cpuset: use static key better and convert to new API
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION (8)
75
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86 * defined in <linux/topology.h>.
87 */
88 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92
93 /*
94 * Array of node states.
95 */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 [N_POSSIBLE] = NODE_MASK_ALL,
98 [N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 [N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 [N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 [N_CPU] = { { [0] = 1UL } },
108 #endif /* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121
122 /*
123 * A cached value of the page's pageblock's migratetype, used when the page is
124 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126 * Also the migratetype set in the page does not necessarily match the pcplist
127 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128 * other index - this ensures that it will be put on the correct CMA freelist.
129 */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 return page->index;
133 }
134
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 page->index = migratetype;
138 }
139
140 #ifdef CONFIG_PM_SLEEP
141 /*
142 * The following functions are used by the suspend/hibernate code to temporarily
143 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144 * while devices are suspended. To avoid races with the suspend/hibernate code,
145 * they should always be called with pm_mutex held (gfp_allowed_mask also should
146 * only be modified with pm_mutex held, unless the suspend/hibernate code is
147 * guaranteed not to run in parallel with that modification).
148 */
149
150 static gfp_t saved_gfp_mask;
151
152 void pm_restore_gfp_mask(void)
153 {
154 WARN_ON(!mutex_is_locked(&pm_mutex));
155 if (saved_gfp_mask) {
156 gfp_allowed_mask = saved_gfp_mask;
157 saved_gfp_mask = 0;
158 }
159 }
160
161 void pm_restrict_gfp_mask(void)
162 {
163 WARN_ON(!mutex_is_locked(&pm_mutex));
164 WARN_ON(saved_gfp_mask);
165 saved_gfp_mask = gfp_allowed_mask;
166 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168
169 bool pm_suspended_storage(void)
170 {
171 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 return false;
173 return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180
181 static void __free_pages_ok(struct page *page, unsigned int order);
182
183 /*
184 * results with 256, 32 in the lowmem_reserve sysctl:
185 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186 * 1G machine -> (16M dma, 784M normal, 224M high)
187 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190 *
191 * TBD: should special case ZONE_DMA32 machines here - in those we normally
192 * don't need any ZONE_NORMAL reservation
193 */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 32,
203 #endif
204 32,
205 };
206
207 EXPORT_SYMBOL(totalram_pages);
208
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 "DMA32",
215 #endif
216 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 "HighMem",
219 #endif
220 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 "Device",
223 #endif
224 };
225
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 "Unmovable",
228 "Movable",
229 "Reclaimable",
230 "HighAtomic",
231 #ifdef CONFIG_CMA
232 "CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 "Isolate",
236 #endif
237 };
238
239 compound_page_dtor * const compound_page_dtors[] = {
240 NULL,
241 free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 free_transhuge_page,
247 #endif
248 };
249
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277
278 int page_group_by_mobility_disabled __read_mostly;
279
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 return true;
291
292 return false;
293 }
294
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 return true;
299
300 return false;
301 }
302
303 /*
304 * Returns false when the remaining initialisation should be deferred until
305 * later in the boot cycle when it can be parallelised.
306 */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 unsigned long pfn, unsigned long zone_end,
309 unsigned long *nr_initialised)
310 {
311 unsigned long max_initialise;
312
313 /* Always populate low zones for address-contrained allocations */
314 if (zone_end < pgdat_end_pfn(pgdat))
315 return true;
316 /*
317 * Initialise at least 2G of a node but also take into account that
318 * two large system hashes that can take up 1GB for 0.25TB/node.
319 */
320 max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 (pgdat->node_spanned_pages >> 8));
322
323 (*nr_initialised)++;
324 if ((*nr_initialised > max_initialise) &&
325 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 pgdat->first_deferred_pfn = pfn;
327 return false;
328 }
329
330 return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 return false;
340 }
341
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 return false;
345 }
346
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 unsigned long pfn, unsigned long zone_end,
349 unsigned long *nr_initialised)
350 {
351 return true;
352 }
353 #endif
354
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 pfn &= (PAGES_PER_SECTION-1);
370 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376
377 /**
378 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379 * @page: The page within the block of interest
380 * @pfn: The target page frame number
381 * @end_bitidx: The last bit of interest to retrieve
382 * @mask: mask of bits that the caller is interested in
383 *
384 * Return: pageblock_bits flags
385 */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 unsigned long pfn,
388 unsigned long end_bitidx,
389 unsigned long mask)
390 {
391 unsigned long *bitmap;
392 unsigned long bitidx, word_bitidx;
393 unsigned long word;
394
395 bitmap = get_pageblock_bitmap(page, pfn);
396 bitidx = pfn_to_bitidx(page, pfn);
397 word_bitidx = bitidx / BITS_PER_LONG;
398 bitidx &= (BITS_PER_LONG-1);
399
400 word = bitmap[word_bitidx];
401 bitidx += end_bitidx;
402 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 unsigned long end_bitidx,
407 unsigned long mask)
408 {
409 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416
417 /**
418 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419 * @page: The page within the block of interest
420 * @flags: The flags to set
421 * @pfn: The target page frame number
422 * @end_bitidx: The last bit of interest
423 * @mask: mask of bits that the caller is interested in
424 */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 unsigned long pfn,
427 unsigned long end_bitidx,
428 unsigned long mask)
429 {
430 unsigned long *bitmap;
431 unsigned long bitidx, word_bitidx;
432 unsigned long old_word, word;
433
434 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435
436 bitmap = get_pageblock_bitmap(page, pfn);
437 bitidx = pfn_to_bitidx(page, pfn);
438 word_bitidx = bitidx / BITS_PER_LONG;
439 bitidx &= (BITS_PER_LONG-1);
440
441 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442
443 bitidx += end_bitidx;
444 mask <<= (BITS_PER_LONG - bitidx - 1);
445 flags <<= (BITS_PER_LONG - bitidx - 1);
446
447 word = READ_ONCE(bitmap[word_bitidx]);
448 for (;;) {
449 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 if (word == old_word)
451 break;
452 word = old_word;
453 }
454 }
455
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 if (unlikely(page_group_by_mobility_disabled &&
459 migratetype < MIGRATE_PCPTYPES))
460 migratetype = MIGRATE_UNMOVABLE;
461
462 set_pageblock_flags_group(page, (unsigned long)migratetype,
463 PB_migrate, PB_migrate_end);
464 }
465
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 int ret = 0;
470 unsigned seq;
471 unsigned long pfn = page_to_pfn(page);
472 unsigned long sp, start_pfn;
473
474 do {
475 seq = zone_span_seqbegin(zone);
476 start_pfn = zone->zone_start_pfn;
477 sp = zone->spanned_pages;
478 if (!zone_spans_pfn(zone, pfn))
479 ret = 1;
480 } while (zone_span_seqretry(zone, seq));
481
482 if (ret)
483 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 pfn, zone_to_nid(zone), zone->name,
485 start_pfn, start_pfn + sp);
486
487 return ret;
488 }
489
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 if (!pfn_valid_within(page_to_pfn(page)))
493 return 0;
494 if (zone != page_zone(page))
495 return 0;
496
497 return 1;
498 }
499 /*
500 * Temporary debugging check for pages not lying within a given zone.
501 */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 if (page_outside_zone_boundaries(zone, page))
505 return 1;
506 if (!page_is_consistent(zone, page))
507 return 1;
508
509 return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 return 0;
515 }
516 #endif
517
518 static void bad_page(struct page *page, const char *reason,
519 unsigned long bad_flags)
520 {
521 static unsigned long resume;
522 static unsigned long nr_shown;
523 static unsigned long nr_unshown;
524
525 /* Don't complain about poisoned pages */
526 if (PageHWPoison(page)) {
527 page_mapcount_reset(page); /* remove PageBuddy */
528 return;
529 }
530
531 /*
532 * Allow a burst of 60 reports, then keep quiet for that minute;
533 * or allow a steady drip of one report per second.
534 */
535 if (nr_shown == 60) {
536 if (time_before(jiffies, resume)) {
537 nr_unshown++;
538 goto out;
539 }
540 if (nr_unshown) {
541 pr_alert(
542 "BUG: Bad page state: %lu messages suppressed\n",
543 nr_unshown);
544 nr_unshown = 0;
545 }
546 nr_shown = 0;
547 }
548 if (nr_shown++ == 0)
549 resume = jiffies + 60 * HZ;
550
551 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
552 current->comm, page_to_pfn(page));
553 __dump_page(page, reason);
554 bad_flags &= page->flags;
555 if (bad_flags)
556 pr_alert("bad because of flags: %#lx(%pGp)\n",
557 bad_flags, &bad_flags);
558 dump_page_owner(page);
559
560 print_modules();
561 dump_stack();
562 out:
563 /* Leave bad fields for debug, except PageBuddy could make trouble */
564 page_mapcount_reset(page); /* remove PageBuddy */
565 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
566 }
567
568 /*
569 * Higher-order pages are called "compound pages". They are structured thusly:
570 *
571 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
572 *
573 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
574 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
575 *
576 * The first tail page's ->compound_dtor holds the offset in array of compound
577 * page destructors. See compound_page_dtors.
578 *
579 * The first tail page's ->compound_order holds the order of allocation.
580 * This usage means that zero-order pages may not be compound.
581 */
582
583 void free_compound_page(struct page *page)
584 {
585 __free_pages_ok(page, compound_order(page));
586 }
587
588 void prep_compound_page(struct page *page, unsigned int order)
589 {
590 int i;
591 int nr_pages = 1 << order;
592
593 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
594 set_compound_order(page, order);
595 __SetPageHead(page);
596 for (i = 1; i < nr_pages; i++) {
597 struct page *p = page + i;
598 set_page_count(p, 0);
599 p->mapping = TAIL_MAPPING;
600 set_compound_head(p, page);
601 }
602 atomic_set(compound_mapcount_ptr(page), -1);
603 }
604
605 #ifdef CONFIG_DEBUG_PAGEALLOC
606 unsigned int _debug_guardpage_minorder;
607 bool _debug_pagealloc_enabled __read_mostly
608 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
609 EXPORT_SYMBOL(_debug_pagealloc_enabled);
610 bool _debug_guardpage_enabled __read_mostly;
611
612 static int __init early_debug_pagealloc(char *buf)
613 {
614 if (!buf)
615 return -EINVAL;
616
617 if (strcmp(buf, "on") == 0)
618 _debug_pagealloc_enabled = true;
619
620 if (strcmp(buf, "off") == 0)
621 _debug_pagealloc_enabled = false;
622
623 return 0;
624 }
625 early_param("debug_pagealloc", early_debug_pagealloc);
626
627 static bool need_debug_guardpage(void)
628 {
629 /* If we don't use debug_pagealloc, we don't need guard page */
630 if (!debug_pagealloc_enabled())
631 return false;
632
633 return true;
634 }
635
636 static void init_debug_guardpage(void)
637 {
638 if (!debug_pagealloc_enabled())
639 return;
640
641 _debug_guardpage_enabled = true;
642 }
643
644 struct page_ext_operations debug_guardpage_ops = {
645 .need = need_debug_guardpage,
646 .init = init_debug_guardpage,
647 };
648
649 static int __init debug_guardpage_minorder_setup(char *buf)
650 {
651 unsigned long res;
652
653 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
654 pr_err("Bad debug_guardpage_minorder value\n");
655 return 0;
656 }
657 _debug_guardpage_minorder = res;
658 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
659 return 0;
660 }
661 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
662
663 static inline void set_page_guard(struct zone *zone, struct page *page,
664 unsigned int order, int migratetype)
665 {
666 struct page_ext *page_ext;
667
668 if (!debug_guardpage_enabled())
669 return;
670
671 page_ext = lookup_page_ext(page);
672 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
674 INIT_LIST_HEAD(&page->lru);
675 set_page_private(page, order);
676 /* Guard pages are not available for any usage */
677 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 }
679
680 static inline void clear_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype)
682 {
683 struct page_ext *page_ext;
684
685 if (!debug_guardpage_enabled())
686 return;
687
688 page_ext = lookup_page_ext(page);
689 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
690
691 set_page_private(page, 0);
692 if (!is_migrate_isolate(migratetype))
693 __mod_zone_freepage_state(zone, (1 << order), migratetype);
694 }
695 #else
696 struct page_ext_operations debug_guardpage_ops = { NULL, };
697 static inline void set_page_guard(struct zone *zone, struct page *page,
698 unsigned int order, int migratetype) {}
699 static inline void clear_page_guard(struct zone *zone, struct page *page,
700 unsigned int order, int migratetype) {}
701 #endif
702
703 static inline void set_page_order(struct page *page, unsigned int order)
704 {
705 set_page_private(page, order);
706 __SetPageBuddy(page);
707 }
708
709 static inline void rmv_page_order(struct page *page)
710 {
711 __ClearPageBuddy(page);
712 set_page_private(page, 0);
713 }
714
715 /*
716 * This function checks whether a page is free && is the buddy
717 * we can do coalesce a page and its buddy if
718 * (a) the buddy is not in a hole &&
719 * (b) the buddy is in the buddy system &&
720 * (c) a page and its buddy have the same order &&
721 * (d) a page and its buddy are in the same zone.
722 *
723 * For recording whether a page is in the buddy system, we set ->_mapcount
724 * PAGE_BUDDY_MAPCOUNT_VALUE.
725 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
726 * serialized by zone->lock.
727 *
728 * For recording page's order, we use page_private(page).
729 */
730 static inline int page_is_buddy(struct page *page, struct page *buddy,
731 unsigned int order)
732 {
733 if (!pfn_valid_within(page_to_pfn(buddy)))
734 return 0;
735
736 if (page_is_guard(buddy) && page_order(buddy) == order) {
737 if (page_zone_id(page) != page_zone_id(buddy))
738 return 0;
739
740 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
741
742 return 1;
743 }
744
745 if (PageBuddy(buddy) && page_order(buddy) == order) {
746 /*
747 * zone check is done late to avoid uselessly
748 * calculating zone/node ids for pages that could
749 * never merge.
750 */
751 if (page_zone_id(page) != page_zone_id(buddy))
752 return 0;
753
754 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
755
756 return 1;
757 }
758 return 0;
759 }
760
761 /*
762 * Freeing function for a buddy system allocator.
763 *
764 * The concept of a buddy system is to maintain direct-mapped table
765 * (containing bit values) for memory blocks of various "orders".
766 * The bottom level table contains the map for the smallest allocatable
767 * units of memory (here, pages), and each level above it describes
768 * pairs of units from the levels below, hence, "buddies".
769 * At a high level, all that happens here is marking the table entry
770 * at the bottom level available, and propagating the changes upward
771 * as necessary, plus some accounting needed to play nicely with other
772 * parts of the VM system.
773 * At each level, we keep a list of pages, which are heads of continuous
774 * free pages of length of (1 << order) and marked with _mapcount
775 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
776 * field.
777 * So when we are allocating or freeing one, we can derive the state of the
778 * other. That is, if we allocate a small block, and both were
779 * free, the remainder of the region must be split into blocks.
780 * If a block is freed, and its buddy is also free, then this
781 * triggers coalescing into a block of larger size.
782 *
783 * -- nyc
784 */
785
786 static inline void __free_one_page(struct page *page,
787 unsigned long pfn,
788 struct zone *zone, unsigned int order,
789 int migratetype)
790 {
791 unsigned long page_idx;
792 unsigned long combined_idx;
793 unsigned long uninitialized_var(buddy_idx);
794 struct page *buddy;
795 unsigned int max_order;
796
797 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798
799 VM_BUG_ON(!zone_is_initialized(zone));
800 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801
802 VM_BUG_ON(migratetype == -1);
803 if (likely(!is_migrate_isolate(migratetype)))
804 __mod_zone_freepage_state(zone, 1 << order, migratetype);
805
806 page_idx = pfn & ((1 << MAX_ORDER) - 1);
807
808 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
809 VM_BUG_ON_PAGE(bad_range(zone, page), page);
810
811 continue_merging:
812 while (order < max_order - 1) {
813 buddy_idx = __find_buddy_index(page_idx, order);
814 buddy = page + (buddy_idx - page_idx);
815 if (!page_is_buddy(page, buddy, order))
816 goto done_merging;
817 /*
818 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
819 * merge with it and move up one order.
820 */
821 if (page_is_guard(buddy)) {
822 clear_page_guard(zone, buddy, order, migratetype);
823 } else {
824 list_del(&buddy->lru);
825 zone->free_area[order].nr_free--;
826 rmv_page_order(buddy);
827 }
828 combined_idx = buddy_idx & page_idx;
829 page = page + (combined_idx - page_idx);
830 page_idx = combined_idx;
831 order++;
832 }
833 if (max_order < MAX_ORDER) {
834 /* If we are here, it means order is >= pageblock_order.
835 * We want to prevent merge between freepages on isolate
836 * pageblock and normal pageblock. Without this, pageblock
837 * isolation could cause incorrect freepage or CMA accounting.
838 *
839 * We don't want to hit this code for the more frequent
840 * low-order merging.
841 */
842 if (unlikely(has_isolate_pageblock(zone))) {
843 int buddy_mt;
844
845 buddy_idx = __find_buddy_index(page_idx, order);
846 buddy = page + (buddy_idx - page_idx);
847 buddy_mt = get_pageblock_migratetype(buddy);
848
849 if (migratetype != buddy_mt
850 && (is_migrate_isolate(migratetype) ||
851 is_migrate_isolate(buddy_mt)))
852 goto done_merging;
853 }
854 max_order++;
855 goto continue_merging;
856 }
857
858 done_merging:
859 set_page_order(page, order);
860
861 /*
862 * If this is not the largest possible page, check if the buddy
863 * of the next-highest order is free. If it is, it's possible
864 * that pages are being freed that will coalesce soon. In case,
865 * that is happening, add the free page to the tail of the list
866 * so it's less likely to be used soon and more likely to be merged
867 * as a higher order page
868 */
869 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
870 struct page *higher_page, *higher_buddy;
871 combined_idx = buddy_idx & page_idx;
872 higher_page = page + (combined_idx - page_idx);
873 buddy_idx = __find_buddy_index(combined_idx, order + 1);
874 higher_buddy = higher_page + (buddy_idx - combined_idx);
875 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
876 list_add_tail(&page->lru,
877 &zone->free_area[order].free_list[migratetype]);
878 goto out;
879 }
880 }
881
882 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
883 out:
884 zone->free_area[order].nr_free++;
885 }
886
887 /*
888 * A bad page could be due to a number of fields. Instead of multiple branches,
889 * try and check multiple fields with one check. The caller must do a detailed
890 * check if necessary.
891 */
892 static inline bool page_expected_state(struct page *page,
893 unsigned long check_flags)
894 {
895 if (unlikely(atomic_read(&page->_mapcount) != -1))
896 return false;
897
898 if (unlikely((unsigned long)page->mapping |
899 page_ref_count(page) |
900 #ifdef CONFIG_MEMCG
901 (unsigned long)page->mem_cgroup |
902 #endif
903 (page->flags & check_flags)))
904 return false;
905
906 return true;
907 }
908
909 static void free_pages_check_bad(struct page *page)
910 {
911 const char *bad_reason;
912 unsigned long bad_flags;
913
914 bad_reason = NULL;
915 bad_flags = 0;
916
917 if (unlikely(atomic_read(&page->_mapcount) != -1))
918 bad_reason = "nonzero mapcount";
919 if (unlikely(page->mapping != NULL))
920 bad_reason = "non-NULL mapping";
921 if (unlikely(page_ref_count(page) != 0))
922 bad_reason = "nonzero _refcount";
923 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
924 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
925 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
926 }
927 #ifdef CONFIG_MEMCG
928 if (unlikely(page->mem_cgroup))
929 bad_reason = "page still charged to cgroup";
930 #endif
931 bad_page(page, bad_reason, bad_flags);
932 }
933
934 static inline int free_pages_check(struct page *page)
935 {
936 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
937 return 0;
938
939 /* Something has gone sideways, find it */
940 free_pages_check_bad(page);
941 return 1;
942 }
943
944 /*
945 * Frees a number of pages from the PCP lists
946 * Assumes all pages on list are in same zone, and of same order.
947 * count is the number of pages to free.
948 *
949 * If the zone was previously in an "all pages pinned" state then look to
950 * see if this freeing clears that state.
951 *
952 * And clear the zone's pages_scanned counter, to hold off the "all pages are
953 * pinned" detection logic.
954 */
955 static void free_pcppages_bulk(struct zone *zone, int count,
956 struct per_cpu_pages *pcp)
957 {
958 int migratetype = 0;
959 int batch_free = 0;
960 unsigned long nr_scanned;
961 bool isolated_pageblocks;
962
963 spin_lock(&zone->lock);
964 isolated_pageblocks = has_isolate_pageblock(zone);
965 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
966 if (nr_scanned)
967 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
968
969 while (count) {
970 struct page *page;
971 struct list_head *list;
972
973 /*
974 * Remove pages from lists in a round-robin fashion. A
975 * batch_free count is maintained that is incremented when an
976 * empty list is encountered. This is so more pages are freed
977 * off fuller lists instead of spinning excessively around empty
978 * lists
979 */
980 do {
981 batch_free++;
982 if (++migratetype == MIGRATE_PCPTYPES)
983 migratetype = 0;
984 list = &pcp->lists[migratetype];
985 } while (list_empty(list));
986
987 /* This is the only non-empty list. Free them all. */
988 if (batch_free == MIGRATE_PCPTYPES)
989 batch_free = count;
990
991 do {
992 int mt; /* migratetype of the to-be-freed page */
993
994 page = list_last_entry(list, struct page, lru);
995 /* must delete as __free_one_page list manipulates */
996 list_del(&page->lru);
997
998 mt = get_pcppage_migratetype(page);
999 /* MIGRATE_ISOLATE page should not go to pcplists */
1000 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1001 /* Pageblock could have been isolated meanwhile */
1002 if (unlikely(isolated_pageblocks))
1003 mt = get_pageblock_migratetype(page);
1004
1005 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1006 trace_mm_page_pcpu_drain(page, 0, mt);
1007 } while (--count && --batch_free && !list_empty(list));
1008 }
1009 spin_unlock(&zone->lock);
1010 }
1011
1012 static void free_one_page(struct zone *zone,
1013 struct page *page, unsigned long pfn,
1014 unsigned int order,
1015 int migratetype)
1016 {
1017 unsigned long nr_scanned;
1018 spin_lock(&zone->lock);
1019 nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
1020 if (nr_scanned)
1021 __mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
1022
1023 if (unlikely(has_isolate_pageblock(zone) ||
1024 is_migrate_isolate(migratetype))) {
1025 migratetype = get_pfnblock_migratetype(page, pfn);
1026 }
1027 __free_one_page(page, pfn, zone, order, migratetype);
1028 spin_unlock(&zone->lock);
1029 }
1030
1031 static int free_tail_pages_check(struct page *head_page, struct page *page)
1032 {
1033 int ret = 1;
1034
1035 /*
1036 * We rely page->lru.next never has bit 0 set, unless the page
1037 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1038 */
1039 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1040
1041 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1042 ret = 0;
1043 goto out;
1044 }
1045 switch (page - head_page) {
1046 case 1:
1047 /* the first tail page: ->mapping is compound_mapcount() */
1048 if (unlikely(compound_mapcount(page))) {
1049 bad_page(page, "nonzero compound_mapcount", 0);
1050 goto out;
1051 }
1052 break;
1053 case 2:
1054 /*
1055 * the second tail page: ->mapping is
1056 * page_deferred_list().next -- ignore value.
1057 */
1058 break;
1059 default:
1060 if (page->mapping != TAIL_MAPPING) {
1061 bad_page(page, "corrupted mapping in tail page", 0);
1062 goto out;
1063 }
1064 break;
1065 }
1066 if (unlikely(!PageTail(page))) {
1067 bad_page(page, "PageTail not set", 0);
1068 goto out;
1069 }
1070 if (unlikely(compound_head(page) != head_page)) {
1071 bad_page(page, "compound_head not consistent", 0);
1072 goto out;
1073 }
1074 ret = 0;
1075 out:
1076 page->mapping = NULL;
1077 clear_compound_head(page);
1078 return ret;
1079 }
1080
1081 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1082 unsigned long zone, int nid)
1083 {
1084 set_page_links(page, zone, nid, pfn);
1085 init_page_count(page);
1086 page_mapcount_reset(page);
1087 page_cpupid_reset_last(page);
1088
1089 INIT_LIST_HEAD(&page->lru);
1090 #ifdef WANT_PAGE_VIRTUAL
1091 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1092 if (!is_highmem_idx(zone))
1093 set_page_address(page, __va(pfn << PAGE_SHIFT));
1094 #endif
1095 }
1096
1097 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1098 int nid)
1099 {
1100 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1101 }
1102
1103 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1104 static void init_reserved_page(unsigned long pfn)
1105 {
1106 pg_data_t *pgdat;
1107 int nid, zid;
1108
1109 if (!early_page_uninitialised(pfn))
1110 return;
1111
1112 nid = early_pfn_to_nid(pfn);
1113 pgdat = NODE_DATA(nid);
1114
1115 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1116 struct zone *zone = &pgdat->node_zones[zid];
1117
1118 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1119 break;
1120 }
1121 __init_single_pfn(pfn, zid, nid);
1122 }
1123 #else
1124 static inline void init_reserved_page(unsigned long pfn)
1125 {
1126 }
1127 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1128
1129 /*
1130 * Initialised pages do not have PageReserved set. This function is
1131 * called for each range allocated by the bootmem allocator and
1132 * marks the pages PageReserved. The remaining valid pages are later
1133 * sent to the buddy page allocator.
1134 */
1135 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1136 {
1137 unsigned long start_pfn = PFN_DOWN(start);
1138 unsigned long end_pfn = PFN_UP(end);
1139
1140 for (; start_pfn < end_pfn; start_pfn++) {
1141 if (pfn_valid(start_pfn)) {
1142 struct page *page = pfn_to_page(start_pfn);
1143
1144 init_reserved_page(start_pfn);
1145
1146 /* Avoid false-positive PageTail() */
1147 INIT_LIST_HEAD(&page->lru);
1148
1149 SetPageReserved(page);
1150 }
1151 }
1152 }
1153
1154 static bool free_pages_prepare(struct page *page, unsigned int order)
1155 {
1156 int bad = 0;
1157
1158 VM_BUG_ON_PAGE(PageTail(page), page);
1159
1160 trace_mm_page_free(page, order);
1161 kmemcheck_free_shadow(page, order);
1162 kasan_free_pages(page, order);
1163
1164 /*
1165 * Check tail pages before head page information is cleared to
1166 * avoid checking PageCompound for order-0 pages.
1167 */
1168 if (unlikely(order)) {
1169 bool compound = PageCompound(page);
1170 int i;
1171
1172 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1173
1174 for (i = 1; i < (1 << order); i++) {
1175 if (compound)
1176 bad += free_tail_pages_check(page, page + i);
1177 if (unlikely(free_pages_check(page + i))) {
1178 bad++;
1179 continue;
1180 }
1181 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1182 }
1183 }
1184 if (PageAnonHead(page))
1185 page->mapping = NULL;
1186 bad += free_pages_check(page);
1187 if (bad)
1188 return false;
1189
1190 page_cpupid_reset_last(page);
1191 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1192 reset_page_owner(page, order);
1193
1194 if (!PageHighMem(page)) {
1195 debug_check_no_locks_freed(page_address(page),
1196 PAGE_SIZE << order);
1197 debug_check_no_obj_freed(page_address(page),
1198 PAGE_SIZE << order);
1199 }
1200 arch_free_page(page, order);
1201 kernel_poison_pages(page, 1 << order, 0);
1202 kernel_map_pages(page, 1 << order, 0);
1203
1204 return true;
1205 }
1206
1207 static void __free_pages_ok(struct page *page, unsigned int order)
1208 {
1209 unsigned long flags;
1210 int migratetype;
1211 unsigned long pfn = page_to_pfn(page);
1212
1213 if (!free_pages_prepare(page, order))
1214 return;
1215
1216 migratetype = get_pfnblock_migratetype(page, pfn);
1217 local_irq_save(flags);
1218 __count_vm_events(PGFREE, 1 << order);
1219 free_one_page(page_zone(page), page, pfn, order, migratetype);
1220 local_irq_restore(flags);
1221 }
1222
1223 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1224 {
1225 unsigned int nr_pages = 1 << order;
1226 struct page *p = page;
1227 unsigned int loop;
1228
1229 prefetchw(p);
1230 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1231 prefetchw(p + 1);
1232 __ClearPageReserved(p);
1233 set_page_count(p, 0);
1234 }
1235 __ClearPageReserved(p);
1236 set_page_count(p, 0);
1237
1238 page_zone(page)->managed_pages += nr_pages;
1239 set_page_refcounted(page);
1240 __free_pages(page, order);
1241 }
1242
1243 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1244 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1245
1246 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1247
1248 int __meminit early_pfn_to_nid(unsigned long pfn)
1249 {
1250 static DEFINE_SPINLOCK(early_pfn_lock);
1251 int nid;
1252
1253 spin_lock(&early_pfn_lock);
1254 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1255 if (nid < 0)
1256 nid = 0;
1257 spin_unlock(&early_pfn_lock);
1258
1259 return nid;
1260 }
1261 #endif
1262
1263 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1264 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1265 struct mminit_pfnnid_cache *state)
1266 {
1267 int nid;
1268
1269 nid = __early_pfn_to_nid(pfn, state);
1270 if (nid >= 0 && nid != node)
1271 return false;
1272 return true;
1273 }
1274
1275 /* Only safe to use early in boot when initialisation is single-threaded */
1276 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1277 {
1278 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1279 }
1280
1281 #else
1282
1283 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1284 {
1285 return true;
1286 }
1287 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1288 struct mminit_pfnnid_cache *state)
1289 {
1290 return true;
1291 }
1292 #endif
1293
1294
1295 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1296 unsigned int order)
1297 {
1298 if (early_page_uninitialised(pfn))
1299 return;
1300 return __free_pages_boot_core(page, order);
1301 }
1302
1303 /*
1304 * Check that the whole (or subset of) a pageblock given by the interval of
1305 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1306 * with the migration of free compaction scanner. The scanners then need to
1307 * use only pfn_valid_within() check for arches that allow holes within
1308 * pageblocks.
1309 *
1310 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1311 *
1312 * It's possible on some configurations to have a setup like node0 node1 node0
1313 * i.e. it's possible that all pages within a zones range of pages do not
1314 * belong to a single zone. We assume that a border between node0 and node1
1315 * can occur within a single pageblock, but not a node0 node1 node0
1316 * interleaving within a single pageblock. It is therefore sufficient to check
1317 * the first and last page of a pageblock and avoid checking each individual
1318 * page in a pageblock.
1319 */
1320 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1321 unsigned long end_pfn, struct zone *zone)
1322 {
1323 struct page *start_page;
1324 struct page *end_page;
1325
1326 /* end_pfn is one past the range we are checking */
1327 end_pfn--;
1328
1329 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1330 return NULL;
1331
1332 start_page = pfn_to_page(start_pfn);
1333
1334 if (page_zone(start_page) != zone)
1335 return NULL;
1336
1337 end_page = pfn_to_page(end_pfn);
1338
1339 /* This gives a shorter code than deriving page_zone(end_page) */
1340 if (page_zone_id(start_page) != page_zone_id(end_page))
1341 return NULL;
1342
1343 return start_page;
1344 }
1345
1346 void set_zone_contiguous(struct zone *zone)
1347 {
1348 unsigned long block_start_pfn = zone->zone_start_pfn;
1349 unsigned long block_end_pfn;
1350
1351 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1352 for (; block_start_pfn < zone_end_pfn(zone);
1353 block_start_pfn = block_end_pfn,
1354 block_end_pfn += pageblock_nr_pages) {
1355
1356 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1357
1358 if (!__pageblock_pfn_to_page(block_start_pfn,
1359 block_end_pfn, zone))
1360 return;
1361 }
1362
1363 /* We confirm that there is no hole */
1364 zone->contiguous = true;
1365 }
1366
1367 void clear_zone_contiguous(struct zone *zone)
1368 {
1369 zone->contiguous = false;
1370 }
1371
1372 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1373 static void __init deferred_free_range(struct page *page,
1374 unsigned long pfn, int nr_pages)
1375 {
1376 int i;
1377
1378 if (!page)
1379 return;
1380
1381 /* Free a large naturally-aligned chunk if possible */
1382 if (nr_pages == MAX_ORDER_NR_PAGES &&
1383 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1384 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1385 __free_pages_boot_core(page, MAX_ORDER-1);
1386 return;
1387 }
1388
1389 for (i = 0; i < nr_pages; i++, page++)
1390 __free_pages_boot_core(page, 0);
1391 }
1392
1393 /* Completion tracking for deferred_init_memmap() threads */
1394 static atomic_t pgdat_init_n_undone __initdata;
1395 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1396
1397 static inline void __init pgdat_init_report_one_done(void)
1398 {
1399 if (atomic_dec_and_test(&pgdat_init_n_undone))
1400 complete(&pgdat_init_all_done_comp);
1401 }
1402
1403 /* Initialise remaining memory on a node */
1404 static int __init deferred_init_memmap(void *data)
1405 {
1406 pg_data_t *pgdat = data;
1407 int nid = pgdat->node_id;
1408 struct mminit_pfnnid_cache nid_init_state = { };
1409 unsigned long start = jiffies;
1410 unsigned long nr_pages = 0;
1411 unsigned long walk_start, walk_end;
1412 int i, zid;
1413 struct zone *zone;
1414 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1415 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1416
1417 if (first_init_pfn == ULONG_MAX) {
1418 pgdat_init_report_one_done();
1419 return 0;
1420 }
1421
1422 /* Bind memory initialisation thread to a local node if possible */
1423 if (!cpumask_empty(cpumask))
1424 set_cpus_allowed_ptr(current, cpumask);
1425
1426 /* Sanity check boundaries */
1427 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1428 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1429 pgdat->first_deferred_pfn = ULONG_MAX;
1430
1431 /* Only the highest zone is deferred so find it */
1432 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1433 zone = pgdat->node_zones + zid;
1434 if (first_init_pfn < zone_end_pfn(zone))
1435 break;
1436 }
1437
1438 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1439 unsigned long pfn, end_pfn;
1440 struct page *page = NULL;
1441 struct page *free_base_page = NULL;
1442 unsigned long free_base_pfn = 0;
1443 int nr_to_free = 0;
1444
1445 end_pfn = min(walk_end, zone_end_pfn(zone));
1446 pfn = first_init_pfn;
1447 if (pfn < walk_start)
1448 pfn = walk_start;
1449 if (pfn < zone->zone_start_pfn)
1450 pfn = zone->zone_start_pfn;
1451
1452 for (; pfn < end_pfn; pfn++) {
1453 if (!pfn_valid_within(pfn))
1454 goto free_range;
1455
1456 /*
1457 * Ensure pfn_valid is checked every
1458 * MAX_ORDER_NR_PAGES for memory holes
1459 */
1460 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1461 if (!pfn_valid(pfn)) {
1462 page = NULL;
1463 goto free_range;
1464 }
1465 }
1466
1467 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1468 page = NULL;
1469 goto free_range;
1470 }
1471
1472 /* Minimise pfn page lookups and scheduler checks */
1473 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1474 page++;
1475 } else {
1476 nr_pages += nr_to_free;
1477 deferred_free_range(free_base_page,
1478 free_base_pfn, nr_to_free);
1479 free_base_page = NULL;
1480 free_base_pfn = nr_to_free = 0;
1481
1482 page = pfn_to_page(pfn);
1483 cond_resched();
1484 }
1485
1486 if (page->flags) {
1487 VM_BUG_ON(page_zone(page) != zone);
1488 goto free_range;
1489 }
1490
1491 __init_single_page(page, pfn, zid, nid);
1492 if (!free_base_page) {
1493 free_base_page = page;
1494 free_base_pfn = pfn;
1495 nr_to_free = 0;
1496 }
1497 nr_to_free++;
1498
1499 /* Where possible, batch up pages for a single free */
1500 continue;
1501 free_range:
1502 /* Free the current block of pages to allocator */
1503 nr_pages += nr_to_free;
1504 deferred_free_range(free_base_page, free_base_pfn,
1505 nr_to_free);
1506 free_base_page = NULL;
1507 free_base_pfn = nr_to_free = 0;
1508 }
1509
1510 first_init_pfn = max(end_pfn, first_init_pfn);
1511 }
1512
1513 /* Sanity check that the next zone really is unpopulated */
1514 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1515
1516 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1517 jiffies_to_msecs(jiffies - start));
1518
1519 pgdat_init_report_one_done();
1520 return 0;
1521 }
1522 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1523
1524 void __init page_alloc_init_late(void)
1525 {
1526 struct zone *zone;
1527
1528 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1529 int nid;
1530
1531 /* There will be num_node_state(N_MEMORY) threads */
1532 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1533 for_each_node_state(nid, N_MEMORY) {
1534 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1535 }
1536
1537 /* Block until all are initialised */
1538 wait_for_completion(&pgdat_init_all_done_comp);
1539
1540 /* Reinit limits that are based on free pages after the kernel is up */
1541 files_maxfiles_init();
1542 #endif
1543
1544 for_each_populated_zone(zone)
1545 set_zone_contiguous(zone);
1546 }
1547
1548 #ifdef CONFIG_CMA
1549 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1550 void __init init_cma_reserved_pageblock(struct page *page)
1551 {
1552 unsigned i = pageblock_nr_pages;
1553 struct page *p = page;
1554
1555 do {
1556 __ClearPageReserved(p);
1557 set_page_count(p, 0);
1558 } while (++p, --i);
1559
1560 set_pageblock_migratetype(page, MIGRATE_CMA);
1561
1562 if (pageblock_order >= MAX_ORDER) {
1563 i = pageblock_nr_pages;
1564 p = page;
1565 do {
1566 set_page_refcounted(p);
1567 __free_pages(p, MAX_ORDER - 1);
1568 p += MAX_ORDER_NR_PAGES;
1569 } while (i -= MAX_ORDER_NR_PAGES);
1570 } else {
1571 set_page_refcounted(page);
1572 __free_pages(page, pageblock_order);
1573 }
1574
1575 adjust_managed_page_count(page, pageblock_nr_pages);
1576 }
1577 #endif
1578
1579 /*
1580 * The order of subdivision here is critical for the IO subsystem.
1581 * Please do not alter this order without good reasons and regression
1582 * testing. Specifically, as large blocks of memory are subdivided,
1583 * the order in which smaller blocks are delivered depends on the order
1584 * they're subdivided in this function. This is the primary factor
1585 * influencing the order in which pages are delivered to the IO
1586 * subsystem according to empirical testing, and this is also justified
1587 * by considering the behavior of a buddy system containing a single
1588 * large block of memory acted on by a series of small allocations.
1589 * This behavior is a critical factor in sglist merging's success.
1590 *
1591 * -- nyc
1592 */
1593 static inline void expand(struct zone *zone, struct page *page,
1594 int low, int high, struct free_area *area,
1595 int migratetype)
1596 {
1597 unsigned long size = 1 << high;
1598
1599 while (high > low) {
1600 area--;
1601 high--;
1602 size >>= 1;
1603 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1604
1605 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1606 debug_guardpage_enabled() &&
1607 high < debug_guardpage_minorder()) {
1608 /*
1609 * Mark as guard pages (or page), that will allow to
1610 * merge back to allocator when buddy will be freed.
1611 * Corresponding page table entries will not be touched,
1612 * pages will stay not present in virtual address space
1613 */
1614 set_page_guard(zone, &page[size], high, migratetype);
1615 continue;
1616 }
1617 list_add(&page[size].lru, &area->free_list[migratetype]);
1618 area->nr_free++;
1619 set_page_order(&page[size], high);
1620 }
1621 }
1622
1623 /*
1624 * This page is about to be returned from the page allocator
1625 */
1626 static inline int check_new_page(struct page *page)
1627 {
1628 const char *bad_reason;
1629 unsigned long bad_flags;
1630
1631 if (page_expected_state(page, PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))
1632 return 0;
1633
1634 bad_reason = NULL;
1635 bad_flags = 0;
1636 if (unlikely(atomic_read(&page->_mapcount) != -1))
1637 bad_reason = "nonzero mapcount";
1638 if (unlikely(page->mapping != NULL))
1639 bad_reason = "non-NULL mapping";
1640 if (unlikely(page_ref_count(page) != 0))
1641 bad_reason = "nonzero _count";
1642 if (unlikely(page->flags & __PG_HWPOISON)) {
1643 bad_reason = "HWPoisoned (hardware-corrupted)";
1644 bad_flags = __PG_HWPOISON;
1645 }
1646 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1647 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1648 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1649 }
1650 #ifdef CONFIG_MEMCG
1651 if (unlikely(page->mem_cgroup))
1652 bad_reason = "page still charged to cgroup";
1653 #endif
1654 if (unlikely(bad_reason)) {
1655 bad_page(page, bad_reason, bad_flags);
1656 return 1;
1657 }
1658 return 0;
1659 }
1660
1661 static inline bool free_pages_prezeroed(bool poisoned)
1662 {
1663 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1664 page_poisoning_enabled() && poisoned;
1665 }
1666
1667 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1668 unsigned int alloc_flags)
1669 {
1670 int i;
1671 bool poisoned = true;
1672
1673 for (i = 0; i < (1 << order); i++) {
1674 struct page *p = page + i;
1675 if (unlikely(check_new_page(p)))
1676 return 1;
1677 if (poisoned)
1678 poisoned &= page_is_poisoned(p);
1679 }
1680
1681 set_page_private(page, 0);
1682 set_page_refcounted(page);
1683
1684 arch_alloc_page(page, order);
1685 kernel_map_pages(page, 1 << order, 1);
1686 kernel_poison_pages(page, 1 << order, 1);
1687 kasan_alloc_pages(page, order);
1688
1689 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1690 for (i = 0; i < (1 << order); i++)
1691 clear_highpage(page + i);
1692
1693 if (order && (gfp_flags & __GFP_COMP))
1694 prep_compound_page(page, order);
1695
1696 set_page_owner(page, order, gfp_flags);
1697
1698 /*
1699 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1700 * allocate the page. The expectation is that the caller is taking
1701 * steps that will free more memory. The caller should avoid the page
1702 * being used for !PFMEMALLOC purposes.
1703 */
1704 if (alloc_flags & ALLOC_NO_WATERMARKS)
1705 set_page_pfmemalloc(page);
1706 else
1707 clear_page_pfmemalloc(page);
1708
1709 return 0;
1710 }
1711
1712 /*
1713 * Go through the free lists for the given migratetype and remove
1714 * the smallest available page from the freelists
1715 */
1716 static inline
1717 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1718 int migratetype)
1719 {
1720 unsigned int current_order;
1721 struct free_area *area;
1722 struct page *page;
1723
1724 /* Find a page of the appropriate size in the preferred list */
1725 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1726 area = &(zone->free_area[current_order]);
1727 page = list_first_entry_or_null(&area->free_list[migratetype],
1728 struct page, lru);
1729 if (!page)
1730 continue;
1731 list_del(&page->lru);
1732 rmv_page_order(page);
1733 area->nr_free--;
1734 expand(zone, page, order, current_order, area, migratetype);
1735 set_pcppage_migratetype(page, migratetype);
1736 return page;
1737 }
1738
1739 return NULL;
1740 }
1741
1742
1743 /*
1744 * This array describes the order lists are fallen back to when
1745 * the free lists for the desirable migrate type are depleted
1746 */
1747 static int fallbacks[MIGRATE_TYPES][4] = {
1748 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1749 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1750 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1751 #ifdef CONFIG_CMA
1752 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1753 #endif
1754 #ifdef CONFIG_MEMORY_ISOLATION
1755 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1756 #endif
1757 };
1758
1759 #ifdef CONFIG_CMA
1760 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1761 unsigned int order)
1762 {
1763 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1764 }
1765 #else
1766 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1767 unsigned int order) { return NULL; }
1768 #endif
1769
1770 /*
1771 * Move the free pages in a range to the free lists of the requested type.
1772 * Note that start_page and end_pages are not aligned on a pageblock
1773 * boundary. If alignment is required, use move_freepages_block()
1774 */
1775 int move_freepages(struct zone *zone,
1776 struct page *start_page, struct page *end_page,
1777 int migratetype)
1778 {
1779 struct page *page;
1780 unsigned int order;
1781 int pages_moved = 0;
1782
1783 #ifndef CONFIG_HOLES_IN_ZONE
1784 /*
1785 * page_zone is not safe to call in this context when
1786 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1787 * anyway as we check zone boundaries in move_freepages_block().
1788 * Remove at a later date when no bug reports exist related to
1789 * grouping pages by mobility
1790 */
1791 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1792 #endif
1793
1794 for (page = start_page; page <= end_page;) {
1795 /* Make sure we are not inadvertently changing nodes */
1796 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1797
1798 if (!pfn_valid_within(page_to_pfn(page))) {
1799 page++;
1800 continue;
1801 }
1802
1803 if (!PageBuddy(page)) {
1804 page++;
1805 continue;
1806 }
1807
1808 order = page_order(page);
1809 list_move(&page->lru,
1810 &zone->free_area[order].free_list[migratetype]);
1811 page += 1 << order;
1812 pages_moved += 1 << order;
1813 }
1814
1815 return pages_moved;
1816 }
1817
1818 int move_freepages_block(struct zone *zone, struct page *page,
1819 int migratetype)
1820 {
1821 unsigned long start_pfn, end_pfn;
1822 struct page *start_page, *end_page;
1823
1824 start_pfn = page_to_pfn(page);
1825 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1826 start_page = pfn_to_page(start_pfn);
1827 end_page = start_page + pageblock_nr_pages - 1;
1828 end_pfn = start_pfn + pageblock_nr_pages - 1;
1829
1830 /* Do not cross zone boundaries */
1831 if (!zone_spans_pfn(zone, start_pfn))
1832 start_page = page;
1833 if (!zone_spans_pfn(zone, end_pfn))
1834 return 0;
1835
1836 return move_freepages(zone, start_page, end_page, migratetype);
1837 }
1838
1839 static void change_pageblock_range(struct page *pageblock_page,
1840 int start_order, int migratetype)
1841 {
1842 int nr_pageblocks = 1 << (start_order - pageblock_order);
1843
1844 while (nr_pageblocks--) {
1845 set_pageblock_migratetype(pageblock_page, migratetype);
1846 pageblock_page += pageblock_nr_pages;
1847 }
1848 }
1849
1850 /*
1851 * When we are falling back to another migratetype during allocation, try to
1852 * steal extra free pages from the same pageblocks to satisfy further
1853 * allocations, instead of polluting multiple pageblocks.
1854 *
1855 * If we are stealing a relatively large buddy page, it is likely there will
1856 * be more free pages in the pageblock, so try to steal them all. For
1857 * reclaimable and unmovable allocations, we steal regardless of page size,
1858 * as fragmentation caused by those allocations polluting movable pageblocks
1859 * is worse than movable allocations stealing from unmovable and reclaimable
1860 * pageblocks.
1861 */
1862 static bool can_steal_fallback(unsigned int order, int start_mt)
1863 {
1864 /*
1865 * Leaving this order check is intended, although there is
1866 * relaxed order check in next check. The reason is that
1867 * we can actually steal whole pageblock if this condition met,
1868 * but, below check doesn't guarantee it and that is just heuristic
1869 * so could be changed anytime.
1870 */
1871 if (order >= pageblock_order)
1872 return true;
1873
1874 if (order >= pageblock_order / 2 ||
1875 start_mt == MIGRATE_RECLAIMABLE ||
1876 start_mt == MIGRATE_UNMOVABLE ||
1877 page_group_by_mobility_disabled)
1878 return true;
1879
1880 return false;
1881 }
1882
1883 /*
1884 * This function implements actual steal behaviour. If order is large enough,
1885 * we can steal whole pageblock. If not, we first move freepages in this
1886 * pageblock and check whether half of pages are moved or not. If half of
1887 * pages are moved, we can change migratetype of pageblock and permanently
1888 * use it's pages as requested migratetype in the future.
1889 */
1890 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1891 int start_type)
1892 {
1893 unsigned int current_order = page_order(page);
1894 int pages;
1895
1896 /* Take ownership for orders >= pageblock_order */
1897 if (current_order >= pageblock_order) {
1898 change_pageblock_range(page, current_order, start_type);
1899 return;
1900 }
1901
1902 pages = move_freepages_block(zone, page, start_type);
1903
1904 /* Claim the whole block if over half of it is free */
1905 if (pages >= (1 << (pageblock_order-1)) ||
1906 page_group_by_mobility_disabled)
1907 set_pageblock_migratetype(page, start_type);
1908 }
1909
1910 /*
1911 * Check whether there is a suitable fallback freepage with requested order.
1912 * If only_stealable is true, this function returns fallback_mt only if
1913 * we can steal other freepages all together. This would help to reduce
1914 * fragmentation due to mixed migratetype pages in one pageblock.
1915 */
1916 int find_suitable_fallback(struct free_area *area, unsigned int order,
1917 int migratetype, bool only_stealable, bool *can_steal)
1918 {
1919 int i;
1920 int fallback_mt;
1921
1922 if (area->nr_free == 0)
1923 return -1;
1924
1925 *can_steal = false;
1926 for (i = 0;; i++) {
1927 fallback_mt = fallbacks[migratetype][i];
1928 if (fallback_mt == MIGRATE_TYPES)
1929 break;
1930
1931 if (list_empty(&area->free_list[fallback_mt]))
1932 continue;
1933
1934 if (can_steal_fallback(order, migratetype))
1935 *can_steal = true;
1936
1937 if (!only_stealable)
1938 return fallback_mt;
1939
1940 if (*can_steal)
1941 return fallback_mt;
1942 }
1943
1944 return -1;
1945 }
1946
1947 /*
1948 * Reserve a pageblock for exclusive use of high-order atomic allocations if
1949 * there are no empty page blocks that contain a page with a suitable order
1950 */
1951 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1952 unsigned int alloc_order)
1953 {
1954 int mt;
1955 unsigned long max_managed, flags;
1956
1957 /*
1958 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1959 * Check is race-prone but harmless.
1960 */
1961 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1962 if (zone->nr_reserved_highatomic >= max_managed)
1963 return;
1964
1965 spin_lock_irqsave(&zone->lock, flags);
1966
1967 /* Recheck the nr_reserved_highatomic limit under the lock */
1968 if (zone->nr_reserved_highatomic >= max_managed)
1969 goto out_unlock;
1970
1971 /* Yoink! */
1972 mt = get_pageblock_migratetype(page);
1973 if (mt != MIGRATE_HIGHATOMIC &&
1974 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1975 zone->nr_reserved_highatomic += pageblock_nr_pages;
1976 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1977 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1978 }
1979
1980 out_unlock:
1981 spin_unlock_irqrestore(&zone->lock, flags);
1982 }
1983
1984 /*
1985 * Used when an allocation is about to fail under memory pressure. This
1986 * potentially hurts the reliability of high-order allocations when under
1987 * intense memory pressure but failed atomic allocations should be easier
1988 * to recover from than an OOM.
1989 */
1990 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1991 {
1992 struct zonelist *zonelist = ac->zonelist;
1993 unsigned long flags;
1994 struct zoneref *z;
1995 struct zone *zone;
1996 struct page *page;
1997 int order;
1998
1999 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2000 ac->nodemask) {
2001 /* Preserve at least one pageblock */
2002 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2003 continue;
2004
2005 spin_lock_irqsave(&zone->lock, flags);
2006 for (order = 0; order < MAX_ORDER; order++) {
2007 struct free_area *area = &(zone->free_area[order]);
2008
2009 page = list_first_entry_or_null(
2010 &area->free_list[MIGRATE_HIGHATOMIC],
2011 struct page, lru);
2012 if (!page)
2013 continue;
2014
2015 /*
2016 * It should never happen but changes to locking could
2017 * inadvertently allow a per-cpu drain to add pages
2018 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2019 * and watch for underflows.
2020 */
2021 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2022 zone->nr_reserved_highatomic);
2023
2024 /*
2025 * Convert to ac->migratetype and avoid the normal
2026 * pageblock stealing heuristics. Minimally, the caller
2027 * is doing the work and needs the pages. More
2028 * importantly, if the block was always converted to
2029 * MIGRATE_UNMOVABLE or another type then the number
2030 * of pageblocks that cannot be completely freed
2031 * may increase.
2032 */
2033 set_pageblock_migratetype(page, ac->migratetype);
2034 move_freepages_block(zone, page, ac->migratetype);
2035 spin_unlock_irqrestore(&zone->lock, flags);
2036 return;
2037 }
2038 spin_unlock_irqrestore(&zone->lock, flags);
2039 }
2040 }
2041
2042 /* Remove an element from the buddy allocator from the fallback list */
2043 static inline struct page *
2044 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2045 {
2046 struct free_area *area;
2047 unsigned int current_order;
2048 struct page *page;
2049 int fallback_mt;
2050 bool can_steal;
2051
2052 /* Find the largest possible block of pages in the other list */
2053 for (current_order = MAX_ORDER-1;
2054 current_order >= order && current_order <= MAX_ORDER-1;
2055 --current_order) {
2056 area = &(zone->free_area[current_order]);
2057 fallback_mt = find_suitable_fallback(area, current_order,
2058 start_migratetype, false, &can_steal);
2059 if (fallback_mt == -1)
2060 continue;
2061
2062 page = list_first_entry(&area->free_list[fallback_mt],
2063 struct page, lru);
2064 if (can_steal)
2065 steal_suitable_fallback(zone, page, start_migratetype);
2066
2067 /* Remove the page from the freelists */
2068 area->nr_free--;
2069 list_del(&page->lru);
2070 rmv_page_order(page);
2071
2072 expand(zone, page, order, current_order, area,
2073 start_migratetype);
2074 /*
2075 * The pcppage_migratetype may differ from pageblock's
2076 * migratetype depending on the decisions in
2077 * find_suitable_fallback(). This is OK as long as it does not
2078 * differ for MIGRATE_CMA pageblocks. Those can be used as
2079 * fallback only via special __rmqueue_cma_fallback() function
2080 */
2081 set_pcppage_migratetype(page, start_migratetype);
2082
2083 trace_mm_page_alloc_extfrag(page, order, current_order,
2084 start_migratetype, fallback_mt);
2085
2086 return page;
2087 }
2088
2089 return NULL;
2090 }
2091
2092 /*
2093 * Do the hard work of removing an element from the buddy allocator.
2094 * Call me with the zone->lock already held.
2095 */
2096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2097 int migratetype)
2098 {
2099 struct page *page;
2100
2101 page = __rmqueue_smallest(zone, order, migratetype);
2102 if (unlikely(!page)) {
2103 if (migratetype == MIGRATE_MOVABLE)
2104 page = __rmqueue_cma_fallback(zone, order);
2105
2106 if (!page)
2107 page = __rmqueue_fallback(zone, order, migratetype);
2108 }
2109
2110 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2111 return page;
2112 }
2113
2114 /*
2115 * Obtain a specified number of elements from the buddy allocator, all under
2116 * a single hold of the lock, for efficiency. Add them to the supplied list.
2117 * Returns the number of new pages which were placed at *list.
2118 */
2119 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2120 unsigned long count, struct list_head *list,
2121 int migratetype, bool cold)
2122 {
2123 int i;
2124
2125 spin_lock(&zone->lock);
2126 for (i = 0; i < count; ++i) {
2127 struct page *page = __rmqueue(zone, order, migratetype);
2128 if (unlikely(page == NULL))
2129 break;
2130
2131 /*
2132 * Split buddy pages returned by expand() are received here
2133 * in physical page order. The page is added to the callers and
2134 * list and the list head then moves forward. From the callers
2135 * perspective, the linked list is ordered by page number in
2136 * some conditions. This is useful for IO devices that can
2137 * merge IO requests if the physical pages are ordered
2138 * properly.
2139 */
2140 if (likely(!cold))
2141 list_add(&page->lru, list);
2142 else
2143 list_add_tail(&page->lru, list);
2144 list = &page->lru;
2145 if (is_migrate_cma(get_pcppage_migratetype(page)))
2146 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2147 -(1 << order));
2148 }
2149 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2150 spin_unlock(&zone->lock);
2151 return i;
2152 }
2153
2154 #ifdef CONFIG_NUMA
2155 /*
2156 * Called from the vmstat counter updater to drain pagesets of this
2157 * currently executing processor on remote nodes after they have
2158 * expired.
2159 *
2160 * Note that this function must be called with the thread pinned to
2161 * a single processor.
2162 */
2163 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2164 {
2165 unsigned long flags;
2166 int to_drain, batch;
2167
2168 local_irq_save(flags);
2169 batch = READ_ONCE(pcp->batch);
2170 to_drain = min(pcp->count, batch);
2171 if (to_drain > 0) {
2172 free_pcppages_bulk(zone, to_drain, pcp);
2173 pcp->count -= to_drain;
2174 }
2175 local_irq_restore(flags);
2176 }
2177 #endif
2178
2179 /*
2180 * Drain pcplists of the indicated processor and zone.
2181 *
2182 * The processor must either be the current processor and the
2183 * thread pinned to the current processor or a processor that
2184 * is not online.
2185 */
2186 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2187 {
2188 unsigned long flags;
2189 struct per_cpu_pageset *pset;
2190 struct per_cpu_pages *pcp;
2191
2192 local_irq_save(flags);
2193 pset = per_cpu_ptr(zone->pageset, cpu);
2194
2195 pcp = &pset->pcp;
2196 if (pcp->count) {
2197 free_pcppages_bulk(zone, pcp->count, pcp);
2198 pcp->count = 0;
2199 }
2200 local_irq_restore(flags);
2201 }
2202
2203 /*
2204 * Drain pcplists of all zones on the indicated processor.
2205 *
2206 * The processor must either be the current processor and the
2207 * thread pinned to the current processor or a processor that
2208 * is not online.
2209 */
2210 static void drain_pages(unsigned int cpu)
2211 {
2212 struct zone *zone;
2213
2214 for_each_populated_zone(zone) {
2215 drain_pages_zone(cpu, zone);
2216 }
2217 }
2218
2219 /*
2220 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2221 *
2222 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2223 * the single zone's pages.
2224 */
2225 void drain_local_pages(struct zone *zone)
2226 {
2227 int cpu = smp_processor_id();
2228
2229 if (zone)
2230 drain_pages_zone(cpu, zone);
2231 else
2232 drain_pages(cpu);
2233 }
2234
2235 /*
2236 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2237 *
2238 * When zone parameter is non-NULL, spill just the single zone's pages.
2239 *
2240 * Note that this code is protected against sending an IPI to an offline
2241 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2242 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2243 * nothing keeps CPUs from showing up after we populated the cpumask and
2244 * before the call to on_each_cpu_mask().
2245 */
2246 void drain_all_pages(struct zone *zone)
2247 {
2248 int cpu;
2249
2250 /*
2251 * Allocate in the BSS so we wont require allocation in
2252 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2253 */
2254 static cpumask_t cpus_with_pcps;
2255
2256 /*
2257 * We don't care about racing with CPU hotplug event
2258 * as offline notification will cause the notified
2259 * cpu to drain that CPU pcps and on_each_cpu_mask
2260 * disables preemption as part of its processing
2261 */
2262 for_each_online_cpu(cpu) {
2263 struct per_cpu_pageset *pcp;
2264 struct zone *z;
2265 bool has_pcps = false;
2266
2267 if (zone) {
2268 pcp = per_cpu_ptr(zone->pageset, cpu);
2269 if (pcp->pcp.count)
2270 has_pcps = true;
2271 } else {
2272 for_each_populated_zone(z) {
2273 pcp = per_cpu_ptr(z->pageset, cpu);
2274 if (pcp->pcp.count) {
2275 has_pcps = true;
2276 break;
2277 }
2278 }
2279 }
2280
2281 if (has_pcps)
2282 cpumask_set_cpu(cpu, &cpus_with_pcps);
2283 else
2284 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2285 }
2286 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2287 zone, 1);
2288 }
2289
2290 #ifdef CONFIG_HIBERNATION
2291
2292 void mark_free_pages(struct zone *zone)
2293 {
2294 unsigned long pfn, max_zone_pfn;
2295 unsigned long flags;
2296 unsigned int order, t;
2297 struct page *page;
2298
2299 if (zone_is_empty(zone))
2300 return;
2301
2302 spin_lock_irqsave(&zone->lock, flags);
2303
2304 max_zone_pfn = zone_end_pfn(zone);
2305 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2306 if (pfn_valid(pfn)) {
2307 page = pfn_to_page(pfn);
2308
2309 if (page_zone(page) != zone)
2310 continue;
2311
2312 if (!swsusp_page_is_forbidden(page))
2313 swsusp_unset_page_free(page);
2314 }
2315
2316 for_each_migratetype_order(order, t) {
2317 list_for_each_entry(page,
2318 &zone->free_area[order].free_list[t], lru) {
2319 unsigned long i;
2320
2321 pfn = page_to_pfn(page);
2322 for (i = 0; i < (1UL << order); i++)
2323 swsusp_set_page_free(pfn_to_page(pfn + i));
2324 }
2325 }
2326 spin_unlock_irqrestore(&zone->lock, flags);
2327 }
2328 #endif /* CONFIG_PM */
2329
2330 /*
2331 * Free a 0-order page
2332 * cold == true ? free a cold page : free a hot page
2333 */
2334 void free_hot_cold_page(struct page *page, bool cold)
2335 {
2336 struct zone *zone = page_zone(page);
2337 struct per_cpu_pages *pcp;
2338 unsigned long flags;
2339 unsigned long pfn = page_to_pfn(page);
2340 int migratetype;
2341
2342 if (!free_pages_prepare(page, 0))
2343 return;
2344
2345 migratetype = get_pfnblock_migratetype(page, pfn);
2346 set_pcppage_migratetype(page, migratetype);
2347 local_irq_save(flags);
2348 __count_vm_event(PGFREE);
2349
2350 /*
2351 * We only track unmovable, reclaimable and movable on pcp lists.
2352 * Free ISOLATE pages back to the allocator because they are being
2353 * offlined but treat RESERVE as movable pages so we can get those
2354 * areas back if necessary. Otherwise, we may have to free
2355 * excessively into the page allocator
2356 */
2357 if (migratetype >= MIGRATE_PCPTYPES) {
2358 if (unlikely(is_migrate_isolate(migratetype))) {
2359 free_one_page(zone, page, pfn, 0, migratetype);
2360 goto out;
2361 }
2362 migratetype = MIGRATE_MOVABLE;
2363 }
2364
2365 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2366 if (!cold)
2367 list_add(&page->lru, &pcp->lists[migratetype]);
2368 else
2369 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2370 pcp->count++;
2371 if (pcp->count >= pcp->high) {
2372 unsigned long batch = READ_ONCE(pcp->batch);
2373 free_pcppages_bulk(zone, batch, pcp);
2374 pcp->count -= batch;
2375 }
2376
2377 out:
2378 local_irq_restore(flags);
2379 }
2380
2381 /*
2382 * Free a list of 0-order pages
2383 */
2384 void free_hot_cold_page_list(struct list_head *list, bool cold)
2385 {
2386 struct page *page, *next;
2387
2388 list_for_each_entry_safe(page, next, list, lru) {
2389 trace_mm_page_free_batched(page, cold);
2390 free_hot_cold_page(page, cold);
2391 }
2392 }
2393
2394 /*
2395 * split_page takes a non-compound higher-order page, and splits it into
2396 * n (1<<order) sub-pages: page[0..n]
2397 * Each sub-page must be freed individually.
2398 *
2399 * Note: this is probably too low level an operation for use in drivers.
2400 * Please consult with lkml before using this in your driver.
2401 */
2402 void split_page(struct page *page, unsigned int order)
2403 {
2404 int i;
2405 gfp_t gfp_mask;
2406
2407 VM_BUG_ON_PAGE(PageCompound(page), page);
2408 VM_BUG_ON_PAGE(!page_count(page), page);
2409
2410 #ifdef CONFIG_KMEMCHECK
2411 /*
2412 * Split shadow pages too, because free(page[0]) would
2413 * otherwise free the whole shadow.
2414 */
2415 if (kmemcheck_page_is_tracked(page))
2416 split_page(virt_to_page(page[0].shadow), order);
2417 #endif
2418
2419 gfp_mask = get_page_owner_gfp(page);
2420 set_page_owner(page, 0, gfp_mask);
2421 for (i = 1; i < (1 << order); i++) {
2422 set_page_refcounted(page + i);
2423 set_page_owner(page + i, 0, gfp_mask);
2424 }
2425 }
2426 EXPORT_SYMBOL_GPL(split_page);
2427
2428 int __isolate_free_page(struct page *page, unsigned int order)
2429 {
2430 unsigned long watermark;
2431 struct zone *zone;
2432 int mt;
2433
2434 BUG_ON(!PageBuddy(page));
2435
2436 zone = page_zone(page);
2437 mt = get_pageblock_migratetype(page);
2438
2439 if (!is_migrate_isolate(mt)) {
2440 /* Obey watermarks as if the page was being allocated */
2441 watermark = low_wmark_pages(zone) + (1 << order);
2442 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2443 return 0;
2444
2445 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2446 }
2447
2448 /* Remove page from free list */
2449 list_del(&page->lru);
2450 zone->free_area[order].nr_free--;
2451 rmv_page_order(page);
2452
2453 set_page_owner(page, order, __GFP_MOVABLE);
2454
2455 /* Set the pageblock if the isolated page is at least a pageblock */
2456 if (order >= pageblock_order - 1) {
2457 struct page *endpage = page + (1 << order) - 1;
2458 for (; page < endpage; page += pageblock_nr_pages) {
2459 int mt = get_pageblock_migratetype(page);
2460 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2461 set_pageblock_migratetype(page,
2462 MIGRATE_MOVABLE);
2463 }
2464 }
2465
2466
2467 return 1UL << order;
2468 }
2469
2470 /*
2471 * Similar to split_page except the page is already free. As this is only
2472 * being used for migration, the migratetype of the block also changes.
2473 * As this is called with interrupts disabled, the caller is responsible
2474 * for calling arch_alloc_page() and kernel_map_page() after interrupts
2475 * are enabled.
2476 *
2477 * Note: this is probably too low level an operation for use in drivers.
2478 * Please consult with lkml before using this in your driver.
2479 */
2480 int split_free_page(struct page *page)
2481 {
2482 unsigned int order;
2483 int nr_pages;
2484
2485 order = page_order(page);
2486
2487 nr_pages = __isolate_free_page(page, order);
2488 if (!nr_pages)
2489 return 0;
2490
2491 /* Split into individual pages */
2492 set_page_refcounted(page);
2493 split_page(page, order);
2494 return nr_pages;
2495 }
2496
2497 /*
2498 * Update NUMA hit/miss statistics
2499 *
2500 * Must be called with interrupts disabled.
2501 *
2502 * When __GFP_OTHER_NODE is set assume the node of the preferred
2503 * zone is the local node. This is useful for daemons who allocate
2504 * memory on behalf of other processes.
2505 */
2506 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2507 gfp_t flags)
2508 {
2509 #ifdef CONFIG_NUMA
2510 int local_nid = numa_node_id();
2511 enum zone_stat_item local_stat = NUMA_LOCAL;
2512
2513 if (unlikely(flags & __GFP_OTHER_NODE)) {
2514 local_stat = NUMA_OTHER;
2515 local_nid = preferred_zone->node;
2516 }
2517
2518 if (z->node == local_nid) {
2519 __inc_zone_state(z, NUMA_HIT);
2520 __inc_zone_state(z, local_stat);
2521 } else {
2522 __inc_zone_state(z, NUMA_MISS);
2523 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2524 }
2525 #endif
2526 }
2527
2528 /*
2529 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2530 */
2531 static inline
2532 struct page *buffered_rmqueue(struct zone *preferred_zone,
2533 struct zone *zone, unsigned int order,
2534 gfp_t gfp_flags, unsigned int alloc_flags,
2535 int migratetype)
2536 {
2537 unsigned long flags;
2538 struct page *page;
2539 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2540
2541 if (likely(order == 0)) {
2542 struct per_cpu_pages *pcp;
2543 struct list_head *list;
2544
2545 local_irq_save(flags);
2546 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2547 list = &pcp->lists[migratetype];
2548 if (list_empty(list)) {
2549 pcp->count += rmqueue_bulk(zone, 0,
2550 pcp->batch, list,
2551 migratetype, cold);
2552 if (unlikely(list_empty(list)))
2553 goto failed;
2554 }
2555
2556 if (cold)
2557 page = list_last_entry(list, struct page, lru);
2558 else
2559 page = list_first_entry(list, struct page, lru);
2560
2561 __dec_zone_state(zone, NR_ALLOC_BATCH);
2562 list_del(&page->lru);
2563 pcp->count--;
2564 } else {
2565 /*
2566 * We most definitely don't want callers attempting to
2567 * allocate greater than order-1 page units with __GFP_NOFAIL.
2568 */
2569 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2570 spin_lock_irqsave(&zone->lock, flags);
2571
2572 page = NULL;
2573 if (alloc_flags & ALLOC_HARDER) {
2574 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2575 if (page)
2576 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2577 }
2578 if (!page)
2579 page = __rmqueue(zone, order, migratetype);
2580 spin_unlock(&zone->lock);
2581 if (!page)
2582 goto failed;
2583 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2584 __mod_zone_freepage_state(zone, -(1 << order),
2585 get_pcppage_migratetype(page));
2586 }
2587
2588 if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2589 !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2590 set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2591
2592 __count_zone_vm_events(PGALLOC, zone, 1 << order);
2593 zone_statistics(preferred_zone, zone, gfp_flags);
2594 local_irq_restore(flags);
2595
2596 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2597 return page;
2598
2599 failed:
2600 local_irq_restore(flags);
2601 return NULL;
2602 }
2603
2604 #ifdef CONFIG_FAIL_PAGE_ALLOC
2605
2606 static struct {
2607 struct fault_attr attr;
2608
2609 bool ignore_gfp_highmem;
2610 bool ignore_gfp_reclaim;
2611 u32 min_order;
2612 } fail_page_alloc = {
2613 .attr = FAULT_ATTR_INITIALIZER,
2614 .ignore_gfp_reclaim = true,
2615 .ignore_gfp_highmem = true,
2616 .min_order = 1,
2617 };
2618
2619 static int __init setup_fail_page_alloc(char *str)
2620 {
2621 return setup_fault_attr(&fail_page_alloc.attr, str);
2622 }
2623 __setup("fail_page_alloc=", setup_fail_page_alloc);
2624
2625 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2626 {
2627 if (order < fail_page_alloc.min_order)
2628 return false;
2629 if (gfp_mask & __GFP_NOFAIL)
2630 return false;
2631 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2632 return false;
2633 if (fail_page_alloc.ignore_gfp_reclaim &&
2634 (gfp_mask & __GFP_DIRECT_RECLAIM))
2635 return false;
2636
2637 return should_fail(&fail_page_alloc.attr, 1 << order);
2638 }
2639
2640 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2641
2642 static int __init fail_page_alloc_debugfs(void)
2643 {
2644 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2645 struct dentry *dir;
2646
2647 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2648 &fail_page_alloc.attr);
2649 if (IS_ERR(dir))
2650 return PTR_ERR(dir);
2651
2652 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2653 &fail_page_alloc.ignore_gfp_reclaim))
2654 goto fail;
2655 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2656 &fail_page_alloc.ignore_gfp_highmem))
2657 goto fail;
2658 if (!debugfs_create_u32("min-order", mode, dir,
2659 &fail_page_alloc.min_order))
2660 goto fail;
2661
2662 return 0;
2663 fail:
2664 debugfs_remove_recursive(dir);
2665
2666 return -ENOMEM;
2667 }
2668
2669 late_initcall(fail_page_alloc_debugfs);
2670
2671 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2672
2673 #else /* CONFIG_FAIL_PAGE_ALLOC */
2674
2675 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2676 {
2677 return false;
2678 }
2679
2680 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2681
2682 /*
2683 * Return true if free base pages are above 'mark'. For high-order checks it
2684 * will return true of the order-0 watermark is reached and there is at least
2685 * one free page of a suitable size. Checking now avoids taking the zone lock
2686 * to check in the allocation paths if no pages are free.
2687 */
2688 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2689 unsigned long mark, int classzone_idx,
2690 unsigned int alloc_flags,
2691 long free_pages)
2692 {
2693 long min = mark;
2694 int o;
2695 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2696
2697 /* free_pages may go negative - that's OK */
2698 free_pages -= (1 << order) - 1;
2699
2700 if (alloc_flags & ALLOC_HIGH)
2701 min -= min / 2;
2702
2703 /*
2704 * If the caller does not have rights to ALLOC_HARDER then subtract
2705 * the high-atomic reserves. This will over-estimate the size of the
2706 * atomic reserve but it avoids a search.
2707 */
2708 if (likely(!alloc_harder))
2709 free_pages -= z->nr_reserved_highatomic;
2710 else
2711 min -= min / 4;
2712
2713 #ifdef CONFIG_CMA
2714 /* If allocation can't use CMA areas don't use free CMA pages */
2715 if (!(alloc_flags & ALLOC_CMA))
2716 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2717 #endif
2718
2719 /*
2720 * Check watermarks for an order-0 allocation request. If these
2721 * are not met, then a high-order request also cannot go ahead
2722 * even if a suitable page happened to be free.
2723 */
2724 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2725 return false;
2726
2727 /* If this is an order-0 request then the watermark is fine */
2728 if (!order)
2729 return true;
2730
2731 /* For a high-order request, check at least one suitable page is free */
2732 for (o = order; o < MAX_ORDER; o++) {
2733 struct free_area *area = &z->free_area[o];
2734 int mt;
2735
2736 if (!area->nr_free)
2737 continue;
2738
2739 if (alloc_harder)
2740 return true;
2741
2742 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2743 if (!list_empty(&area->free_list[mt]))
2744 return true;
2745 }
2746
2747 #ifdef CONFIG_CMA
2748 if ((alloc_flags & ALLOC_CMA) &&
2749 !list_empty(&area->free_list[MIGRATE_CMA])) {
2750 return true;
2751 }
2752 #endif
2753 }
2754 return false;
2755 }
2756
2757 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2758 int classzone_idx, unsigned int alloc_flags)
2759 {
2760 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2761 zone_page_state(z, NR_FREE_PAGES));
2762 }
2763
2764 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2765 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2766 {
2767 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2768 long cma_pages = 0;
2769
2770 #ifdef CONFIG_CMA
2771 /* If allocation can't use CMA areas don't use free CMA pages */
2772 if (!(alloc_flags & ALLOC_CMA))
2773 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2774 #endif
2775
2776 /*
2777 * Fast check for order-0 only. If this fails then the reserves
2778 * need to be calculated. There is a corner case where the check
2779 * passes but only the high-order atomic reserve are free. If
2780 * the caller is !atomic then it'll uselessly search the free
2781 * list. That corner case is then slower but it is harmless.
2782 */
2783 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2784 return true;
2785
2786 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2787 free_pages);
2788 }
2789
2790 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2791 unsigned long mark, int classzone_idx)
2792 {
2793 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2794
2795 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2796 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2797
2798 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2799 free_pages);
2800 }
2801
2802 #ifdef CONFIG_NUMA
2803 static bool zone_local(struct zone *local_zone, struct zone *zone)
2804 {
2805 return local_zone->node == zone->node;
2806 }
2807
2808 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2809 {
2810 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2811 RECLAIM_DISTANCE;
2812 }
2813 #else /* CONFIG_NUMA */
2814 static bool zone_local(struct zone *local_zone, struct zone *zone)
2815 {
2816 return true;
2817 }
2818
2819 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2820 {
2821 return true;
2822 }
2823 #endif /* CONFIG_NUMA */
2824
2825 static void reset_alloc_batches(struct zone *preferred_zone)
2826 {
2827 struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2828
2829 do {
2830 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2831 high_wmark_pages(zone) - low_wmark_pages(zone) -
2832 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2833 clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2834 } while (zone++ != preferred_zone);
2835 }
2836
2837 /*
2838 * get_page_from_freelist goes through the zonelist trying to allocate
2839 * a page.
2840 */
2841 static struct page *
2842 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2843 const struct alloc_context *ac)
2844 {
2845 struct zoneref *z = ac->preferred_zoneref;
2846 struct zone *zone;
2847 bool fair_skipped = false;
2848 bool apply_fair = (alloc_flags & ALLOC_FAIR);
2849
2850 zonelist_scan:
2851 /*
2852 * Scan zonelist, looking for a zone with enough free.
2853 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2854 */
2855 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2856 ac->nodemask) {
2857 struct page *page;
2858 unsigned long mark;
2859
2860 if (cpusets_enabled() &&
2861 (alloc_flags & ALLOC_CPUSET) &&
2862 !__cpuset_zone_allowed(zone, gfp_mask))
2863 continue;
2864 /*
2865 * Distribute pages in proportion to the individual
2866 * zone size to ensure fair page aging. The zone a
2867 * page was allocated in should have no effect on the
2868 * time the page has in memory before being reclaimed.
2869 */
2870 if (apply_fair) {
2871 if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2872 fair_skipped = true;
2873 continue;
2874 }
2875 if (!zone_local(ac->preferred_zoneref->zone, zone)) {
2876 if (fair_skipped)
2877 goto reset_fair;
2878 apply_fair = false;
2879 }
2880 }
2881 /*
2882 * When allocating a page cache page for writing, we
2883 * want to get it from a zone that is within its dirty
2884 * limit, such that no single zone holds more than its
2885 * proportional share of globally allowed dirty pages.
2886 * The dirty limits take into account the zone's
2887 * lowmem reserves and high watermark so that kswapd
2888 * should be able to balance it without having to
2889 * write pages from its LRU list.
2890 *
2891 * This may look like it could increase pressure on
2892 * lower zones by failing allocations in higher zones
2893 * before they are full. But the pages that do spill
2894 * over are limited as the lower zones are protected
2895 * by this very same mechanism. It should not become
2896 * a practical burden to them.
2897 *
2898 * XXX: For now, allow allocations to potentially
2899 * exceed the per-zone dirty limit in the slowpath
2900 * (spread_dirty_pages unset) before going into reclaim,
2901 * which is important when on a NUMA setup the allowed
2902 * zones are together not big enough to reach the
2903 * global limit. The proper fix for these situations
2904 * will require awareness of zones in the
2905 * dirty-throttling and the flusher threads.
2906 */
2907 if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2908 continue;
2909
2910 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2911 if (!zone_watermark_fast(zone, order, mark,
2912 ac_classzone_idx(ac), alloc_flags)) {
2913 int ret;
2914
2915 /* Checked here to keep the fast path fast */
2916 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2917 if (alloc_flags & ALLOC_NO_WATERMARKS)
2918 goto try_this_zone;
2919
2920 if (zone_reclaim_mode == 0 ||
2921 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2922 continue;
2923
2924 ret = zone_reclaim(zone, gfp_mask, order);
2925 switch (ret) {
2926 case ZONE_RECLAIM_NOSCAN:
2927 /* did not scan */
2928 continue;
2929 case ZONE_RECLAIM_FULL:
2930 /* scanned but unreclaimable */
2931 continue;
2932 default:
2933 /* did we reclaim enough */
2934 if (zone_watermark_ok(zone, order, mark,
2935 ac_classzone_idx(ac), alloc_flags))
2936 goto try_this_zone;
2937
2938 continue;
2939 }
2940 }
2941
2942 try_this_zone:
2943 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2944 gfp_mask, alloc_flags, ac->migratetype);
2945 if (page) {
2946 if (prep_new_page(page, order, gfp_mask, alloc_flags))
2947 goto try_this_zone;
2948
2949 /*
2950 * If this is a high-order atomic allocation then check
2951 * if the pageblock should be reserved for the future
2952 */
2953 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2954 reserve_highatomic_pageblock(page, zone, order);
2955
2956 return page;
2957 }
2958 }
2959
2960 /*
2961 * The first pass makes sure allocations are spread fairly within the
2962 * local node. However, the local node might have free pages left
2963 * after the fairness batches are exhausted, and remote zones haven't
2964 * even been considered yet. Try once more without fairness, and
2965 * include remote zones now, before entering the slowpath and waking
2966 * kswapd: prefer spilling to a remote zone over swapping locally.
2967 */
2968 if (fair_skipped) {
2969 reset_fair:
2970 apply_fair = false;
2971 fair_skipped = false;
2972 reset_alloc_batches(ac->preferred_zoneref->zone);
2973 goto zonelist_scan;
2974 }
2975
2976 return NULL;
2977 }
2978
2979 /*
2980 * Large machines with many possible nodes should not always dump per-node
2981 * meminfo in irq context.
2982 */
2983 static inline bool should_suppress_show_mem(void)
2984 {
2985 bool ret = false;
2986
2987 #if NODES_SHIFT > 8
2988 ret = in_interrupt();
2989 #endif
2990 return ret;
2991 }
2992
2993 static DEFINE_RATELIMIT_STATE(nopage_rs,
2994 DEFAULT_RATELIMIT_INTERVAL,
2995 DEFAULT_RATELIMIT_BURST);
2996
2997 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2998 {
2999 unsigned int filter = SHOW_MEM_FILTER_NODES;
3000
3001 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3002 debug_guardpage_minorder() > 0)
3003 return;
3004
3005 /*
3006 * This documents exceptions given to allocations in certain
3007 * contexts that are allowed to allocate outside current's set
3008 * of allowed nodes.
3009 */
3010 if (!(gfp_mask & __GFP_NOMEMALLOC))
3011 if (test_thread_flag(TIF_MEMDIE) ||
3012 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3013 filter &= ~SHOW_MEM_FILTER_NODES;
3014 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3015 filter &= ~SHOW_MEM_FILTER_NODES;
3016
3017 if (fmt) {
3018 struct va_format vaf;
3019 va_list args;
3020
3021 va_start(args, fmt);
3022
3023 vaf.fmt = fmt;
3024 vaf.va = &args;
3025
3026 pr_warn("%pV", &vaf);
3027
3028 va_end(args);
3029 }
3030
3031 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3032 current->comm, order, gfp_mask, &gfp_mask);
3033 dump_stack();
3034 if (!should_suppress_show_mem())
3035 show_mem(filter);
3036 }
3037
3038 static inline struct page *
3039 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3040 const struct alloc_context *ac, unsigned long *did_some_progress)
3041 {
3042 struct oom_control oc = {
3043 .zonelist = ac->zonelist,
3044 .nodemask = ac->nodemask,
3045 .gfp_mask = gfp_mask,
3046 .order = order,
3047 };
3048 struct page *page;
3049
3050 *did_some_progress = 0;
3051
3052 /*
3053 * Acquire the oom lock. If that fails, somebody else is
3054 * making progress for us.
3055 */
3056 if (!mutex_trylock(&oom_lock)) {
3057 *did_some_progress = 1;
3058 schedule_timeout_uninterruptible(1);
3059 return NULL;
3060 }
3061
3062 /*
3063 * Go through the zonelist yet one more time, keep very high watermark
3064 * here, this is only to catch a parallel oom killing, we must fail if
3065 * we're still under heavy pressure.
3066 */
3067 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3068 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3069 if (page)
3070 goto out;
3071
3072 if (!(gfp_mask & __GFP_NOFAIL)) {
3073 /* Coredumps can quickly deplete all memory reserves */
3074 if (current->flags & PF_DUMPCORE)
3075 goto out;
3076 /* The OOM killer will not help higher order allocs */
3077 if (order > PAGE_ALLOC_COSTLY_ORDER)
3078 goto out;
3079 /* The OOM killer does not needlessly kill tasks for lowmem */
3080 if (ac->high_zoneidx < ZONE_NORMAL)
3081 goto out;
3082 if (pm_suspended_storage())
3083 goto out;
3084 /*
3085 * XXX: GFP_NOFS allocations should rather fail than rely on
3086 * other request to make a forward progress.
3087 * We are in an unfortunate situation where out_of_memory cannot
3088 * do much for this context but let's try it to at least get
3089 * access to memory reserved if the current task is killed (see
3090 * out_of_memory). Once filesystems are ready to handle allocation
3091 * failures more gracefully we should just bail out here.
3092 */
3093
3094 /* The OOM killer may not free memory on a specific node */
3095 if (gfp_mask & __GFP_THISNODE)
3096 goto out;
3097 }
3098 /* Exhausted what can be done so it's blamo time */
3099 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3100 *did_some_progress = 1;
3101
3102 if (gfp_mask & __GFP_NOFAIL) {
3103 page = get_page_from_freelist(gfp_mask, order,
3104 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3105 /*
3106 * fallback to ignore cpuset restriction if our nodes
3107 * are depleted
3108 */
3109 if (!page)
3110 page = get_page_from_freelist(gfp_mask, order,
3111 ALLOC_NO_WATERMARKS, ac);
3112 }
3113 }
3114 out:
3115 mutex_unlock(&oom_lock);
3116 return page;
3117 }
3118
3119 #ifdef CONFIG_COMPACTION
3120 /* Try memory compaction for high-order allocations before reclaim */
3121 static struct page *
3122 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3123 unsigned int alloc_flags, const struct alloc_context *ac,
3124 enum migrate_mode mode, int *contended_compaction,
3125 bool *deferred_compaction)
3126 {
3127 unsigned long compact_result;
3128 struct page *page;
3129
3130 if (!order)
3131 return NULL;
3132
3133 current->flags |= PF_MEMALLOC;
3134 compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3135 mode, contended_compaction);
3136 current->flags &= ~PF_MEMALLOC;
3137
3138 switch (compact_result) {
3139 case COMPACT_DEFERRED:
3140 *deferred_compaction = true;
3141 /* fall-through */
3142 case COMPACT_SKIPPED:
3143 return NULL;
3144 default:
3145 break;
3146 }
3147
3148 /*
3149 * At least in one zone compaction wasn't deferred or skipped, so let's
3150 * count a compaction stall
3151 */
3152 count_vm_event(COMPACTSTALL);
3153
3154 page = get_page_from_freelist(gfp_mask, order,
3155 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3156
3157 if (page) {
3158 struct zone *zone = page_zone(page);
3159
3160 zone->compact_blockskip_flush = false;
3161 compaction_defer_reset(zone, order, true);
3162 count_vm_event(COMPACTSUCCESS);
3163 return page;
3164 }
3165
3166 /*
3167 * It's bad if compaction run occurs and fails. The most likely reason
3168 * is that pages exist, but not enough to satisfy watermarks.
3169 */
3170 count_vm_event(COMPACTFAIL);
3171
3172 cond_resched();
3173
3174 return NULL;
3175 }
3176 #else
3177 static inline struct page *
3178 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3179 unsigned int alloc_flags, const struct alloc_context *ac,
3180 enum migrate_mode mode, int *contended_compaction,
3181 bool *deferred_compaction)
3182 {
3183 return NULL;
3184 }
3185 #endif /* CONFIG_COMPACTION */
3186
3187 /* Perform direct synchronous page reclaim */
3188 static int
3189 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3190 const struct alloc_context *ac)
3191 {
3192 struct reclaim_state reclaim_state;
3193 int progress;
3194
3195 cond_resched();
3196
3197 /* We now go into synchronous reclaim */
3198 cpuset_memory_pressure_bump();
3199 current->flags |= PF_MEMALLOC;
3200 lockdep_set_current_reclaim_state(gfp_mask);
3201 reclaim_state.reclaimed_slab = 0;
3202 current->reclaim_state = &reclaim_state;
3203
3204 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3205 ac->nodemask);
3206
3207 current->reclaim_state = NULL;
3208 lockdep_clear_current_reclaim_state();
3209 current->flags &= ~PF_MEMALLOC;
3210
3211 cond_resched();
3212
3213 return progress;
3214 }
3215
3216 /* The really slow allocator path where we enter direct reclaim */
3217 static inline struct page *
3218 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3219 unsigned int alloc_flags, const struct alloc_context *ac,
3220 unsigned long *did_some_progress)
3221 {
3222 struct page *page = NULL;
3223 bool drained = false;
3224
3225 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3226 if (unlikely(!(*did_some_progress)))
3227 return NULL;
3228
3229 retry:
3230 page = get_page_from_freelist(gfp_mask, order,
3231 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3232
3233 /*
3234 * If an allocation failed after direct reclaim, it could be because
3235 * pages are pinned on the per-cpu lists or in high alloc reserves.
3236 * Shrink them them and try again
3237 */
3238 if (!page && !drained) {
3239 unreserve_highatomic_pageblock(ac);
3240 drain_all_pages(NULL);
3241 drained = true;
3242 goto retry;
3243 }
3244
3245 return page;
3246 }
3247
3248 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3249 {
3250 struct zoneref *z;
3251 struct zone *zone;
3252
3253 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3254 ac->high_zoneidx, ac->nodemask)
3255 wakeup_kswapd(zone, order, ac_classzone_idx(ac));
3256 }
3257
3258 static inline unsigned int
3259 gfp_to_alloc_flags(gfp_t gfp_mask)
3260 {
3261 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3262
3263 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3264 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3265
3266 /*
3267 * The caller may dip into page reserves a bit more if the caller
3268 * cannot run direct reclaim, or if the caller has realtime scheduling
3269 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3270 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3271 */
3272 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3273
3274 if (gfp_mask & __GFP_ATOMIC) {
3275 /*
3276 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3277 * if it can't schedule.
3278 */
3279 if (!(gfp_mask & __GFP_NOMEMALLOC))
3280 alloc_flags |= ALLOC_HARDER;
3281 /*
3282 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3283 * comment for __cpuset_node_allowed().
3284 */
3285 alloc_flags &= ~ALLOC_CPUSET;
3286 } else if (unlikely(rt_task(current)) && !in_interrupt())
3287 alloc_flags |= ALLOC_HARDER;
3288
3289 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3290 if (gfp_mask & __GFP_MEMALLOC)
3291 alloc_flags |= ALLOC_NO_WATERMARKS;
3292 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3293 alloc_flags |= ALLOC_NO_WATERMARKS;
3294 else if (!in_interrupt() &&
3295 ((current->flags & PF_MEMALLOC) ||
3296 unlikely(test_thread_flag(TIF_MEMDIE))))
3297 alloc_flags |= ALLOC_NO_WATERMARKS;
3298 }
3299 #ifdef CONFIG_CMA
3300 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3301 alloc_flags |= ALLOC_CMA;
3302 #endif
3303 return alloc_flags;
3304 }
3305
3306 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3307 {
3308 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3309 }
3310
3311 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3312 {
3313 return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3314 }
3315
3316 static inline struct page *
3317 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3318 struct alloc_context *ac)
3319 {
3320 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3321 struct page *page = NULL;
3322 unsigned int alloc_flags;
3323 unsigned long pages_reclaimed = 0;
3324 unsigned long did_some_progress;
3325 enum migrate_mode migration_mode = MIGRATE_ASYNC;
3326 bool deferred_compaction = false;
3327 int contended_compaction = COMPACT_CONTENDED_NONE;
3328
3329 /*
3330 * In the slowpath, we sanity check order to avoid ever trying to
3331 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3332 * be using allocators in order of preference for an area that is
3333 * too large.
3334 */
3335 if (order >= MAX_ORDER) {
3336 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3337 return NULL;
3338 }
3339
3340 /*
3341 * We also sanity check to catch abuse of atomic reserves being used by
3342 * callers that are not in atomic context.
3343 */
3344 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3345 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3346 gfp_mask &= ~__GFP_ATOMIC;
3347
3348 retry:
3349 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3350 wake_all_kswapds(order, ac);
3351
3352 /*
3353 * OK, we're below the kswapd watermark and have kicked background
3354 * reclaim. Now things get more complex, so set up alloc_flags according
3355 * to how we want to proceed.
3356 */
3357 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3358
3359 /* This is the last chance, in general, before the goto nopage. */
3360 page = get_page_from_freelist(gfp_mask, order,
3361 alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3362 if (page)
3363 goto got_pg;
3364
3365 /* Allocate without watermarks if the context allows */
3366 if (alloc_flags & ALLOC_NO_WATERMARKS) {
3367 /*
3368 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3369 * the allocation is high priority and these type of
3370 * allocations are system rather than user orientated
3371 */
3372 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3373 page = get_page_from_freelist(gfp_mask, order,
3374 ALLOC_NO_WATERMARKS, ac);
3375 if (page)
3376 goto got_pg;
3377 }
3378
3379 /* Caller is not willing to reclaim, we can't balance anything */
3380 if (!can_direct_reclaim) {
3381 /*
3382 * All existing users of the __GFP_NOFAIL are blockable, so warn
3383 * of any new users that actually allow this type of allocation
3384 * to fail.
3385 */
3386 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3387 goto nopage;
3388 }
3389
3390 /* Avoid recursion of direct reclaim */
3391 if (current->flags & PF_MEMALLOC) {
3392 /*
3393 * __GFP_NOFAIL request from this context is rather bizarre
3394 * because we cannot reclaim anything and only can loop waiting
3395 * for somebody to do a work for us.
3396 */
3397 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3398 cond_resched();
3399 goto retry;
3400 }
3401 goto nopage;
3402 }
3403
3404 /* Avoid allocations with no watermarks from looping endlessly */
3405 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3406 goto nopage;
3407
3408 /*
3409 * Try direct compaction. The first pass is asynchronous. Subsequent
3410 * attempts after direct reclaim are synchronous
3411 */
3412 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3413 migration_mode,
3414 &contended_compaction,
3415 &deferred_compaction);
3416 if (page)
3417 goto got_pg;
3418
3419 /* Checks for THP-specific high-order allocations */
3420 if (is_thp_gfp_mask(gfp_mask)) {
3421 /*
3422 * If compaction is deferred for high-order allocations, it is
3423 * because sync compaction recently failed. If this is the case
3424 * and the caller requested a THP allocation, we do not want
3425 * to heavily disrupt the system, so we fail the allocation
3426 * instead of entering direct reclaim.
3427 */
3428 if (deferred_compaction)
3429 goto nopage;
3430
3431 /*
3432 * In all zones where compaction was attempted (and not
3433 * deferred or skipped), lock contention has been detected.
3434 * For THP allocation we do not want to disrupt the others
3435 * so we fallback to base pages instead.
3436 */
3437 if (contended_compaction == COMPACT_CONTENDED_LOCK)
3438 goto nopage;
3439
3440 /*
3441 * If compaction was aborted due to need_resched(), we do not
3442 * want to further increase allocation latency, unless it is
3443 * khugepaged trying to collapse.
3444 */
3445 if (contended_compaction == COMPACT_CONTENDED_SCHED
3446 && !(current->flags & PF_KTHREAD))
3447 goto nopage;
3448 }
3449
3450 /*
3451 * It can become very expensive to allocate transparent hugepages at
3452 * fault, so use asynchronous memory compaction for THP unless it is
3453 * khugepaged trying to collapse.
3454 */
3455 if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3456 migration_mode = MIGRATE_SYNC_LIGHT;
3457
3458 /* Try direct reclaim and then allocating */
3459 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3460 &did_some_progress);
3461 if (page)
3462 goto got_pg;
3463
3464 /* Do not loop if specifically requested */
3465 if (gfp_mask & __GFP_NORETRY)
3466 goto noretry;
3467
3468 /* Keep reclaiming pages as long as there is reasonable progress */
3469 pages_reclaimed += did_some_progress;
3470 if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3471 ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3472 /* Wait for some write requests to complete then retry */
3473 wait_iff_congested(ac->preferred_zoneref->zone, BLK_RW_ASYNC, HZ/50);
3474 goto retry;
3475 }
3476
3477 /* Reclaim has failed us, start killing things */
3478 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3479 if (page)
3480 goto got_pg;
3481
3482 /* Retry as long as the OOM killer is making progress */
3483 if (did_some_progress)
3484 goto retry;
3485
3486 noretry:
3487 /*
3488 * High-order allocations do not necessarily loop after
3489 * direct reclaim and reclaim/compaction depends on compaction
3490 * being called after reclaim so call directly if necessary
3491 */
3492 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3493 ac, migration_mode,
3494 &contended_compaction,
3495 &deferred_compaction);
3496 if (page)
3497 goto got_pg;
3498 nopage:
3499 warn_alloc_failed(gfp_mask, order, NULL);
3500 got_pg:
3501 return page;
3502 }
3503
3504 /*
3505 * This is the 'heart' of the zoned buddy allocator.
3506 */
3507 struct page *
3508 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3509 struct zonelist *zonelist, nodemask_t *nodemask)
3510 {
3511 struct page *page;
3512 unsigned int cpuset_mems_cookie;
3513 unsigned int alloc_flags = ALLOC_WMARK_LOW|ALLOC_FAIR;
3514 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3515 struct alloc_context ac = {
3516 .high_zoneidx = gfp_zone(gfp_mask),
3517 .zonelist = zonelist,
3518 .nodemask = nodemask,
3519 .migratetype = gfpflags_to_migratetype(gfp_mask),
3520 };
3521
3522 if (cpusets_enabled()) {
3523 alloc_mask |= __GFP_HARDWALL;
3524 alloc_flags |= ALLOC_CPUSET;
3525 if (!ac.nodemask)
3526 ac.nodemask = &cpuset_current_mems_allowed;
3527 }
3528
3529 gfp_mask &= gfp_allowed_mask;
3530
3531 lockdep_trace_alloc(gfp_mask);
3532
3533 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3534
3535 if (should_fail_alloc_page(gfp_mask, order))
3536 return NULL;
3537
3538 /*
3539 * Check the zones suitable for the gfp_mask contain at least one
3540 * valid zone. It's possible to have an empty zonelist as a result
3541 * of __GFP_THISNODE and a memoryless node
3542 */
3543 if (unlikely(!zonelist->_zonerefs->zone))
3544 return NULL;
3545
3546 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3547 alloc_flags |= ALLOC_CMA;
3548
3549 retry_cpuset:
3550 cpuset_mems_cookie = read_mems_allowed_begin();
3551
3552 /* Dirty zone balancing only done in the fast path */
3553 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3554
3555 /* The preferred zone is used for statistics later */
3556 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3557 ac.high_zoneidx, ac.nodemask);
3558 if (!ac.preferred_zoneref) {
3559 page = NULL;
3560 goto no_zone;
3561 }
3562
3563 /* First allocation attempt */
3564 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3565 if (likely(page))
3566 goto out;
3567
3568 /*
3569 * Runtime PM, block IO and its error handling path can deadlock
3570 * because I/O on the device might not complete.
3571 */
3572 alloc_mask = memalloc_noio_flags(gfp_mask);
3573 ac.spread_dirty_pages = false;
3574
3575 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3576
3577 no_zone:
3578 /*
3579 * When updating a task's mems_allowed, it is possible to race with
3580 * parallel threads in such a way that an allocation can fail while
3581 * the mask is being updated. If a page allocation is about to fail,
3582 * check if the cpuset changed during allocation and if so, retry.
3583 */
3584 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3585 alloc_mask = gfp_mask;
3586 goto retry_cpuset;
3587 }
3588
3589 out:
3590 if (kmemcheck_enabled && page)
3591 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3592
3593 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3594
3595 return page;
3596 }
3597 EXPORT_SYMBOL(__alloc_pages_nodemask);
3598
3599 /*
3600 * Common helper functions.
3601 */
3602 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3603 {
3604 struct page *page;
3605
3606 /*
3607 * __get_free_pages() returns a 32-bit address, which cannot represent
3608 * a highmem page
3609 */
3610 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3611
3612 page = alloc_pages(gfp_mask, order);
3613 if (!page)
3614 return 0;
3615 return (unsigned long) page_address(page);
3616 }
3617 EXPORT_SYMBOL(__get_free_pages);
3618
3619 unsigned long get_zeroed_page(gfp_t gfp_mask)
3620 {
3621 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3622 }
3623 EXPORT_SYMBOL(get_zeroed_page);
3624
3625 void __free_pages(struct page *page, unsigned int order)
3626 {
3627 if (put_page_testzero(page)) {
3628 if (order == 0)
3629 free_hot_cold_page(page, false);
3630 else
3631 __free_pages_ok(page, order);
3632 }
3633 }
3634
3635 EXPORT_SYMBOL(__free_pages);
3636
3637 void free_pages(unsigned long addr, unsigned int order)
3638 {
3639 if (addr != 0) {
3640 VM_BUG_ON(!virt_addr_valid((void *)addr));
3641 __free_pages(virt_to_page((void *)addr), order);
3642 }
3643 }
3644
3645 EXPORT_SYMBOL(free_pages);
3646
3647 /*
3648 * Page Fragment:
3649 * An arbitrary-length arbitrary-offset area of memory which resides
3650 * within a 0 or higher order page. Multiple fragments within that page
3651 * are individually refcounted, in the page's reference counter.
3652 *
3653 * The page_frag functions below provide a simple allocation framework for
3654 * page fragments. This is used by the network stack and network device
3655 * drivers to provide a backing region of memory for use as either an
3656 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3657 */
3658 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3659 gfp_t gfp_mask)
3660 {
3661 struct page *page = NULL;
3662 gfp_t gfp = gfp_mask;
3663
3664 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3665 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3666 __GFP_NOMEMALLOC;
3667 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3668 PAGE_FRAG_CACHE_MAX_ORDER);
3669 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3670 #endif
3671 if (unlikely(!page))
3672 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3673
3674 nc->va = page ? page_address(page) : NULL;
3675
3676 return page;
3677 }
3678
3679 void *__alloc_page_frag(struct page_frag_cache *nc,
3680 unsigned int fragsz, gfp_t gfp_mask)
3681 {
3682 unsigned int size = PAGE_SIZE;
3683 struct page *page;
3684 int offset;
3685
3686 if (unlikely(!nc->va)) {
3687 refill:
3688 page = __page_frag_refill(nc, gfp_mask);
3689 if (!page)
3690 return NULL;
3691
3692 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3693 /* if size can vary use size else just use PAGE_SIZE */
3694 size = nc->size;
3695 #endif
3696 /* Even if we own the page, we do not use atomic_set().
3697 * This would break get_page_unless_zero() users.
3698 */
3699 page_ref_add(page, size - 1);
3700
3701 /* reset page count bias and offset to start of new frag */
3702 nc->pfmemalloc = page_is_pfmemalloc(page);
3703 nc->pagecnt_bias = size;
3704 nc->offset = size;
3705 }
3706
3707 offset = nc->offset - fragsz;
3708 if (unlikely(offset < 0)) {
3709 page = virt_to_page(nc->va);
3710
3711 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3712 goto refill;
3713
3714 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3715 /* if size can vary use size else just use PAGE_SIZE */
3716 size = nc->size;
3717 #endif
3718 /* OK, page count is 0, we can safely set it */
3719 set_page_count(page, size);
3720
3721 /* reset page count bias and offset to start of new frag */
3722 nc->pagecnt_bias = size;
3723 offset = size - fragsz;
3724 }
3725
3726 nc->pagecnt_bias--;
3727 nc->offset = offset;
3728
3729 return nc->va + offset;
3730 }
3731 EXPORT_SYMBOL(__alloc_page_frag);
3732
3733 /*
3734 * Frees a page fragment allocated out of either a compound or order 0 page.
3735 */
3736 void __free_page_frag(void *addr)
3737 {
3738 struct page *page = virt_to_head_page(addr);
3739
3740 if (unlikely(put_page_testzero(page)))
3741 __free_pages_ok(page, compound_order(page));
3742 }
3743 EXPORT_SYMBOL(__free_page_frag);
3744
3745 /*
3746 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3747 * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3748 * equivalent to alloc_pages.
3749 *
3750 * It should be used when the caller would like to use kmalloc, but since the
3751 * allocation is large, it has to fall back to the page allocator.
3752 */
3753 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3754 {
3755 struct page *page;
3756
3757 page = alloc_pages(gfp_mask, order);
3758 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3759 __free_pages(page, order);
3760 page = NULL;
3761 }
3762 return page;
3763 }
3764
3765 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3766 {
3767 struct page *page;
3768
3769 page = alloc_pages_node(nid, gfp_mask, order);
3770 if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3771 __free_pages(page, order);
3772 page = NULL;
3773 }
3774 return page;
3775 }
3776
3777 /*
3778 * __free_kmem_pages and free_kmem_pages will free pages allocated with
3779 * alloc_kmem_pages.
3780 */
3781 void __free_kmem_pages(struct page *page, unsigned int order)
3782 {
3783 memcg_kmem_uncharge(page, order);
3784 __free_pages(page, order);
3785 }
3786
3787 void free_kmem_pages(unsigned long addr, unsigned int order)
3788 {
3789 if (addr != 0) {
3790 VM_BUG_ON(!virt_addr_valid((void *)addr));
3791 __free_kmem_pages(virt_to_page((void *)addr), order);
3792 }
3793 }
3794
3795 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3796 size_t size)
3797 {
3798 if (addr) {
3799 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3800 unsigned long used = addr + PAGE_ALIGN(size);
3801
3802 split_page(virt_to_page((void *)addr), order);
3803 while (used < alloc_end) {
3804 free_page(used);
3805 used += PAGE_SIZE;
3806 }
3807 }
3808 return (void *)addr;
3809 }
3810
3811 /**
3812 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3813 * @size: the number of bytes to allocate
3814 * @gfp_mask: GFP flags for the allocation
3815 *
3816 * This function is similar to alloc_pages(), except that it allocates the
3817 * minimum number of pages to satisfy the request. alloc_pages() can only
3818 * allocate memory in power-of-two pages.
3819 *
3820 * This function is also limited by MAX_ORDER.
3821 *
3822 * Memory allocated by this function must be released by free_pages_exact().
3823 */
3824 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3825 {
3826 unsigned int order = get_order(size);
3827 unsigned long addr;
3828
3829 addr = __get_free_pages(gfp_mask, order);
3830 return make_alloc_exact(addr, order, size);
3831 }
3832 EXPORT_SYMBOL(alloc_pages_exact);
3833
3834 /**
3835 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3836 * pages on a node.
3837 * @nid: the preferred node ID where memory should be allocated
3838 * @size: the number of bytes to allocate
3839 * @gfp_mask: GFP flags for the allocation
3840 *
3841 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3842 * back.
3843 */
3844 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3845 {
3846 unsigned int order = get_order(size);
3847 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3848 if (!p)
3849 return NULL;
3850 return make_alloc_exact((unsigned long)page_address(p), order, size);
3851 }
3852
3853 /**
3854 * free_pages_exact - release memory allocated via alloc_pages_exact()
3855 * @virt: the value returned by alloc_pages_exact.
3856 * @size: size of allocation, same value as passed to alloc_pages_exact().
3857 *
3858 * Release the memory allocated by a previous call to alloc_pages_exact.
3859 */
3860 void free_pages_exact(void *virt, size_t size)
3861 {
3862 unsigned long addr = (unsigned long)virt;
3863 unsigned long end = addr + PAGE_ALIGN(size);
3864
3865 while (addr < end) {
3866 free_page(addr);
3867 addr += PAGE_SIZE;
3868 }
3869 }
3870 EXPORT_SYMBOL(free_pages_exact);
3871
3872 /**
3873 * nr_free_zone_pages - count number of pages beyond high watermark
3874 * @offset: The zone index of the highest zone
3875 *
3876 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3877 * high watermark within all zones at or below a given zone index. For each
3878 * zone, the number of pages is calculated as:
3879 * managed_pages - high_pages
3880 */
3881 static unsigned long nr_free_zone_pages(int offset)
3882 {
3883 struct zoneref *z;
3884 struct zone *zone;
3885
3886 /* Just pick one node, since fallback list is circular */
3887 unsigned long sum = 0;
3888
3889 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3890
3891 for_each_zone_zonelist(zone, z, zonelist, offset) {
3892 unsigned long size = zone->managed_pages;
3893 unsigned long high = high_wmark_pages(zone);
3894 if (size > high)
3895 sum += size - high;
3896 }
3897
3898 return sum;
3899 }
3900
3901 /**
3902 * nr_free_buffer_pages - count number of pages beyond high watermark
3903 *
3904 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3905 * watermark within ZONE_DMA and ZONE_NORMAL.
3906 */
3907 unsigned long nr_free_buffer_pages(void)
3908 {
3909 return nr_free_zone_pages(gfp_zone(GFP_USER));
3910 }
3911 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3912
3913 /**
3914 * nr_free_pagecache_pages - count number of pages beyond high watermark
3915 *
3916 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3917 * high watermark within all zones.
3918 */
3919 unsigned long nr_free_pagecache_pages(void)
3920 {
3921 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3922 }
3923
3924 static inline void show_node(struct zone *zone)
3925 {
3926 if (IS_ENABLED(CONFIG_NUMA))
3927 printk("Node %d ", zone_to_nid(zone));
3928 }
3929
3930 long si_mem_available(void)
3931 {
3932 long available;
3933 unsigned long pagecache;
3934 unsigned long wmark_low = 0;
3935 unsigned long pages[NR_LRU_LISTS];
3936 struct zone *zone;
3937 int lru;
3938
3939 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3940 pages[lru] = global_page_state(NR_LRU_BASE + lru);
3941
3942 for_each_zone(zone)
3943 wmark_low += zone->watermark[WMARK_LOW];
3944
3945 /*
3946 * Estimate the amount of memory available for userspace allocations,
3947 * without causing swapping.
3948 */
3949 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3950
3951 /*
3952 * Not all the page cache can be freed, otherwise the system will
3953 * start swapping. Assume at least half of the page cache, or the
3954 * low watermark worth of cache, needs to stay.
3955 */
3956 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3957 pagecache -= min(pagecache / 2, wmark_low);
3958 available += pagecache;
3959
3960 /*
3961 * Part of the reclaimable slab consists of items that are in use,
3962 * and cannot be freed. Cap this estimate at the low watermark.
3963 */
3964 available += global_page_state(NR_SLAB_RECLAIMABLE) -
3965 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3966
3967 if (available < 0)
3968 available = 0;
3969 return available;
3970 }
3971 EXPORT_SYMBOL_GPL(si_mem_available);
3972
3973 void si_meminfo(struct sysinfo *val)
3974 {
3975 val->totalram = totalram_pages;
3976 val->sharedram = global_page_state(NR_SHMEM);
3977 val->freeram = global_page_state(NR_FREE_PAGES);
3978 val->bufferram = nr_blockdev_pages();
3979 val->totalhigh = totalhigh_pages;
3980 val->freehigh = nr_free_highpages();
3981 val->mem_unit = PAGE_SIZE;
3982 }
3983
3984 EXPORT_SYMBOL(si_meminfo);
3985
3986 #ifdef CONFIG_NUMA
3987 void si_meminfo_node(struct sysinfo *val, int nid)
3988 {
3989 int zone_type; /* needs to be signed */
3990 unsigned long managed_pages = 0;
3991 unsigned long managed_highpages = 0;
3992 unsigned long free_highpages = 0;
3993 pg_data_t *pgdat = NODE_DATA(nid);
3994
3995 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3996 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3997 val->totalram = managed_pages;
3998 val->sharedram = node_page_state(nid, NR_SHMEM);
3999 val->freeram = node_page_state(nid, NR_FREE_PAGES);
4000 #ifdef CONFIG_HIGHMEM
4001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4002 struct zone *zone = &pgdat->node_zones[zone_type];
4003
4004 if (is_highmem(zone)) {
4005 managed_highpages += zone->managed_pages;
4006 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4007 }
4008 }
4009 val->totalhigh = managed_highpages;
4010 val->freehigh = free_highpages;
4011 #else
4012 val->totalhigh = managed_highpages;
4013 val->freehigh = free_highpages;
4014 #endif
4015 val->mem_unit = PAGE_SIZE;
4016 }
4017 #endif
4018
4019 /*
4020 * Determine whether the node should be displayed or not, depending on whether
4021 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4022 */
4023 bool skip_free_areas_node(unsigned int flags, int nid)
4024 {
4025 bool ret = false;
4026 unsigned int cpuset_mems_cookie;
4027
4028 if (!(flags & SHOW_MEM_FILTER_NODES))
4029 goto out;
4030
4031 do {
4032 cpuset_mems_cookie = read_mems_allowed_begin();
4033 ret = !node_isset(nid, cpuset_current_mems_allowed);
4034 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4035 out:
4036 return ret;
4037 }
4038
4039 #define K(x) ((x) << (PAGE_SHIFT-10))
4040
4041 static void show_migration_types(unsigned char type)
4042 {
4043 static const char types[MIGRATE_TYPES] = {
4044 [MIGRATE_UNMOVABLE] = 'U',
4045 [MIGRATE_MOVABLE] = 'M',
4046 [MIGRATE_RECLAIMABLE] = 'E',
4047 [MIGRATE_HIGHATOMIC] = 'H',
4048 #ifdef CONFIG_CMA
4049 [MIGRATE_CMA] = 'C',
4050 #endif
4051 #ifdef CONFIG_MEMORY_ISOLATION
4052 [MIGRATE_ISOLATE] = 'I',
4053 #endif
4054 };
4055 char tmp[MIGRATE_TYPES + 1];
4056 char *p = tmp;
4057 int i;
4058
4059 for (i = 0; i < MIGRATE_TYPES; i++) {
4060 if (type & (1 << i))
4061 *p++ = types[i];
4062 }
4063
4064 *p = '\0';
4065 printk("(%s) ", tmp);
4066 }
4067
4068 /*
4069 * Show free area list (used inside shift_scroll-lock stuff)
4070 * We also calculate the percentage fragmentation. We do this by counting the
4071 * memory on each free list with the exception of the first item on the list.
4072 *
4073 * Bits in @filter:
4074 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4075 * cpuset.
4076 */
4077 void show_free_areas(unsigned int filter)
4078 {
4079 unsigned long free_pcp = 0;
4080 int cpu;
4081 struct zone *zone;
4082
4083 for_each_populated_zone(zone) {
4084 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4085 continue;
4086
4087 for_each_online_cpu(cpu)
4088 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4089 }
4090
4091 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4092 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4093 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4094 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4095 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4096 " free:%lu free_pcp:%lu free_cma:%lu\n",
4097 global_page_state(NR_ACTIVE_ANON),
4098 global_page_state(NR_INACTIVE_ANON),
4099 global_page_state(NR_ISOLATED_ANON),
4100 global_page_state(NR_ACTIVE_FILE),
4101 global_page_state(NR_INACTIVE_FILE),
4102 global_page_state(NR_ISOLATED_FILE),
4103 global_page_state(NR_UNEVICTABLE),
4104 global_page_state(NR_FILE_DIRTY),
4105 global_page_state(NR_WRITEBACK),
4106 global_page_state(NR_UNSTABLE_NFS),
4107 global_page_state(NR_SLAB_RECLAIMABLE),
4108 global_page_state(NR_SLAB_UNRECLAIMABLE),
4109 global_page_state(NR_FILE_MAPPED),
4110 global_page_state(NR_SHMEM),
4111 global_page_state(NR_PAGETABLE),
4112 global_page_state(NR_BOUNCE),
4113 global_page_state(NR_FREE_PAGES),
4114 free_pcp,
4115 global_page_state(NR_FREE_CMA_PAGES));
4116
4117 for_each_populated_zone(zone) {
4118 int i;
4119
4120 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4121 continue;
4122
4123 free_pcp = 0;
4124 for_each_online_cpu(cpu)
4125 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4126
4127 show_node(zone);
4128 printk("%s"
4129 " free:%lukB"
4130 " min:%lukB"
4131 " low:%lukB"
4132 " high:%lukB"
4133 " active_anon:%lukB"
4134 " inactive_anon:%lukB"
4135 " active_file:%lukB"
4136 " inactive_file:%lukB"
4137 " unevictable:%lukB"
4138 " isolated(anon):%lukB"
4139 " isolated(file):%lukB"
4140 " present:%lukB"
4141 " managed:%lukB"
4142 " mlocked:%lukB"
4143 " dirty:%lukB"
4144 " writeback:%lukB"
4145 " mapped:%lukB"
4146 " shmem:%lukB"
4147 " slab_reclaimable:%lukB"
4148 " slab_unreclaimable:%lukB"
4149 " kernel_stack:%lukB"
4150 " pagetables:%lukB"
4151 " unstable:%lukB"
4152 " bounce:%lukB"
4153 " free_pcp:%lukB"
4154 " local_pcp:%ukB"
4155 " free_cma:%lukB"
4156 " writeback_tmp:%lukB"
4157 " pages_scanned:%lu"
4158 " all_unreclaimable? %s"
4159 "\n",
4160 zone->name,
4161 K(zone_page_state(zone, NR_FREE_PAGES)),
4162 K(min_wmark_pages(zone)),
4163 K(low_wmark_pages(zone)),
4164 K(high_wmark_pages(zone)),
4165 K(zone_page_state(zone, NR_ACTIVE_ANON)),
4166 K(zone_page_state(zone, NR_INACTIVE_ANON)),
4167 K(zone_page_state(zone, NR_ACTIVE_FILE)),
4168 K(zone_page_state(zone, NR_INACTIVE_FILE)),
4169 K(zone_page_state(zone, NR_UNEVICTABLE)),
4170 K(zone_page_state(zone, NR_ISOLATED_ANON)),
4171 K(zone_page_state(zone, NR_ISOLATED_FILE)),
4172 K(zone->present_pages),
4173 K(zone->managed_pages),
4174 K(zone_page_state(zone, NR_MLOCK)),
4175 K(zone_page_state(zone, NR_FILE_DIRTY)),
4176 K(zone_page_state(zone, NR_WRITEBACK)),
4177 K(zone_page_state(zone, NR_FILE_MAPPED)),
4178 K(zone_page_state(zone, NR_SHMEM)),
4179 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4180 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4181 zone_page_state(zone, NR_KERNEL_STACK) *
4182 THREAD_SIZE / 1024,
4183 K(zone_page_state(zone, NR_PAGETABLE)),
4184 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
4185 K(zone_page_state(zone, NR_BOUNCE)),
4186 K(free_pcp),
4187 K(this_cpu_read(zone->pageset->pcp.count)),
4188 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
4189 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
4190 K(zone_page_state(zone, NR_PAGES_SCANNED)),
4191 (!zone_reclaimable(zone) ? "yes" : "no")
4192 );
4193 printk("lowmem_reserve[]:");
4194 for (i = 0; i < MAX_NR_ZONES; i++)
4195 printk(" %ld", zone->lowmem_reserve[i]);
4196 printk("\n");
4197 }
4198
4199 for_each_populated_zone(zone) {
4200 unsigned int order;
4201 unsigned long nr[MAX_ORDER], flags, total = 0;
4202 unsigned char types[MAX_ORDER];
4203
4204 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4205 continue;
4206 show_node(zone);
4207 printk("%s: ", zone->name);
4208
4209 spin_lock_irqsave(&zone->lock, flags);
4210 for (order = 0; order < MAX_ORDER; order++) {
4211 struct free_area *area = &zone->free_area[order];
4212 int type;
4213
4214 nr[order] = area->nr_free;
4215 total += nr[order] << order;
4216
4217 types[order] = 0;
4218 for (type = 0; type < MIGRATE_TYPES; type++) {
4219 if (!list_empty(&area->free_list[type]))
4220 types[order] |= 1 << type;
4221 }
4222 }
4223 spin_unlock_irqrestore(&zone->lock, flags);
4224 for (order = 0; order < MAX_ORDER; order++) {
4225 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4226 if (nr[order])
4227 show_migration_types(types[order]);
4228 }
4229 printk("= %lukB\n", K(total));
4230 }
4231
4232 hugetlb_show_meminfo();
4233
4234 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4235
4236 show_swap_cache_info();
4237 }
4238
4239 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4240 {
4241 zoneref->zone = zone;
4242 zoneref->zone_idx = zone_idx(zone);
4243 }
4244
4245 /*
4246 * Builds allocation fallback zone lists.
4247 *
4248 * Add all populated zones of a node to the zonelist.
4249 */
4250 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4251 int nr_zones)
4252 {
4253 struct zone *zone;
4254 enum zone_type zone_type = MAX_NR_ZONES;
4255
4256 do {
4257 zone_type--;
4258 zone = pgdat->node_zones + zone_type;
4259 if (populated_zone(zone)) {
4260 zoneref_set_zone(zone,
4261 &zonelist->_zonerefs[nr_zones++]);
4262 check_highest_zone(zone_type);
4263 }
4264 } while (zone_type);
4265
4266 return nr_zones;
4267 }
4268
4269
4270 /*
4271 * zonelist_order:
4272 * 0 = automatic detection of better ordering.
4273 * 1 = order by ([node] distance, -zonetype)
4274 * 2 = order by (-zonetype, [node] distance)
4275 *
4276 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4277 * the same zonelist. So only NUMA can configure this param.
4278 */
4279 #define ZONELIST_ORDER_DEFAULT 0
4280 #define ZONELIST_ORDER_NODE 1
4281 #define ZONELIST_ORDER_ZONE 2
4282
4283 /* zonelist order in the kernel.
4284 * set_zonelist_order() will set this to NODE or ZONE.
4285 */
4286 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4287 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4288
4289
4290 #ifdef CONFIG_NUMA
4291 /* The value user specified ....changed by config */
4292 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4293 /* string for sysctl */
4294 #define NUMA_ZONELIST_ORDER_LEN 16
4295 char numa_zonelist_order[16] = "default";
4296
4297 /*
4298 * interface for configure zonelist ordering.
4299 * command line option "numa_zonelist_order"
4300 * = "[dD]efault - default, automatic configuration.
4301 * = "[nN]ode - order by node locality, then by zone within node
4302 * = "[zZ]one - order by zone, then by locality within zone
4303 */
4304
4305 static int __parse_numa_zonelist_order(char *s)
4306 {
4307 if (*s == 'd' || *s == 'D') {
4308 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4309 } else if (*s == 'n' || *s == 'N') {
4310 user_zonelist_order = ZONELIST_ORDER_NODE;
4311 } else if (*s == 'z' || *s == 'Z') {
4312 user_zonelist_order = ZONELIST_ORDER_ZONE;
4313 } else {
4314 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4315 return -EINVAL;
4316 }
4317 return 0;
4318 }
4319
4320 static __init int setup_numa_zonelist_order(char *s)
4321 {
4322 int ret;
4323
4324 if (!s)
4325 return 0;
4326
4327 ret = __parse_numa_zonelist_order(s);
4328 if (ret == 0)
4329 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4330
4331 return ret;
4332 }
4333 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4334
4335 /*
4336 * sysctl handler for numa_zonelist_order
4337 */
4338 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4339 void __user *buffer, size_t *length,
4340 loff_t *ppos)
4341 {
4342 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4343 int ret;
4344 static DEFINE_MUTEX(zl_order_mutex);
4345
4346 mutex_lock(&zl_order_mutex);
4347 if (write) {
4348 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4349 ret = -EINVAL;
4350 goto out;
4351 }
4352 strcpy(saved_string, (char *)table->data);
4353 }
4354 ret = proc_dostring(table, write, buffer, length, ppos);
4355 if (ret)
4356 goto out;
4357 if (write) {
4358 int oldval = user_zonelist_order;
4359
4360 ret = __parse_numa_zonelist_order((char *)table->data);
4361 if (ret) {
4362 /*
4363 * bogus value. restore saved string
4364 */
4365 strncpy((char *)table->data, saved_string,
4366 NUMA_ZONELIST_ORDER_LEN);
4367 user_zonelist_order = oldval;
4368 } else if (oldval != user_zonelist_order) {
4369 mutex_lock(&zonelists_mutex);
4370 build_all_zonelists(NULL, NULL);
4371 mutex_unlock(&zonelists_mutex);
4372 }
4373 }
4374 out:
4375 mutex_unlock(&zl_order_mutex);
4376 return ret;
4377 }
4378
4379
4380 #define MAX_NODE_LOAD (nr_online_nodes)
4381 static int node_load[MAX_NUMNODES];
4382
4383 /**
4384 * find_next_best_node - find the next node that should appear in a given node's fallback list
4385 * @node: node whose fallback list we're appending
4386 * @used_node_mask: nodemask_t of already used nodes
4387 *
4388 * We use a number of factors to determine which is the next node that should
4389 * appear on a given node's fallback list. The node should not have appeared
4390 * already in @node's fallback list, and it should be the next closest node
4391 * according to the distance array (which contains arbitrary distance values
4392 * from each node to each node in the system), and should also prefer nodes
4393 * with no CPUs, since presumably they'll have very little allocation pressure
4394 * on them otherwise.
4395 * It returns -1 if no node is found.
4396 */
4397 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4398 {
4399 int n, val;
4400 int min_val = INT_MAX;
4401 int best_node = NUMA_NO_NODE;
4402 const struct cpumask *tmp = cpumask_of_node(0);
4403
4404 /* Use the local node if we haven't already */
4405 if (!node_isset(node, *used_node_mask)) {
4406 node_set(node, *used_node_mask);
4407 return node;
4408 }
4409
4410 for_each_node_state(n, N_MEMORY) {
4411
4412 /* Don't want a node to appear more than once */
4413 if (node_isset(n, *used_node_mask))
4414 continue;
4415
4416 /* Use the distance array to find the distance */
4417 val = node_distance(node, n);
4418
4419 /* Penalize nodes under us ("prefer the next node") */
4420 val += (n < node);
4421
4422 /* Give preference to headless and unused nodes */
4423 tmp = cpumask_of_node(n);
4424 if (!cpumask_empty(tmp))
4425 val += PENALTY_FOR_NODE_WITH_CPUS;
4426
4427 /* Slight preference for less loaded node */
4428 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4429 val += node_load[n];
4430
4431 if (val < min_val) {
4432 min_val = val;
4433 best_node = n;
4434 }
4435 }
4436
4437 if (best_node >= 0)
4438 node_set(best_node, *used_node_mask);
4439
4440 return best_node;
4441 }
4442
4443
4444 /*
4445 * Build zonelists ordered by node and zones within node.
4446 * This results in maximum locality--normal zone overflows into local
4447 * DMA zone, if any--but risks exhausting DMA zone.
4448 */
4449 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4450 {
4451 int j;
4452 struct zonelist *zonelist;
4453
4454 zonelist = &pgdat->node_zonelists[0];
4455 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4456 ;
4457 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4458 zonelist->_zonerefs[j].zone = NULL;
4459 zonelist->_zonerefs[j].zone_idx = 0;
4460 }
4461
4462 /*
4463 * Build gfp_thisnode zonelists
4464 */
4465 static void build_thisnode_zonelists(pg_data_t *pgdat)
4466 {
4467 int j;
4468 struct zonelist *zonelist;
4469
4470 zonelist = &pgdat->node_zonelists[1];
4471 j = build_zonelists_node(pgdat, zonelist, 0);
4472 zonelist->_zonerefs[j].zone = NULL;
4473 zonelist->_zonerefs[j].zone_idx = 0;
4474 }
4475
4476 /*
4477 * Build zonelists ordered by zone and nodes within zones.
4478 * This results in conserving DMA zone[s] until all Normal memory is
4479 * exhausted, but results in overflowing to remote node while memory
4480 * may still exist in local DMA zone.
4481 */
4482 static int node_order[MAX_NUMNODES];
4483
4484 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4485 {
4486 int pos, j, node;
4487 int zone_type; /* needs to be signed */
4488 struct zone *z;
4489 struct zonelist *zonelist;
4490
4491 zonelist = &pgdat->node_zonelists[0];
4492 pos = 0;
4493 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4494 for (j = 0; j < nr_nodes; j++) {
4495 node = node_order[j];
4496 z = &NODE_DATA(node)->node_zones[zone_type];
4497 if (populated_zone(z)) {
4498 zoneref_set_zone(z,
4499 &zonelist->_zonerefs[pos++]);
4500 check_highest_zone(zone_type);
4501 }
4502 }
4503 }
4504 zonelist->_zonerefs[pos].zone = NULL;
4505 zonelist->_zonerefs[pos].zone_idx = 0;
4506 }
4507
4508 #if defined(CONFIG_64BIT)
4509 /*
4510 * Devices that require DMA32/DMA are relatively rare and do not justify a
4511 * penalty to every machine in case the specialised case applies. Default
4512 * to Node-ordering on 64-bit NUMA machines
4513 */
4514 static int default_zonelist_order(void)
4515 {
4516 return ZONELIST_ORDER_NODE;
4517 }
4518 #else
4519 /*
4520 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4521 * by the kernel. If processes running on node 0 deplete the low memory zone
4522 * then reclaim will occur more frequency increasing stalls and potentially
4523 * be easier to OOM if a large percentage of the zone is under writeback or
4524 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4525 * Hence, default to zone ordering on 32-bit.
4526 */
4527 static int default_zonelist_order(void)
4528 {
4529 return ZONELIST_ORDER_ZONE;
4530 }
4531 #endif /* CONFIG_64BIT */
4532
4533 static void set_zonelist_order(void)
4534 {
4535 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4536 current_zonelist_order = default_zonelist_order();
4537 else
4538 current_zonelist_order = user_zonelist_order;
4539 }
4540
4541 static void build_zonelists(pg_data_t *pgdat)
4542 {
4543 int i, node, load;
4544 nodemask_t used_mask;
4545 int local_node, prev_node;
4546 struct zonelist *zonelist;
4547 unsigned int order = current_zonelist_order;
4548
4549 /* initialize zonelists */
4550 for (i = 0; i < MAX_ZONELISTS; i++) {
4551 zonelist = pgdat->node_zonelists + i;
4552 zonelist->_zonerefs[0].zone = NULL;
4553 zonelist->_zonerefs[0].zone_idx = 0;
4554 }
4555
4556 /* NUMA-aware ordering of nodes */
4557 local_node = pgdat->node_id;
4558 load = nr_online_nodes;
4559 prev_node = local_node;
4560 nodes_clear(used_mask);
4561
4562 memset(node_order, 0, sizeof(node_order));
4563 i = 0;
4564
4565 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4566 /*
4567 * We don't want to pressure a particular node.
4568 * So adding penalty to the first node in same
4569 * distance group to make it round-robin.
4570 */
4571 if (node_distance(local_node, node) !=
4572 node_distance(local_node, prev_node))
4573 node_load[node] = load;
4574
4575 prev_node = node;
4576 load--;
4577 if (order == ZONELIST_ORDER_NODE)
4578 build_zonelists_in_node_order(pgdat, node);
4579 else
4580 node_order[i++] = node; /* remember order */
4581 }
4582
4583 if (order == ZONELIST_ORDER_ZONE) {
4584 /* calculate node order -- i.e., DMA last! */
4585 build_zonelists_in_zone_order(pgdat, i);
4586 }
4587
4588 build_thisnode_zonelists(pgdat);
4589 }
4590
4591 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4592 /*
4593 * Return node id of node used for "local" allocations.
4594 * I.e., first node id of first zone in arg node's generic zonelist.
4595 * Used for initializing percpu 'numa_mem', which is used primarily
4596 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4597 */
4598 int local_memory_node(int node)
4599 {
4600 struct zoneref *z;
4601
4602 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4603 gfp_zone(GFP_KERNEL),
4604 NULL);
4605 return z->zone->node;
4606 }
4607 #endif
4608
4609 #else /* CONFIG_NUMA */
4610
4611 static void set_zonelist_order(void)
4612 {
4613 current_zonelist_order = ZONELIST_ORDER_ZONE;
4614 }
4615
4616 static void build_zonelists(pg_data_t *pgdat)
4617 {
4618 int node, local_node;
4619 enum zone_type j;
4620 struct zonelist *zonelist;
4621
4622 local_node = pgdat->node_id;
4623
4624 zonelist = &pgdat->node_zonelists[0];
4625 j = build_zonelists_node(pgdat, zonelist, 0);
4626
4627 /*
4628 * Now we build the zonelist so that it contains the zones
4629 * of all the other nodes.
4630 * We don't want to pressure a particular node, so when
4631 * building the zones for node N, we make sure that the
4632 * zones coming right after the local ones are those from
4633 * node N+1 (modulo N)
4634 */
4635 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4636 if (!node_online(node))
4637 continue;
4638 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4639 }
4640 for (node = 0; node < local_node; node++) {
4641 if (!node_online(node))
4642 continue;
4643 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4644 }
4645
4646 zonelist->_zonerefs[j].zone = NULL;
4647 zonelist->_zonerefs[j].zone_idx = 0;
4648 }
4649
4650 #endif /* CONFIG_NUMA */
4651
4652 /*
4653 * Boot pageset table. One per cpu which is going to be used for all
4654 * zones and all nodes. The parameters will be set in such a way
4655 * that an item put on a list will immediately be handed over to
4656 * the buddy list. This is safe since pageset manipulation is done
4657 * with interrupts disabled.
4658 *
4659 * The boot_pagesets must be kept even after bootup is complete for
4660 * unused processors and/or zones. They do play a role for bootstrapping
4661 * hotplugged processors.
4662 *
4663 * zoneinfo_show() and maybe other functions do
4664 * not check if the processor is online before following the pageset pointer.
4665 * Other parts of the kernel may not check if the zone is available.
4666 */
4667 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4668 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4669 static void setup_zone_pageset(struct zone *zone);
4670
4671 /*
4672 * Global mutex to protect against size modification of zonelists
4673 * as well as to serialize pageset setup for the new populated zone.
4674 */
4675 DEFINE_MUTEX(zonelists_mutex);
4676
4677 /* return values int ....just for stop_machine() */
4678 static int __build_all_zonelists(void *data)
4679 {
4680 int nid;
4681 int cpu;
4682 pg_data_t *self = data;
4683
4684 #ifdef CONFIG_NUMA
4685 memset(node_load, 0, sizeof(node_load));
4686 #endif
4687
4688 if (self && !node_online(self->node_id)) {
4689 build_zonelists(self);
4690 }
4691
4692 for_each_online_node(nid) {
4693 pg_data_t *pgdat = NODE_DATA(nid);
4694
4695 build_zonelists(pgdat);
4696 }
4697
4698 /*
4699 * Initialize the boot_pagesets that are going to be used
4700 * for bootstrapping processors. The real pagesets for
4701 * each zone will be allocated later when the per cpu
4702 * allocator is available.
4703 *
4704 * boot_pagesets are used also for bootstrapping offline
4705 * cpus if the system is already booted because the pagesets
4706 * are needed to initialize allocators on a specific cpu too.
4707 * F.e. the percpu allocator needs the page allocator which
4708 * needs the percpu allocator in order to allocate its pagesets
4709 * (a chicken-egg dilemma).
4710 */
4711 for_each_possible_cpu(cpu) {
4712 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4713
4714 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4715 /*
4716 * We now know the "local memory node" for each node--
4717 * i.e., the node of the first zone in the generic zonelist.
4718 * Set up numa_mem percpu variable for on-line cpus. During
4719 * boot, only the boot cpu should be on-line; we'll init the
4720 * secondary cpus' numa_mem as they come on-line. During
4721 * node/memory hotplug, we'll fixup all on-line cpus.
4722 */
4723 if (cpu_online(cpu))
4724 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4725 #endif
4726 }
4727
4728 return 0;
4729 }
4730
4731 static noinline void __init
4732 build_all_zonelists_init(void)
4733 {
4734 __build_all_zonelists(NULL);
4735 mminit_verify_zonelist();
4736 cpuset_init_current_mems_allowed();
4737 }
4738
4739 /*
4740 * Called with zonelists_mutex held always
4741 * unless system_state == SYSTEM_BOOTING.
4742 *
4743 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4744 * [we're only called with non-NULL zone through __meminit paths] and
4745 * (2) call of __init annotated helper build_all_zonelists_init
4746 * [protected by SYSTEM_BOOTING].
4747 */
4748 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4749 {
4750 set_zonelist_order();
4751
4752 if (system_state == SYSTEM_BOOTING) {
4753 build_all_zonelists_init();
4754 } else {
4755 #ifdef CONFIG_MEMORY_HOTPLUG
4756 if (zone)
4757 setup_zone_pageset(zone);
4758 #endif
4759 /* we have to stop all cpus to guarantee there is no user
4760 of zonelist */
4761 stop_machine(__build_all_zonelists, pgdat, NULL);
4762 /* cpuset refresh routine should be here */
4763 }
4764 vm_total_pages = nr_free_pagecache_pages();
4765 /*
4766 * Disable grouping by mobility if the number of pages in the
4767 * system is too low to allow the mechanism to work. It would be
4768 * more accurate, but expensive to check per-zone. This check is
4769 * made on memory-hotadd so a system can start with mobility
4770 * disabled and enable it later
4771 */
4772 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4773 page_group_by_mobility_disabled = 1;
4774 else
4775 page_group_by_mobility_disabled = 0;
4776
4777 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4778 nr_online_nodes,
4779 zonelist_order_name[current_zonelist_order],
4780 page_group_by_mobility_disabled ? "off" : "on",
4781 vm_total_pages);
4782 #ifdef CONFIG_NUMA
4783 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4784 #endif
4785 }
4786
4787 /*
4788 * Helper functions to size the waitqueue hash table.
4789 * Essentially these want to choose hash table sizes sufficiently
4790 * large so that collisions trying to wait on pages are rare.
4791 * But in fact, the number of active page waitqueues on typical
4792 * systems is ridiculously low, less than 200. So this is even
4793 * conservative, even though it seems large.
4794 *
4795 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4796 * waitqueues, i.e. the size of the waitq table given the number of pages.
4797 */
4798 #define PAGES_PER_WAITQUEUE 256
4799
4800 #ifndef CONFIG_MEMORY_HOTPLUG
4801 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4802 {
4803 unsigned long size = 1;
4804
4805 pages /= PAGES_PER_WAITQUEUE;
4806
4807 while (size < pages)
4808 size <<= 1;
4809
4810 /*
4811 * Once we have dozens or even hundreds of threads sleeping
4812 * on IO we've got bigger problems than wait queue collision.
4813 * Limit the size of the wait table to a reasonable size.
4814 */
4815 size = min(size, 4096UL);
4816
4817 return max(size, 4UL);
4818 }
4819 #else
4820 /*
4821 * A zone's size might be changed by hot-add, so it is not possible to determine
4822 * a suitable size for its wait_table. So we use the maximum size now.
4823 *
4824 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4825 *
4826 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4827 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4828 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4829 *
4830 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4831 * or more by the traditional way. (See above). It equals:
4832 *
4833 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4834 * ia64(16K page size) : = ( 8G + 4M)byte.
4835 * powerpc (64K page size) : = (32G +16M)byte.
4836 */
4837 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4838 {
4839 return 4096UL;
4840 }
4841 #endif
4842
4843 /*
4844 * This is an integer logarithm so that shifts can be used later
4845 * to extract the more random high bits from the multiplicative
4846 * hash function before the remainder is taken.
4847 */
4848 static inline unsigned long wait_table_bits(unsigned long size)
4849 {
4850 return ffz(~size);
4851 }
4852
4853 /*
4854 * Initially all pages are reserved - free ones are freed
4855 * up by free_all_bootmem() once the early boot process is
4856 * done. Non-atomic initialization, single-pass.
4857 */
4858 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4859 unsigned long start_pfn, enum memmap_context context)
4860 {
4861 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4862 unsigned long end_pfn = start_pfn + size;
4863 pg_data_t *pgdat = NODE_DATA(nid);
4864 unsigned long pfn;
4865 unsigned long nr_initialised = 0;
4866 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4867 struct memblock_region *r = NULL, *tmp;
4868 #endif
4869
4870 if (highest_memmap_pfn < end_pfn - 1)
4871 highest_memmap_pfn = end_pfn - 1;
4872
4873 /*
4874 * Honor reservation requested by the driver for this ZONE_DEVICE
4875 * memory
4876 */
4877 if (altmap && start_pfn == altmap->base_pfn)
4878 start_pfn += altmap->reserve;
4879
4880 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4881 /*
4882 * There can be holes in boot-time mem_map[]s handed to this
4883 * function. They do not exist on hotplugged memory.
4884 */
4885 if (context != MEMMAP_EARLY)
4886 goto not_early;
4887
4888 if (!early_pfn_valid(pfn))
4889 continue;
4890 if (!early_pfn_in_nid(pfn, nid))
4891 continue;
4892 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4893 break;
4894
4895 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4896 /*
4897 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4898 * from zone_movable_pfn[nid] to end of each node should be
4899 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4900 */
4901 if (!mirrored_kernelcore && zone_movable_pfn[nid])
4902 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4903 continue;
4904
4905 /*
4906 * Check given memblock attribute by firmware which can affect
4907 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
4908 * mirrored, it's an overlapped memmap init. skip it.
4909 */
4910 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4911 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4912 for_each_memblock(memory, tmp)
4913 if (pfn < memblock_region_memory_end_pfn(tmp))
4914 break;
4915 r = tmp;
4916 }
4917 if (pfn >= memblock_region_memory_base_pfn(r) &&
4918 memblock_is_mirror(r)) {
4919 /* already initialized as NORMAL */
4920 pfn = memblock_region_memory_end_pfn(r);
4921 continue;
4922 }
4923 }
4924 #endif
4925
4926 not_early:
4927 /*
4928 * Mark the block movable so that blocks are reserved for
4929 * movable at startup. This will force kernel allocations
4930 * to reserve their blocks rather than leaking throughout
4931 * the address space during boot when many long-lived
4932 * kernel allocations are made.
4933 *
4934 * bitmap is created for zone's valid pfn range. but memmap
4935 * can be created for invalid pages (for alignment)
4936 * check here not to call set_pageblock_migratetype() against
4937 * pfn out of zone.
4938 */
4939 if (!(pfn & (pageblock_nr_pages - 1))) {
4940 struct page *page = pfn_to_page(pfn);
4941
4942 __init_single_page(page, pfn, zone, nid);
4943 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4944 } else {
4945 __init_single_pfn(pfn, zone, nid);
4946 }
4947 }
4948 }
4949
4950 static void __meminit zone_init_free_lists(struct zone *zone)
4951 {
4952 unsigned int order, t;
4953 for_each_migratetype_order(order, t) {
4954 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4955 zone->free_area[order].nr_free = 0;
4956 }
4957 }
4958
4959 #ifndef __HAVE_ARCH_MEMMAP_INIT
4960 #define memmap_init(size, nid, zone, start_pfn) \
4961 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4962 #endif
4963
4964 static int zone_batchsize(struct zone *zone)
4965 {
4966 #ifdef CONFIG_MMU
4967 int batch;
4968
4969 /*
4970 * The per-cpu-pages pools are set to around 1000th of the
4971 * size of the zone. But no more than 1/2 of a meg.
4972 *
4973 * OK, so we don't know how big the cache is. So guess.
4974 */
4975 batch = zone->managed_pages / 1024;
4976 if (batch * PAGE_SIZE > 512 * 1024)
4977 batch = (512 * 1024) / PAGE_SIZE;
4978 batch /= 4; /* We effectively *= 4 below */
4979 if (batch < 1)
4980 batch = 1;
4981
4982 /*
4983 * Clamp the batch to a 2^n - 1 value. Having a power
4984 * of 2 value was found to be more likely to have
4985 * suboptimal cache aliasing properties in some cases.
4986 *
4987 * For example if 2 tasks are alternately allocating
4988 * batches of pages, one task can end up with a lot
4989 * of pages of one half of the possible page colors
4990 * and the other with pages of the other colors.
4991 */
4992 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4993
4994 return batch;
4995
4996 #else
4997 /* The deferral and batching of frees should be suppressed under NOMMU
4998 * conditions.
4999 *
5000 * The problem is that NOMMU needs to be able to allocate large chunks
5001 * of contiguous memory as there's no hardware page translation to
5002 * assemble apparent contiguous memory from discontiguous pages.
5003 *
5004 * Queueing large contiguous runs of pages for batching, however,
5005 * causes the pages to actually be freed in smaller chunks. As there
5006 * can be a significant delay between the individual batches being
5007 * recycled, this leads to the once large chunks of space being
5008 * fragmented and becoming unavailable for high-order allocations.
5009 */
5010 return 0;
5011 #endif
5012 }
5013
5014 /*
5015 * pcp->high and pcp->batch values are related and dependent on one another:
5016 * ->batch must never be higher then ->high.
5017 * The following function updates them in a safe manner without read side
5018 * locking.
5019 *
5020 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5021 * those fields changing asynchronously (acording the the above rule).
5022 *
5023 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5024 * outside of boot time (or some other assurance that no concurrent updaters
5025 * exist).
5026 */
5027 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5028 unsigned long batch)
5029 {
5030 /* start with a fail safe value for batch */
5031 pcp->batch = 1;
5032 smp_wmb();
5033
5034 /* Update high, then batch, in order */
5035 pcp->high = high;
5036 smp_wmb();
5037
5038 pcp->batch = batch;
5039 }
5040
5041 /* a companion to pageset_set_high() */
5042 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5043 {
5044 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5045 }
5046
5047 static void pageset_init(struct per_cpu_pageset *p)
5048 {
5049 struct per_cpu_pages *pcp;
5050 int migratetype;
5051
5052 memset(p, 0, sizeof(*p));
5053
5054 pcp = &p->pcp;
5055 pcp->count = 0;
5056 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5057 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5058 }
5059
5060 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5061 {
5062 pageset_init(p);
5063 pageset_set_batch(p, batch);
5064 }
5065
5066 /*
5067 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5068 * to the value high for the pageset p.
5069 */
5070 static void pageset_set_high(struct per_cpu_pageset *p,
5071 unsigned long high)
5072 {
5073 unsigned long batch = max(1UL, high / 4);
5074 if ((high / 4) > (PAGE_SHIFT * 8))
5075 batch = PAGE_SHIFT * 8;
5076
5077 pageset_update(&p->pcp, high, batch);
5078 }
5079
5080 static void pageset_set_high_and_batch(struct zone *zone,
5081 struct per_cpu_pageset *pcp)
5082 {
5083 if (percpu_pagelist_fraction)
5084 pageset_set_high(pcp,
5085 (zone->managed_pages /
5086 percpu_pagelist_fraction));
5087 else
5088 pageset_set_batch(pcp, zone_batchsize(zone));
5089 }
5090
5091 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5092 {
5093 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5094
5095 pageset_init(pcp);
5096 pageset_set_high_and_batch(zone, pcp);
5097 }
5098
5099 static void __meminit setup_zone_pageset(struct zone *zone)
5100 {
5101 int cpu;
5102 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5103 for_each_possible_cpu(cpu)
5104 zone_pageset_init(zone, cpu);
5105 }
5106
5107 /*
5108 * Allocate per cpu pagesets and initialize them.
5109 * Before this call only boot pagesets were available.
5110 */
5111 void __init setup_per_cpu_pageset(void)
5112 {
5113 struct zone *zone;
5114
5115 for_each_populated_zone(zone)
5116 setup_zone_pageset(zone);
5117 }
5118
5119 static noinline __init_refok
5120 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5121 {
5122 int i;
5123 size_t alloc_size;
5124
5125 /*
5126 * The per-page waitqueue mechanism uses hashed waitqueues
5127 * per zone.
5128 */
5129 zone->wait_table_hash_nr_entries =
5130 wait_table_hash_nr_entries(zone_size_pages);
5131 zone->wait_table_bits =
5132 wait_table_bits(zone->wait_table_hash_nr_entries);
5133 alloc_size = zone->wait_table_hash_nr_entries
5134 * sizeof(wait_queue_head_t);
5135
5136 if (!slab_is_available()) {
5137 zone->wait_table = (wait_queue_head_t *)
5138 memblock_virt_alloc_node_nopanic(
5139 alloc_size, zone->zone_pgdat->node_id);
5140 } else {
5141 /*
5142 * This case means that a zone whose size was 0 gets new memory
5143 * via memory hot-add.
5144 * But it may be the case that a new node was hot-added. In
5145 * this case vmalloc() will not be able to use this new node's
5146 * memory - this wait_table must be initialized to use this new
5147 * node itself as well.
5148 * To use this new node's memory, further consideration will be
5149 * necessary.
5150 */
5151 zone->wait_table = vmalloc(alloc_size);
5152 }
5153 if (!zone->wait_table)
5154 return -ENOMEM;
5155
5156 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5157 init_waitqueue_head(zone->wait_table + i);
5158
5159 return 0;
5160 }
5161
5162 static __meminit void zone_pcp_init(struct zone *zone)
5163 {
5164 /*
5165 * per cpu subsystem is not up at this point. The following code
5166 * relies on the ability of the linker to provide the
5167 * offset of a (static) per cpu variable into the per cpu area.
5168 */
5169 zone->pageset = &boot_pageset;
5170
5171 if (populated_zone(zone))
5172 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5173 zone->name, zone->present_pages,
5174 zone_batchsize(zone));
5175 }
5176
5177 int __meminit init_currently_empty_zone(struct zone *zone,
5178 unsigned long zone_start_pfn,
5179 unsigned long size)
5180 {
5181 struct pglist_data *pgdat = zone->zone_pgdat;
5182 int ret;
5183 ret = zone_wait_table_init(zone, size);
5184 if (ret)
5185 return ret;
5186 pgdat->nr_zones = zone_idx(zone) + 1;
5187
5188 zone->zone_start_pfn = zone_start_pfn;
5189
5190 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5191 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5192 pgdat->node_id,
5193 (unsigned long)zone_idx(zone),
5194 zone_start_pfn, (zone_start_pfn + size));
5195
5196 zone_init_free_lists(zone);
5197
5198 return 0;
5199 }
5200
5201 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5202 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5203
5204 /*
5205 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5206 */
5207 int __meminit __early_pfn_to_nid(unsigned long pfn,
5208 struct mminit_pfnnid_cache *state)
5209 {
5210 unsigned long start_pfn, end_pfn;
5211 int nid;
5212
5213 if (state->last_start <= pfn && pfn < state->last_end)
5214 return state->last_nid;
5215
5216 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5217 if (nid != -1) {
5218 state->last_start = start_pfn;
5219 state->last_end = end_pfn;
5220 state->last_nid = nid;
5221 }
5222
5223 return nid;
5224 }
5225 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5226
5227 /**
5228 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5229 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5230 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5231 *
5232 * If an architecture guarantees that all ranges registered contain no holes
5233 * and may be freed, this this function may be used instead of calling
5234 * memblock_free_early_nid() manually.
5235 */
5236 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5237 {
5238 unsigned long start_pfn, end_pfn;
5239 int i, this_nid;
5240
5241 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5242 start_pfn = min(start_pfn, max_low_pfn);
5243 end_pfn = min(end_pfn, max_low_pfn);
5244
5245 if (start_pfn < end_pfn)
5246 memblock_free_early_nid(PFN_PHYS(start_pfn),
5247 (end_pfn - start_pfn) << PAGE_SHIFT,
5248 this_nid);
5249 }
5250 }
5251
5252 /**
5253 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5254 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5255 *
5256 * If an architecture guarantees that all ranges registered contain no holes and may
5257 * be freed, this function may be used instead of calling memory_present() manually.
5258 */
5259 void __init sparse_memory_present_with_active_regions(int nid)
5260 {
5261 unsigned long start_pfn, end_pfn;
5262 int i, this_nid;
5263
5264 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5265 memory_present(this_nid, start_pfn, end_pfn);
5266 }
5267
5268 /**
5269 * get_pfn_range_for_nid - Return the start and end page frames for a node
5270 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5271 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5272 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5273 *
5274 * It returns the start and end page frame of a node based on information
5275 * provided by memblock_set_node(). If called for a node
5276 * with no available memory, a warning is printed and the start and end
5277 * PFNs will be 0.
5278 */
5279 void __meminit get_pfn_range_for_nid(unsigned int nid,
5280 unsigned long *start_pfn, unsigned long *end_pfn)
5281 {
5282 unsigned long this_start_pfn, this_end_pfn;
5283 int i;
5284
5285 *start_pfn = -1UL;
5286 *end_pfn = 0;
5287
5288 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5289 *start_pfn = min(*start_pfn, this_start_pfn);
5290 *end_pfn = max(*end_pfn, this_end_pfn);
5291 }
5292
5293 if (*start_pfn == -1UL)
5294 *start_pfn = 0;
5295 }
5296
5297 /*
5298 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5299 * assumption is made that zones within a node are ordered in monotonic
5300 * increasing memory addresses so that the "highest" populated zone is used
5301 */
5302 static void __init find_usable_zone_for_movable(void)
5303 {
5304 int zone_index;
5305 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5306 if (zone_index == ZONE_MOVABLE)
5307 continue;
5308
5309 if (arch_zone_highest_possible_pfn[zone_index] >
5310 arch_zone_lowest_possible_pfn[zone_index])
5311 break;
5312 }
5313
5314 VM_BUG_ON(zone_index == -1);
5315 movable_zone = zone_index;
5316 }
5317
5318 /*
5319 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5320 * because it is sized independent of architecture. Unlike the other zones,
5321 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5322 * in each node depending on the size of each node and how evenly kernelcore
5323 * is distributed. This helper function adjusts the zone ranges
5324 * provided by the architecture for a given node by using the end of the
5325 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5326 * zones within a node are in order of monotonic increases memory addresses
5327 */
5328 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5329 unsigned long zone_type,
5330 unsigned long node_start_pfn,
5331 unsigned long node_end_pfn,
5332 unsigned long *zone_start_pfn,
5333 unsigned long *zone_end_pfn)
5334 {
5335 /* Only adjust if ZONE_MOVABLE is on this node */
5336 if (zone_movable_pfn[nid]) {
5337 /* Size ZONE_MOVABLE */
5338 if (zone_type == ZONE_MOVABLE) {
5339 *zone_start_pfn = zone_movable_pfn[nid];
5340 *zone_end_pfn = min(node_end_pfn,
5341 arch_zone_highest_possible_pfn[movable_zone]);
5342
5343 /* Check if this whole range is within ZONE_MOVABLE */
5344 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5345 *zone_start_pfn = *zone_end_pfn;
5346 }
5347 }
5348
5349 /*
5350 * Return the number of pages a zone spans in a node, including holes
5351 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5352 */
5353 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5354 unsigned long zone_type,
5355 unsigned long node_start_pfn,
5356 unsigned long node_end_pfn,
5357 unsigned long *zone_start_pfn,
5358 unsigned long *zone_end_pfn,
5359 unsigned long *ignored)
5360 {
5361 /* When hotadd a new node from cpu_up(), the node should be empty */
5362 if (!node_start_pfn && !node_end_pfn)
5363 return 0;
5364
5365 /* Get the start and end of the zone */
5366 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5367 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5368 adjust_zone_range_for_zone_movable(nid, zone_type,
5369 node_start_pfn, node_end_pfn,
5370 zone_start_pfn, zone_end_pfn);
5371
5372 /* Check that this node has pages within the zone's required range */
5373 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5374 return 0;
5375
5376 /* Move the zone boundaries inside the node if necessary */
5377 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5378 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5379
5380 /* Return the spanned pages */
5381 return *zone_end_pfn - *zone_start_pfn;
5382 }
5383
5384 /*
5385 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5386 * then all holes in the requested range will be accounted for.
5387 */
5388 unsigned long __meminit __absent_pages_in_range(int nid,
5389 unsigned long range_start_pfn,
5390 unsigned long range_end_pfn)
5391 {
5392 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5393 unsigned long start_pfn, end_pfn;
5394 int i;
5395
5396 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5397 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5398 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5399 nr_absent -= end_pfn - start_pfn;
5400 }
5401 return nr_absent;
5402 }
5403
5404 /**
5405 * absent_pages_in_range - Return number of page frames in holes within a range
5406 * @start_pfn: The start PFN to start searching for holes
5407 * @end_pfn: The end PFN to stop searching for holes
5408 *
5409 * It returns the number of pages frames in memory holes within a range.
5410 */
5411 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5412 unsigned long end_pfn)
5413 {
5414 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5415 }
5416
5417 /* Return the number of page frames in holes in a zone on a node */
5418 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5419 unsigned long zone_type,
5420 unsigned long node_start_pfn,
5421 unsigned long node_end_pfn,
5422 unsigned long *ignored)
5423 {
5424 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5425 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5426 unsigned long zone_start_pfn, zone_end_pfn;
5427 unsigned long nr_absent;
5428
5429 /* When hotadd a new node from cpu_up(), the node should be empty */
5430 if (!node_start_pfn && !node_end_pfn)
5431 return 0;
5432
5433 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5434 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5435
5436 adjust_zone_range_for_zone_movable(nid, zone_type,
5437 node_start_pfn, node_end_pfn,
5438 &zone_start_pfn, &zone_end_pfn);
5439 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5440
5441 /*
5442 * ZONE_MOVABLE handling.
5443 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5444 * and vice versa.
5445 */
5446 if (zone_movable_pfn[nid]) {
5447 if (mirrored_kernelcore) {
5448 unsigned long start_pfn, end_pfn;
5449 struct memblock_region *r;
5450
5451 for_each_memblock(memory, r) {
5452 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5453 zone_start_pfn, zone_end_pfn);
5454 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5455 zone_start_pfn, zone_end_pfn);
5456
5457 if (zone_type == ZONE_MOVABLE &&
5458 memblock_is_mirror(r))
5459 nr_absent += end_pfn - start_pfn;
5460
5461 if (zone_type == ZONE_NORMAL &&
5462 !memblock_is_mirror(r))
5463 nr_absent += end_pfn - start_pfn;
5464 }
5465 } else {
5466 if (zone_type == ZONE_NORMAL)
5467 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5468 }
5469 }
5470
5471 return nr_absent;
5472 }
5473
5474 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5475 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5476 unsigned long zone_type,
5477 unsigned long node_start_pfn,
5478 unsigned long node_end_pfn,
5479 unsigned long *zone_start_pfn,
5480 unsigned long *zone_end_pfn,
5481 unsigned long *zones_size)
5482 {
5483 unsigned int zone;
5484
5485 *zone_start_pfn = node_start_pfn;
5486 for (zone = 0; zone < zone_type; zone++)
5487 *zone_start_pfn += zones_size[zone];
5488
5489 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5490
5491 return zones_size[zone_type];
5492 }
5493
5494 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5495 unsigned long zone_type,
5496 unsigned long node_start_pfn,
5497 unsigned long node_end_pfn,
5498 unsigned long *zholes_size)
5499 {
5500 if (!zholes_size)
5501 return 0;
5502
5503 return zholes_size[zone_type];
5504 }
5505
5506 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5507
5508 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5509 unsigned long node_start_pfn,
5510 unsigned long node_end_pfn,
5511 unsigned long *zones_size,
5512 unsigned long *zholes_size)
5513 {
5514 unsigned long realtotalpages = 0, totalpages = 0;
5515 enum zone_type i;
5516
5517 for (i = 0; i < MAX_NR_ZONES; i++) {
5518 struct zone *zone = pgdat->node_zones + i;
5519 unsigned long zone_start_pfn, zone_end_pfn;
5520 unsigned long size, real_size;
5521
5522 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5523 node_start_pfn,
5524 node_end_pfn,
5525 &zone_start_pfn,
5526 &zone_end_pfn,
5527 zones_size);
5528 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5529 node_start_pfn, node_end_pfn,
5530 zholes_size);
5531 if (size)
5532 zone->zone_start_pfn = zone_start_pfn;
5533 else
5534 zone->zone_start_pfn = 0;
5535 zone->spanned_pages = size;
5536 zone->present_pages = real_size;
5537
5538 totalpages += size;
5539 realtotalpages += real_size;
5540 }
5541
5542 pgdat->node_spanned_pages = totalpages;
5543 pgdat->node_present_pages = realtotalpages;
5544 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5545 realtotalpages);
5546 }
5547
5548 #ifndef CONFIG_SPARSEMEM
5549 /*
5550 * Calculate the size of the zone->blockflags rounded to an unsigned long
5551 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5552 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5553 * round what is now in bits to nearest long in bits, then return it in
5554 * bytes.
5555 */
5556 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5557 {
5558 unsigned long usemapsize;
5559
5560 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5561 usemapsize = roundup(zonesize, pageblock_nr_pages);
5562 usemapsize = usemapsize >> pageblock_order;
5563 usemapsize *= NR_PAGEBLOCK_BITS;
5564 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5565
5566 return usemapsize / 8;
5567 }
5568
5569 static void __init setup_usemap(struct pglist_data *pgdat,
5570 struct zone *zone,
5571 unsigned long zone_start_pfn,
5572 unsigned long zonesize)
5573 {
5574 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5575 zone->pageblock_flags = NULL;
5576 if (usemapsize)
5577 zone->pageblock_flags =
5578 memblock_virt_alloc_node_nopanic(usemapsize,
5579 pgdat->node_id);
5580 }
5581 #else
5582 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5583 unsigned long zone_start_pfn, unsigned long zonesize) {}
5584 #endif /* CONFIG_SPARSEMEM */
5585
5586 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5587
5588 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5589 void __paginginit set_pageblock_order(void)
5590 {
5591 unsigned int order;
5592
5593 /* Check that pageblock_nr_pages has not already been setup */
5594 if (pageblock_order)
5595 return;
5596
5597 if (HPAGE_SHIFT > PAGE_SHIFT)
5598 order = HUGETLB_PAGE_ORDER;
5599 else
5600 order = MAX_ORDER - 1;
5601
5602 /*
5603 * Assume the largest contiguous order of interest is a huge page.
5604 * This value may be variable depending on boot parameters on IA64 and
5605 * powerpc.
5606 */
5607 pageblock_order = order;
5608 }
5609 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5610
5611 /*
5612 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5613 * is unused as pageblock_order is set at compile-time. See
5614 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5615 * the kernel config
5616 */
5617 void __paginginit set_pageblock_order(void)
5618 {
5619 }
5620
5621 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5622
5623 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5624 unsigned long present_pages)
5625 {
5626 unsigned long pages = spanned_pages;
5627
5628 /*
5629 * Provide a more accurate estimation if there are holes within
5630 * the zone and SPARSEMEM is in use. If there are holes within the
5631 * zone, each populated memory region may cost us one or two extra
5632 * memmap pages due to alignment because memmap pages for each
5633 * populated regions may not naturally algined on page boundary.
5634 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5635 */
5636 if (spanned_pages > present_pages + (present_pages >> 4) &&
5637 IS_ENABLED(CONFIG_SPARSEMEM))
5638 pages = present_pages;
5639
5640 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5641 }
5642
5643 /*
5644 * Set up the zone data structures:
5645 * - mark all pages reserved
5646 * - mark all memory queues empty
5647 * - clear the memory bitmaps
5648 *
5649 * NOTE: pgdat should get zeroed by caller.
5650 */
5651 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5652 {
5653 enum zone_type j;
5654 int nid = pgdat->node_id;
5655 int ret;
5656
5657 pgdat_resize_init(pgdat);
5658 #ifdef CONFIG_NUMA_BALANCING
5659 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5660 pgdat->numabalancing_migrate_nr_pages = 0;
5661 pgdat->numabalancing_migrate_next_window = jiffies;
5662 #endif
5663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5664 spin_lock_init(&pgdat->split_queue_lock);
5665 INIT_LIST_HEAD(&pgdat->split_queue);
5666 pgdat->split_queue_len = 0;
5667 #endif
5668 init_waitqueue_head(&pgdat->kswapd_wait);
5669 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5670 #ifdef CONFIG_COMPACTION
5671 init_waitqueue_head(&pgdat->kcompactd_wait);
5672 #endif
5673 pgdat_page_ext_init(pgdat);
5674
5675 for (j = 0; j < MAX_NR_ZONES; j++) {
5676 struct zone *zone = pgdat->node_zones + j;
5677 unsigned long size, realsize, freesize, memmap_pages;
5678 unsigned long zone_start_pfn = zone->zone_start_pfn;
5679
5680 size = zone->spanned_pages;
5681 realsize = freesize = zone->present_pages;
5682
5683 /*
5684 * Adjust freesize so that it accounts for how much memory
5685 * is used by this zone for memmap. This affects the watermark
5686 * and per-cpu initialisations
5687 */
5688 memmap_pages = calc_memmap_size(size, realsize);
5689 if (!is_highmem_idx(j)) {
5690 if (freesize >= memmap_pages) {
5691 freesize -= memmap_pages;
5692 if (memmap_pages)
5693 printk(KERN_DEBUG
5694 " %s zone: %lu pages used for memmap\n",
5695 zone_names[j], memmap_pages);
5696 } else
5697 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5698 zone_names[j], memmap_pages, freesize);
5699 }
5700
5701 /* Account for reserved pages */
5702 if (j == 0 && freesize > dma_reserve) {
5703 freesize -= dma_reserve;
5704 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5705 zone_names[0], dma_reserve);
5706 }
5707
5708 if (!is_highmem_idx(j))
5709 nr_kernel_pages += freesize;
5710 /* Charge for highmem memmap if there are enough kernel pages */
5711 else if (nr_kernel_pages > memmap_pages * 2)
5712 nr_kernel_pages -= memmap_pages;
5713 nr_all_pages += freesize;
5714
5715 /*
5716 * Set an approximate value for lowmem here, it will be adjusted
5717 * when the bootmem allocator frees pages into the buddy system.
5718 * And all highmem pages will be managed by the buddy system.
5719 */
5720 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5721 #ifdef CONFIG_NUMA
5722 zone->node = nid;
5723 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5724 / 100;
5725 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5726 #endif
5727 zone->name = zone_names[j];
5728 spin_lock_init(&zone->lock);
5729 spin_lock_init(&zone->lru_lock);
5730 zone_seqlock_init(zone);
5731 zone->zone_pgdat = pgdat;
5732 zone_pcp_init(zone);
5733
5734 /* For bootup, initialized properly in watermark setup */
5735 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5736
5737 lruvec_init(&zone->lruvec);
5738 if (!size)
5739 continue;
5740
5741 set_pageblock_order();
5742 setup_usemap(pgdat, zone, zone_start_pfn, size);
5743 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5744 BUG_ON(ret);
5745 memmap_init(size, nid, j, zone_start_pfn);
5746 }
5747 }
5748
5749 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5750 {
5751 unsigned long __maybe_unused start = 0;
5752 unsigned long __maybe_unused offset = 0;
5753
5754 /* Skip empty nodes */
5755 if (!pgdat->node_spanned_pages)
5756 return;
5757
5758 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5759 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5760 offset = pgdat->node_start_pfn - start;
5761 /* ia64 gets its own node_mem_map, before this, without bootmem */
5762 if (!pgdat->node_mem_map) {
5763 unsigned long size, end;
5764 struct page *map;
5765
5766 /*
5767 * The zone's endpoints aren't required to be MAX_ORDER
5768 * aligned but the node_mem_map endpoints must be in order
5769 * for the buddy allocator to function correctly.
5770 */
5771 end = pgdat_end_pfn(pgdat);
5772 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5773 size = (end - start) * sizeof(struct page);
5774 map = alloc_remap(pgdat->node_id, size);
5775 if (!map)
5776 map = memblock_virt_alloc_node_nopanic(size,
5777 pgdat->node_id);
5778 pgdat->node_mem_map = map + offset;
5779 }
5780 #ifndef CONFIG_NEED_MULTIPLE_NODES
5781 /*
5782 * With no DISCONTIG, the global mem_map is just set as node 0's
5783 */
5784 if (pgdat == NODE_DATA(0)) {
5785 mem_map = NODE_DATA(0)->node_mem_map;
5786 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5787 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5788 mem_map -= offset;
5789 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5790 }
5791 #endif
5792 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5793 }
5794
5795 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5796 unsigned long node_start_pfn, unsigned long *zholes_size)
5797 {
5798 pg_data_t *pgdat = NODE_DATA(nid);
5799 unsigned long start_pfn = 0;
5800 unsigned long end_pfn = 0;
5801
5802 /* pg_data_t should be reset to zero when it's allocated */
5803 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5804
5805 reset_deferred_meminit(pgdat);
5806 pgdat->node_id = nid;
5807 pgdat->node_start_pfn = node_start_pfn;
5808 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5809 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5810 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5811 (u64)start_pfn << PAGE_SHIFT,
5812 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5813 #else
5814 start_pfn = node_start_pfn;
5815 #endif
5816 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5817 zones_size, zholes_size);
5818
5819 alloc_node_mem_map(pgdat);
5820 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5821 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5822 nid, (unsigned long)pgdat,
5823 (unsigned long)pgdat->node_mem_map);
5824 #endif
5825
5826 free_area_init_core(pgdat);
5827 }
5828
5829 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5830
5831 #if MAX_NUMNODES > 1
5832 /*
5833 * Figure out the number of possible node ids.
5834 */
5835 void __init setup_nr_node_ids(void)
5836 {
5837 unsigned int highest;
5838
5839 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5840 nr_node_ids = highest + 1;
5841 }
5842 #endif
5843
5844 /**
5845 * node_map_pfn_alignment - determine the maximum internode alignment
5846 *
5847 * This function should be called after node map is populated and sorted.
5848 * It calculates the maximum power of two alignment which can distinguish
5849 * all the nodes.
5850 *
5851 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5852 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5853 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5854 * shifted, 1GiB is enough and this function will indicate so.
5855 *
5856 * This is used to test whether pfn -> nid mapping of the chosen memory
5857 * model has fine enough granularity to avoid incorrect mapping for the
5858 * populated node map.
5859 *
5860 * Returns the determined alignment in pfn's. 0 if there is no alignment
5861 * requirement (single node).
5862 */
5863 unsigned long __init node_map_pfn_alignment(void)
5864 {
5865 unsigned long accl_mask = 0, last_end = 0;
5866 unsigned long start, end, mask;
5867 int last_nid = -1;
5868 int i, nid;
5869
5870 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5871 if (!start || last_nid < 0 || last_nid == nid) {
5872 last_nid = nid;
5873 last_end = end;
5874 continue;
5875 }
5876
5877 /*
5878 * Start with a mask granular enough to pin-point to the
5879 * start pfn and tick off bits one-by-one until it becomes
5880 * too coarse to separate the current node from the last.
5881 */
5882 mask = ~((1 << __ffs(start)) - 1);
5883 while (mask && last_end <= (start & (mask << 1)))
5884 mask <<= 1;
5885
5886 /* accumulate all internode masks */
5887 accl_mask |= mask;
5888 }
5889
5890 /* convert mask to number of pages */
5891 return ~accl_mask + 1;
5892 }
5893
5894 /* Find the lowest pfn for a node */
5895 static unsigned long __init find_min_pfn_for_node(int nid)
5896 {
5897 unsigned long min_pfn = ULONG_MAX;
5898 unsigned long start_pfn;
5899 int i;
5900
5901 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5902 min_pfn = min(min_pfn, start_pfn);
5903
5904 if (min_pfn == ULONG_MAX) {
5905 pr_warn("Could not find start_pfn for node %d\n", nid);
5906 return 0;
5907 }
5908
5909 return min_pfn;
5910 }
5911
5912 /**
5913 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5914 *
5915 * It returns the minimum PFN based on information provided via
5916 * memblock_set_node().
5917 */
5918 unsigned long __init find_min_pfn_with_active_regions(void)
5919 {
5920 return find_min_pfn_for_node(MAX_NUMNODES);
5921 }
5922
5923 /*
5924 * early_calculate_totalpages()
5925 * Sum pages in active regions for movable zone.
5926 * Populate N_MEMORY for calculating usable_nodes.
5927 */
5928 static unsigned long __init early_calculate_totalpages(void)
5929 {
5930 unsigned long totalpages = 0;
5931 unsigned long start_pfn, end_pfn;
5932 int i, nid;
5933
5934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5935 unsigned long pages = end_pfn - start_pfn;
5936
5937 totalpages += pages;
5938 if (pages)
5939 node_set_state(nid, N_MEMORY);
5940 }
5941 return totalpages;
5942 }
5943
5944 /*
5945 * Find the PFN the Movable zone begins in each node. Kernel memory
5946 * is spread evenly between nodes as long as the nodes have enough
5947 * memory. When they don't, some nodes will have more kernelcore than
5948 * others
5949 */
5950 static void __init find_zone_movable_pfns_for_nodes(void)
5951 {
5952 int i, nid;
5953 unsigned long usable_startpfn;
5954 unsigned long kernelcore_node, kernelcore_remaining;
5955 /* save the state before borrow the nodemask */
5956 nodemask_t saved_node_state = node_states[N_MEMORY];
5957 unsigned long totalpages = early_calculate_totalpages();
5958 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5959 struct memblock_region *r;
5960
5961 /* Need to find movable_zone earlier when movable_node is specified. */
5962 find_usable_zone_for_movable();
5963
5964 /*
5965 * If movable_node is specified, ignore kernelcore and movablecore
5966 * options.
5967 */
5968 if (movable_node_is_enabled()) {
5969 for_each_memblock(memory, r) {
5970 if (!memblock_is_hotpluggable(r))
5971 continue;
5972
5973 nid = r->nid;
5974
5975 usable_startpfn = PFN_DOWN(r->base);
5976 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5977 min(usable_startpfn, zone_movable_pfn[nid]) :
5978 usable_startpfn;
5979 }
5980
5981 goto out2;
5982 }
5983
5984 /*
5985 * If kernelcore=mirror is specified, ignore movablecore option
5986 */
5987 if (mirrored_kernelcore) {
5988 bool mem_below_4gb_not_mirrored = false;
5989
5990 for_each_memblock(memory, r) {
5991 if (memblock_is_mirror(r))
5992 continue;
5993
5994 nid = r->nid;
5995
5996 usable_startpfn = memblock_region_memory_base_pfn(r);
5997
5998 if (usable_startpfn < 0x100000) {
5999 mem_below_4gb_not_mirrored = true;
6000 continue;
6001 }
6002
6003 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6004 min(usable_startpfn, zone_movable_pfn[nid]) :
6005 usable_startpfn;
6006 }
6007
6008 if (mem_below_4gb_not_mirrored)
6009 pr_warn("This configuration results in unmirrored kernel memory.");
6010
6011 goto out2;
6012 }
6013
6014 /*
6015 * If movablecore=nn[KMG] was specified, calculate what size of
6016 * kernelcore that corresponds so that memory usable for
6017 * any allocation type is evenly spread. If both kernelcore
6018 * and movablecore are specified, then the value of kernelcore
6019 * will be used for required_kernelcore if it's greater than
6020 * what movablecore would have allowed.
6021 */
6022 if (required_movablecore) {
6023 unsigned long corepages;
6024
6025 /*
6026 * Round-up so that ZONE_MOVABLE is at least as large as what
6027 * was requested by the user
6028 */
6029 required_movablecore =
6030 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6031 required_movablecore = min(totalpages, required_movablecore);
6032 corepages = totalpages - required_movablecore;
6033
6034 required_kernelcore = max(required_kernelcore, corepages);
6035 }
6036
6037 /*
6038 * If kernelcore was not specified or kernelcore size is larger
6039 * than totalpages, there is no ZONE_MOVABLE.
6040 */
6041 if (!required_kernelcore || required_kernelcore >= totalpages)
6042 goto out;
6043
6044 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6045 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6046
6047 restart:
6048 /* Spread kernelcore memory as evenly as possible throughout nodes */
6049 kernelcore_node = required_kernelcore / usable_nodes;
6050 for_each_node_state(nid, N_MEMORY) {
6051 unsigned long start_pfn, end_pfn;
6052
6053 /*
6054 * Recalculate kernelcore_node if the division per node
6055 * now exceeds what is necessary to satisfy the requested
6056 * amount of memory for the kernel
6057 */
6058 if (required_kernelcore < kernelcore_node)
6059 kernelcore_node = required_kernelcore / usable_nodes;
6060
6061 /*
6062 * As the map is walked, we track how much memory is usable
6063 * by the kernel using kernelcore_remaining. When it is
6064 * 0, the rest of the node is usable by ZONE_MOVABLE
6065 */
6066 kernelcore_remaining = kernelcore_node;
6067
6068 /* Go through each range of PFNs within this node */
6069 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6070 unsigned long size_pages;
6071
6072 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6073 if (start_pfn >= end_pfn)
6074 continue;
6075
6076 /* Account for what is only usable for kernelcore */
6077 if (start_pfn < usable_startpfn) {
6078 unsigned long kernel_pages;
6079 kernel_pages = min(end_pfn, usable_startpfn)
6080 - start_pfn;
6081
6082 kernelcore_remaining -= min(kernel_pages,
6083 kernelcore_remaining);
6084 required_kernelcore -= min(kernel_pages,
6085 required_kernelcore);
6086
6087 /* Continue if range is now fully accounted */
6088 if (end_pfn <= usable_startpfn) {
6089
6090 /*
6091 * Push zone_movable_pfn to the end so
6092 * that if we have to rebalance
6093 * kernelcore across nodes, we will
6094 * not double account here
6095 */
6096 zone_movable_pfn[nid] = end_pfn;
6097 continue;
6098 }
6099 start_pfn = usable_startpfn;
6100 }
6101
6102 /*
6103 * The usable PFN range for ZONE_MOVABLE is from
6104 * start_pfn->end_pfn. Calculate size_pages as the
6105 * number of pages used as kernelcore
6106 */
6107 size_pages = end_pfn - start_pfn;
6108 if (size_pages > kernelcore_remaining)
6109 size_pages = kernelcore_remaining;
6110 zone_movable_pfn[nid] = start_pfn + size_pages;
6111
6112 /*
6113 * Some kernelcore has been met, update counts and
6114 * break if the kernelcore for this node has been
6115 * satisfied
6116 */
6117 required_kernelcore -= min(required_kernelcore,
6118 size_pages);
6119 kernelcore_remaining -= size_pages;
6120 if (!kernelcore_remaining)
6121 break;
6122 }
6123 }
6124
6125 /*
6126 * If there is still required_kernelcore, we do another pass with one
6127 * less node in the count. This will push zone_movable_pfn[nid] further
6128 * along on the nodes that still have memory until kernelcore is
6129 * satisfied
6130 */
6131 usable_nodes--;
6132 if (usable_nodes && required_kernelcore > usable_nodes)
6133 goto restart;
6134
6135 out2:
6136 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6137 for (nid = 0; nid < MAX_NUMNODES; nid++)
6138 zone_movable_pfn[nid] =
6139 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6140
6141 out:
6142 /* restore the node_state */
6143 node_states[N_MEMORY] = saved_node_state;
6144 }
6145
6146 /* Any regular or high memory on that node ? */
6147 static void check_for_memory(pg_data_t *pgdat, int nid)
6148 {
6149 enum zone_type zone_type;
6150
6151 if (N_MEMORY == N_NORMAL_MEMORY)
6152 return;
6153
6154 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6155 struct zone *zone = &pgdat->node_zones[zone_type];
6156 if (populated_zone(zone)) {
6157 node_set_state(nid, N_HIGH_MEMORY);
6158 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6159 zone_type <= ZONE_NORMAL)
6160 node_set_state(nid, N_NORMAL_MEMORY);
6161 break;
6162 }
6163 }
6164 }
6165
6166 /**
6167 * free_area_init_nodes - Initialise all pg_data_t and zone data
6168 * @max_zone_pfn: an array of max PFNs for each zone
6169 *
6170 * This will call free_area_init_node() for each active node in the system.
6171 * Using the page ranges provided by memblock_set_node(), the size of each
6172 * zone in each node and their holes is calculated. If the maximum PFN
6173 * between two adjacent zones match, it is assumed that the zone is empty.
6174 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6175 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6176 * starts where the previous one ended. For example, ZONE_DMA32 starts
6177 * at arch_max_dma_pfn.
6178 */
6179 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6180 {
6181 unsigned long start_pfn, end_pfn;
6182 int i, nid;
6183
6184 /* Record where the zone boundaries are */
6185 memset(arch_zone_lowest_possible_pfn, 0,
6186 sizeof(arch_zone_lowest_possible_pfn));
6187 memset(arch_zone_highest_possible_pfn, 0,
6188 sizeof(arch_zone_highest_possible_pfn));
6189 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
6190 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
6191 for (i = 1; i < MAX_NR_ZONES; i++) {
6192 if (i == ZONE_MOVABLE)
6193 continue;
6194 arch_zone_lowest_possible_pfn[i] =
6195 arch_zone_highest_possible_pfn[i-1];
6196 arch_zone_highest_possible_pfn[i] =
6197 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
6198 }
6199 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6200 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6201
6202 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6203 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6204 find_zone_movable_pfns_for_nodes();
6205
6206 /* Print out the zone ranges */
6207 pr_info("Zone ranges:\n");
6208 for (i = 0; i < MAX_NR_ZONES; i++) {
6209 if (i == ZONE_MOVABLE)
6210 continue;
6211 pr_info(" %-8s ", zone_names[i]);
6212 if (arch_zone_lowest_possible_pfn[i] ==
6213 arch_zone_highest_possible_pfn[i])
6214 pr_cont("empty\n");
6215 else
6216 pr_cont("[mem %#018Lx-%#018Lx]\n",
6217 (u64)arch_zone_lowest_possible_pfn[i]
6218 << PAGE_SHIFT,
6219 ((u64)arch_zone_highest_possible_pfn[i]
6220 << PAGE_SHIFT) - 1);
6221 }
6222
6223 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6224 pr_info("Movable zone start for each node\n");
6225 for (i = 0; i < MAX_NUMNODES; i++) {
6226 if (zone_movable_pfn[i])
6227 pr_info(" Node %d: %#018Lx\n", i,
6228 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6229 }
6230
6231 /* Print out the early node map */
6232 pr_info("Early memory node ranges\n");
6233 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6234 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6235 (u64)start_pfn << PAGE_SHIFT,
6236 ((u64)end_pfn << PAGE_SHIFT) - 1);
6237
6238 /* Initialise every node */
6239 mminit_verify_pageflags_layout();
6240 setup_nr_node_ids();
6241 for_each_online_node(nid) {
6242 pg_data_t *pgdat = NODE_DATA(nid);
6243 free_area_init_node(nid, NULL,
6244 find_min_pfn_for_node(nid), NULL);
6245
6246 /* Any memory on that node */
6247 if (pgdat->node_present_pages)
6248 node_set_state(nid, N_MEMORY);
6249 check_for_memory(pgdat, nid);
6250 }
6251 }
6252
6253 static int __init cmdline_parse_core(char *p, unsigned long *core)
6254 {
6255 unsigned long long coremem;
6256 if (!p)
6257 return -EINVAL;
6258
6259 coremem = memparse(p, &p);
6260 *core = coremem >> PAGE_SHIFT;
6261
6262 /* Paranoid check that UL is enough for the coremem value */
6263 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6264
6265 return 0;
6266 }
6267
6268 /*
6269 * kernelcore=size sets the amount of memory for use for allocations that
6270 * cannot be reclaimed or migrated.
6271 */
6272 static int __init cmdline_parse_kernelcore(char *p)
6273 {
6274 /* parse kernelcore=mirror */
6275 if (parse_option_str(p, "mirror")) {
6276 mirrored_kernelcore = true;
6277 return 0;
6278 }
6279
6280 return cmdline_parse_core(p, &required_kernelcore);
6281 }
6282
6283 /*
6284 * movablecore=size sets the amount of memory for use for allocations that
6285 * can be reclaimed or migrated.
6286 */
6287 static int __init cmdline_parse_movablecore(char *p)
6288 {
6289 return cmdline_parse_core(p, &required_movablecore);
6290 }
6291
6292 early_param("kernelcore", cmdline_parse_kernelcore);
6293 early_param("movablecore", cmdline_parse_movablecore);
6294
6295 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6296
6297 void adjust_managed_page_count(struct page *page, long count)
6298 {
6299 spin_lock(&managed_page_count_lock);
6300 page_zone(page)->managed_pages += count;
6301 totalram_pages += count;
6302 #ifdef CONFIG_HIGHMEM
6303 if (PageHighMem(page))
6304 totalhigh_pages += count;
6305 #endif
6306 spin_unlock(&managed_page_count_lock);
6307 }
6308 EXPORT_SYMBOL(adjust_managed_page_count);
6309
6310 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6311 {
6312 void *pos;
6313 unsigned long pages = 0;
6314
6315 start = (void *)PAGE_ALIGN((unsigned long)start);
6316 end = (void *)((unsigned long)end & PAGE_MASK);
6317 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6318 if ((unsigned int)poison <= 0xFF)
6319 memset(pos, poison, PAGE_SIZE);
6320 free_reserved_page(virt_to_page(pos));
6321 }
6322
6323 if (pages && s)
6324 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6325 s, pages << (PAGE_SHIFT - 10), start, end);
6326
6327 return pages;
6328 }
6329 EXPORT_SYMBOL(free_reserved_area);
6330
6331 #ifdef CONFIG_HIGHMEM
6332 void free_highmem_page(struct page *page)
6333 {
6334 __free_reserved_page(page);
6335 totalram_pages++;
6336 page_zone(page)->managed_pages++;
6337 totalhigh_pages++;
6338 }
6339 #endif
6340
6341
6342 void __init mem_init_print_info(const char *str)
6343 {
6344 unsigned long physpages, codesize, datasize, rosize, bss_size;
6345 unsigned long init_code_size, init_data_size;
6346
6347 physpages = get_num_physpages();
6348 codesize = _etext - _stext;
6349 datasize = _edata - _sdata;
6350 rosize = __end_rodata - __start_rodata;
6351 bss_size = __bss_stop - __bss_start;
6352 init_data_size = __init_end - __init_begin;
6353 init_code_size = _einittext - _sinittext;
6354
6355 /*
6356 * Detect special cases and adjust section sizes accordingly:
6357 * 1) .init.* may be embedded into .data sections
6358 * 2) .init.text.* may be out of [__init_begin, __init_end],
6359 * please refer to arch/tile/kernel/vmlinux.lds.S.
6360 * 3) .rodata.* may be embedded into .text or .data sections.
6361 */
6362 #define adj_init_size(start, end, size, pos, adj) \
6363 do { \
6364 if (start <= pos && pos < end && size > adj) \
6365 size -= adj; \
6366 } while (0)
6367
6368 adj_init_size(__init_begin, __init_end, init_data_size,
6369 _sinittext, init_code_size);
6370 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6371 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6372 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6373 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6374
6375 #undef adj_init_size
6376
6377 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6378 #ifdef CONFIG_HIGHMEM
6379 ", %luK highmem"
6380 #endif
6381 "%s%s)\n",
6382 nr_free_pages() << (PAGE_SHIFT - 10),
6383 physpages << (PAGE_SHIFT - 10),
6384 codesize >> 10, datasize >> 10, rosize >> 10,
6385 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6386 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6387 totalcma_pages << (PAGE_SHIFT - 10),
6388 #ifdef CONFIG_HIGHMEM
6389 totalhigh_pages << (PAGE_SHIFT - 10),
6390 #endif
6391 str ? ", " : "", str ? str : "");
6392 }
6393
6394 /**
6395 * set_dma_reserve - set the specified number of pages reserved in the first zone
6396 * @new_dma_reserve: The number of pages to mark reserved
6397 *
6398 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6399 * In the DMA zone, a significant percentage may be consumed by kernel image
6400 * and other unfreeable allocations which can skew the watermarks badly. This
6401 * function may optionally be used to account for unfreeable pages in the
6402 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6403 * smaller per-cpu batchsize.
6404 */
6405 void __init set_dma_reserve(unsigned long new_dma_reserve)
6406 {
6407 dma_reserve = new_dma_reserve;
6408 }
6409
6410 void __init free_area_init(unsigned long *zones_size)
6411 {
6412 free_area_init_node(0, zones_size,
6413 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6414 }
6415
6416 static int page_alloc_cpu_notify(struct notifier_block *self,
6417 unsigned long action, void *hcpu)
6418 {
6419 int cpu = (unsigned long)hcpu;
6420
6421 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6422 lru_add_drain_cpu(cpu);
6423 drain_pages(cpu);
6424
6425 /*
6426 * Spill the event counters of the dead processor
6427 * into the current processors event counters.
6428 * This artificially elevates the count of the current
6429 * processor.
6430 */
6431 vm_events_fold_cpu(cpu);
6432
6433 /*
6434 * Zero the differential counters of the dead processor
6435 * so that the vm statistics are consistent.
6436 *
6437 * This is only okay since the processor is dead and cannot
6438 * race with what we are doing.
6439 */
6440 cpu_vm_stats_fold(cpu);
6441 }
6442 return NOTIFY_OK;
6443 }
6444
6445 void __init page_alloc_init(void)
6446 {
6447 hotcpu_notifier(page_alloc_cpu_notify, 0);
6448 }
6449
6450 /*
6451 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6452 * or min_free_kbytes changes.
6453 */
6454 static void calculate_totalreserve_pages(void)
6455 {
6456 struct pglist_data *pgdat;
6457 unsigned long reserve_pages = 0;
6458 enum zone_type i, j;
6459
6460 for_each_online_pgdat(pgdat) {
6461 for (i = 0; i < MAX_NR_ZONES; i++) {
6462 struct zone *zone = pgdat->node_zones + i;
6463 long max = 0;
6464
6465 /* Find valid and maximum lowmem_reserve in the zone */
6466 for (j = i; j < MAX_NR_ZONES; j++) {
6467 if (zone->lowmem_reserve[j] > max)
6468 max = zone->lowmem_reserve[j];
6469 }
6470
6471 /* we treat the high watermark as reserved pages. */
6472 max += high_wmark_pages(zone);
6473
6474 if (max > zone->managed_pages)
6475 max = zone->managed_pages;
6476
6477 zone->totalreserve_pages = max;
6478
6479 reserve_pages += max;
6480 }
6481 }
6482 totalreserve_pages = reserve_pages;
6483 }
6484
6485 /*
6486 * setup_per_zone_lowmem_reserve - called whenever
6487 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6488 * has a correct pages reserved value, so an adequate number of
6489 * pages are left in the zone after a successful __alloc_pages().
6490 */
6491 static void setup_per_zone_lowmem_reserve(void)
6492 {
6493 struct pglist_data *pgdat;
6494 enum zone_type j, idx;
6495
6496 for_each_online_pgdat(pgdat) {
6497 for (j = 0; j < MAX_NR_ZONES; j++) {
6498 struct zone *zone = pgdat->node_zones + j;
6499 unsigned long managed_pages = zone->managed_pages;
6500
6501 zone->lowmem_reserve[j] = 0;
6502
6503 idx = j;
6504 while (idx) {
6505 struct zone *lower_zone;
6506
6507 idx--;
6508
6509 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6510 sysctl_lowmem_reserve_ratio[idx] = 1;
6511
6512 lower_zone = pgdat->node_zones + idx;
6513 lower_zone->lowmem_reserve[j] = managed_pages /
6514 sysctl_lowmem_reserve_ratio[idx];
6515 managed_pages += lower_zone->managed_pages;
6516 }
6517 }
6518 }
6519
6520 /* update totalreserve_pages */
6521 calculate_totalreserve_pages();
6522 }
6523
6524 static void __setup_per_zone_wmarks(void)
6525 {
6526 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6527 unsigned long lowmem_pages = 0;
6528 struct zone *zone;
6529 unsigned long flags;
6530
6531 /* Calculate total number of !ZONE_HIGHMEM pages */
6532 for_each_zone(zone) {
6533 if (!is_highmem(zone))
6534 lowmem_pages += zone->managed_pages;
6535 }
6536
6537 for_each_zone(zone) {
6538 u64 tmp;
6539
6540 spin_lock_irqsave(&zone->lock, flags);
6541 tmp = (u64)pages_min * zone->managed_pages;
6542 do_div(tmp, lowmem_pages);
6543 if (is_highmem(zone)) {
6544 /*
6545 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6546 * need highmem pages, so cap pages_min to a small
6547 * value here.
6548 *
6549 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6550 * deltas control asynch page reclaim, and so should
6551 * not be capped for highmem.
6552 */
6553 unsigned long min_pages;
6554
6555 min_pages = zone->managed_pages / 1024;
6556 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6557 zone->watermark[WMARK_MIN] = min_pages;
6558 } else {
6559 /*
6560 * If it's a lowmem zone, reserve a number of pages
6561 * proportionate to the zone's size.
6562 */
6563 zone->watermark[WMARK_MIN] = tmp;
6564 }
6565
6566 /*
6567 * Set the kswapd watermarks distance according to the
6568 * scale factor in proportion to available memory, but
6569 * ensure a minimum size on small systems.
6570 */
6571 tmp = max_t(u64, tmp >> 2,
6572 mult_frac(zone->managed_pages,
6573 watermark_scale_factor, 10000));
6574
6575 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6576 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6577
6578 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
6579 high_wmark_pages(zone) - low_wmark_pages(zone) -
6580 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6581
6582 spin_unlock_irqrestore(&zone->lock, flags);
6583 }
6584
6585 /* update totalreserve_pages */
6586 calculate_totalreserve_pages();
6587 }
6588
6589 /**
6590 * setup_per_zone_wmarks - called when min_free_kbytes changes
6591 * or when memory is hot-{added|removed}
6592 *
6593 * Ensures that the watermark[min,low,high] values for each zone are set
6594 * correctly with respect to min_free_kbytes.
6595 */
6596 void setup_per_zone_wmarks(void)
6597 {
6598 mutex_lock(&zonelists_mutex);
6599 __setup_per_zone_wmarks();
6600 mutex_unlock(&zonelists_mutex);
6601 }
6602
6603 /*
6604 * The inactive anon list should be small enough that the VM never has to
6605 * do too much work, but large enough that each inactive page has a chance
6606 * to be referenced again before it is swapped out.
6607 *
6608 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6609 * INACTIVE_ANON pages on this zone's LRU, maintained by the
6610 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6611 * the anonymous pages are kept on the inactive list.
6612 *
6613 * total target max
6614 * memory ratio inactive anon
6615 * -------------------------------------
6616 * 10MB 1 5MB
6617 * 100MB 1 50MB
6618 * 1GB 3 250MB
6619 * 10GB 10 0.9GB
6620 * 100GB 31 3GB
6621 * 1TB 101 10GB
6622 * 10TB 320 32GB
6623 */
6624 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6625 {
6626 unsigned int gb, ratio;
6627
6628 /* Zone size in gigabytes */
6629 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6630 if (gb)
6631 ratio = int_sqrt(10 * gb);
6632 else
6633 ratio = 1;
6634
6635 zone->inactive_ratio = ratio;
6636 }
6637
6638 static void __meminit setup_per_zone_inactive_ratio(void)
6639 {
6640 struct zone *zone;
6641
6642 for_each_zone(zone)
6643 calculate_zone_inactive_ratio(zone);
6644 }
6645
6646 /*
6647 * Initialise min_free_kbytes.
6648 *
6649 * For small machines we want it small (128k min). For large machines
6650 * we want it large (64MB max). But it is not linear, because network
6651 * bandwidth does not increase linearly with machine size. We use
6652 *
6653 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6654 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6655 *
6656 * which yields
6657 *
6658 * 16MB: 512k
6659 * 32MB: 724k
6660 * 64MB: 1024k
6661 * 128MB: 1448k
6662 * 256MB: 2048k
6663 * 512MB: 2896k
6664 * 1024MB: 4096k
6665 * 2048MB: 5792k
6666 * 4096MB: 8192k
6667 * 8192MB: 11584k
6668 * 16384MB: 16384k
6669 */
6670 int __meminit init_per_zone_wmark_min(void)
6671 {
6672 unsigned long lowmem_kbytes;
6673 int new_min_free_kbytes;
6674
6675 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6676 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6677
6678 if (new_min_free_kbytes > user_min_free_kbytes) {
6679 min_free_kbytes = new_min_free_kbytes;
6680 if (min_free_kbytes < 128)
6681 min_free_kbytes = 128;
6682 if (min_free_kbytes > 65536)
6683 min_free_kbytes = 65536;
6684 } else {
6685 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6686 new_min_free_kbytes, user_min_free_kbytes);
6687 }
6688 setup_per_zone_wmarks();
6689 refresh_zone_stat_thresholds();
6690 setup_per_zone_lowmem_reserve();
6691 setup_per_zone_inactive_ratio();
6692 return 0;
6693 }
6694 core_initcall(init_per_zone_wmark_min)
6695
6696 /*
6697 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6698 * that we can call two helper functions whenever min_free_kbytes
6699 * changes.
6700 */
6701 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6702 void __user *buffer, size_t *length, loff_t *ppos)
6703 {
6704 int rc;
6705
6706 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6707 if (rc)
6708 return rc;
6709
6710 if (write) {
6711 user_min_free_kbytes = min_free_kbytes;
6712 setup_per_zone_wmarks();
6713 }
6714 return 0;
6715 }
6716
6717 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6718 void __user *buffer, size_t *length, loff_t *ppos)
6719 {
6720 int rc;
6721
6722 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6723 if (rc)
6724 return rc;
6725
6726 if (write)
6727 setup_per_zone_wmarks();
6728
6729 return 0;
6730 }
6731
6732 #ifdef CONFIG_NUMA
6733 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6734 void __user *buffer, size_t *length, loff_t *ppos)
6735 {
6736 struct zone *zone;
6737 int rc;
6738
6739 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6740 if (rc)
6741 return rc;
6742
6743 for_each_zone(zone)
6744 zone->min_unmapped_pages = (zone->managed_pages *
6745 sysctl_min_unmapped_ratio) / 100;
6746 return 0;
6747 }
6748
6749 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6750 void __user *buffer, size_t *length, loff_t *ppos)
6751 {
6752 struct zone *zone;
6753 int rc;
6754
6755 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6756 if (rc)
6757 return rc;
6758
6759 for_each_zone(zone)
6760 zone->min_slab_pages = (zone->managed_pages *
6761 sysctl_min_slab_ratio) / 100;
6762 return 0;
6763 }
6764 #endif
6765
6766 /*
6767 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6768 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6769 * whenever sysctl_lowmem_reserve_ratio changes.
6770 *
6771 * The reserve ratio obviously has absolutely no relation with the
6772 * minimum watermarks. The lowmem reserve ratio can only make sense
6773 * if in function of the boot time zone sizes.
6774 */
6775 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6776 void __user *buffer, size_t *length, loff_t *ppos)
6777 {
6778 proc_dointvec_minmax(table, write, buffer, length, ppos);
6779 setup_per_zone_lowmem_reserve();
6780 return 0;
6781 }
6782
6783 /*
6784 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6785 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6786 * pagelist can have before it gets flushed back to buddy allocator.
6787 */
6788 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6789 void __user *buffer, size_t *length, loff_t *ppos)
6790 {
6791 struct zone *zone;
6792 int old_percpu_pagelist_fraction;
6793 int ret;
6794
6795 mutex_lock(&pcp_batch_high_lock);
6796 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6797
6798 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6799 if (!write || ret < 0)
6800 goto out;
6801
6802 /* Sanity checking to avoid pcp imbalance */
6803 if (percpu_pagelist_fraction &&
6804 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6805 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6806 ret = -EINVAL;
6807 goto out;
6808 }
6809
6810 /* No change? */
6811 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6812 goto out;
6813
6814 for_each_populated_zone(zone) {
6815 unsigned int cpu;
6816
6817 for_each_possible_cpu(cpu)
6818 pageset_set_high_and_batch(zone,
6819 per_cpu_ptr(zone->pageset, cpu));
6820 }
6821 out:
6822 mutex_unlock(&pcp_batch_high_lock);
6823 return ret;
6824 }
6825
6826 #ifdef CONFIG_NUMA
6827 int hashdist = HASHDIST_DEFAULT;
6828
6829 static int __init set_hashdist(char *str)
6830 {
6831 if (!str)
6832 return 0;
6833 hashdist = simple_strtoul(str, &str, 0);
6834 return 1;
6835 }
6836 __setup("hashdist=", set_hashdist);
6837 #endif
6838
6839 /*
6840 * allocate a large system hash table from bootmem
6841 * - it is assumed that the hash table must contain an exact power-of-2
6842 * quantity of entries
6843 * - limit is the number of hash buckets, not the total allocation size
6844 */
6845 void *__init alloc_large_system_hash(const char *tablename,
6846 unsigned long bucketsize,
6847 unsigned long numentries,
6848 int scale,
6849 int flags,
6850 unsigned int *_hash_shift,
6851 unsigned int *_hash_mask,
6852 unsigned long low_limit,
6853 unsigned long high_limit)
6854 {
6855 unsigned long long max = high_limit;
6856 unsigned long log2qty, size;
6857 void *table = NULL;
6858
6859 /* allow the kernel cmdline to have a say */
6860 if (!numentries) {
6861 /* round applicable memory size up to nearest megabyte */
6862 numentries = nr_kernel_pages;
6863
6864 /* It isn't necessary when PAGE_SIZE >= 1MB */
6865 if (PAGE_SHIFT < 20)
6866 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6867
6868 /* limit to 1 bucket per 2^scale bytes of low memory */
6869 if (scale > PAGE_SHIFT)
6870 numentries >>= (scale - PAGE_SHIFT);
6871 else
6872 numentries <<= (PAGE_SHIFT - scale);
6873
6874 /* Make sure we've got at least a 0-order allocation.. */
6875 if (unlikely(flags & HASH_SMALL)) {
6876 /* Makes no sense without HASH_EARLY */
6877 WARN_ON(!(flags & HASH_EARLY));
6878 if (!(numentries >> *_hash_shift)) {
6879 numentries = 1UL << *_hash_shift;
6880 BUG_ON(!numentries);
6881 }
6882 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6883 numentries = PAGE_SIZE / bucketsize;
6884 }
6885 numentries = roundup_pow_of_two(numentries);
6886
6887 /* limit allocation size to 1/16 total memory by default */
6888 if (max == 0) {
6889 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6890 do_div(max, bucketsize);
6891 }
6892 max = min(max, 0x80000000ULL);
6893
6894 if (numentries < low_limit)
6895 numentries = low_limit;
6896 if (numentries > max)
6897 numentries = max;
6898
6899 log2qty = ilog2(numentries);
6900
6901 do {
6902 size = bucketsize << log2qty;
6903 if (flags & HASH_EARLY)
6904 table = memblock_virt_alloc_nopanic(size, 0);
6905 else if (hashdist)
6906 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6907 else {
6908 /*
6909 * If bucketsize is not a power-of-two, we may free
6910 * some pages at the end of hash table which
6911 * alloc_pages_exact() automatically does
6912 */
6913 if (get_order(size) < MAX_ORDER) {
6914 table = alloc_pages_exact(size, GFP_ATOMIC);
6915 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6916 }
6917 }
6918 } while (!table && size > PAGE_SIZE && --log2qty);
6919
6920 if (!table)
6921 panic("Failed to allocate %s hash table\n", tablename);
6922
6923 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6924 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6925
6926 if (_hash_shift)
6927 *_hash_shift = log2qty;
6928 if (_hash_mask)
6929 *_hash_mask = (1 << log2qty) - 1;
6930
6931 return table;
6932 }
6933
6934 /*
6935 * This function checks whether pageblock includes unmovable pages or not.
6936 * If @count is not zero, it is okay to include less @count unmovable pages
6937 *
6938 * PageLRU check without isolation or lru_lock could race so that
6939 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6940 * expect this function should be exact.
6941 */
6942 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6943 bool skip_hwpoisoned_pages)
6944 {
6945 unsigned long pfn, iter, found;
6946 int mt;
6947
6948 /*
6949 * For avoiding noise data, lru_add_drain_all() should be called
6950 * If ZONE_MOVABLE, the zone never contains unmovable pages
6951 */
6952 if (zone_idx(zone) == ZONE_MOVABLE)
6953 return false;
6954 mt = get_pageblock_migratetype(page);
6955 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6956 return false;
6957
6958 pfn = page_to_pfn(page);
6959 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6960 unsigned long check = pfn + iter;
6961
6962 if (!pfn_valid_within(check))
6963 continue;
6964
6965 page = pfn_to_page(check);
6966
6967 /*
6968 * Hugepages are not in LRU lists, but they're movable.
6969 * We need not scan over tail pages bacause we don't
6970 * handle each tail page individually in migration.
6971 */
6972 if (PageHuge(page)) {
6973 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6974 continue;
6975 }
6976
6977 /*
6978 * We can't use page_count without pin a page
6979 * because another CPU can free compound page.
6980 * This check already skips compound tails of THP
6981 * because their page->_refcount is zero at all time.
6982 */
6983 if (!page_ref_count(page)) {
6984 if (PageBuddy(page))
6985 iter += (1 << page_order(page)) - 1;
6986 continue;
6987 }
6988
6989 /*
6990 * The HWPoisoned page may be not in buddy system, and
6991 * page_count() is not 0.
6992 */
6993 if (skip_hwpoisoned_pages && PageHWPoison(page))
6994 continue;
6995
6996 if (!PageLRU(page))
6997 found++;
6998 /*
6999 * If there are RECLAIMABLE pages, we need to check
7000 * it. But now, memory offline itself doesn't call
7001 * shrink_node_slabs() and it still to be fixed.
7002 */
7003 /*
7004 * If the page is not RAM, page_count()should be 0.
7005 * we don't need more check. This is an _used_ not-movable page.
7006 *
7007 * The problematic thing here is PG_reserved pages. PG_reserved
7008 * is set to both of a memory hole page and a _used_ kernel
7009 * page at boot.
7010 */
7011 if (found > count)
7012 return true;
7013 }
7014 return false;
7015 }
7016
7017 bool is_pageblock_removable_nolock(struct page *page)
7018 {
7019 struct zone *zone;
7020 unsigned long pfn;
7021
7022 /*
7023 * We have to be careful here because we are iterating over memory
7024 * sections which are not zone aware so we might end up outside of
7025 * the zone but still within the section.
7026 * We have to take care about the node as well. If the node is offline
7027 * its NODE_DATA will be NULL - see page_zone.
7028 */
7029 if (!node_online(page_to_nid(page)))
7030 return false;
7031
7032 zone = page_zone(page);
7033 pfn = page_to_pfn(page);
7034 if (!zone_spans_pfn(zone, pfn))
7035 return false;
7036
7037 return !has_unmovable_pages(zone, page, 0, true);
7038 }
7039
7040 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7041
7042 static unsigned long pfn_max_align_down(unsigned long pfn)
7043 {
7044 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7045 pageblock_nr_pages) - 1);
7046 }
7047
7048 static unsigned long pfn_max_align_up(unsigned long pfn)
7049 {
7050 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7051 pageblock_nr_pages));
7052 }
7053
7054 /* [start, end) must belong to a single zone. */
7055 static int __alloc_contig_migrate_range(struct compact_control *cc,
7056 unsigned long start, unsigned long end)
7057 {
7058 /* This function is based on compact_zone() from compaction.c. */
7059 unsigned long nr_reclaimed;
7060 unsigned long pfn = start;
7061 unsigned int tries = 0;
7062 int ret = 0;
7063
7064 migrate_prep();
7065
7066 while (pfn < end || !list_empty(&cc->migratepages)) {
7067 if (fatal_signal_pending(current)) {
7068 ret = -EINTR;
7069 break;
7070 }
7071
7072 if (list_empty(&cc->migratepages)) {
7073 cc->nr_migratepages = 0;
7074 pfn = isolate_migratepages_range(cc, pfn, end);
7075 if (!pfn) {
7076 ret = -EINTR;
7077 break;
7078 }
7079 tries = 0;
7080 } else if (++tries == 5) {
7081 ret = ret < 0 ? ret : -EBUSY;
7082 break;
7083 }
7084
7085 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7086 &cc->migratepages);
7087 cc->nr_migratepages -= nr_reclaimed;
7088
7089 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7090 NULL, 0, cc->mode, MR_CMA);
7091 }
7092 if (ret < 0) {
7093 putback_movable_pages(&cc->migratepages);
7094 return ret;
7095 }
7096 return 0;
7097 }
7098
7099 /**
7100 * alloc_contig_range() -- tries to allocate given range of pages
7101 * @start: start PFN to allocate
7102 * @end: one-past-the-last PFN to allocate
7103 * @migratetype: migratetype of the underlaying pageblocks (either
7104 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7105 * in range must have the same migratetype and it must
7106 * be either of the two.
7107 *
7108 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7109 * aligned, however it's the caller's responsibility to guarantee that
7110 * we are the only thread that changes migrate type of pageblocks the
7111 * pages fall in.
7112 *
7113 * The PFN range must belong to a single zone.
7114 *
7115 * Returns zero on success or negative error code. On success all
7116 * pages which PFN is in [start, end) are allocated for the caller and
7117 * need to be freed with free_contig_range().
7118 */
7119 int alloc_contig_range(unsigned long start, unsigned long end,
7120 unsigned migratetype)
7121 {
7122 unsigned long outer_start, outer_end;
7123 unsigned int order;
7124 int ret = 0;
7125
7126 struct compact_control cc = {
7127 .nr_migratepages = 0,
7128 .order = -1,
7129 .zone = page_zone(pfn_to_page(start)),
7130 .mode = MIGRATE_SYNC,
7131 .ignore_skip_hint = true,
7132 };
7133 INIT_LIST_HEAD(&cc.migratepages);
7134
7135 /*
7136 * What we do here is we mark all pageblocks in range as
7137 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7138 * have different sizes, and due to the way page allocator
7139 * work, we align the range to biggest of the two pages so
7140 * that page allocator won't try to merge buddies from
7141 * different pageblocks and change MIGRATE_ISOLATE to some
7142 * other migration type.
7143 *
7144 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7145 * migrate the pages from an unaligned range (ie. pages that
7146 * we are interested in). This will put all the pages in
7147 * range back to page allocator as MIGRATE_ISOLATE.
7148 *
7149 * When this is done, we take the pages in range from page
7150 * allocator removing them from the buddy system. This way
7151 * page allocator will never consider using them.
7152 *
7153 * This lets us mark the pageblocks back as
7154 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7155 * aligned range but not in the unaligned, original range are
7156 * put back to page allocator so that buddy can use them.
7157 */
7158
7159 ret = start_isolate_page_range(pfn_max_align_down(start),
7160 pfn_max_align_up(end), migratetype,
7161 false);
7162 if (ret)
7163 return ret;
7164
7165 /*
7166 * In case of -EBUSY, we'd like to know which page causes problem.
7167 * So, just fall through. We will check it in test_pages_isolated().
7168 */
7169 ret = __alloc_contig_migrate_range(&cc, start, end);
7170 if (ret && ret != -EBUSY)
7171 goto done;
7172
7173 /*
7174 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7175 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7176 * more, all pages in [start, end) are free in page allocator.
7177 * What we are going to do is to allocate all pages from
7178 * [start, end) (that is remove them from page allocator).
7179 *
7180 * The only problem is that pages at the beginning and at the
7181 * end of interesting range may be not aligned with pages that
7182 * page allocator holds, ie. they can be part of higher order
7183 * pages. Because of this, we reserve the bigger range and
7184 * once this is done free the pages we are not interested in.
7185 *
7186 * We don't have to hold zone->lock here because the pages are
7187 * isolated thus they won't get removed from buddy.
7188 */
7189
7190 lru_add_drain_all();
7191 drain_all_pages(cc.zone);
7192
7193 order = 0;
7194 outer_start = start;
7195 while (!PageBuddy(pfn_to_page(outer_start))) {
7196 if (++order >= MAX_ORDER) {
7197 outer_start = start;
7198 break;
7199 }
7200 outer_start &= ~0UL << order;
7201 }
7202
7203 if (outer_start != start) {
7204 order = page_order(pfn_to_page(outer_start));
7205
7206 /*
7207 * outer_start page could be small order buddy page and
7208 * it doesn't include start page. Adjust outer_start
7209 * in this case to report failed page properly
7210 * on tracepoint in test_pages_isolated()
7211 */
7212 if (outer_start + (1UL << order) <= start)
7213 outer_start = start;
7214 }
7215
7216 /* Make sure the range is really isolated. */
7217 if (test_pages_isolated(outer_start, end, false)) {
7218 pr_info("%s: [%lx, %lx) PFNs busy\n",
7219 __func__, outer_start, end);
7220 ret = -EBUSY;
7221 goto done;
7222 }
7223
7224 /* Grab isolated pages from freelists. */
7225 outer_end = isolate_freepages_range(&cc, outer_start, end);
7226 if (!outer_end) {
7227 ret = -EBUSY;
7228 goto done;
7229 }
7230
7231 /* Free head and tail (if any) */
7232 if (start != outer_start)
7233 free_contig_range(outer_start, start - outer_start);
7234 if (end != outer_end)
7235 free_contig_range(end, outer_end - end);
7236
7237 done:
7238 undo_isolate_page_range(pfn_max_align_down(start),
7239 pfn_max_align_up(end), migratetype);
7240 return ret;
7241 }
7242
7243 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7244 {
7245 unsigned int count = 0;
7246
7247 for (; nr_pages--; pfn++) {
7248 struct page *page = pfn_to_page(pfn);
7249
7250 count += page_count(page) != 1;
7251 __free_page(page);
7252 }
7253 WARN(count != 0, "%d pages are still in use!\n", count);
7254 }
7255 #endif
7256
7257 #ifdef CONFIG_MEMORY_HOTPLUG
7258 /*
7259 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7260 * page high values need to be recalulated.
7261 */
7262 void __meminit zone_pcp_update(struct zone *zone)
7263 {
7264 unsigned cpu;
7265 mutex_lock(&pcp_batch_high_lock);
7266 for_each_possible_cpu(cpu)
7267 pageset_set_high_and_batch(zone,
7268 per_cpu_ptr(zone->pageset, cpu));
7269 mutex_unlock(&pcp_batch_high_lock);
7270 }
7271 #endif
7272
7273 void zone_pcp_reset(struct zone *zone)
7274 {
7275 unsigned long flags;
7276 int cpu;
7277 struct per_cpu_pageset *pset;
7278
7279 /* avoid races with drain_pages() */
7280 local_irq_save(flags);
7281 if (zone->pageset != &boot_pageset) {
7282 for_each_online_cpu(cpu) {
7283 pset = per_cpu_ptr(zone->pageset, cpu);
7284 drain_zonestat(zone, pset);
7285 }
7286 free_percpu(zone->pageset);
7287 zone->pageset = &boot_pageset;
7288 }
7289 local_irq_restore(flags);
7290 }
7291
7292 #ifdef CONFIG_MEMORY_HOTREMOVE
7293 /*
7294 * All pages in the range must be in a single zone and isolated
7295 * before calling this.
7296 */
7297 void
7298 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7299 {
7300 struct page *page;
7301 struct zone *zone;
7302 unsigned int order, i;
7303 unsigned long pfn;
7304 unsigned long flags;
7305 /* find the first valid pfn */
7306 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7307 if (pfn_valid(pfn))
7308 break;
7309 if (pfn == end_pfn)
7310 return;
7311 zone = page_zone(pfn_to_page(pfn));
7312 spin_lock_irqsave(&zone->lock, flags);
7313 pfn = start_pfn;
7314 while (pfn < end_pfn) {
7315 if (!pfn_valid(pfn)) {
7316 pfn++;
7317 continue;
7318 }
7319 page = pfn_to_page(pfn);
7320 /*
7321 * The HWPoisoned page may be not in buddy system, and
7322 * page_count() is not 0.
7323 */
7324 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7325 pfn++;
7326 SetPageReserved(page);
7327 continue;
7328 }
7329
7330 BUG_ON(page_count(page));
7331 BUG_ON(!PageBuddy(page));
7332 order = page_order(page);
7333 #ifdef CONFIG_DEBUG_VM
7334 pr_info("remove from free list %lx %d %lx\n",
7335 pfn, 1 << order, end_pfn);
7336 #endif
7337 list_del(&page->lru);
7338 rmv_page_order(page);
7339 zone->free_area[order].nr_free--;
7340 for (i = 0; i < (1 << order); i++)
7341 SetPageReserved((page+i));
7342 pfn += (1 << order);
7343 }
7344 spin_unlock_irqrestore(&zone->lock, flags);
7345 }
7346 #endif
7347
7348 bool is_free_buddy_page(struct page *page)
7349 {
7350 struct zone *zone = page_zone(page);
7351 unsigned long pfn = page_to_pfn(page);
7352 unsigned long flags;
7353 unsigned int order;
7354
7355 spin_lock_irqsave(&zone->lock, flags);
7356 for (order = 0; order < MAX_ORDER; order++) {
7357 struct page *page_head = page - (pfn & ((1 << order) - 1));
7358
7359 if (PageBuddy(page_head) && page_order(page_head) >= order)
7360 break;
7361 }
7362 spin_unlock_irqrestore(&zone->lock, flags);
7363
7364 return order < MAX_ORDER;
7365 }
This page took 0.180884 seconds and 5 git commands to generate.