIG, the global mem_map is just set as node 0's
4734 */
4735 if (pgdat == NODE_DATA(0)) {
4736 mem_map = NODE_DATA(0)->node_mem_map;
4737 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4738 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4739 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4740 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4741 }
4742 #endif
4743 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4744 }
4745
4746 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4747 unsigned long node_start_pfn, unsigned long *zholes_size)
4748 {
4749 pg_data_t *pgdat = NODE_DATA(nid);
4750
4751 /* pg_data_t should be reset to zero when it's allocated */
4752 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4753
4754 pgdat->node_id = nid;
4755 pgdat->node_start_pfn = node_start_pfn;
4756 init_zone_allows_reclaim(nid);
4757 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4758
4759 alloc_node_mem_map(pgdat);
4760 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4761 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4762 nid, (unsigned long)pgdat,
4763 (unsigned long)pgdat->node_mem_map);
4764 #endif
4765
4766 free_area_init_core(pgdat, zones_size, zholes_size);
4767 }
4768
4769 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4770
4771 #if MAX_NUMNODES > 1
4772 /*
4773 * Figure out the number of possible node ids.
4774 */
4775 static void __init setup_nr_node_ids(void)
4776 {
4777 unsigned int node;
4778 unsigned int highest = 0;
4779
4780 for_each_node_mask(node, node_possible_map)
4781 highest = node;
4782 nr_node_ids = highest + 1;
4783 }
4784 #else
4785 static inline void setup_nr_node_ids(void)
4786 {
4787 }
4788 #endif
4789
4790 /**
4791 * node_map_pfn_alignment - determine the maximum internode alignment
4792 *
4793 * This function should be called after node map is populated and sorted.
4794 * It calculates the maximum power of two alignment which can distinguish
4795 * all the nodes.
4796 *
4797 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4798 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4799 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4800 * shifted, 1GiB is enough and this function will indicate so.
4801 *
4802 * This is used to test whether pfn -> nid mapping of the chosen memory
4803 * model has fine enough granularity to avoid incorrect mapping for the
4804 * populated node map.
4805 *
4806 * Returns the determined alignment in pfn's. 0 if there is no alignment
4807 * requirement (single node).
4808 */
4809 unsigned long __init node_map_pfn_alignment(void)
4810 {
4811 unsigned long accl_mask = 0, last_end = 0;
4812 unsigned long start, end, mask;
4813 int last_nid = -1;
4814 int i, nid;
4815
4816 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4817 if (!start || last_nid < 0 || last_nid == nid) {
4818 last_nid = nid;
4819 last_end = end;
4820 continue;
4821 }
4822
4823 /*
4824 * Start with a mask granular enough to pin-point to the
4825 * start pfn and tick off bits one-by-one until it becomes
4826 * too coarse to separate the current node from the last.
4827 */
4828 mask = ~((1 << __ffs(start)) - 1);
4829 while (mask && last_end <= (start & (mask << 1)))
4830 mask <<= 1;
4831
4832 /* accumulate all internode masks */
4833 accl_mask |= mask;
4834 }
4835
4836 /* convert mask to number of pages */
4837 return ~accl_mask + 1;
4838 }
4839
4840 /* Find the lowest pfn for a node */
4841 static unsigned long __init find_min_pfn_for_node(int nid)
4842 {
4843 unsigned long min_pfn = ULONG_MAX;
4844 unsigned long start_pfn;
4845 int i;
4846
4847 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4848 min_pfn = min(min_pfn, start_pfn);
4849
4850 if (min_pfn == ULONG_MAX) {
4851 printk(KERN_WARNING
4852 "Could not find start_pfn for node %d\n", nid);
4853 return 0;
4854 }
4855
4856 return min_pfn;
4857 }
4858
4859 /**
4860 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4861 *
4862 * It returns the minimum PFN based on information provided via
4863 * add_active_range().
4864 */
4865 unsigned long __init find_min_pfn_with_active_regions(void)
4866 {
4867 return find_min_pfn_for_node(MAX_NUMNODES);
4868 }
4869
4870 /*
4871 * early_calculate_totalpages()
4872 * Sum pages in active regions for movable zone.
4873 * Populate N_MEMORY for calculating usable_nodes.
4874 */
4875 static unsigned long __init early_calculate_totalpages(void)
4876 {
4877 unsigned long totalpages = 0;
4878 unsigned long start_pfn, end_pfn;
4879 int i, nid;
4880
4881 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4882 unsigned long pages = end_pfn - start_pfn;
4883
4884 totalpages += pages;
4885 if (pages)
4886 node_set_state(nid, N_MEMORY);
4887 }
4888 return totalpages;
4889 }
4890
4891 /*
4892 * Find the PFN the Movable zone begins in each node. Kernel memory
4893 * is spread evenly between nodes as long as the nodes have enough
4894 * memory. When they don't, some nodes will have more kernelcore than
4895 * others
4896 */
4897 static void __init find_zone_movable_pfns_for_nodes(void)
4898 {
4899 int i, nid;
4900 unsigned long usable_startpfn;
4901 unsigned long kernelcore_node, kernelcore_remaining;
4902 /* save the state before borrow the nodemask */
4903 nodemask_t saved_node_state = node_states[N_MEMORY];
4904 unsigned long totalpages = early_calculate_totalpages();
4905 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4906
4907 /*
4908 * If movablecore was specified, calculate what size of
4909 * kernelcore that corresponds so that memory usable for
4910 * any allocation type is evenly spread. If both kernelcore
4911 * and movablecore are specified, then the value of kernelcore
4912 * will be used for required_kernelcore if it's greater than
4913 * what movablecore would have allowed.
4914 */
4915 if (required_movablecore) {
4916 unsigned long corepages;
4917
4918 /*
4919 * Round-up so that ZONE_MOVABLE is at least as large as what
4920 * was requested by the user
4921 */
4922 required_movablecore =
4923 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4924 corepages = totalpages - required_movablecore;
4925
4926 required_kernelcore = max(required_kernelcore, corepages);
4927 }
4928
4929 /*
4930 * If neither kernelcore/movablecore nor movablemem_map is specified,
4931 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4932 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4933 */
4934 if (!required_kernelcore) {
4935 if (movablemem_map.nr_map)
4936 memcpy(zone_movable_pfn, zone_movable_limit,
4937 sizeof(zone_movable_pfn));
4938 goto out;
4939 }
4940
4941 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4942 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4943
4944 restart:
4945 /* Spread kernelcore memory as evenly as possible throughout nodes */
4946 kernelcore_node = required_kernelcore / usable_nodes;
4947 for_each_node_state(nid, N_MEMORY) {
4948 unsigned long start_pfn, end_pfn;
4949
4950 /*
4951 * Recalculate kernelcore_node if the division per node
4952 * now exceeds what is necessary to satisfy the requested
4953 * amount of memory for the kernel
4954 */
4955 if (required_kernelcore < kernelcore_node)
4956 kernelcore_node = required_kernelcore / usable_nodes;
4957
4958 /*
4959 * As the map is walked, we track how much memory is usable
4960 * by the kernel using kernelcore_remaining. When it is
4961 * 0, the rest of the node is usable by ZONE_MOVABLE
4962 */
4963 kernelcore_remaining = kernelcore_node;
4964
4965 /* Go through each range of PFNs within this node */
4966 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4967 unsigned long size_pages;
4968
4969 /*
4970 * Find more memory for kernelcore in
4971 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4972 */
4973 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4974 if (start_pfn >= end_pfn)
4975 continue;
4976
4977 if (zone_movable_limit[nid]) {
4978 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4979 /* No range left for kernelcore in this node */
4980 if (start_pfn >= end_pfn) {
4981 zone_movable_pfn[nid] =
4982 zone_movable_limit[nid];
4983 break;
4984 }
4985 }
4986
4987 /* Account for what is only usable for kernelcore */
4988 if (start_pfn < usable_startpfn) {
4989 unsigned long kernel_pages;
4990 kernel_pages = min(end_pfn, usable_startpfn)
4991 - start_pfn;
4992
4993 kernelcore_remaining -= min(kernel_pages,
4994 kernelcore_remaining);
4995 required_kernelcore -= min(kernel_pages,
4996 required_kernelcore);
4997
4998 /* Continue if range is now fully accounted */
4999 if (end_pfn <= usable_startpfn) {
5000
5001 /*
5002 * Push zone_movable_pfn to the end so
5003 * that if we have to rebalance
5004 * kernelcore across nodes, we will
5005 * not double account here
5006 */
5007 zone_movable_pfn[nid] = end_pfn;
5008 continue;
5009 }
5010 start_pfn = usable_startpfn;
5011 }
5012
5013 /*
5014 * The usable PFN range for ZONE_MOVABLE is from
5015 * start_pfn->end_pfn. Calculate size_pages as the
5016 * number of pages used as kernelcore
5017 */
5018 size_pages = end_pfn - start_pfn;
5019 if (size_pages > kernelcore_remaining)
5020 size_pages = kernelcore_remaining;
5021 zone_movable_pfn[nid] = start_pfn + size_pages;
5022
5023 /*
5024 * Some kernelcore has been met, update counts and
5025 * break if the kernelcore for this node has been
5026 * satisified
5027 */
5028 required_kernelcore -= min(required_kernelcore,
5029 size_pages);
5030 kernelcore_remaining -= size_pages;
5031 if (!kernelcore_remaining)
5032 break;
5033 }
5034 }
5035
5036 /*
5037 * If there is still required_kernelcore, we do another pass with one
5038 * less node in the count. This will push zone_movable_pfn[nid] further
5039 * along on the nodes that still have memory until kernelcore is
5040 * satisified
5041 */
5042 usable_nodes--;
5043 if (usable_nodes && required_kernelcore > usable_nodes)
5044 goto restart;
5045
5046 out:
5047 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5048 for (nid = 0; nid < MAX_NUMNODES; nid++)
5049 zone_movable_pfn[nid] =
5050 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5051
5052 /* restore the node_state */
5053 node_states[N_MEMORY] = saved_node_state;
5054 }
5055
5056 /* Any regular or high memory on that node ? */
5057 static void check_for_memory(pg_data_t *pgdat, int nid)
5058 {
5059 enum zone_type zone_type;
5060
5061 if (N_MEMORY == N_NORMAL_MEMORY)
5062 return;
5063
5064 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5065 struct zone *zone = &pgdat->node_zones[zone_type];
5066 if (zone->present_pages) {
5067 node_set_state(nid, N_HIGH_MEMORY);
5068 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5069 zone_type <= ZONE_NORMAL)
5070 node_set_state(nid, N_NORMAL_MEMORY);
5071 break;
5072 }
5073 }
5074 }
5075
5076 /**
5077 * free_area_init_nodes - Initialise all pg_data_t and zone data
5078 * @max_zone_pfn: an array of max PFNs for each zone
5079 *
5080 * This will call free_area_init_node() for each active node in the system.
5081 * Using the page ranges provided by add_active_range(), the size of each
5082 * zone in each node and their holes is calculated. If the maximum PFN
5083 * between two adjacent zones match, it is assumed that the zone is empty.
5084 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5085 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5086 * starts where the previous one ended. For example, ZONE_DMA32 starts
5087 * at arch_max_dma_pfn.
5088 */
5089 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5090 {
5091 unsigned long start_pfn, end_pfn;
5092 int i, nid;
5093
5094 /* Record where the zone boundaries are */
5095 memset(arch_zone_lowest_possible_pfn, 0,
5096 sizeof(arch_zone_lowest_possible_pfn));
5097 memset(arch_zone_highest_possible_pfn, 0,
5098 sizeof(arch_zone_highest_possible_pfn));
5099 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5100 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5101 for (i = 1; i < MAX_NR_ZONES; i++) {
5102 if (i == ZONE_MOVABLE)
5103 continue;
5104 arch_zone_lowest_possible_pfn[i] =
5105 arch_zone_highest_possible_pfn[i-1];
5106 arch_zone_highest_possible_pfn[i] =
5107 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5108 }
5109 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5110 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5111
5112 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5113 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5114 find_usable_zone_for_movable();
5115 sanitize_zone_movable_limit();
5116 find_zone_movable_pfns_for_nodes();
5117
5118 /* Print out the zone ranges */
5119 printk("Zone ranges:\n");
5120 for (i = 0; i < MAX_NR_ZONES; i++) {
5121 if (i == ZONE_MOVABLE)
5122 continue;
5123 printk(KERN_CONT " %-8s ", zone_names[i]);
5124 if (arch_zone_lowest_possible_pfn[i] ==
5125 arch_zone_highest_possible_pfn[i])
5126 printk(KERN_CONT "empty\n");
5127 else
5128 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5129 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5130 (arch_zone_highest_possible_pfn[i]
5131 << PAGE_SHIFT) - 1);
5132 }
5133
5134 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5135 printk("Movable zone start for each node\n");
5136 for (i = 0; i < MAX_NUMNODES; i++) {
5137 if (zone_movable_pfn[i])
5138 printk(" Node %d: %#010lx\n", i,
5139 zone_movable_pfn[i] << PAGE_SHIFT);
5140 }
5141
5142 /* Print out the early node map */
5143 printk("Early memory node ranges\n");
5144 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5145 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5146 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5147
5148 /* Initialise every node */
5149 mminit_verify_pageflags_layout();
5150 setup_nr_node_ids();
5151 for_each_online_node(nid) {
5152 pg_data_t *pgdat = NODE_DATA(nid);
5153 free_area_init_node(nid, NULL,
5154 find_min_pfn_for_node(nid), NULL);
5155
5156 /* Any memory on that node */
5157 if (pgdat->node_present_pages)
5158 node_set_state(nid, N_MEMORY);
5159 check_for_memory(pgdat, nid);
5160 }
5161 }
5162
5163 static int __init cmdline_parse_core(char *p, unsigned long *core)
5164 {
5165 unsigned long long coremem;
5166 if (!p)
5167 return -EINVAL;
5168
5169 coremem = memparse(p, &p);
5170 *core = coremem >> PAGE_SHIFT;
5171
5172 /* Paranoid check that UL is enough for the coremem value */
5173 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5174
5175 return 0;
5176 }
5177
5178 /*
5179 * kernelcore=size sets the amount of memory for use for allocations that
5180 * cannot be reclaimed or migrated.
5181 */
5182 static int __init cmdline_parse_kernelcore(char *p)
5183 {
5184 return cmdline_parse_core(p, &required_kernelcore);
5185 }
5186
5187 /*
5188 * movablecore=size sets the amount of memory for use for allocations that
5189 * can be reclaimed or migrated.
5190 */
5191 static int __init cmdline_parse_movablecore(char *p)
5192 {
5193 return cmdline_parse_core(p, &required_movablecore);
5194 }
5195
5196 early_param("kernelcore", cmdline_parse_kernelcore);
5197 early_param("movablecore", cmdline_parse_movablecore);
5198
5199 /**
5200 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5201 * @start_pfn: start pfn of the range to be checked
5202 * @end_pfn: end pfn of the range to be checked (exclusive)
5203 *
5204 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5205 * the movablemem_map.map[] array.
5206 *
5207 * Return: index of the first overlapped element in movablemem_map.map[]
5208 * or -1 if they don't overlap each other.
5209 */
5210 int __init movablemem_map_overlap(unsigned long start_pfn,
5211 unsigned long end_pfn)
5212 {
5213 int overlap;
5214
5215 if (!movablemem_map.nr_map)
5216 return -1;
5217
5218 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5219 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5220 break;
5221
5222 if (overlap == movablemem_map.nr_map ||
5223 end_pfn <= movablemem_map.map[overlap].start_pfn)
5224 return -1;
5225
5226 return overlap;
5227 }
5228
5229 /**
5230 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5231 * @start_pfn: start pfn of the range
5232 * @end_pfn: end pfn of the range
5233 *
5234 * This function will also merge the overlapped ranges, and sort the array
5235 * by start_pfn in monotonic increasing order.
5236 */
5237 void __init insert_movablemem_map(unsigned long start_pfn,
5238 unsigned long end_pfn)
5239 {
5240 int pos, overlap;
5241
5242 /*
5243 * pos will be at the 1st overlapped range, or the position
5244 * where the element should be inserted.
5245 */
5246 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5247 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5248 break;
5249
5250 /* If there is no overlapped range, just insert the element. */
5251 if (pos == movablemem_map.nr_map ||
5252 end_pfn < movablemem_map.map[pos].start_pfn) {
5253 /*
5254 * If pos is not the end of array, we need to move all
5255 * the rest elements backward.
5256 */
5257 if (pos < movablemem_map.nr_map)
5258 memmove(&movablemem_map.map[pos+1],
5259 &movablemem_map.map[pos],
5260 sizeof(struct movablemem_entry) *
5261 (movablemem_map.nr_map - pos));
5262 movablemem_map.map[pos].start_pfn = start_pfn;
5263 movablemem_map.map[pos].end_pfn = end_pfn;
5264 movablemem_map.nr_map++;
5265 return;
5266 }
5267
5268 /* overlap will be at the last overlapped range */
5269 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5270 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5271 break;
5272
5273 /*
5274 * If there are more ranges overlapped, we need to merge them,
5275 * and move the rest elements forward.
5276 */
5277 overlap--;
5278 movablemem_map.map[pos].start_pfn = min(start_pfn,
5279 movablemem_map.map[pos].start_pfn);
5280 movablemem_map.map[pos].end_pfn = max(end_pfn,
5281 movablemem_map.map[overlap].end_pfn);
5282
5283 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5284 memmove(&movablemem_map.map[pos+1],
5285 &movablemem_map.map[overlap+1],
5286 sizeof(struct movablemem_entry) *
5287 (movablemem_map.nr_map - overlap - 1));
5288
5289 movablemem_map.nr_map -= overlap - pos;
5290 }
5291
5292 /**
5293 * movablemem_map_add_region - Add a memory range into movablemem_map.
5294 * @start: physical start address of range
5295 * @end: physical end address of range
5296 *
5297 * This function transform the physical address into pfn, and then add the
5298 * range into movablemem_map by calling insert_movablemem_map().
5299 */
5300 static void __init movablemem_map_add_region(u64 start, u64 size)
5301 {
5302 unsigned long start_pfn, end_pfn;
5303
5304 /* In case size == 0 or start + size overflows */
5305 if (start + size <= start)
5306 return;
5307
5308 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5309 pr_err("movablemem_map: too many entries;"
5310 " ignoring [mem %#010llx-%#010llx]\n",
5311 (unsigned long long) start,
5312 (unsigned long long) (start + size - 1));
5313 return;
5314 }
5315
5316 start_pfn = PFN_DOWN(start);
5317 end_pfn = PFN_UP(start + size);
5318 insert_movablemem_map(start_pfn, end_pfn);
5319 }
5320
5321 /*
5322 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5323 * @p: The boot option of the following format:
5324 * movablemem_map=nn[KMG]@ss[KMG]
5325 *
5326 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5327 *
5328 * Return: 0 on success or -EINVAL on failure.
5329 */
5330 static int __init cmdline_parse_movablemem_map(char *p)
5331 {
5332 char *oldp;
5333 u64 start_at, mem_size;
5334
5335 if (!p)
5336 goto err;
5337
5338 if (!strcmp(p, "acpi"))
5339 movablemem_map.acpi = true;
5340
5341 /*
5342 * If user decide to use info from BIOS, all the other user specified
5343 * ranges will be ingored.
5344 */
5345 if (movablemem_map.acpi) {
5346 if (movablemem_map.nr_map) {
5347 memset(movablemem_map.map, 0,
5348 sizeof(struct movablemem_entry)
5349 * movablemem_map.nr_map);
5350 movablemem_map.nr_map = 0;
5351 }
5352 return 0;
5353 }
5354
5355 oldp = p;
5356 mem_size = memparse(p, &p);
5357 if (p == oldp)
5358 goto err;
5359
5360 if (*p == '@') {
5361 oldp = ++p;
5362 start_at = memparse(p, &p);
5363 if (p == oldp || *p != '\0')
5364 goto err;
5365
5366 movablemem_map_add_region(start_at, mem_size);
5367 return 0;
5368 }
5369 err:
5370 return -EINVAL;
5371 }
5372 early_param("movablemem_map", cmdline_parse_movablemem_map);
5373
5374 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5375
5376 /**
5377 * set_dma_reserve - set the specified number of pages reserved in the first zone
5378 * @new_dma_reserve: The number of pages to mark reserved
5379 *
5380 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5381 * In the DMA zone, a significant percentage may be consumed by kernel image
5382 * and other unfreeable allocations which can skew the watermarks badly. This
5383 * function may optionally be used to account for unfreeable pages in the
5384 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5385 * smaller per-cpu batchsize.
5386 */
5387 void __init set_dma_reserve(unsigned long new_dma_reserve)
5388 {
5389 dma_reserve = new_dma_reserve;
5390 }
5391
5392 void __init free_area_init(unsigned long *zones_size)
5393 {
5394 free_area_init_node(0, zones_size,
5395 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5396 }
5397
5398 static int page_alloc_cpu_notify(struct notifier_block *self,
5399 unsigned long action, void *hcpu)
5400 {
5401 int cpu = (unsigned long)hcpu;
5402
5403 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5404 lru_add_drain_cpu(cpu);
5405 drain_pages(cpu);
5406
5407 /*
5408 * Spill the event counters of the dead processor
5409 * into the current processors event counters.
5410 * This artificially elevates the count of the current
5411 * processor.
5412 */
5413 vm_events_fold_cpu(cpu);
5414
5415 /*
5416 * Zero the differential counters of the dead processor
5417 * so that the vm statistics are consistent.
5418 *
5419 * This is only okay since the processor is dead and cannot
5420 * race with what we are doing.
5421 */
5422 refresh_cpu_vm_stats(cpu);
5423 }
5424 return NOTIFY_OK;
5425 }
5426
5427 void __init page_alloc_init(void)
5428 {
5429 hotcpu_notifier(page_alloc_cpu_notify, 0);
5430 }
5431
5432 /*
5433 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5434 * or min_free_kbytes changes.
5435 */
5436 static void calculate_totalreserve_pages(void)
5437 {
5438 struct pglist_data *pgdat;
5439 unsigned long reserve_pages = 0;
5440 enum zone_type i, j;
5441
5442 for_each_online_pgdat(pgdat) {
5443 for (i = 0; i < MAX_NR_ZONES; i++) {
5444 struct zone *zone = pgdat->node_zones + i;
5445 unsigned long max = 0;
5446
5447 /* Find valid and maximum lowmem_reserve in the zone */
5448 for (j = i; j < MAX_NR_ZONES; j++) {
5449 if (zone->lowmem_reserve[j] > max)
5450 max = zone->lowmem_reserve[j];
5451 }
5452
5453 /* we treat the high watermark as reserved pages. */
5454 max += high_wmark_pages(zone);
5455
5456 if (max > zone->managed_pages)
5457 max = zone->managed_pages;
5458 reserve_pages += max;
5459 /*
5460 * Lowmem reserves are not available to
5461 * GFP_HIGHUSER page cache allocations and
5462 * kswapd tries to balance zones to their high
5463 * watermark. As a result, neither should be
5464 * regarded as dirtyable memory, to prevent a
5465 * situation where reclaim has to clean pages
5466 * in order to balance the zones.
5467 */
5468 zone->dirty_balance_reserve = max;
5469 }
5470 }
5471 dirty_balance_reserve = reserve_pages;
5472 totalreserve_pages = reserve_pages;
5473 }
5474
5475 /*
5476 * setup_per_zone_lowmem_reserve - called whenever
5477 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5478 * has a correct pages reserved value, so an adequate number of
5479 * pages are left in the zone after a successful __alloc_pages().
5480 */
5481 static void setup_per_zone_lowmem_reserve(void)
5482 {
5483 struct pglist_data *pgdat;
5484 enum zone_type j, idx;
5485
5486 for_each_online_pgdat(pgdat) {
5487 for (j = 0; j < MAX_NR_ZONES; j++) {
5488 struct zone *zone = pgdat->node_zones + j;
5489 unsigned long managed_pages = zone->managed_pages;
5490
5491 zone->lowmem_reserve[j] = 0;
5492
5493 idx = j;
5494 while (idx) {
5495 struct zone *lower_zone;
5496
5497 idx--;
5498
5499 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5500 sysctl_lowmem_reserve_ratio[idx] = 1;
5501
5502 lower_zone = pgdat->node_zones + idx;
5503 lower_zone->lowmem_reserve[j] = managed_pages /
5504 sysctl_lowmem_reserve_ratio[idx];
5505 managed_pages += lower_zone->managed_pages;
5506 }
5507 }
5508 }
5509
5510 /* update totalreserve_pages */
5511 calculate_totalreserve_pages();
5512 }
5513
5514 static void __setup_per_zone_wmarks(void)
5515 {
5516 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5517 unsigned long lowmem_pages = 0;
5518 struct zone *zone;
5519 unsigned long flags;
5520
5521 /* Calculate total number of !ZONE_HIGHMEM pages */
5522 for_each_zone(zone) {
5523 if (!is_highmem(zone))
5524 lowmem_pages += zone->managed_pages;
5525 }
5526
5527 for_each_zone(zone) {
5528 u64 tmp;
5529
5530 spin_lock_irqsave(&zone->lock, flags);
5531 tmp = (u64)pages_min * zone->managed_pages;
5532 do_div(tmp, lowmem_pages);
5533 if (is_highmem(zone)) {
5534 /*
5535 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5536 * need highmem pages, so cap pages_min to a small
5537 * value here.
5538 *
5539 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5540 * deltas controls asynch page reclaim, and so should
5541 * not be capped for highmem.
5542 */
5543 unsigned long min_pages;
5544
5545 min_pages = zone->managed_pages / 1024;
5546 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5547 zone->watermark[WMARK_MIN] = min_pages;
5548 } else {
5549 /*
5550 * If it's a lowmem zone, reserve a number of pages
5551 * proportionate to the zone's size.
5552 */
5553 zone->watermark[WMARK_MIN] = tmp;
5554 }
5555
5556 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5557 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5558
5559 setup_zone_migrate_reserve(zone);
5560 spin_unlock_irqrestore(&zone->lock, flags);
5561 }
5562
5563 /* update totalreserve_pages */
5564 calculate_totalreserve_pages();
5565 }
5566
5567 /**
5568 * setup_per_zone_wmarks - called when min_free_kbytes changes
5569 * or when memory is hot-{added|removed}
5570 *
5571 * Ensures that the watermark[min,low,high] values for each zone are set
5572 * correctly with respect to min_free_kbytes.
5573 */
5574 void setup_per_zone_wmarks(void)
5575 {
5576 mutex_lock(&zonelists_mutex);
5577 __setup_per_zone_wmarks();
5578 mutex_unlock(&zonelists_mutex);
5579 }
5580
5581 /*
5582 * The inactive anon list should be small enough that the VM never has to
5583 * do too much work, but large enough that each inactive page has a chance
5584 * to be referenced again before it is swapped out.
5585 *
5586 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5587 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5588 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5589 * the anonymous pages are kept on the inactive list.
5590 *
5591 * total target max
5592 * memory ratio inactive anon
5593 * -------------------------------------
5594 * 10MB 1 5MB
5595 * 100MB 1 50MB
5596 * 1GB 3 250MB
5597 * 10GB 10 0.9GB
5598 * 100GB 31 3GB
5599 * 1TB 101 10GB
5600 * 10TB 320 32GB
5601 */
5602 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5603 {
5604 unsigned int gb, ratio;
5605
5606 /* Zone size in gigabytes */
5607 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5608 if (gb)
5609 ratio = int_sqrt(10 * gb);
5610 else
5611 ratio = 1;
5612
5613 zone->inactive_ratio = ratio;
5614 }
5615
5616 static void __meminit setup_per_zone_inactive_ratio(void)
5617 {
5618 struct zone *zone;
5619
5620 for_each_zone(zone)
5621 calculate_zone_inactive_ratio(zone);
5622 }
5623
5624 /*
5625 * Initialise min_free_kbytes.
5626 *
5627 * For small machines we want it small (128k min). For large machines
5628 * we want it large (64MB max). But it is not linear, because network
5629 * bandwidth does not increase linearly with machine size. We use
5630 *
5631 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5632 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5633 *
5634 * which yields
5635 *
5636 * 16MB: 512k
5637 * 32MB: 724k
5638 * 64MB: 1024k
5639 * 128MB: 1448k
5640 * 256MB: 2048k
5641 * 512MB: 2896k
5642 * 1024MB: 4096k
5643 * 2048MB: 5792k
5644 * 4096MB: 8192k
5645 * 8192MB: 11584k
5646 * 16384MB: 16384k
5647 */
5648 int __meminit init_per_zone_wmark_min(void)
5649 {
5650 unsigned long lowmem_kbytes;
5651
5652 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5653
5654 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5655 if (min_free_kbytes < 128)
5656 min_free_kbytes = 128;
5657 if (min_free_kbytes > 65536)
5658 min_free_kbytes = 65536;
5659 setup_per_zone_wmarks();
5660 refresh_zone_stat_thresholds();
5661 setup_per_zone_lowmem_reserve();
5662 setup_per_zone_inactive_ratio();
5663 return 0;
5664 }
5665 module_init(init_per_zone_wmark_min)
5666
5667 /*
5668 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5669 * that we can call two helper functions whenever min_free_kbytes
5670 * changes.
5671 */
5672 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5673 void __user *buffer, size_t *length, loff_t *ppos)
5674 {
5675 proc_dointvec(table, write, buffer, length, ppos);
5676 if (write)
5677 setup_per_zone_wmarks();
5678 return 0;
5679 }
5680
5681 #ifdef CONFIG_NUMA
5682 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5683 void __user *buffer, size_t *length, loff_t *ppos)
5684 {
5685 struct zone *zone;
5686 int rc;
5687
5688 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5689 if (rc)
5690 return rc;
5691
5692 for_each_zone(zone)
5693 zone->min_unmapped_pages = (zone->managed_pages *
5694 sysctl_min_unmapped_ratio) / 100;
5695 return 0;
5696 }
5697
5698 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5699 void __user *buffer, size_t *length, loff_t *ppos)
5700 {
5701 struct zone *zone;
5702 int rc;
5703
5704 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5705 if (rc)
5706 return rc;
5707
5708 for_each_zone(zone)
5709 zone->min_slab_pages = (zone->managed_pages *
5710 sysctl_min_slab_ratio) / 100;
5711 return 0;
5712 }
5713 #endif
5714
5715 /*
5716 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5717 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5718 * whenever sysctl_lowmem_reserve_ratio changes.
5719 *
5720 * The reserve ratio obviously has absolutely no relation with the
5721 * minimum watermarks. The lowmem reserve ratio can only make sense
5722 * if in function of the boot time zone sizes.
5723 */
5724 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5725 void __user *buffer, size_t *length, loff_t *ppos)
5726 {
5727 proc_dointvec_minmax(table, write, buffer, length, ppos);
5728 setup_per_zone_lowmem_reserve();
5729 return 0;
5730 }
5731
5732 /*
5733 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5734 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5735 * can have before it gets flushed back to buddy allocator.
5736 */
5737
5738 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5739 void __user *buffer, size_t *length, loff_t *ppos)
5740 {
5741 struct zone *zone;
5742 unsigned int cpu;
5743 int ret;
5744
5745 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5746 if (!write || (ret < 0))
5747 return ret;
5748 for_each_populated_zone(zone) {
5749 for_each_possible_cpu(cpu) {
5750 unsigned long high;
5751 high = zone->managed_pages / percpu_pagelist_fraction;
5752 setup_pagelist_highmark(
5753 per_cpu_ptr(zone->pageset, cpu), high);
5754 }
5755 }
5756 return 0;
5757 }
5758
5759 int hashdist = HASHDIST_DEFAULT;
5760
5761 #ifdef CONFIG_NUMA
5762 static int __init set_hashdist(char *str)
5763 {
5764 if (!str)
5765 return 0;
5766 hashdist = simple_strtoul(str, &str, 0);
5767 return 1;
5768 }
5769 __setup("hashdist=", set_hashdist);
5770 #endif
5771
5772 /*
5773 * allocate a large system hash table from bootmem
5774 * - it is assumed that the hash table must contain an exact power-of-2
5775 * quantity of entries
5776 * - limit is the number of hash buckets, not the total allocation size
5777 */
5778 void *__init alloc_large_system_hash(const char *tablename,
5779 unsigned long bucketsize,
5780 unsigned long numentries,
5781 int scale,
5782 int flags,
5783 unsigned int *_hash_shift,
5784 unsigned int *_hash_mask,
5785 unsigned long low_limit,
5786 unsigned long high_limit)
5787 {
5788 unsigned long long max = high_limit;
5789 unsigned long log2qty, size;
5790 void *table = NULL;
5791
5792 /* allow the kernel cmdline to have a say */
5793 if (!numentries) {
5794 /* round applicable memory size up to nearest megabyte */
5795 numentries = nr_kernel_pages;
5796 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5797 numentries >>= 20 - PAGE_SHIFT;
5798 numentries <<= 20 - PAGE_SHIFT;
5799
5800 /* limit to 1 bucket per 2^scale bytes of low memory */
5801 if (scale > PAGE_SHIFT)
5802 numentries >>= (scale - PAGE_SHIFT);
5803 else
5804 numentries <<= (PAGE_SHIFT - scale);
5805
5806 /* Make sure we've got at least a 0-order allocation.. */
5807 if (unlikely(flags & HASH_SMALL)) {
5808 /* Makes no sense without HASH_EARLY */
5809 WARN_ON(!(flags & HASH_EARLY));
5810 if (!(numentries >> *_hash_shift)) {
5811 numentries = 1UL << *_hash_shift;
5812 BUG_ON(!numentries);
5813 }
5814 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5815 numentries = PAGE_SIZE / bucketsize;
5816 }
5817 numentries = roundup_pow_of_two(numentries);
5818
5819 /* limit allocation size to 1/16 total memory by default */
5820 if (max == 0) {
5821 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5822 do_div(max, bucketsize);
5823 }
5824 max = min(max, 0x80000000ULL);
5825
5826 if (numentries < low_limit)
5827 numentries = low_limit;
5828 if (numentries > max)
5829 numentries = max;
5830
5831 log2qty = ilog2(numentries);
5832
5833 do {
5834 size = bucketsize << log2qty;
5835 if (flags & HASH_EARLY)
5836 table = alloc_bootmem_nopanic(size);
5837 else if (hashdist)
5838 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5839 else {
5840 /*
5841 * If bucketsize is not a power-of-two, we may free
5842 * some pages at the end of hash table which
5843 * alloc_pages_exact() automatically does
5844 */
5845 if (get_order(size) < MAX_ORDER) {
5846 table = alloc_pages_exact(size, GFP_ATOMIC);
5847 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5848 }
5849 }
5850 } while (!table && size > PAGE_SIZE && --log2qty);
5851
5852 if (!table)
5853 panic("Failed to allocate %s hash table\n", tablename);
5854
5855 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5856 tablename,
5857 (1UL << log2qty),
5858 ilog2(size) - PAGE_SHIFT,
5859 size);
5860
5861 if (_hash_shift)
5862 *_hash_shift = log2qty;
5863 if (_hash_mask)
5864 *_hash_mask = (1 << log2qty) - 1;
5865
5866 return table;
5867 }
5868
5869 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5870 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5871 unsigned long pfn)
5872 {
5873 #ifdef CONFIG_SPARSEMEM
5874 return __pfn_to_section(pfn)->pageblock_flags;
5875 #else
5876 return zone->pageblock_flags;
5877 #endif /* CONFIG_SPARSEMEM */
5878 }
5879
5880 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5881 {
5882 #ifdef CONFIG_SPARSEMEM
5883 pfn &= (PAGES_PER_SECTION-1);
5884 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5885 #else
5886 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5887 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5888 #endif /* CONFIG_SPARSEMEM */
5889 }
5890
5891 /**
5892 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5893 * @page: The page within the block of interest
5894 * @start_bitidx: The first bit of interest to retrieve
5895 * @end_bitidx: The last bit of interest
5896 * returns pageblock_bits flags
5897 */
5898 unsigned long get_pageblock_flags_group(struct page *page,
5899 int start_bitidx, int end_bitidx)
5900 {
5901 struct zone *zone;
5902 unsigned long *bitmap;
5903 unsigned long pfn, bitidx;
5904 unsigned long flags = 0;
5905 unsigned long value = 1;
5906
5907 zone = page_zone(page);
5908 pfn = page_to_pfn(page);
5909 bitmap = get_pageblock_bitmap(zone, pfn);
5910 bitidx = pfn_to_bitidx(zone, pfn);
5911
5912 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5913 if (test_bit(bitidx + start_bitidx, bitmap))
5914 flags |= value;
5915
5916 return flags;
5917 }
5918
5919 /**
5920 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5921 * @page: The page within the block of interest
5922 * @start_bitidx: The first bit of interest
5923 * @end_bitidx: The last bit of interest
5924 * @flags: The flags to set
5925 */
5926 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5927 int start_bitidx, int end_bitidx)
5928 {
5929 struct zone *zone;
5930 unsigned long *bitmap;
5931 unsigned long pfn, bitidx;
5932 unsigned long value = 1;
5933
5934 zone = page_zone(page);
5935 pfn = page_to_pfn(page);
5936 bitmap = get_pageblock_bitmap(zone, pfn);
5937 bitidx = pfn_to_bitidx(zone, pfn);
5938 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5939
5940 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5941 if (flags & value)
5942 __set_bit(bitidx + start_bitidx, bitmap);
5943 else
5944 __clear_bit(bitidx + start_bitidx, bitmap);
5945 }
5946
5947 /*
5948 * This function checks whether pageblock includes unmovable pages or not.
5949 * If @count is not zero, it is okay to include less @count unmovable pages
5950 *
5951 * PageLRU check wihtout isolation or lru_lock could race so that
5952 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5953 * expect this function should be exact.
5954 */
5955 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5956 bool skip_hwpoisoned_pages)
5957 {
5958 unsigned long pfn, iter, found;
5959 int mt;
5960
5961 /*
5962 * For avoiding noise data, lru_add_drain_all() should be called
5963 * If ZONE_MOVABLE, the zone never contains unmovable pages
5964 */
5965 if (zone_idx(zone) == ZONE_MOVABLE)
5966 return false;
5967 mt = get_pageblock_migratetype(page);
5968 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5969 return false;
5970
5971 pfn = page_to_pfn(page);
5972 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5973 unsigned long check = pfn + iter;
5974
5975 if (!pfn_valid_within(check))
5976 continue;
5977
5978 page = pfn_to_page(check);
5979 /*
5980 * We can't use page_count without pin a page
5981 * because another CPU can free compound page.
5982 * This check already skips compound tails of THP
5983 * because their page->_count is zero at all time.
5984 */
5985 if (!atomic_read(&page->_count)) {
5986 if (PageBuddy(page))
5987 iter += (1 << page_order(page)) - 1;
5988 continue;
5989 }
5990
5991 /*
5992 * The HWPoisoned page may be not in buddy system, and
5993 * page_count() is not 0.
5994 */
5995 if (skip_hwpoisoned_pages && PageHWPoison(page))
5996 continue;
5997
5998 if (!PageLRU(page))
5999 found++;
6000 /*
6001 * If there are RECLAIMABLE pages, we need to check it.
6002 * But now, memory offline itself doesn't call shrink_slab()
6003 * and it still to be fixed.
6004 */
6005 /*
6006 * If the page is not RAM, page_count()should be 0.
6007 * we don't need more check. This is an _used_ not-movable page.
6008 *
6009 * The problematic thing here is PG_reserved pages. PG_reserved
6010 * is set to both of a memory hole page and a _used_ kernel
6011 * page at boot.
6012 */
6013 if (found > count)
6014 return true;
6015 }
6016 return false;
6017 }
6018
6019 bool is_pageblock_removable_nolock(struct page *page)
6020 {
6021 struct zone *zone;
6022 unsigned long pfn;
6023
6024 /*
6025 * We have to be careful here because we are iterating over memory
6026 * sections which are not zone aware so we might end up outside of
6027 * the zone but still within the section.
6028 * We have to take care about the node as well. If the node is offline
6029 * its NODE_DATA will be NULL - see page_zone.
6030 */
6031 if (!node_online(page_to_nid(page)))
6032 return false;
6033
6034 zone = page_zone(page);
6035 pfn = page_to_pfn(page);
6036 if (!zone_spans_pfn(zone, pfn))
6037 return false;
6038
6039 return !has_unmovable_pages(zone, page, 0, true);
6040 }
6041
6042 #ifdef CONFIG_CMA
6043
6044 static unsigned long pfn_max_align_down(unsigned long pfn)
6045 {
6046 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6047 pageblock_nr_pages) - 1);
6048 }
6049
6050 static unsigned long pfn_max_align_up(unsigned long pfn)
6051 {
6052 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6053 pageblock_nr_pages));
6054 }
6055
6056 /* [start, end) must belong to a single zone. */
6057 static int __alloc_contig_migrate_range(struct compact_control *cc,
6058 unsigned long start, unsigned long end)
6059 {
6060 /* This function is based on compact_zone() from compaction.c. */
6061 unsigned long nr_reclaimed;
6062 unsigned long pfn = start;
6063 unsigned int tries = 0;
6064 int ret = 0;
6065
6066 migrate_prep();
6067
6068 while (pfn < end || !list_empty(&cc->migratepages)) {
6069 if (fatal_signal_pending(current)) {
6070 ret = -EINTR;
6071 break;
6072 }
6073
6074 if (list_empty(&cc->migratepages)) {
6075 cc->nr_migratepages = 0;
6076 pfn = isolate_migratepages_range(cc->zone, cc,
6077 pfn, end, true);
6078 if (!pfn) {
6079 ret = -EINTR;
6080 break;
6081 }
6082 tries = 0;
6083 } else if (++tries == 5) {
6084 ret = ret < 0 ? ret : -EBUSY;
6085 break;
6086 }
6087
6088 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6089 &cc->migratepages);
6090 cc->nr_migratepages -= nr_reclaimed;
6091
6092 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6093 0, MIGRATE_SYNC, MR_CMA);
6094 }
6095 if (ret < 0) {
6096 putback_movable_pages(&cc->migratepages);
6097 return ret;
6098 }
6099 return 0;
6100 }
6101
6102 /**
6103 * alloc_contig_range() -- tries to allocate given range of pages
6104 * @start: start PFN to allocate
6105 * @end: one-past-the-last PFN to allocate
6106 * @migratetype: migratetype of the underlaying pageblocks (either
6107 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6108 * in range must have the same migratetype and it must
6109 * be either of the two.
6110 *
6111 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6112 * aligned, however it's the caller's responsibility to guarantee that
6113 * we are the only thread that changes migrate type of pageblocks the
6114 * pages fall in.
6115 *
6116 * The PFN range must belong to a single zone.
6117 *
6118 * Returns zero on success or negative error code. On success all
6119 * pages which PFN is in [start, end) are allocated for the caller and
6120 * need to be freed with free_contig_range().
6121 */
6122 int alloc_contig_range(unsigned long start, unsigned long end,
6123 unsigned migratetype)
6124 {
6125 unsigned long outer_start, outer_end;
6126 int ret = 0, order;
6127
6128 struct compact_control cc = {
6129 .nr_migratepages = 0,
6130 .order = -1,
6131 .zone = page_zone(pfn_to_page(start)),
6132 .sync = true,
6133 .ignore_skip_hint = true,
6134 };
6135 INIT_LIST_HEAD(&cc.migratepages);
6136
6137 /*
6138 * What we do here is we mark all pageblocks in range as
6139 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6140 * have different sizes, and due to the way page allocator
6141 * work, we align the range to biggest of the two pages so
6142 * that page allocator won't try to merge buddies from
6143 * different pageblocks and change MIGRATE_ISOLATE to some
6144 * other migration type.
6145 *
6146 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6147 * migrate the pages from an unaligned range (ie. pages that
6148 * we are interested in). This will put all the pages in
6149 * range back to page allocator as MIGRATE_ISOLATE.
6150 *
6151 * When this is done, we take the pages in range from page
6152 * allocator removing them from the buddy system. This way
6153 * page allocator will never consider using them.
6154 *
6155 * This lets us mark the pageblocks back as
6156 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6157 * aligned range but not in the unaligned, original range are
6158 * put back to page allocator so that buddy can use them.
6159 */
6160
6161 ret = start_isolate_page_range(pfn_max_align_down(start),
6162 pfn_max_align_up(end), migratetype,
6163 false);
6164 if (ret)
6165 return ret;
6166
6167 ret = __alloc_contig_migrate_range(&cc, start, end);
6168 if (ret)
6169 goto done;
6170
6171 /*
6172 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6173 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6174 * more, all pages in [start, end) are free in page allocator.
6175 * What we are going to do is to allocate all pages from
6176 * [start, end) (that is remove them from page allocator).
6177 *
6178 * The only problem is that pages at the beginning and at the
6179 * end of interesting range may be not aligned with pages that
6180 * page allocator holds, ie. they can be part of higher order
6181 * pages. Because of this, we reserve the bigger range and
6182 * once this is done free the pages we are not interested in.
6183 *
6184 * We don't have to hold zone->lock here because the pages are
6185 * isolated thus they won't get removed from buddy.
6186 */
6187
6188 lru_add_drain_all();
6189 drain_all_pages();
6190
6191 order = 0;
6192 outer_start = start;
6193 while (!PageBuddy(pfn_to_page(outer_start))) {
6194 if (++order >= MAX_ORDER) {
6195 ret = -EBUSY;
6196 goto done;
6197 }
6198 outer_start &= ~0UL << order;
6199 }
6200
6201 /* Make sure the range is really isolated. */
6202 if (test_pages_isolated(outer_start, end, false)) {
6203 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6204 outer_start, end);
6205 ret = -EBUSY;
6206 goto done;
6207 }
6208
6209
6210 /* Grab isolated pages from freelists. */
6211 outer_end = isolate_freepages_range(&cc, outer_start, end);
6212 if (!outer_end) {
6213 ret = -EBUSY;
6214 goto done;
6215 }
6216
6217 /* Free head and tail (if any) */
6218 if (start != outer_start)
6219 free_contig_range(outer_start, start - outer_start);
6220 if (end != outer_end)
6221 free_contig_range(end, outer_end - end);
6222
6223 done:
6224 undo_isolate_page_range(pfn_max_align_down(start),
6225 pfn_max_align_up(end), migratetype);
6226 return ret;
6227 }
6228
6229 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6230 {
6231 unsigned int count = 0;
6232
6233 for (; nr_pages--; pfn++) {
6234 struct page *page = pfn_to_page(pfn);
6235
6236 count += page_count(page) != 1;
6237 __free_page(page);
6238 }
6239 WARN(count != 0, "%d pages are still in use!\n", count);
6240 }
6241 #endif
6242
6243 #ifdef CONFIG_MEMORY_HOTPLUG
6244 static int __meminit __zone_pcp_update(void *data)
6245 {
6246 struct zone *zone = data;
6247 int cpu;
6248 unsigned long batch = zone_batchsize(zone), flags;
6249
6250 for_each_possible_cpu(cpu) {
6251 struct per_cpu_pageset *pset;
6252 struct per_cpu_pages *pcp;
6253
6254 pset = per_cpu_ptr(zone->pageset, cpu);
6255 pcp = &pset->pcp;
6256
6257 local_irq_save(flags);
6258 if (pcp->count > 0)
6259 free_pcppages_bulk(zone, pcp->count, pcp);
6260 drain_zonestat(zone, pset);
6261 setup_pageset(pset, batch);
6262 local_irq_restore(flags);
6263 }
6264 return 0;
6265 }
6266
6267 void __meminit zone_pcp_update(struct zone *zone)
6268 {
6269 stop_machine(__zone_pcp_update, zone, NULL);
6270 }
6271 #endif
6272
6273 void zone_pcp_reset(struct zone *zone)
6274 {
6275 unsigned long flags;
6276 int cpu;
6277 struct per_cpu_pageset *pset;
6278
6279 /* avoid races with drain_pages() */
6280 local_irq_save(flags);
6281 if (zone->pageset != &boot_pageset) {
6282 for_each_online_cpu(cpu) {
6283 pset = per_cpu_ptr(zone->pageset, cpu);
6284 drain_zonestat(zone, pset);
6285 }
6286 free_percpu(zone->pageset);
6287 zone->pageset = &boot_pageset;
6288 }
6289 local_irq_restore(flags);
6290 }
6291
6292 #ifdef CONFIG_MEMORY_HOTREMOVE
6293 /*
6294 * All pages in the range must be isolated before calling this.
6295 */
6296 void
6297 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6298 {
6299 struct page *page;
6300 struct zone *zone;
6301 int order, i;
6302 unsigned long pfn;
6303 unsigned long flags;
6304 /* find the first valid pfn */
6305 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6306 if (pfn_valid(pfn))
6307 break;
6308 if (pfn == end_pfn)
6309 return;
6310 zone = page_zone(pfn_to_page(pfn));
6311 spin_lock_irqsave(&zone->lock, flags);
6312 pfn = start_pfn;
6313 while (pfn < end_pfn) {
6314 if (!pfn_valid(pfn)) {
6315 pfn++;
6316 continue;
6317 }
6318 page = pfn_to_page(pfn);
6319 /*
6320 * The HWPoisoned page may be not in buddy system, and
6321 * page_count() is not 0.
6322 */
6323 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6324 pfn++;
6325 SetPageReserved(page);
6326 continue;
6327 }
6328
6329 BUG_ON(page_count(page));
6330 BUG_ON(!PageBuddy(page));
6331 order = page_order(page);
6332 #ifdef CONFIG_DEBUG_VM
6333 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6334 pfn, 1 << order, end_pfn);
6335 #endif
6336 list_del(&page->lru);
6337 rmv_page_order(page);
6338 zone->free_area[order].nr_free--;
6339 for (i = 0; i < (1 << order); i++)
6340 SetPageReserved((page+i));
6341 pfn += (1 << order);
6342 }
6343 spin_unlock_irqrestore(&zone->lock, flags);
6344 }
6345 #endif
6346
6347 #ifdef CONFIG_MEMORY_FAILURE
6348 bool is_free_buddy_page(struct page *page)
6349 {
6350 struct zone *zone = page_zone(page);
6351 unsigned long pfn = page_to_pfn(page);
6352 unsigned long flags;
6353 int order;
6354
6355 spin_lock_irqsave(&zone->lock, flags);
6356 for (order = 0; order < MAX_ORDER; order++) {
6357 struct page *page_head = page - (pfn & ((1 << order) - 1));
6358
6359 if (PageBuddy(page_head) && page_order(page_head) >= order)
6360 break;
6361 }
6362 spin_unlock_irqrestore(&zone->lock, flags);
6363
6364 return order < MAX_ORDER;
6365 }
6366 #endif
6367
6368 static const struct trace_print_flags pageflag_names[] = {
6369 {1UL << PG_locked, "locked" },
6370 {1UL << PG_error, "error" },
6371 {1UL << PG_referenced, "referenced" },
6372 {1UL << PG_uptodate, "uptodate" },
6373 {1UL << PG_dirty, "dirty" },
6374 {1UL << PG_lru, "lru" },
6375 {1UL << PG_active, "active" },
6376 {1UL << PG_slab, "slab" },
6377 {1UL << PG_owner_priv_1, "owner_priv_1" },
6378 {1UL << PG_arch_1, "arch_1" },
6379 {1UL << PG_reserved, "reserved" },
6380 {1UL << PG_private, "private" },
6381 {1UL << PG_private_2, "private_2" },
6382 {1UL << PG_writeback, "writeback" },
6383 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6384 {1UL << PG_head, "head" },
6385 {1UL << PG_tail, "tail" },
6386 #else
6387 {1UL << PG_compound, "compound" },
6388 #endif
6389 {1UL << PG_swapcache, "swapcache" },
6390 {1UL << PG_mappedtodisk, "mappedtodisk" },
6391 {1UL << PG_reclaim, "reclaim" },
6392 {1UL << PG_swapbacked, "swapbacked" },
6393 {1UL << PG_unevictable, "unevictable" },
6394 #ifdef CONFIG_MMU
6395 {1UL << PG_mlocked, "mlocked" },
6396 #endif
6397 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6398 {1UL << PG_uncached, "uncached" },
6399 #endif
6400 #ifdef CONFIG_MEMORY_FAILURE
6401 {1UL << PG_hwpoison, "hwpoison" },
6402 #endif
6403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6404 {1UL << PG_compound_lock, "compound_lock" },
6405 #endif
6406 };
6407
6408 static void dump_page_flags(unsigned long flags)
6409 {
6410 const char *delim = "";
6411 unsigned long mask;
6412 int i;
6413
6414 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6415
6416 printk(KERN_ALERT "page flags: %#lx(", flags);
6417
6418 /* remove zone id */
6419 flags &= (1UL << NR_PAGEFLAGS) - 1;
6420
6421 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6422
6423 mask = pageflag_names[i].mask;
6424 if ((flags & mask) != mask)
6425 continue;
6426
6427 flags &= ~mask;
6428 printk("%s%s", delim, pageflag_names[i].name);
6429 delim = "|";
6430 }
6431
6432 /* check for left over flags */
6433 if (flags)
6434 printk("%s%#lx", delim, flags);
6435
6436 printk(")\n");
6437 }
6438
6439 void dump_page(struct page *page)
6440 {
6441 printk(KERN_ALERT
6442 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6443 page, atomic_read(&page->_count), page_mapcount(page),
6444 page->mapping, page->index);
6445 dump_page_flags(page->flags);
6446 mem_cgroup_print_bad_page(page);
6447 }
This page took 0.365358 seconds and 5 git commands to generate.