mm: close PageTail race
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes = -1;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237 if (unlikely(page_group_by_mobility_disabled &&
238 migratetype < MIGRATE_PCPTYPES))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page, char *reason, unsigned long bad_flags)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page_badflags(page, reason, bad_flags);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 set_page_count(p, 0);
373 p->first_page = page;
374 /* Make sure p->first_page is always valid for PageTail() */
375 smp_wmb();
376 __SetPageTail(p);
377 }
378 }
379
380 /* update __split_huge_page_refcount if you change this function */
381 static int destroy_compound_page(struct page *page, unsigned long order)
382 {
383 int i;
384 int nr_pages = 1 << order;
385 int bad = 0;
386
387 if (unlikely(compound_order(page) != order)) {
388 bad_page(page, "wrong compound order", 0);
389 bad++;
390 }
391
392 __ClearPageHead(page);
393
394 for (i = 1; i < nr_pages; i++) {
395 struct page *p = page + i;
396
397 if (unlikely(!PageTail(p))) {
398 bad_page(page, "PageTail not set", 0);
399 bad++;
400 } else if (unlikely(p->first_page != page)) {
401 bad_page(page, "first_page not consistent", 0);
402 bad++;
403 }
404 __ClearPageTail(p);
405 }
406
407 return bad;
408 }
409
410 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
411 {
412 int i;
413
414 /*
415 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
416 * and __GFP_HIGHMEM from hard or soft interrupt context.
417 */
418 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
419 for (i = 0; i < (1 << order); i++)
420 clear_highpage(page + i);
421 }
422
423 #ifdef CONFIG_DEBUG_PAGEALLOC
424 unsigned int _debug_guardpage_minorder;
425
426 static int __init debug_guardpage_minorder_setup(char *buf)
427 {
428 unsigned long res;
429
430 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
431 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
432 return 0;
433 }
434 _debug_guardpage_minorder = res;
435 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
436 return 0;
437 }
438 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
439
440 static inline void set_page_guard_flag(struct page *page)
441 {
442 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444
445 static inline void clear_page_guard_flag(struct page *page)
446 {
447 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
448 }
449 #else
450 static inline void set_page_guard_flag(struct page *page) { }
451 static inline void clear_page_guard_flag(struct page *page) { }
452 #endif
453
454 static inline void set_page_order(struct page *page, int order)
455 {
456 set_page_private(page, order);
457 __SetPageBuddy(page);
458 }
459
460 static inline void rmv_page_order(struct page *page)
461 {
462 __ClearPageBuddy(page);
463 set_page_private(page, 0);
464 }
465
466 /*
467 * Locate the struct page for both the matching buddy in our
468 * pair (buddy1) and the combined O(n+1) page they form (page).
469 *
470 * 1) Any buddy B1 will have an order O twin B2 which satisfies
471 * the following equation:
472 * B2 = B1 ^ (1 << O)
473 * For example, if the starting buddy (buddy2) is #8 its order
474 * 1 buddy is #10:
475 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
476 *
477 * 2) Any buddy B will have an order O+1 parent P which
478 * satisfies the following equation:
479 * P = B & ~(1 << O)
480 *
481 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
482 */
483 static inline unsigned long
484 __find_buddy_index(unsigned long page_idx, unsigned int order)
485 {
486 return page_idx ^ (1 << order);
487 }
488
489 /*
490 * This function checks whether a page is free && is the buddy
491 * we can do coalesce a page and its buddy if
492 * (a) the buddy is not in a hole &&
493 * (b) the buddy is in the buddy system &&
494 * (c) a page and its buddy have the same order &&
495 * (d) a page and its buddy are in the same zone.
496 *
497 * For recording whether a page is in the buddy system, we set ->_mapcount
498 * PAGE_BUDDY_MAPCOUNT_VALUE.
499 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
500 * serialized by zone->lock.
501 *
502 * For recording page's order, we use page_private(page).
503 */
504 static inline int page_is_buddy(struct page *page, struct page *buddy,
505 int order)
506 {
507 if (!pfn_valid_within(page_to_pfn(buddy)))
508 return 0;
509
510 if (page_zone_id(page) != page_zone_id(buddy))
511 return 0;
512
513 if (page_is_guard(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
515 return 1;
516 }
517
518 if (PageBuddy(buddy) && page_order(buddy) == order) {
519 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
520 return 1;
521 }
522 return 0;
523 }
524
525 /*
526 * Freeing function for a buddy system allocator.
527 *
528 * The concept of a buddy system is to maintain direct-mapped table
529 * (containing bit values) for memory blocks of various "orders".
530 * The bottom level table contains the map for the smallest allocatable
531 * units of memory (here, pages), and each level above it describes
532 * pairs of units from the levels below, hence, "buddies".
533 * At a high level, all that happens here is marking the table entry
534 * at the bottom level available, and propagating the changes upward
535 * as necessary, plus some accounting needed to play nicely with other
536 * parts of the VM system.
537 * At each level, we keep a list of pages, which are heads of continuous
538 * free pages of length of (1 << order) and marked with _mapcount
539 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
540 * field.
541 * So when we are allocating or freeing one, we can derive the state of the
542 * other. That is, if we allocate a small block, and both were
543 * free, the remainder of the region must be split into blocks.
544 * If a block is freed, and its buddy is also free, then this
545 * triggers coalescing into a block of larger size.
546 *
547 * -- nyc
548 */
549
550 static inline void __free_one_page(struct page *page,
551 struct zone *zone, unsigned int order,
552 int migratetype)
553 {
554 unsigned long page_idx;
555 unsigned long combined_idx;
556 unsigned long uninitialized_var(buddy_idx);
557 struct page *buddy;
558
559 VM_BUG_ON(!zone_is_initialized(zone));
560
561 if (unlikely(PageCompound(page)))
562 if (unlikely(destroy_compound_page(page, order)))
563 return;
564
565 VM_BUG_ON(migratetype == -1);
566
567 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
568
569 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
570 VM_BUG_ON_PAGE(bad_range(zone, page), page);
571
572 while (order < MAX_ORDER-1) {
573 buddy_idx = __find_buddy_index(page_idx, order);
574 buddy = page + (buddy_idx - page_idx);
575 if (!page_is_buddy(page, buddy, order))
576 break;
577 /*
578 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
579 * merge with it and move up one order.
580 */
581 if (page_is_guard(buddy)) {
582 clear_page_guard_flag(buddy);
583 set_page_private(page, 0);
584 __mod_zone_freepage_state(zone, 1 << order,
585 migratetype);
586 } else {
587 list_del(&buddy->lru);
588 zone->free_area[order].nr_free--;
589 rmv_page_order(buddy);
590 }
591 combined_idx = buddy_idx & page_idx;
592 page = page + (combined_idx - page_idx);
593 page_idx = combined_idx;
594 order++;
595 }
596 set_page_order(page, order);
597
598 /*
599 * If this is not the largest possible page, check if the buddy
600 * of the next-highest order is free. If it is, it's possible
601 * that pages are being freed that will coalesce soon. In case,
602 * that is happening, add the free page to the tail of the list
603 * so it's less likely to be used soon and more likely to be merged
604 * as a higher order page
605 */
606 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
607 struct page *higher_page, *higher_buddy;
608 combined_idx = buddy_idx & page_idx;
609 higher_page = page + (combined_idx - page_idx);
610 buddy_idx = __find_buddy_index(combined_idx, order + 1);
611 higher_buddy = higher_page + (buddy_idx - combined_idx);
612 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
613 list_add_tail(&page->lru,
614 &zone->free_area[order].free_list[migratetype]);
615 goto out;
616 }
617 }
618
619 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
620 out:
621 zone->free_area[order].nr_free++;
622 }
623
624 static inline int free_pages_check(struct page *page)
625 {
626 char *bad_reason = NULL;
627 unsigned long bad_flags = 0;
628
629 if (unlikely(page_mapcount(page)))
630 bad_reason = "nonzero mapcount";
631 if (unlikely(page->mapping != NULL))
632 bad_reason = "non-NULL mapping";
633 if (unlikely(atomic_read(&page->_count) != 0))
634 bad_reason = "nonzero _count";
635 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
636 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
637 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
638 }
639 if (unlikely(mem_cgroup_bad_page_check(page)))
640 bad_reason = "cgroup check failed";
641 if (unlikely(bad_reason)) {
642 bad_page(page, bad_reason, bad_flags);
643 return 1;
644 }
645 page_cpupid_reset_last(page);
646 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
647 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
648 return 0;
649 }
650
651 /*
652 * Frees a number of pages from the PCP lists
653 * Assumes all pages on list are in same zone, and of same order.
654 * count is the number of pages to free.
655 *
656 * If the zone was previously in an "all pages pinned" state then look to
657 * see if this freeing clears that state.
658 *
659 * And clear the zone's pages_scanned counter, to hold off the "all pages are
660 * pinned" detection logic.
661 */
662 static void free_pcppages_bulk(struct zone *zone, int count,
663 struct per_cpu_pages *pcp)
664 {
665 int migratetype = 0;
666 int batch_free = 0;
667 int to_free = count;
668
669 spin_lock(&zone->lock);
670 zone->pages_scanned = 0;
671
672 while (to_free) {
673 struct page *page;
674 struct list_head *list;
675
676 /*
677 * Remove pages from lists in a round-robin fashion. A
678 * batch_free count is maintained that is incremented when an
679 * empty list is encountered. This is so more pages are freed
680 * off fuller lists instead of spinning excessively around empty
681 * lists
682 */
683 do {
684 batch_free++;
685 if (++migratetype == MIGRATE_PCPTYPES)
686 migratetype = 0;
687 list = &pcp->lists[migratetype];
688 } while (list_empty(list));
689
690 /* This is the only non-empty list. Free them all. */
691 if (batch_free == MIGRATE_PCPTYPES)
692 batch_free = to_free;
693
694 do {
695 int mt; /* migratetype of the to-be-freed page */
696
697 page = list_entry(list->prev, struct page, lru);
698 /* must delete as __free_one_page list manipulates */
699 list_del(&page->lru);
700 mt = get_freepage_migratetype(page);
701 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
702 __free_one_page(page, zone, 0, mt);
703 trace_mm_page_pcpu_drain(page, 0, mt);
704 if (likely(!is_migrate_isolate_page(page))) {
705 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
706 if (is_migrate_cma(mt))
707 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
708 }
709 } while (--to_free && --batch_free && !list_empty(list));
710 }
711 spin_unlock(&zone->lock);
712 }
713
714 static void free_one_page(struct zone *zone, struct page *page, int order,
715 int migratetype)
716 {
717 spin_lock(&zone->lock);
718 zone->pages_scanned = 0;
719
720 __free_one_page(page, zone, order, migratetype);
721 if (unlikely(!is_migrate_isolate(migratetype)))
722 __mod_zone_freepage_state(zone, 1 << order, migratetype);
723 spin_unlock(&zone->lock);
724 }
725
726 static bool free_pages_prepare(struct page *page, unsigned int order)
727 {
728 int i;
729 int bad = 0;
730
731 trace_mm_page_free(page, order);
732 kmemcheck_free_shadow(page, order);
733
734 if (PageAnon(page))
735 page->mapping = NULL;
736 for (i = 0; i < (1 << order); i++)
737 bad += free_pages_check(page + i);
738 if (bad)
739 return false;
740
741 if (!PageHighMem(page)) {
742 debug_check_no_locks_freed(page_address(page),
743 PAGE_SIZE << order);
744 debug_check_no_obj_freed(page_address(page),
745 PAGE_SIZE << order);
746 }
747 arch_free_page(page, order);
748 kernel_map_pages(page, 1 << order, 0);
749
750 return true;
751 }
752
753 static void __free_pages_ok(struct page *page, unsigned int order)
754 {
755 unsigned long flags;
756 int migratetype;
757
758 if (!free_pages_prepare(page, order))
759 return;
760
761 local_irq_save(flags);
762 __count_vm_events(PGFREE, 1 << order);
763 migratetype = get_pageblock_migratetype(page);
764 set_freepage_migratetype(page, migratetype);
765 free_one_page(page_zone(page), page, order, migratetype);
766 local_irq_restore(flags);
767 }
768
769 void __init __free_pages_bootmem(struct page *page, unsigned int order)
770 {
771 unsigned int nr_pages = 1 << order;
772 struct page *p = page;
773 unsigned int loop;
774
775 prefetchw(p);
776 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
777 prefetchw(p + 1);
778 __ClearPageReserved(p);
779 set_page_count(p, 0);
780 }
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783
784 page_zone(page)->managed_pages += nr_pages;
785 set_page_refcounted(page);
786 __free_pages(page, order);
787 }
788
789 #ifdef CONFIG_CMA
790 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
791 void __init init_cma_reserved_pageblock(struct page *page)
792 {
793 unsigned i = pageblock_nr_pages;
794 struct page *p = page;
795
796 do {
797 __ClearPageReserved(p);
798 set_page_count(p, 0);
799 } while (++p, --i);
800
801 set_page_refcounted(page);
802 set_pageblock_migratetype(page, MIGRATE_CMA);
803 __free_pages(page, pageblock_order);
804 adjust_managed_page_count(page, pageblock_nr_pages);
805 }
806 #endif
807
808 /*
809 * The order of subdivision here is critical for the IO subsystem.
810 * Please do not alter this order without good reasons and regression
811 * testing. Specifically, as large blocks of memory are subdivided,
812 * the order in which smaller blocks are delivered depends on the order
813 * they're subdivided in this function. This is the primary factor
814 * influencing the order in which pages are delivered to the IO
815 * subsystem according to empirical testing, and this is also justified
816 * by considering the behavior of a buddy system containing a single
817 * large block of memory acted on by a series of small allocations.
818 * This behavior is a critical factor in sglist merging's success.
819 *
820 * -- nyc
821 */
822 static inline void expand(struct zone *zone, struct page *page,
823 int low, int high, struct free_area *area,
824 int migratetype)
825 {
826 unsigned long size = 1 << high;
827
828 while (high > low) {
829 area--;
830 high--;
831 size >>= 1;
832 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
833
834 #ifdef CONFIG_DEBUG_PAGEALLOC
835 if (high < debug_guardpage_minorder()) {
836 /*
837 * Mark as guard pages (or page), that will allow to
838 * merge back to allocator when buddy will be freed.
839 * Corresponding page table entries will not be touched,
840 * pages will stay not present in virtual address space
841 */
842 INIT_LIST_HEAD(&page[size].lru);
843 set_page_guard_flag(&page[size]);
844 set_page_private(&page[size], high);
845 /* Guard pages are not available for any usage */
846 __mod_zone_freepage_state(zone, -(1 << high),
847 migratetype);
848 continue;
849 }
850 #endif
851 list_add(&page[size].lru, &area->free_list[migratetype]);
852 area->nr_free++;
853 set_page_order(&page[size], high);
854 }
855 }
856
857 /*
858 * This page is about to be returned from the page allocator
859 */
860 static inline int check_new_page(struct page *page)
861 {
862 char *bad_reason = NULL;
863 unsigned long bad_flags = 0;
864
865 if (unlikely(page_mapcount(page)))
866 bad_reason = "nonzero mapcount";
867 if (unlikely(page->mapping != NULL))
868 bad_reason = "non-NULL mapping";
869 if (unlikely(atomic_read(&page->_count) != 0))
870 bad_reason = "nonzero _count";
871 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
872 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
873 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
874 }
875 if (unlikely(mem_cgroup_bad_page_check(page)))
876 bad_reason = "cgroup check failed";
877 if (unlikely(bad_reason)) {
878 bad_page(page, bad_reason, bad_flags);
879 return 1;
880 }
881 return 0;
882 }
883
884 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
885 {
886 int i;
887
888 for (i = 0; i < (1 << order); i++) {
889 struct page *p = page + i;
890 if (unlikely(check_new_page(p)))
891 return 1;
892 }
893
894 set_page_private(page, 0);
895 set_page_refcounted(page);
896
897 arch_alloc_page(page, order);
898 kernel_map_pages(page, 1 << order, 1);
899
900 if (gfp_flags & __GFP_ZERO)
901 prep_zero_page(page, order, gfp_flags);
902
903 if (order && (gfp_flags & __GFP_COMP))
904 prep_compound_page(page, order);
905
906 return 0;
907 }
908
909 /*
910 * Go through the free lists for the given migratetype and remove
911 * the smallest available page from the freelists
912 */
913 static inline
914 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
915 int migratetype)
916 {
917 unsigned int current_order;
918 struct free_area *area;
919 struct page *page;
920
921 /* Find a page of the appropriate size in the preferred list */
922 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
923 area = &(zone->free_area[current_order]);
924 if (list_empty(&area->free_list[migratetype]))
925 continue;
926
927 page = list_entry(area->free_list[migratetype].next,
928 struct page, lru);
929 list_del(&page->lru);
930 rmv_page_order(page);
931 area->nr_free--;
932 expand(zone, page, order, current_order, area, migratetype);
933 return page;
934 }
935
936 return NULL;
937 }
938
939
940 /*
941 * This array describes the order lists are fallen back to when
942 * the free lists for the desirable migrate type are depleted
943 */
944 static int fallbacks[MIGRATE_TYPES][4] = {
945 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
946 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
947 #ifdef CONFIG_CMA
948 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
949 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
950 #else
951 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
952 #endif
953 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
954 #ifdef CONFIG_MEMORY_ISOLATION
955 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
956 #endif
957 };
958
959 /*
960 * Move the free pages in a range to the free lists of the requested type.
961 * Note that start_page and end_pages are not aligned on a pageblock
962 * boundary. If alignment is required, use move_freepages_block()
963 */
964 int move_freepages(struct zone *zone,
965 struct page *start_page, struct page *end_page,
966 int migratetype)
967 {
968 struct page *page;
969 unsigned long order;
970 int pages_moved = 0;
971
972 #ifndef CONFIG_HOLES_IN_ZONE
973 /*
974 * page_zone is not safe to call in this context when
975 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
976 * anyway as we check zone boundaries in move_freepages_block().
977 * Remove at a later date when no bug reports exist related to
978 * grouping pages by mobility
979 */
980 BUG_ON(page_zone(start_page) != page_zone(end_page));
981 #endif
982
983 for (page = start_page; page <= end_page;) {
984 /* Make sure we are not inadvertently changing nodes */
985 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
986
987 if (!pfn_valid_within(page_to_pfn(page))) {
988 page++;
989 continue;
990 }
991
992 if (!PageBuddy(page)) {
993 page++;
994 continue;
995 }
996
997 order = page_order(page);
998 list_move(&page->lru,
999 &zone->free_area[order].free_list[migratetype]);
1000 set_freepage_migratetype(page, migratetype);
1001 page += 1 << order;
1002 pages_moved += 1 << order;
1003 }
1004
1005 return pages_moved;
1006 }
1007
1008 int move_freepages_block(struct zone *zone, struct page *page,
1009 int migratetype)
1010 {
1011 unsigned long start_pfn, end_pfn;
1012 struct page *start_page, *end_page;
1013
1014 start_pfn = page_to_pfn(page);
1015 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1016 start_page = pfn_to_page(start_pfn);
1017 end_page = start_page + pageblock_nr_pages - 1;
1018 end_pfn = start_pfn + pageblock_nr_pages - 1;
1019
1020 /* Do not cross zone boundaries */
1021 if (!zone_spans_pfn(zone, start_pfn))
1022 start_page = page;
1023 if (!zone_spans_pfn(zone, end_pfn))
1024 return 0;
1025
1026 return move_freepages(zone, start_page, end_page, migratetype);
1027 }
1028
1029 static void change_pageblock_range(struct page *pageblock_page,
1030 int start_order, int migratetype)
1031 {
1032 int nr_pageblocks = 1 << (start_order - pageblock_order);
1033
1034 while (nr_pageblocks--) {
1035 set_pageblock_migratetype(pageblock_page, migratetype);
1036 pageblock_page += pageblock_nr_pages;
1037 }
1038 }
1039
1040 /*
1041 * If breaking a large block of pages, move all free pages to the preferred
1042 * allocation list. If falling back for a reclaimable kernel allocation, be
1043 * more aggressive about taking ownership of free pages.
1044 *
1045 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1046 * nor move CMA pages to different free lists. We don't want unmovable pages
1047 * to be allocated from MIGRATE_CMA areas.
1048 *
1049 * Returns the new migratetype of the pageblock (or the same old migratetype
1050 * if it was unchanged).
1051 */
1052 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1053 int start_type, int fallback_type)
1054 {
1055 int current_order = page_order(page);
1056
1057 /*
1058 * When borrowing from MIGRATE_CMA, we need to release the excess
1059 * buddy pages to CMA itself.
1060 */
1061 if (is_migrate_cma(fallback_type))
1062 return fallback_type;
1063
1064 /* Take ownership for orders >= pageblock_order */
1065 if (current_order >= pageblock_order) {
1066 change_pageblock_range(page, current_order, start_type);
1067 return start_type;
1068 }
1069
1070 if (current_order >= pageblock_order / 2 ||
1071 start_type == MIGRATE_RECLAIMABLE ||
1072 page_group_by_mobility_disabled) {
1073 int pages;
1074
1075 pages = move_freepages_block(zone, page, start_type);
1076
1077 /* Claim the whole block if over half of it is free */
1078 if (pages >= (1 << (pageblock_order-1)) ||
1079 page_group_by_mobility_disabled) {
1080
1081 set_pageblock_migratetype(page, start_type);
1082 return start_type;
1083 }
1084
1085 }
1086
1087 return fallback_type;
1088 }
1089
1090 /* Remove an element from the buddy allocator from the fallback list */
1091 static inline struct page *
1092 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1093 {
1094 struct free_area *area;
1095 int current_order;
1096 struct page *page;
1097 int migratetype, new_type, i;
1098
1099 /* Find the largest possible block of pages in the other list */
1100 for (current_order = MAX_ORDER-1; current_order >= order;
1101 --current_order) {
1102 for (i = 0;; i++) {
1103 migratetype = fallbacks[start_migratetype][i];
1104
1105 /* MIGRATE_RESERVE handled later if necessary */
1106 if (migratetype == MIGRATE_RESERVE)
1107 break;
1108
1109 area = &(zone->free_area[current_order]);
1110 if (list_empty(&area->free_list[migratetype]))
1111 continue;
1112
1113 page = list_entry(area->free_list[migratetype].next,
1114 struct page, lru);
1115 area->nr_free--;
1116
1117 new_type = try_to_steal_freepages(zone, page,
1118 start_migratetype,
1119 migratetype);
1120
1121 /* Remove the page from the freelists */
1122 list_del(&page->lru);
1123 rmv_page_order(page);
1124
1125 expand(zone, page, order, current_order, area,
1126 new_type);
1127
1128 trace_mm_page_alloc_extfrag(page, order, current_order,
1129 start_migratetype, migratetype, new_type);
1130
1131 return page;
1132 }
1133 }
1134
1135 return NULL;
1136 }
1137
1138 /*
1139 * Do the hard work of removing an element from the buddy allocator.
1140 * Call me with the zone->lock already held.
1141 */
1142 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1143 int migratetype)
1144 {
1145 struct page *page;
1146
1147 retry_reserve:
1148 page = __rmqueue_smallest(zone, order, migratetype);
1149
1150 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1151 page = __rmqueue_fallback(zone, order, migratetype);
1152
1153 /*
1154 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1155 * is used because __rmqueue_smallest is an inline function
1156 * and we want just one call site
1157 */
1158 if (!page) {
1159 migratetype = MIGRATE_RESERVE;
1160 goto retry_reserve;
1161 }
1162 }
1163
1164 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1165 return page;
1166 }
1167
1168 /*
1169 * Obtain a specified number of elements from the buddy allocator, all under
1170 * a single hold of the lock, for efficiency. Add them to the supplied list.
1171 * Returns the number of new pages which were placed at *list.
1172 */
1173 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1174 unsigned long count, struct list_head *list,
1175 int migratetype, int cold)
1176 {
1177 int mt = migratetype, i;
1178
1179 spin_lock(&zone->lock);
1180 for (i = 0; i < count; ++i) {
1181 struct page *page = __rmqueue(zone, order, migratetype);
1182 if (unlikely(page == NULL))
1183 break;
1184
1185 /*
1186 * Split buddy pages returned by expand() are received here
1187 * in physical page order. The page is added to the callers and
1188 * list and the list head then moves forward. From the callers
1189 * perspective, the linked list is ordered by page number in
1190 * some conditions. This is useful for IO devices that can
1191 * merge IO requests if the physical pages are ordered
1192 * properly.
1193 */
1194 if (likely(cold == 0))
1195 list_add(&page->lru, list);
1196 else
1197 list_add_tail(&page->lru, list);
1198 if (IS_ENABLED(CONFIG_CMA)) {
1199 mt = get_pageblock_migratetype(page);
1200 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1201 mt = migratetype;
1202 }
1203 set_freepage_migratetype(page, mt);
1204 list = &page->lru;
1205 if (is_migrate_cma(mt))
1206 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1207 -(1 << order));
1208 }
1209 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1210 spin_unlock(&zone->lock);
1211 return i;
1212 }
1213
1214 #ifdef CONFIG_NUMA
1215 /*
1216 * Called from the vmstat counter updater to drain pagesets of this
1217 * currently executing processor on remote nodes after they have
1218 * expired.
1219 *
1220 * Note that this function must be called with the thread pinned to
1221 * a single processor.
1222 */
1223 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1224 {
1225 unsigned long flags;
1226 int to_drain;
1227 unsigned long batch;
1228
1229 local_irq_save(flags);
1230 batch = ACCESS_ONCE(pcp->batch);
1231 if (pcp->count >= batch)
1232 to_drain = batch;
1233 else
1234 to_drain = pcp->count;
1235 if (to_drain > 0) {
1236 free_pcppages_bulk(zone, to_drain, pcp);
1237 pcp->count -= to_drain;
1238 }
1239 local_irq_restore(flags);
1240 }
1241 #endif
1242
1243 /*
1244 * Drain pages of the indicated processor.
1245 *
1246 * The processor must either be the current processor and the
1247 * thread pinned to the current processor or a processor that
1248 * is not online.
1249 */
1250 static void drain_pages(unsigned int cpu)
1251 {
1252 unsigned long flags;
1253 struct zone *zone;
1254
1255 for_each_populated_zone(zone) {
1256 struct per_cpu_pageset *pset;
1257 struct per_cpu_pages *pcp;
1258
1259 local_irq_save(flags);
1260 pset = per_cpu_ptr(zone->pageset, cpu);
1261
1262 pcp = &pset->pcp;
1263 if (pcp->count) {
1264 free_pcppages_bulk(zone, pcp->count, pcp);
1265 pcp->count = 0;
1266 }
1267 local_irq_restore(flags);
1268 }
1269 }
1270
1271 /*
1272 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1273 */
1274 void drain_local_pages(void *arg)
1275 {
1276 drain_pages(smp_processor_id());
1277 }
1278
1279 /*
1280 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1281 *
1282 * Note that this code is protected against sending an IPI to an offline
1283 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1284 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1285 * nothing keeps CPUs from showing up after we populated the cpumask and
1286 * before the call to on_each_cpu_mask().
1287 */
1288 void drain_all_pages(void)
1289 {
1290 int cpu;
1291 struct per_cpu_pageset *pcp;
1292 struct zone *zone;
1293
1294 /*
1295 * Allocate in the BSS so we wont require allocation in
1296 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1297 */
1298 static cpumask_t cpus_with_pcps;
1299
1300 /*
1301 * We don't care about racing with CPU hotplug event
1302 * as offline notification will cause the notified
1303 * cpu to drain that CPU pcps and on_each_cpu_mask
1304 * disables preemption as part of its processing
1305 */
1306 for_each_online_cpu(cpu) {
1307 bool has_pcps = false;
1308 for_each_populated_zone(zone) {
1309 pcp = per_cpu_ptr(zone->pageset, cpu);
1310 if (pcp->pcp.count) {
1311 has_pcps = true;
1312 break;
1313 }
1314 }
1315 if (has_pcps)
1316 cpumask_set_cpu(cpu, &cpus_with_pcps);
1317 else
1318 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1319 }
1320 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1321 }
1322
1323 #ifdef CONFIG_HIBERNATION
1324
1325 void mark_free_pages(struct zone *zone)
1326 {
1327 unsigned long pfn, max_zone_pfn;
1328 unsigned long flags;
1329 int order, t;
1330 struct list_head *curr;
1331
1332 if (zone_is_empty(zone))
1333 return;
1334
1335 spin_lock_irqsave(&zone->lock, flags);
1336
1337 max_zone_pfn = zone_end_pfn(zone);
1338 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1339 if (pfn_valid(pfn)) {
1340 struct page *page = pfn_to_page(pfn);
1341
1342 if (!swsusp_page_is_forbidden(page))
1343 swsusp_unset_page_free(page);
1344 }
1345
1346 for_each_migratetype_order(order, t) {
1347 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1348 unsigned long i;
1349
1350 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1351 for (i = 0; i < (1UL << order); i++)
1352 swsusp_set_page_free(pfn_to_page(pfn + i));
1353 }
1354 }
1355 spin_unlock_irqrestore(&zone->lock, flags);
1356 }
1357 #endif /* CONFIG_PM */
1358
1359 /*
1360 * Free a 0-order page
1361 * cold == 1 ? free a cold page : free a hot page
1362 */
1363 void free_hot_cold_page(struct page *page, int cold)
1364 {
1365 struct zone *zone = page_zone(page);
1366 struct per_cpu_pages *pcp;
1367 unsigned long flags;
1368 int migratetype;
1369
1370 if (!free_pages_prepare(page, 0))
1371 return;
1372
1373 migratetype = get_pageblock_migratetype(page);
1374 set_freepage_migratetype(page, migratetype);
1375 local_irq_save(flags);
1376 __count_vm_event(PGFREE);
1377
1378 /*
1379 * We only track unmovable, reclaimable and movable on pcp lists.
1380 * Free ISOLATE pages back to the allocator because they are being
1381 * offlined but treat RESERVE as movable pages so we can get those
1382 * areas back if necessary. Otherwise, we may have to free
1383 * excessively into the page allocator
1384 */
1385 if (migratetype >= MIGRATE_PCPTYPES) {
1386 if (unlikely(is_migrate_isolate(migratetype))) {
1387 free_one_page(zone, page, 0, migratetype);
1388 goto out;
1389 }
1390 migratetype = MIGRATE_MOVABLE;
1391 }
1392
1393 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1394 if (cold)
1395 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1396 else
1397 list_add(&page->lru, &pcp->lists[migratetype]);
1398 pcp->count++;
1399 if (pcp->count >= pcp->high) {
1400 unsigned long batch = ACCESS_ONCE(pcp->batch);
1401 free_pcppages_bulk(zone, batch, pcp);
1402 pcp->count -= batch;
1403 }
1404
1405 out:
1406 local_irq_restore(flags);
1407 }
1408
1409 /*
1410 * Free a list of 0-order pages
1411 */
1412 void free_hot_cold_page_list(struct list_head *list, int cold)
1413 {
1414 struct page *page, *next;
1415
1416 list_for_each_entry_safe(page, next, list, lru) {
1417 trace_mm_page_free_batched(page, cold);
1418 free_hot_cold_page(page, cold);
1419 }
1420 }
1421
1422 /*
1423 * split_page takes a non-compound higher-order page, and splits it into
1424 * n (1<<order) sub-pages: page[0..n]
1425 * Each sub-page must be freed individually.
1426 *
1427 * Note: this is probably too low level an operation for use in drivers.
1428 * Please consult with lkml before using this in your driver.
1429 */
1430 void split_page(struct page *page, unsigned int order)
1431 {
1432 int i;
1433
1434 VM_BUG_ON_PAGE(PageCompound(page), page);
1435 VM_BUG_ON_PAGE(!page_count(page), page);
1436
1437 #ifdef CONFIG_KMEMCHECK
1438 /*
1439 * Split shadow pages too, because free(page[0]) would
1440 * otherwise free the whole shadow.
1441 */
1442 if (kmemcheck_page_is_tracked(page))
1443 split_page(virt_to_page(page[0].shadow), order);
1444 #endif
1445
1446 for (i = 1; i < (1 << order); i++)
1447 set_page_refcounted(page + i);
1448 }
1449 EXPORT_SYMBOL_GPL(split_page);
1450
1451 static int __isolate_free_page(struct page *page, unsigned int order)
1452 {
1453 unsigned long watermark;
1454 struct zone *zone;
1455 int mt;
1456
1457 BUG_ON(!PageBuddy(page));
1458
1459 zone = page_zone(page);
1460 mt = get_pageblock_migratetype(page);
1461
1462 if (!is_migrate_isolate(mt)) {
1463 /* Obey watermarks as if the page was being allocated */
1464 watermark = low_wmark_pages(zone) + (1 << order);
1465 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1466 return 0;
1467
1468 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1469 }
1470
1471 /* Remove page from free list */
1472 list_del(&page->lru);
1473 zone->free_area[order].nr_free--;
1474 rmv_page_order(page);
1475
1476 /* Set the pageblock if the isolated page is at least a pageblock */
1477 if (order >= pageblock_order - 1) {
1478 struct page *endpage = page + (1 << order) - 1;
1479 for (; page < endpage; page += pageblock_nr_pages) {
1480 int mt = get_pageblock_migratetype(page);
1481 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1482 set_pageblock_migratetype(page,
1483 MIGRATE_MOVABLE);
1484 }
1485 }
1486
1487 return 1UL << order;
1488 }
1489
1490 /*
1491 * Similar to split_page except the page is already free. As this is only
1492 * being used for migration, the migratetype of the block also changes.
1493 * As this is called with interrupts disabled, the caller is responsible
1494 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1495 * are enabled.
1496 *
1497 * Note: this is probably too low level an operation for use in drivers.
1498 * Please consult with lkml before using this in your driver.
1499 */
1500 int split_free_page(struct page *page)
1501 {
1502 unsigned int order;
1503 int nr_pages;
1504
1505 order = page_order(page);
1506
1507 nr_pages = __isolate_free_page(page, order);
1508 if (!nr_pages)
1509 return 0;
1510
1511 /* Split into individual pages */
1512 set_page_refcounted(page);
1513 split_page(page, order);
1514 return nr_pages;
1515 }
1516
1517 /*
1518 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1519 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1520 * or two.
1521 */
1522 static inline
1523 struct page *buffered_rmqueue(struct zone *preferred_zone,
1524 struct zone *zone, int order, gfp_t gfp_flags,
1525 int migratetype)
1526 {
1527 unsigned long flags;
1528 struct page *page;
1529 int cold = !!(gfp_flags & __GFP_COLD);
1530
1531 again:
1532 if (likely(order == 0)) {
1533 struct per_cpu_pages *pcp;
1534 struct list_head *list;
1535
1536 local_irq_save(flags);
1537 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1538 list = &pcp->lists[migratetype];
1539 if (list_empty(list)) {
1540 pcp->count += rmqueue_bulk(zone, 0,
1541 pcp->batch, list,
1542 migratetype, cold);
1543 if (unlikely(list_empty(list)))
1544 goto failed;
1545 }
1546
1547 if (cold)
1548 page = list_entry(list->prev, struct page, lru);
1549 else
1550 page = list_entry(list->next, struct page, lru);
1551
1552 list_del(&page->lru);
1553 pcp->count--;
1554 } else {
1555 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1556 /*
1557 * __GFP_NOFAIL is not to be used in new code.
1558 *
1559 * All __GFP_NOFAIL callers should be fixed so that they
1560 * properly detect and handle allocation failures.
1561 *
1562 * We most definitely don't want callers attempting to
1563 * allocate greater than order-1 page units with
1564 * __GFP_NOFAIL.
1565 */
1566 WARN_ON_ONCE(order > 1);
1567 }
1568 spin_lock_irqsave(&zone->lock, flags);
1569 page = __rmqueue(zone, order, migratetype);
1570 spin_unlock(&zone->lock);
1571 if (!page)
1572 goto failed;
1573 __mod_zone_freepage_state(zone, -(1 << order),
1574 get_pageblock_migratetype(page));
1575 }
1576
1577 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1578 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1579 zone_statistics(preferred_zone, zone, gfp_flags);
1580 local_irq_restore(flags);
1581
1582 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1583 if (prep_new_page(page, order, gfp_flags))
1584 goto again;
1585 return page;
1586
1587 failed:
1588 local_irq_restore(flags);
1589 return NULL;
1590 }
1591
1592 #ifdef CONFIG_FAIL_PAGE_ALLOC
1593
1594 static struct {
1595 struct fault_attr attr;
1596
1597 u32 ignore_gfp_highmem;
1598 u32 ignore_gfp_wait;
1599 u32 min_order;
1600 } fail_page_alloc = {
1601 .attr = FAULT_ATTR_INITIALIZER,
1602 .ignore_gfp_wait = 1,
1603 .ignore_gfp_highmem = 1,
1604 .min_order = 1,
1605 };
1606
1607 static int __init setup_fail_page_alloc(char *str)
1608 {
1609 return setup_fault_attr(&fail_page_alloc.attr, str);
1610 }
1611 __setup("fail_page_alloc=", setup_fail_page_alloc);
1612
1613 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1614 {
1615 if (order < fail_page_alloc.min_order)
1616 return false;
1617 if (gfp_mask & __GFP_NOFAIL)
1618 return false;
1619 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1620 return false;
1621 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1622 return false;
1623
1624 return should_fail(&fail_page_alloc.attr, 1 << order);
1625 }
1626
1627 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1628
1629 static int __init fail_page_alloc_debugfs(void)
1630 {
1631 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1632 struct dentry *dir;
1633
1634 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1635 &fail_page_alloc.attr);
1636 if (IS_ERR(dir))
1637 return PTR_ERR(dir);
1638
1639 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1640 &fail_page_alloc.ignore_gfp_wait))
1641 goto fail;
1642 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1643 &fail_page_alloc.ignore_gfp_highmem))
1644 goto fail;
1645 if (!debugfs_create_u32("min-order", mode, dir,
1646 &fail_page_alloc.min_order))
1647 goto fail;
1648
1649 return 0;
1650 fail:
1651 debugfs_remove_recursive(dir);
1652
1653 return -ENOMEM;
1654 }
1655
1656 late_initcall(fail_page_alloc_debugfs);
1657
1658 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1659
1660 #else /* CONFIG_FAIL_PAGE_ALLOC */
1661
1662 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1663 {
1664 return false;
1665 }
1666
1667 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1668
1669 /*
1670 * Return true if free pages are above 'mark'. This takes into account the order
1671 * of the allocation.
1672 */
1673 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1674 int classzone_idx, int alloc_flags, long free_pages)
1675 {
1676 /* free_pages my go negative - that's OK */
1677 long min = mark;
1678 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1679 int o;
1680 long free_cma = 0;
1681
1682 free_pages -= (1 << order) - 1;
1683 if (alloc_flags & ALLOC_HIGH)
1684 min -= min / 2;
1685 if (alloc_flags & ALLOC_HARDER)
1686 min -= min / 4;
1687 #ifdef CONFIG_CMA
1688 /* If allocation can't use CMA areas don't use free CMA pages */
1689 if (!(alloc_flags & ALLOC_CMA))
1690 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1691 #endif
1692
1693 if (free_pages - free_cma <= min + lowmem_reserve)
1694 return false;
1695 for (o = 0; o < order; o++) {
1696 /* At the next order, this order's pages become unavailable */
1697 free_pages -= z->free_area[o].nr_free << o;
1698
1699 /* Require fewer higher order pages to be free */
1700 min >>= 1;
1701
1702 if (free_pages <= min)
1703 return false;
1704 }
1705 return true;
1706 }
1707
1708 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1709 int classzone_idx, int alloc_flags)
1710 {
1711 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1712 zone_page_state(z, NR_FREE_PAGES));
1713 }
1714
1715 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1716 int classzone_idx, int alloc_flags)
1717 {
1718 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1719
1720 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1721 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1722
1723 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1724 free_pages);
1725 }
1726
1727 #ifdef CONFIG_NUMA
1728 /*
1729 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1730 * skip over zones that are not allowed by the cpuset, or that have
1731 * been recently (in last second) found to be nearly full. See further
1732 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1733 * that have to skip over a lot of full or unallowed zones.
1734 *
1735 * If the zonelist cache is present in the passed zonelist, then
1736 * returns a pointer to the allowed node mask (either the current
1737 * tasks mems_allowed, or node_states[N_MEMORY].)
1738 *
1739 * If the zonelist cache is not available for this zonelist, does
1740 * nothing and returns NULL.
1741 *
1742 * If the fullzones BITMAP in the zonelist cache is stale (more than
1743 * a second since last zap'd) then we zap it out (clear its bits.)
1744 *
1745 * We hold off even calling zlc_setup, until after we've checked the
1746 * first zone in the zonelist, on the theory that most allocations will
1747 * be satisfied from that first zone, so best to examine that zone as
1748 * quickly as we can.
1749 */
1750 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1751 {
1752 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1753 nodemask_t *allowednodes; /* zonelist_cache approximation */
1754
1755 zlc = zonelist->zlcache_ptr;
1756 if (!zlc)
1757 return NULL;
1758
1759 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1760 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1761 zlc->last_full_zap = jiffies;
1762 }
1763
1764 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1765 &cpuset_current_mems_allowed :
1766 &node_states[N_MEMORY];
1767 return allowednodes;
1768 }
1769
1770 /*
1771 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1772 * if it is worth looking at further for free memory:
1773 * 1) Check that the zone isn't thought to be full (doesn't have its
1774 * bit set in the zonelist_cache fullzones BITMAP).
1775 * 2) Check that the zones node (obtained from the zonelist_cache
1776 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1777 * Return true (non-zero) if zone is worth looking at further, or
1778 * else return false (zero) if it is not.
1779 *
1780 * This check -ignores- the distinction between various watermarks,
1781 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1782 * found to be full for any variation of these watermarks, it will
1783 * be considered full for up to one second by all requests, unless
1784 * we are so low on memory on all allowed nodes that we are forced
1785 * into the second scan of the zonelist.
1786 *
1787 * In the second scan we ignore this zonelist cache and exactly
1788 * apply the watermarks to all zones, even it is slower to do so.
1789 * We are low on memory in the second scan, and should leave no stone
1790 * unturned looking for a free page.
1791 */
1792 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1793 nodemask_t *allowednodes)
1794 {
1795 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1796 int i; /* index of *z in zonelist zones */
1797 int n; /* node that zone *z is on */
1798
1799 zlc = zonelist->zlcache_ptr;
1800 if (!zlc)
1801 return 1;
1802
1803 i = z - zonelist->_zonerefs;
1804 n = zlc->z_to_n[i];
1805
1806 /* This zone is worth trying if it is allowed but not full */
1807 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1808 }
1809
1810 /*
1811 * Given 'z' scanning a zonelist, set the corresponding bit in
1812 * zlc->fullzones, so that subsequent attempts to allocate a page
1813 * from that zone don't waste time re-examining it.
1814 */
1815 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1816 {
1817 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1818 int i; /* index of *z in zonelist zones */
1819
1820 zlc = zonelist->zlcache_ptr;
1821 if (!zlc)
1822 return;
1823
1824 i = z - zonelist->_zonerefs;
1825
1826 set_bit(i, zlc->fullzones);
1827 }
1828
1829 /*
1830 * clear all zones full, called after direct reclaim makes progress so that
1831 * a zone that was recently full is not skipped over for up to a second
1832 */
1833 static void zlc_clear_zones_full(struct zonelist *zonelist)
1834 {
1835 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1836
1837 zlc = zonelist->zlcache_ptr;
1838 if (!zlc)
1839 return;
1840
1841 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1842 }
1843
1844 static bool zone_local(struct zone *local_zone, struct zone *zone)
1845 {
1846 return local_zone->node == zone->node;
1847 }
1848
1849 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1850 {
1851 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1852 }
1853
1854 static void __paginginit init_zone_allows_reclaim(int nid)
1855 {
1856 int i;
1857
1858 for_each_online_node(i)
1859 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1860 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1861 else
1862 zone_reclaim_mode = 1;
1863 }
1864
1865 #else /* CONFIG_NUMA */
1866
1867 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1868 {
1869 return NULL;
1870 }
1871
1872 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1873 nodemask_t *allowednodes)
1874 {
1875 return 1;
1876 }
1877
1878 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1879 {
1880 }
1881
1882 static void zlc_clear_zones_full(struct zonelist *zonelist)
1883 {
1884 }
1885
1886 static bool zone_local(struct zone *local_zone, struct zone *zone)
1887 {
1888 return true;
1889 }
1890
1891 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1892 {
1893 return true;
1894 }
1895
1896 static inline void init_zone_allows_reclaim(int nid)
1897 {
1898 }
1899 #endif /* CONFIG_NUMA */
1900
1901 /*
1902 * get_page_from_freelist goes through the zonelist trying to allocate
1903 * a page.
1904 */
1905 static struct page *
1906 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1907 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1908 struct zone *preferred_zone, int migratetype)
1909 {
1910 struct zoneref *z;
1911 struct page *page = NULL;
1912 int classzone_idx;
1913 struct zone *zone;
1914 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1915 int zlc_active = 0; /* set if using zonelist_cache */
1916 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1917
1918 classzone_idx = zone_idx(preferred_zone);
1919 zonelist_scan:
1920 /*
1921 * Scan zonelist, looking for a zone with enough free.
1922 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1923 */
1924 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1925 high_zoneidx, nodemask) {
1926 unsigned long mark;
1927
1928 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1929 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1930 continue;
1931 if ((alloc_flags & ALLOC_CPUSET) &&
1932 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1933 continue;
1934 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1935 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1936 goto try_this_zone;
1937 /*
1938 * Distribute pages in proportion to the individual
1939 * zone size to ensure fair page aging. The zone a
1940 * page was allocated in should have no effect on the
1941 * time the page has in memory before being reclaimed.
1942 *
1943 * Try to stay in local zones in the fastpath. If
1944 * that fails, the slowpath is entered, which will do
1945 * another pass starting with the local zones, but
1946 * ultimately fall back to remote zones that do not
1947 * partake in the fairness round-robin cycle of this
1948 * zonelist.
1949 */
1950 if (alloc_flags & ALLOC_WMARK_LOW) {
1951 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1952 continue;
1953 if (!zone_local(preferred_zone, zone))
1954 continue;
1955 }
1956 /*
1957 * When allocating a page cache page for writing, we
1958 * want to get it from a zone that is within its dirty
1959 * limit, such that no single zone holds more than its
1960 * proportional share of globally allowed dirty pages.
1961 * The dirty limits take into account the zone's
1962 * lowmem reserves and high watermark so that kswapd
1963 * should be able to balance it without having to
1964 * write pages from its LRU list.
1965 *
1966 * This may look like it could increase pressure on
1967 * lower zones by failing allocations in higher zones
1968 * before they are full. But the pages that do spill
1969 * over are limited as the lower zones are protected
1970 * by this very same mechanism. It should not become
1971 * a practical burden to them.
1972 *
1973 * XXX: For now, allow allocations to potentially
1974 * exceed the per-zone dirty limit in the slowpath
1975 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1976 * which is important when on a NUMA setup the allowed
1977 * zones are together not big enough to reach the
1978 * global limit. The proper fix for these situations
1979 * will require awareness of zones in the
1980 * dirty-throttling and the flusher threads.
1981 */
1982 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1983 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1984 goto this_zone_full;
1985
1986 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1987 if (!zone_watermark_ok(zone, order, mark,
1988 classzone_idx, alloc_flags)) {
1989 int ret;
1990
1991 if (IS_ENABLED(CONFIG_NUMA) &&
1992 !did_zlc_setup && nr_online_nodes > 1) {
1993 /*
1994 * we do zlc_setup if there are multiple nodes
1995 * and before considering the first zone allowed
1996 * by the cpuset.
1997 */
1998 allowednodes = zlc_setup(zonelist, alloc_flags);
1999 zlc_active = 1;
2000 did_zlc_setup = 1;
2001 }
2002
2003 if (zone_reclaim_mode == 0 ||
2004 !zone_allows_reclaim(preferred_zone, zone))
2005 goto this_zone_full;
2006
2007 /*
2008 * As we may have just activated ZLC, check if the first
2009 * eligible zone has failed zone_reclaim recently.
2010 */
2011 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2012 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2013 continue;
2014
2015 ret = zone_reclaim(zone, gfp_mask, order);
2016 switch (ret) {
2017 case ZONE_RECLAIM_NOSCAN:
2018 /* did not scan */
2019 continue;
2020 case ZONE_RECLAIM_FULL:
2021 /* scanned but unreclaimable */
2022 continue;
2023 default:
2024 /* did we reclaim enough */
2025 if (zone_watermark_ok(zone, order, mark,
2026 classzone_idx, alloc_flags))
2027 goto try_this_zone;
2028
2029 /*
2030 * Failed to reclaim enough to meet watermark.
2031 * Only mark the zone full if checking the min
2032 * watermark or if we failed to reclaim just
2033 * 1<<order pages or else the page allocator
2034 * fastpath will prematurely mark zones full
2035 * when the watermark is between the low and
2036 * min watermarks.
2037 */
2038 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2039 ret == ZONE_RECLAIM_SOME)
2040 goto this_zone_full;
2041
2042 continue;
2043 }
2044 }
2045
2046 try_this_zone:
2047 page = buffered_rmqueue(preferred_zone, zone, order,
2048 gfp_mask, migratetype);
2049 if (page)
2050 break;
2051 this_zone_full:
2052 if (IS_ENABLED(CONFIG_NUMA))
2053 zlc_mark_zone_full(zonelist, z);
2054 }
2055
2056 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2057 /* Disable zlc cache for second zonelist scan */
2058 zlc_active = 0;
2059 goto zonelist_scan;
2060 }
2061
2062 if (page)
2063 /*
2064 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2065 * necessary to allocate the page. The expectation is
2066 * that the caller is taking steps that will free more
2067 * memory. The caller should avoid the page being used
2068 * for !PFMEMALLOC purposes.
2069 */
2070 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2071
2072 return page;
2073 }
2074
2075 /*
2076 * Large machines with many possible nodes should not always dump per-node
2077 * meminfo in irq context.
2078 */
2079 static inline bool should_suppress_show_mem(void)
2080 {
2081 bool ret = false;
2082
2083 #if NODES_SHIFT > 8
2084 ret = in_interrupt();
2085 #endif
2086 return ret;
2087 }
2088
2089 static DEFINE_RATELIMIT_STATE(nopage_rs,
2090 DEFAULT_RATELIMIT_INTERVAL,
2091 DEFAULT_RATELIMIT_BURST);
2092
2093 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2094 {
2095 unsigned int filter = SHOW_MEM_FILTER_NODES;
2096
2097 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2098 debug_guardpage_minorder() > 0)
2099 return;
2100
2101 /*
2102 * This documents exceptions given to allocations in certain
2103 * contexts that are allowed to allocate outside current's set
2104 * of allowed nodes.
2105 */
2106 if (!(gfp_mask & __GFP_NOMEMALLOC))
2107 if (test_thread_flag(TIF_MEMDIE) ||
2108 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2109 filter &= ~SHOW_MEM_FILTER_NODES;
2110 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2111 filter &= ~SHOW_MEM_FILTER_NODES;
2112
2113 if (fmt) {
2114 struct va_format vaf;
2115 va_list args;
2116
2117 va_start(args, fmt);
2118
2119 vaf.fmt = fmt;
2120 vaf.va = &args;
2121
2122 pr_warn("%pV", &vaf);
2123
2124 va_end(args);
2125 }
2126
2127 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2128 current->comm, order, gfp_mask);
2129
2130 dump_stack();
2131 if (!should_suppress_show_mem())
2132 show_mem(filter);
2133 }
2134
2135 static inline int
2136 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2137 unsigned long did_some_progress,
2138 unsigned long pages_reclaimed)
2139 {
2140 /* Do not loop if specifically requested */
2141 if (gfp_mask & __GFP_NORETRY)
2142 return 0;
2143
2144 /* Always retry if specifically requested */
2145 if (gfp_mask & __GFP_NOFAIL)
2146 return 1;
2147
2148 /*
2149 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2150 * making forward progress without invoking OOM. Suspend also disables
2151 * storage devices so kswapd will not help. Bail if we are suspending.
2152 */
2153 if (!did_some_progress && pm_suspended_storage())
2154 return 0;
2155
2156 /*
2157 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2158 * means __GFP_NOFAIL, but that may not be true in other
2159 * implementations.
2160 */
2161 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2162 return 1;
2163
2164 /*
2165 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2166 * specified, then we retry until we no longer reclaim any pages
2167 * (above), or we've reclaimed an order of pages at least as
2168 * large as the allocation's order. In both cases, if the
2169 * allocation still fails, we stop retrying.
2170 */
2171 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2172 return 1;
2173
2174 return 0;
2175 }
2176
2177 static inline struct page *
2178 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2179 struct zonelist *zonelist, enum zone_type high_zoneidx,
2180 nodemask_t *nodemask, struct zone *preferred_zone,
2181 int migratetype)
2182 {
2183 struct page *page;
2184
2185 /* Acquire the OOM killer lock for the zones in zonelist */
2186 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2187 schedule_timeout_uninterruptible(1);
2188 return NULL;
2189 }
2190
2191 /*
2192 * Go through the zonelist yet one more time, keep very high watermark
2193 * here, this is only to catch a parallel oom killing, we must fail if
2194 * we're still under heavy pressure.
2195 */
2196 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2197 order, zonelist, high_zoneidx,
2198 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2199 preferred_zone, migratetype);
2200 if (page)
2201 goto out;
2202
2203 if (!(gfp_mask & __GFP_NOFAIL)) {
2204 /* The OOM killer will not help higher order allocs */
2205 if (order > PAGE_ALLOC_COSTLY_ORDER)
2206 goto out;
2207 /* The OOM killer does not needlessly kill tasks for lowmem */
2208 if (high_zoneidx < ZONE_NORMAL)
2209 goto out;
2210 /*
2211 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2212 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2213 * The caller should handle page allocation failure by itself if
2214 * it specifies __GFP_THISNODE.
2215 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2216 */
2217 if (gfp_mask & __GFP_THISNODE)
2218 goto out;
2219 }
2220 /* Exhausted what can be done so it's blamo time */
2221 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2222
2223 out:
2224 clear_zonelist_oom(zonelist, gfp_mask);
2225 return page;
2226 }
2227
2228 #ifdef CONFIG_COMPACTION
2229 /* Try memory compaction for high-order allocations before reclaim */
2230 static struct page *
2231 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2232 struct zonelist *zonelist, enum zone_type high_zoneidx,
2233 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2234 int migratetype, bool sync_migration,
2235 bool *contended_compaction, bool *deferred_compaction,
2236 unsigned long *did_some_progress)
2237 {
2238 if (!order)
2239 return NULL;
2240
2241 if (compaction_deferred(preferred_zone, order)) {
2242 *deferred_compaction = true;
2243 return NULL;
2244 }
2245
2246 current->flags |= PF_MEMALLOC;
2247 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2248 nodemask, sync_migration,
2249 contended_compaction);
2250 current->flags &= ~PF_MEMALLOC;
2251
2252 if (*did_some_progress != COMPACT_SKIPPED) {
2253 struct page *page;
2254
2255 /* Page migration frees to the PCP lists but we want merging */
2256 drain_pages(get_cpu());
2257 put_cpu();
2258
2259 page = get_page_from_freelist(gfp_mask, nodemask,
2260 order, zonelist, high_zoneidx,
2261 alloc_flags & ~ALLOC_NO_WATERMARKS,
2262 preferred_zone, migratetype);
2263 if (page) {
2264 preferred_zone->compact_blockskip_flush = false;
2265 compaction_defer_reset(preferred_zone, order, true);
2266 count_vm_event(COMPACTSUCCESS);
2267 return page;
2268 }
2269
2270 /*
2271 * It's bad if compaction run occurs and fails.
2272 * The most likely reason is that pages exist,
2273 * but not enough to satisfy watermarks.
2274 */
2275 count_vm_event(COMPACTFAIL);
2276
2277 /*
2278 * As async compaction considers a subset of pageblocks, only
2279 * defer if the failure was a sync compaction failure.
2280 */
2281 if (sync_migration)
2282 defer_compaction(preferred_zone, order);
2283
2284 cond_resched();
2285 }
2286
2287 return NULL;
2288 }
2289 #else
2290 static inline struct page *
2291 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2292 struct zonelist *zonelist, enum zone_type high_zoneidx,
2293 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2294 int migratetype, bool sync_migration,
2295 bool *contended_compaction, bool *deferred_compaction,
2296 unsigned long *did_some_progress)
2297 {
2298 return NULL;
2299 }
2300 #endif /* CONFIG_COMPACTION */
2301
2302 /* Perform direct synchronous page reclaim */
2303 static int
2304 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2305 nodemask_t *nodemask)
2306 {
2307 struct reclaim_state reclaim_state;
2308 int progress;
2309
2310 cond_resched();
2311
2312 /* We now go into synchronous reclaim */
2313 cpuset_memory_pressure_bump();
2314 current->flags |= PF_MEMALLOC;
2315 lockdep_set_current_reclaim_state(gfp_mask);
2316 reclaim_state.reclaimed_slab = 0;
2317 current->reclaim_state = &reclaim_state;
2318
2319 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2320
2321 current->reclaim_state = NULL;
2322 lockdep_clear_current_reclaim_state();
2323 current->flags &= ~PF_MEMALLOC;
2324
2325 cond_resched();
2326
2327 return progress;
2328 }
2329
2330 /* The really slow allocator path where we enter direct reclaim */
2331 static inline struct page *
2332 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2333 struct zonelist *zonelist, enum zone_type high_zoneidx,
2334 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2335 int migratetype, unsigned long *did_some_progress)
2336 {
2337 struct page *page = NULL;
2338 bool drained = false;
2339
2340 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2341 nodemask);
2342 if (unlikely(!(*did_some_progress)))
2343 return NULL;
2344
2345 /* After successful reclaim, reconsider all zones for allocation */
2346 if (IS_ENABLED(CONFIG_NUMA))
2347 zlc_clear_zones_full(zonelist);
2348
2349 retry:
2350 page = get_page_from_freelist(gfp_mask, nodemask, order,
2351 zonelist, high_zoneidx,
2352 alloc_flags & ~ALLOC_NO_WATERMARKS,
2353 preferred_zone, migratetype);
2354
2355 /*
2356 * If an allocation failed after direct reclaim, it could be because
2357 * pages are pinned on the per-cpu lists. Drain them and try again
2358 */
2359 if (!page && !drained) {
2360 drain_all_pages();
2361 drained = true;
2362 goto retry;
2363 }
2364
2365 return page;
2366 }
2367
2368 /*
2369 * This is called in the allocator slow-path if the allocation request is of
2370 * sufficient urgency to ignore watermarks and take other desperate measures
2371 */
2372 static inline struct page *
2373 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2374 struct zonelist *zonelist, enum zone_type high_zoneidx,
2375 nodemask_t *nodemask, struct zone *preferred_zone,
2376 int migratetype)
2377 {
2378 struct page *page;
2379
2380 do {
2381 page = get_page_from_freelist(gfp_mask, nodemask, order,
2382 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2383 preferred_zone, migratetype);
2384
2385 if (!page && gfp_mask & __GFP_NOFAIL)
2386 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2387 } while (!page && (gfp_mask & __GFP_NOFAIL));
2388
2389 return page;
2390 }
2391
2392 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2393 struct zonelist *zonelist,
2394 enum zone_type high_zoneidx,
2395 struct zone *preferred_zone)
2396 {
2397 struct zoneref *z;
2398 struct zone *zone;
2399
2400 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2401 if (!(gfp_mask & __GFP_NO_KSWAPD))
2402 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2403 /*
2404 * Only reset the batches of zones that were actually
2405 * considered in the fast path, we don't want to
2406 * thrash fairness information for zones that are not
2407 * actually part of this zonelist's round-robin cycle.
2408 */
2409 if (!zone_local(preferred_zone, zone))
2410 continue;
2411 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2412 high_wmark_pages(zone) -
2413 low_wmark_pages(zone) -
2414 zone_page_state(zone, NR_ALLOC_BATCH));
2415 }
2416 }
2417
2418 static inline int
2419 gfp_to_alloc_flags(gfp_t gfp_mask)
2420 {
2421 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2422 const gfp_t wait = gfp_mask & __GFP_WAIT;
2423
2424 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2425 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2426
2427 /*
2428 * The caller may dip into page reserves a bit more if the caller
2429 * cannot run direct reclaim, or if the caller has realtime scheduling
2430 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2431 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2432 */
2433 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2434
2435 if (!wait) {
2436 /*
2437 * Not worth trying to allocate harder for
2438 * __GFP_NOMEMALLOC even if it can't schedule.
2439 */
2440 if (!(gfp_mask & __GFP_NOMEMALLOC))
2441 alloc_flags |= ALLOC_HARDER;
2442 /*
2443 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2444 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2445 */
2446 alloc_flags &= ~ALLOC_CPUSET;
2447 } else if (unlikely(rt_task(current)) && !in_interrupt())
2448 alloc_flags |= ALLOC_HARDER;
2449
2450 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2451 if (gfp_mask & __GFP_MEMALLOC)
2452 alloc_flags |= ALLOC_NO_WATERMARKS;
2453 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2454 alloc_flags |= ALLOC_NO_WATERMARKS;
2455 else if (!in_interrupt() &&
2456 ((current->flags & PF_MEMALLOC) ||
2457 unlikely(test_thread_flag(TIF_MEMDIE))))
2458 alloc_flags |= ALLOC_NO_WATERMARKS;
2459 }
2460 #ifdef CONFIG_CMA
2461 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2462 alloc_flags |= ALLOC_CMA;
2463 #endif
2464 return alloc_flags;
2465 }
2466
2467 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2468 {
2469 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2470 }
2471
2472 static inline struct page *
2473 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2474 struct zonelist *zonelist, enum zone_type high_zoneidx,
2475 nodemask_t *nodemask, struct zone *preferred_zone,
2476 int migratetype)
2477 {
2478 const gfp_t wait = gfp_mask & __GFP_WAIT;
2479 struct page *page = NULL;
2480 int alloc_flags;
2481 unsigned long pages_reclaimed = 0;
2482 unsigned long did_some_progress;
2483 bool sync_migration = false;
2484 bool deferred_compaction = false;
2485 bool contended_compaction = false;
2486
2487 /*
2488 * In the slowpath, we sanity check order to avoid ever trying to
2489 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2490 * be using allocators in order of preference for an area that is
2491 * too large.
2492 */
2493 if (order >= MAX_ORDER) {
2494 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2495 return NULL;
2496 }
2497
2498 /*
2499 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2500 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2501 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2502 * using a larger set of nodes after it has established that the
2503 * allowed per node queues are empty and that nodes are
2504 * over allocated.
2505 */
2506 if (IS_ENABLED(CONFIG_NUMA) &&
2507 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2508 goto nopage;
2509
2510 restart:
2511 prepare_slowpath(gfp_mask, order, zonelist,
2512 high_zoneidx, preferred_zone);
2513
2514 /*
2515 * OK, we're below the kswapd watermark and have kicked background
2516 * reclaim. Now things get more complex, so set up alloc_flags according
2517 * to how we want to proceed.
2518 */
2519 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2520
2521 /*
2522 * Find the true preferred zone if the allocation is unconstrained by
2523 * cpusets.
2524 */
2525 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2526 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2527 &preferred_zone);
2528
2529 rebalance:
2530 /* This is the last chance, in general, before the goto nopage. */
2531 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2532 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2533 preferred_zone, migratetype);
2534 if (page)
2535 goto got_pg;
2536
2537 /* Allocate without watermarks if the context allows */
2538 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2539 /*
2540 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2541 * the allocation is high priority and these type of
2542 * allocations are system rather than user orientated
2543 */
2544 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2545
2546 page = __alloc_pages_high_priority(gfp_mask, order,
2547 zonelist, high_zoneidx, nodemask,
2548 preferred_zone, migratetype);
2549 if (page) {
2550 goto got_pg;
2551 }
2552 }
2553
2554 /* Atomic allocations - we can't balance anything */
2555 if (!wait) {
2556 /*
2557 * All existing users of the deprecated __GFP_NOFAIL are
2558 * blockable, so warn of any new users that actually allow this
2559 * type of allocation to fail.
2560 */
2561 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2562 goto nopage;
2563 }
2564
2565 /* Avoid recursion of direct reclaim */
2566 if (current->flags & PF_MEMALLOC)
2567 goto nopage;
2568
2569 /* Avoid allocations with no watermarks from looping endlessly */
2570 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2571 goto nopage;
2572
2573 /*
2574 * Try direct compaction. The first pass is asynchronous. Subsequent
2575 * attempts after direct reclaim are synchronous
2576 */
2577 page = __alloc_pages_direct_compact(gfp_mask, order,
2578 zonelist, high_zoneidx,
2579 nodemask,
2580 alloc_flags, preferred_zone,
2581 migratetype, sync_migration,
2582 &contended_compaction,
2583 &deferred_compaction,
2584 &did_some_progress);
2585 if (page)
2586 goto got_pg;
2587 sync_migration = true;
2588
2589 /*
2590 * If compaction is deferred for high-order allocations, it is because
2591 * sync compaction recently failed. In this is the case and the caller
2592 * requested a movable allocation that does not heavily disrupt the
2593 * system then fail the allocation instead of entering direct reclaim.
2594 */
2595 if ((deferred_compaction || contended_compaction) &&
2596 (gfp_mask & __GFP_NO_KSWAPD))
2597 goto nopage;
2598
2599 /* Try direct reclaim and then allocating */
2600 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2601 zonelist, high_zoneidx,
2602 nodemask,
2603 alloc_flags, preferred_zone,
2604 migratetype, &did_some_progress);
2605 if (page)
2606 goto got_pg;
2607
2608 /*
2609 * If we failed to make any progress reclaiming, then we are
2610 * running out of options and have to consider going OOM
2611 */
2612 if (!did_some_progress) {
2613 if (oom_gfp_allowed(gfp_mask)) {
2614 if (oom_killer_disabled)
2615 goto nopage;
2616 /* Coredumps can quickly deplete all memory reserves */
2617 if ((current->flags & PF_DUMPCORE) &&
2618 !(gfp_mask & __GFP_NOFAIL))
2619 goto nopage;
2620 page = __alloc_pages_may_oom(gfp_mask, order,
2621 zonelist, high_zoneidx,
2622 nodemask, preferred_zone,
2623 migratetype);
2624 if (page)
2625 goto got_pg;
2626
2627 if (!(gfp_mask & __GFP_NOFAIL)) {
2628 /*
2629 * The oom killer is not called for high-order
2630 * allocations that may fail, so if no progress
2631 * is being made, there are no other options and
2632 * retrying is unlikely to help.
2633 */
2634 if (order > PAGE_ALLOC_COSTLY_ORDER)
2635 goto nopage;
2636 /*
2637 * The oom killer is not called for lowmem
2638 * allocations to prevent needlessly killing
2639 * innocent tasks.
2640 */
2641 if (high_zoneidx < ZONE_NORMAL)
2642 goto nopage;
2643 }
2644
2645 goto restart;
2646 }
2647 }
2648
2649 /* Check if we should retry the allocation */
2650 pages_reclaimed += did_some_progress;
2651 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2652 pages_reclaimed)) {
2653 /* Wait for some write requests to complete then retry */
2654 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2655 goto rebalance;
2656 } else {
2657 /*
2658 * High-order allocations do not necessarily loop after
2659 * direct reclaim and reclaim/compaction depends on compaction
2660 * being called after reclaim so call directly if necessary
2661 */
2662 page = __alloc_pages_direct_compact(gfp_mask, order,
2663 zonelist, high_zoneidx,
2664 nodemask,
2665 alloc_flags, preferred_zone,
2666 migratetype, sync_migration,
2667 &contended_compaction,
2668 &deferred_compaction,
2669 &did_some_progress);
2670 if (page)
2671 goto got_pg;
2672 }
2673
2674 nopage:
2675 warn_alloc_failed(gfp_mask, order, NULL);
2676 return page;
2677 got_pg:
2678 if (kmemcheck_enabled)
2679 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2680
2681 return page;
2682 }
2683
2684 /*
2685 * This is the 'heart' of the zoned buddy allocator.
2686 */
2687 struct page *
2688 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2689 struct zonelist *zonelist, nodemask_t *nodemask)
2690 {
2691 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2692 struct zone *preferred_zone;
2693 struct page *page = NULL;
2694 int migratetype = allocflags_to_migratetype(gfp_mask);
2695 unsigned int cpuset_mems_cookie;
2696 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2697 struct mem_cgroup *memcg = NULL;
2698
2699 gfp_mask &= gfp_allowed_mask;
2700
2701 lockdep_trace_alloc(gfp_mask);
2702
2703 might_sleep_if(gfp_mask & __GFP_WAIT);
2704
2705 if (should_fail_alloc_page(gfp_mask, order))
2706 return NULL;
2707
2708 /*
2709 * Check the zones suitable for the gfp_mask contain at least one
2710 * valid zone. It's possible to have an empty zonelist as a result
2711 * of GFP_THISNODE and a memoryless node
2712 */
2713 if (unlikely(!zonelist->_zonerefs->zone))
2714 return NULL;
2715
2716 /*
2717 * Will only have any effect when __GFP_KMEMCG is set. This is
2718 * verified in the (always inline) callee
2719 */
2720 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2721 return NULL;
2722
2723 retry_cpuset:
2724 cpuset_mems_cookie = get_mems_allowed();
2725
2726 /* The preferred zone is used for statistics later */
2727 first_zones_zonelist(zonelist, high_zoneidx,
2728 nodemask ? : &cpuset_current_mems_allowed,
2729 &preferred_zone);
2730 if (!preferred_zone)
2731 goto out;
2732
2733 #ifdef CONFIG_CMA
2734 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2735 alloc_flags |= ALLOC_CMA;
2736 #endif
2737 /* First allocation attempt */
2738 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2739 zonelist, high_zoneidx, alloc_flags,
2740 preferred_zone, migratetype);
2741 if (unlikely(!page)) {
2742 /*
2743 * Runtime PM, block IO and its error handling path
2744 * can deadlock because I/O on the device might not
2745 * complete.
2746 */
2747 gfp_mask = memalloc_noio_flags(gfp_mask);
2748 page = __alloc_pages_slowpath(gfp_mask, order,
2749 zonelist, high_zoneidx, nodemask,
2750 preferred_zone, migratetype);
2751 }
2752
2753 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2754
2755 out:
2756 /*
2757 * When updating a task's mems_allowed, it is possible to race with
2758 * parallel threads in such a way that an allocation can fail while
2759 * the mask is being updated. If a page allocation is about to fail,
2760 * check if the cpuset changed during allocation and if so, retry.
2761 */
2762 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2763 goto retry_cpuset;
2764
2765 memcg_kmem_commit_charge(page, memcg, order);
2766
2767 return page;
2768 }
2769 EXPORT_SYMBOL(__alloc_pages_nodemask);
2770
2771 /*
2772 * Common helper functions.
2773 */
2774 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2775 {
2776 struct page *page;
2777
2778 /*
2779 * __get_free_pages() returns a 32-bit address, which cannot represent
2780 * a highmem page
2781 */
2782 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2783
2784 page = alloc_pages(gfp_mask, order);
2785 if (!page)
2786 return 0;
2787 return (unsigned long) page_address(page);
2788 }
2789 EXPORT_SYMBOL(__get_free_pages);
2790
2791 unsigned long get_zeroed_page(gfp_t gfp_mask)
2792 {
2793 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2794 }
2795 EXPORT_SYMBOL(get_zeroed_page);
2796
2797 void __free_pages(struct page *page, unsigned int order)
2798 {
2799 if (put_page_testzero(page)) {
2800 if (order == 0)
2801 free_hot_cold_page(page, 0);
2802 else
2803 __free_pages_ok(page, order);
2804 }
2805 }
2806
2807 EXPORT_SYMBOL(__free_pages);
2808
2809 void free_pages(unsigned long addr, unsigned int order)
2810 {
2811 if (addr != 0) {
2812 VM_BUG_ON(!virt_addr_valid((void *)addr));
2813 __free_pages(virt_to_page((void *)addr), order);
2814 }
2815 }
2816
2817 EXPORT_SYMBOL(free_pages);
2818
2819 /*
2820 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2821 * pages allocated with __GFP_KMEMCG.
2822 *
2823 * Those pages are accounted to a particular memcg, embedded in the
2824 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2825 * for that information only to find out that it is NULL for users who have no
2826 * interest in that whatsoever, we provide these functions.
2827 *
2828 * The caller knows better which flags it relies on.
2829 */
2830 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2831 {
2832 memcg_kmem_uncharge_pages(page, order);
2833 __free_pages(page, order);
2834 }
2835
2836 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2837 {
2838 if (addr != 0) {
2839 VM_BUG_ON(!virt_addr_valid((void *)addr));
2840 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2841 }
2842 }
2843
2844 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2845 {
2846 if (addr) {
2847 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2848 unsigned long used = addr + PAGE_ALIGN(size);
2849
2850 split_page(virt_to_page((void *)addr), order);
2851 while (used < alloc_end) {
2852 free_page(used);
2853 used += PAGE_SIZE;
2854 }
2855 }
2856 return (void *)addr;
2857 }
2858
2859 /**
2860 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2861 * @size: the number of bytes to allocate
2862 * @gfp_mask: GFP flags for the allocation
2863 *
2864 * This function is similar to alloc_pages(), except that it allocates the
2865 * minimum number of pages to satisfy the request. alloc_pages() can only
2866 * allocate memory in power-of-two pages.
2867 *
2868 * This function is also limited by MAX_ORDER.
2869 *
2870 * Memory allocated by this function must be released by free_pages_exact().
2871 */
2872 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2873 {
2874 unsigned int order = get_order(size);
2875 unsigned long addr;
2876
2877 addr = __get_free_pages(gfp_mask, order);
2878 return make_alloc_exact(addr, order, size);
2879 }
2880 EXPORT_SYMBOL(alloc_pages_exact);
2881
2882 /**
2883 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2884 * pages on a node.
2885 * @nid: the preferred node ID where memory should be allocated
2886 * @size: the number of bytes to allocate
2887 * @gfp_mask: GFP flags for the allocation
2888 *
2889 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2890 * back.
2891 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2892 * but is not exact.
2893 */
2894 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2895 {
2896 unsigned order = get_order(size);
2897 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2898 if (!p)
2899 return NULL;
2900 return make_alloc_exact((unsigned long)page_address(p), order, size);
2901 }
2902 EXPORT_SYMBOL(alloc_pages_exact_nid);
2903
2904 /**
2905 * free_pages_exact - release memory allocated via alloc_pages_exact()
2906 * @virt: the value returned by alloc_pages_exact.
2907 * @size: size of allocation, same value as passed to alloc_pages_exact().
2908 *
2909 * Release the memory allocated by a previous call to alloc_pages_exact.
2910 */
2911 void free_pages_exact(void *virt, size_t size)
2912 {
2913 unsigned long addr = (unsigned long)virt;
2914 unsigned long end = addr + PAGE_ALIGN(size);
2915
2916 while (addr < end) {
2917 free_page(addr);
2918 addr += PAGE_SIZE;
2919 }
2920 }
2921 EXPORT_SYMBOL(free_pages_exact);
2922
2923 /**
2924 * nr_free_zone_pages - count number of pages beyond high watermark
2925 * @offset: The zone index of the highest zone
2926 *
2927 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2928 * high watermark within all zones at or below a given zone index. For each
2929 * zone, the number of pages is calculated as:
2930 * managed_pages - high_pages
2931 */
2932 static unsigned long nr_free_zone_pages(int offset)
2933 {
2934 struct zoneref *z;
2935 struct zone *zone;
2936
2937 /* Just pick one node, since fallback list is circular */
2938 unsigned long sum = 0;
2939
2940 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2941
2942 for_each_zone_zonelist(zone, z, zonelist, offset) {
2943 unsigned long size = zone->managed_pages;
2944 unsigned long high = high_wmark_pages(zone);
2945 if (size > high)
2946 sum += size - high;
2947 }
2948
2949 return sum;
2950 }
2951
2952 /**
2953 * nr_free_buffer_pages - count number of pages beyond high watermark
2954 *
2955 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2956 * watermark within ZONE_DMA and ZONE_NORMAL.
2957 */
2958 unsigned long nr_free_buffer_pages(void)
2959 {
2960 return nr_free_zone_pages(gfp_zone(GFP_USER));
2961 }
2962 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2963
2964 /**
2965 * nr_free_pagecache_pages - count number of pages beyond high watermark
2966 *
2967 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2968 * high watermark within all zones.
2969 */
2970 unsigned long nr_free_pagecache_pages(void)
2971 {
2972 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2973 }
2974
2975 static inline void show_node(struct zone *zone)
2976 {
2977 if (IS_ENABLED(CONFIG_NUMA))
2978 printk("Node %d ", zone_to_nid(zone));
2979 }
2980
2981 void si_meminfo(struct sysinfo *val)
2982 {
2983 val->totalram = totalram_pages;
2984 val->sharedram = 0;
2985 val->freeram = global_page_state(NR_FREE_PAGES);
2986 val->bufferram = nr_blockdev_pages();
2987 val->totalhigh = totalhigh_pages;
2988 val->freehigh = nr_free_highpages();
2989 val->mem_unit = PAGE_SIZE;
2990 }
2991
2992 EXPORT_SYMBOL(si_meminfo);
2993
2994 #ifdef CONFIG_NUMA
2995 void si_meminfo_node(struct sysinfo *val, int nid)
2996 {
2997 int zone_type; /* needs to be signed */
2998 unsigned long managed_pages = 0;
2999 pg_data_t *pgdat = NODE_DATA(nid);
3000
3001 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3002 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3003 val->totalram = managed_pages;
3004 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3005 #ifdef CONFIG_HIGHMEM
3006 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3007 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3008 NR_FREE_PAGES);
3009 #else
3010 val->totalhigh = 0;
3011 val->freehigh = 0;
3012 #endif
3013 val->mem_unit = PAGE_SIZE;
3014 }
3015 #endif
3016
3017 /*
3018 * Determine whether the node should be displayed or not, depending on whether
3019 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3020 */
3021 bool skip_free_areas_node(unsigned int flags, int nid)
3022 {
3023 bool ret = false;
3024 unsigned int cpuset_mems_cookie;
3025
3026 if (!(flags & SHOW_MEM_FILTER_NODES))
3027 goto out;
3028
3029 do {
3030 cpuset_mems_cookie = get_mems_allowed();
3031 ret = !node_isset(nid, cpuset_current_mems_allowed);
3032 } while (!put_mems_allowed(cpuset_mems_cookie));
3033 out:
3034 return ret;
3035 }
3036
3037 #define K(x) ((x) << (PAGE_SHIFT-10))
3038
3039 static void show_migration_types(unsigned char type)
3040 {
3041 static const char types[MIGRATE_TYPES] = {
3042 [MIGRATE_UNMOVABLE] = 'U',
3043 [MIGRATE_RECLAIMABLE] = 'E',
3044 [MIGRATE_MOVABLE] = 'M',
3045 [MIGRATE_RESERVE] = 'R',
3046 #ifdef CONFIG_CMA
3047 [MIGRATE_CMA] = 'C',
3048 #endif
3049 #ifdef CONFIG_MEMORY_ISOLATION
3050 [MIGRATE_ISOLATE] = 'I',
3051 #endif
3052 };
3053 char tmp[MIGRATE_TYPES + 1];
3054 char *p = tmp;
3055 int i;
3056
3057 for (i = 0; i < MIGRATE_TYPES; i++) {
3058 if (type & (1 << i))
3059 *p++ = types[i];
3060 }
3061
3062 *p = '\0';
3063 printk("(%s) ", tmp);
3064 }
3065
3066 /*
3067 * Show free area list (used inside shift_scroll-lock stuff)
3068 * We also calculate the percentage fragmentation. We do this by counting the
3069 * memory on each free list with the exception of the first item on the list.
3070 * Suppresses nodes that are not allowed by current's cpuset if
3071 * SHOW_MEM_FILTER_NODES is passed.
3072 */
3073 void show_free_areas(unsigned int filter)
3074 {
3075 int cpu;
3076 struct zone *zone;
3077
3078 for_each_populated_zone(zone) {
3079 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3080 continue;
3081 show_node(zone);
3082 printk("%s per-cpu:\n", zone->name);
3083
3084 for_each_online_cpu(cpu) {
3085 struct per_cpu_pageset *pageset;
3086
3087 pageset = per_cpu_ptr(zone->pageset, cpu);
3088
3089 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3090 cpu, pageset->pcp.high,
3091 pageset->pcp.batch, pageset->pcp.count);
3092 }
3093 }
3094
3095 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3096 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3097 " unevictable:%lu"
3098 " dirty:%lu writeback:%lu unstable:%lu\n"
3099 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3100 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3101 " free_cma:%lu\n",
3102 global_page_state(NR_ACTIVE_ANON),
3103 global_page_state(NR_INACTIVE_ANON),
3104 global_page_state(NR_ISOLATED_ANON),
3105 global_page_state(NR_ACTIVE_FILE),
3106 global_page_state(NR_INACTIVE_FILE),
3107 global_page_state(NR_ISOLATED_FILE),
3108 global_page_state(NR_UNEVICTABLE),
3109 global_page_state(NR_FILE_DIRTY),
3110 global_page_state(NR_WRITEBACK),
3111 global_page_state(NR_UNSTABLE_NFS),
3112 global_page_state(NR_FREE_PAGES),
3113 global_page_state(NR_SLAB_RECLAIMABLE),
3114 global_page_state(NR_SLAB_UNRECLAIMABLE),
3115 global_page_state(NR_FILE_MAPPED),
3116 global_page_state(NR_SHMEM),
3117 global_page_state(NR_PAGETABLE),
3118 global_page_state(NR_BOUNCE),
3119 global_page_state(NR_FREE_CMA_PAGES));
3120
3121 for_each_populated_zone(zone) {
3122 int i;
3123
3124 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3125 continue;
3126 show_node(zone);
3127 printk("%s"
3128 " free:%lukB"
3129 " min:%lukB"
3130 " low:%lukB"
3131 " high:%lukB"
3132 " active_anon:%lukB"
3133 " inactive_anon:%lukB"
3134 " active_file:%lukB"
3135 " inactive_file:%lukB"
3136 " unevictable:%lukB"
3137 " isolated(anon):%lukB"
3138 " isolated(file):%lukB"
3139 " present:%lukB"
3140 " managed:%lukB"
3141 " mlocked:%lukB"
3142 " dirty:%lukB"
3143 " writeback:%lukB"
3144 " mapped:%lukB"
3145 " shmem:%lukB"
3146 " slab_reclaimable:%lukB"
3147 " slab_unreclaimable:%lukB"
3148 " kernel_stack:%lukB"
3149 " pagetables:%lukB"
3150 " unstable:%lukB"
3151 " bounce:%lukB"
3152 " free_cma:%lukB"
3153 " writeback_tmp:%lukB"
3154 " pages_scanned:%lu"
3155 " all_unreclaimable? %s"
3156 "\n",
3157 zone->name,
3158 K(zone_page_state(zone, NR_FREE_PAGES)),
3159 K(min_wmark_pages(zone)),
3160 K(low_wmark_pages(zone)),
3161 K(high_wmark_pages(zone)),
3162 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3163 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3164 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3165 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3166 K(zone_page_state(zone, NR_UNEVICTABLE)),
3167 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3168 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3169 K(zone->present_pages),
3170 K(zone->managed_pages),
3171 K(zone_page_state(zone, NR_MLOCK)),
3172 K(zone_page_state(zone, NR_FILE_DIRTY)),
3173 K(zone_page_state(zone, NR_WRITEBACK)),
3174 K(zone_page_state(zone, NR_FILE_MAPPED)),
3175 K(zone_page_state(zone, NR_SHMEM)),
3176 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3177 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3178 zone_page_state(zone, NR_KERNEL_STACK) *
3179 THREAD_SIZE / 1024,
3180 K(zone_page_state(zone, NR_PAGETABLE)),
3181 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3182 K(zone_page_state(zone, NR_BOUNCE)),
3183 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3184 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3185 zone->pages_scanned,
3186 (!zone_reclaimable(zone) ? "yes" : "no")
3187 );
3188 printk("lowmem_reserve[]:");
3189 for (i = 0; i < MAX_NR_ZONES; i++)
3190 printk(" %lu", zone->lowmem_reserve[i]);
3191 printk("\n");
3192 }
3193
3194 for_each_populated_zone(zone) {
3195 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3196 unsigned char types[MAX_ORDER];
3197
3198 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3199 continue;
3200 show_node(zone);
3201 printk("%s: ", zone->name);
3202
3203 spin_lock_irqsave(&zone->lock, flags);
3204 for (order = 0; order < MAX_ORDER; order++) {
3205 struct free_area *area = &zone->free_area[order];
3206 int type;
3207
3208 nr[order] = area->nr_free;
3209 total += nr[order] << order;
3210
3211 types[order] = 0;
3212 for (type = 0; type < MIGRATE_TYPES; type++) {
3213 if (!list_empty(&area->free_list[type]))
3214 types[order] |= 1 << type;
3215 }
3216 }
3217 spin_unlock_irqrestore(&zone->lock, flags);
3218 for (order = 0; order < MAX_ORDER; order++) {
3219 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3220 if (nr[order])
3221 show_migration_types(types[order]);
3222 }
3223 printk("= %lukB\n", K(total));
3224 }
3225
3226 hugetlb_show_meminfo();
3227
3228 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3229
3230 show_swap_cache_info();
3231 }
3232
3233 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3234 {
3235 zoneref->zone = zone;
3236 zoneref->zone_idx = zone_idx(zone);
3237 }
3238
3239 /*
3240 * Builds allocation fallback zone lists.
3241 *
3242 * Add all populated zones of a node to the zonelist.
3243 */
3244 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3245 int nr_zones)
3246 {
3247 struct zone *zone;
3248 enum zone_type zone_type = MAX_NR_ZONES;
3249
3250 do {
3251 zone_type--;
3252 zone = pgdat->node_zones + zone_type;
3253 if (populated_zone(zone)) {
3254 zoneref_set_zone(zone,
3255 &zonelist->_zonerefs[nr_zones++]);
3256 check_highest_zone(zone_type);
3257 }
3258 } while (zone_type);
3259
3260 return nr_zones;
3261 }
3262
3263
3264 /*
3265 * zonelist_order:
3266 * 0 = automatic detection of better ordering.
3267 * 1 = order by ([node] distance, -zonetype)
3268 * 2 = order by (-zonetype, [node] distance)
3269 *
3270 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3271 * the same zonelist. So only NUMA can configure this param.
3272 */
3273 #define ZONELIST_ORDER_DEFAULT 0
3274 #define ZONELIST_ORDER_NODE 1
3275 #define ZONELIST_ORDER_ZONE 2
3276
3277 /* zonelist order in the kernel.
3278 * set_zonelist_order() will set this to NODE or ZONE.
3279 */
3280 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3281 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3282
3283
3284 #ifdef CONFIG_NUMA
3285 /* The value user specified ....changed by config */
3286 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3287 /* string for sysctl */
3288 #define NUMA_ZONELIST_ORDER_LEN 16
3289 char numa_zonelist_order[16] = "default";
3290
3291 /*
3292 * interface for configure zonelist ordering.
3293 * command line option "numa_zonelist_order"
3294 * = "[dD]efault - default, automatic configuration.
3295 * = "[nN]ode - order by node locality, then by zone within node
3296 * = "[zZ]one - order by zone, then by locality within zone
3297 */
3298
3299 static int __parse_numa_zonelist_order(char *s)
3300 {
3301 if (*s == 'd' || *s == 'D') {
3302 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3303 } else if (*s == 'n' || *s == 'N') {
3304 user_zonelist_order = ZONELIST_ORDER_NODE;
3305 } else if (*s == 'z' || *s == 'Z') {
3306 user_zonelist_order = ZONELIST_ORDER_ZONE;
3307 } else {
3308 printk(KERN_WARNING
3309 "Ignoring invalid numa_zonelist_order value: "
3310 "%s\n", s);
3311 return -EINVAL;
3312 }
3313 return 0;
3314 }
3315
3316 static __init int setup_numa_zonelist_order(char *s)
3317 {
3318 int ret;
3319
3320 if (!s)
3321 return 0;
3322
3323 ret = __parse_numa_zonelist_order(s);
3324 if (ret == 0)
3325 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3326
3327 return ret;
3328 }
3329 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3330
3331 /*
3332 * sysctl handler for numa_zonelist_order
3333 */
3334 int numa_zonelist_order_handler(ctl_table *table, int write,
3335 void __user *buffer, size_t *length,
3336 loff_t *ppos)
3337 {
3338 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3339 int ret;
3340 static DEFINE_MUTEX(zl_order_mutex);
3341
3342 mutex_lock(&zl_order_mutex);
3343 if (write) {
3344 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3345 ret = -EINVAL;
3346 goto out;
3347 }
3348 strcpy(saved_string, (char *)table->data);
3349 }
3350 ret = proc_dostring(table, write, buffer, length, ppos);
3351 if (ret)
3352 goto out;
3353 if (write) {
3354 int oldval = user_zonelist_order;
3355
3356 ret = __parse_numa_zonelist_order((char *)table->data);
3357 if (ret) {
3358 /*
3359 * bogus value. restore saved string
3360 */
3361 strncpy((char *)table->data, saved_string,
3362 NUMA_ZONELIST_ORDER_LEN);
3363 user_zonelist_order = oldval;
3364 } else if (oldval != user_zonelist_order) {
3365 mutex_lock(&zonelists_mutex);
3366 build_all_zonelists(NULL, NULL);
3367 mutex_unlock(&zonelists_mutex);
3368 }
3369 }
3370 out:
3371 mutex_unlock(&zl_order_mutex);
3372 return ret;
3373 }
3374
3375
3376 #define MAX_NODE_LOAD (nr_online_nodes)
3377 static int node_load[MAX_NUMNODES];
3378
3379 /**
3380 * find_next_best_node - find the next node that should appear in a given node's fallback list
3381 * @node: node whose fallback list we're appending
3382 * @used_node_mask: nodemask_t of already used nodes
3383 *
3384 * We use a number of factors to determine which is the next node that should
3385 * appear on a given node's fallback list. The node should not have appeared
3386 * already in @node's fallback list, and it should be the next closest node
3387 * according to the distance array (which contains arbitrary distance values
3388 * from each node to each node in the system), and should also prefer nodes
3389 * with no CPUs, since presumably they'll have very little allocation pressure
3390 * on them otherwise.
3391 * It returns -1 if no node is found.
3392 */
3393 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3394 {
3395 int n, val;
3396 int min_val = INT_MAX;
3397 int best_node = NUMA_NO_NODE;
3398 const struct cpumask *tmp = cpumask_of_node(0);
3399
3400 /* Use the local node if we haven't already */
3401 if (!node_isset(node, *used_node_mask)) {
3402 node_set(node, *used_node_mask);
3403 return node;
3404 }
3405
3406 for_each_node_state(n, N_MEMORY) {
3407
3408 /* Don't want a node to appear more than once */
3409 if (node_isset(n, *used_node_mask))
3410 continue;
3411
3412 /* Use the distance array to find the distance */
3413 val = node_distance(node, n);
3414
3415 /* Penalize nodes under us ("prefer the next node") */
3416 val += (n < node);
3417
3418 /* Give preference to headless and unused nodes */
3419 tmp = cpumask_of_node(n);
3420 if (!cpumask_empty(tmp))
3421 val += PENALTY_FOR_NODE_WITH_CPUS;
3422
3423 /* Slight preference for less loaded node */
3424 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3425 val += node_load[n];
3426
3427 if (val < min_val) {
3428 min_val = val;
3429 best_node = n;
3430 }
3431 }
3432
3433 if (best_node >= 0)
3434 node_set(best_node, *used_node_mask);
3435
3436 return best_node;
3437 }
3438
3439
3440 /*
3441 * Build zonelists ordered by node and zones within node.
3442 * This results in maximum locality--normal zone overflows into local
3443 * DMA zone, if any--but risks exhausting DMA zone.
3444 */
3445 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3446 {
3447 int j;
3448 struct zonelist *zonelist;
3449
3450 zonelist = &pgdat->node_zonelists[0];
3451 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3452 ;
3453 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3454 zonelist->_zonerefs[j].zone = NULL;
3455 zonelist->_zonerefs[j].zone_idx = 0;
3456 }
3457
3458 /*
3459 * Build gfp_thisnode zonelists
3460 */
3461 static void build_thisnode_zonelists(pg_data_t *pgdat)
3462 {
3463 int j;
3464 struct zonelist *zonelist;
3465
3466 zonelist = &pgdat->node_zonelists[1];
3467 j = build_zonelists_node(pgdat, zonelist, 0);
3468 zonelist->_zonerefs[j].zone = NULL;
3469 zonelist->_zonerefs[j].zone_idx = 0;
3470 }
3471
3472 /*
3473 * Build zonelists ordered by zone and nodes within zones.
3474 * This results in conserving DMA zone[s] until all Normal memory is
3475 * exhausted, but results in overflowing to remote node while memory
3476 * may still exist in local DMA zone.
3477 */
3478 static int node_order[MAX_NUMNODES];
3479
3480 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3481 {
3482 int pos, j, node;
3483 int zone_type; /* needs to be signed */
3484 struct zone *z;
3485 struct zonelist *zonelist;
3486
3487 zonelist = &pgdat->node_zonelists[0];
3488 pos = 0;
3489 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3490 for (j = 0; j < nr_nodes; j++) {
3491 node = node_order[j];
3492 z = &NODE_DATA(node)->node_zones[zone_type];
3493 if (populated_zone(z)) {
3494 zoneref_set_zone(z,
3495 &zonelist->_zonerefs[pos++]);
3496 check_highest_zone(zone_type);
3497 }
3498 }
3499 }
3500 zonelist->_zonerefs[pos].zone = NULL;
3501 zonelist->_zonerefs[pos].zone_idx = 0;
3502 }
3503
3504 static int default_zonelist_order(void)
3505 {
3506 int nid, zone_type;
3507 unsigned long low_kmem_size, total_size;
3508 struct zone *z;
3509 int average_size;
3510 /*
3511 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3512 * If they are really small and used heavily, the system can fall
3513 * into OOM very easily.
3514 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3515 */
3516 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3517 low_kmem_size = 0;
3518 total_size = 0;
3519 for_each_online_node(nid) {
3520 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3521 z = &NODE_DATA(nid)->node_zones[zone_type];
3522 if (populated_zone(z)) {
3523 if (zone_type < ZONE_NORMAL)
3524 low_kmem_size += z->managed_pages;
3525 total_size += z->managed_pages;
3526 } else if (zone_type == ZONE_NORMAL) {
3527 /*
3528 * If any node has only lowmem, then node order
3529 * is preferred to allow kernel allocations
3530 * locally; otherwise, they can easily infringe
3531 * on other nodes when there is an abundance of
3532 * lowmem available to allocate from.
3533 */
3534 return ZONELIST_ORDER_NODE;
3535 }
3536 }
3537 }
3538 if (!low_kmem_size || /* there are no DMA area. */
3539 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3540 return ZONELIST_ORDER_NODE;
3541 /*
3542 * look into each node's config.
3543 * If there is a node whose DMA/DMA32 memory is very big area on
3544 * local memory, NODE_ORDER may be suitable.
3545 */
3546 average_size = total_size /
3547 (nodes_weight(node_states[N_MEMORY]) + 1);
3548 for_each_online_node(nid) {
3549 low_kmem_size = 0;
3550 total_size = 0;
3551 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3552 z = &NODE_DATA(nid)->node_zones[zone_type];
3553 if (populated_zone(z)) {
3554 if (zone_type < ZONE_NORMAL)
3555 low_kmem_size += z->present_pages;
3556 total_size += z->present_pages;
3557 }
3558 }
3559 if (low_kmem_size &&
3560 total_size > average_size && /* ignore small node */
3561 low_kmem_size > total_size * 70/100)
3562 return ZONELIST_ORDER_NODE;
3563 }
3564 return ZONELIST_ORDER_ZONE;
3565 }
3566
3567 static void set_zonelist_order(void)
3568 {
3569 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3570 current_zonelist_order = default_zonelist_order();
3571 else
3572 current_zonelist_order = user_zonelist_order;
3573 }
3574
3575 static void build_zonelists(pg_data_t *pgdat)
3576 {
3577 int j, node, load;
3578 enum zone_type i;
3579 nodemask_t used_mask;
3580 int local_node, prev_node;
3581 struct zonelist *zonelist;
3582 int order = current_zonelist_order;
3583
3584 /* initialize zonelists */
3585 for (i = 0; i < MAX_ZONELISTS; i++) {
3586 zonelist = pgdat->node_zonelists + i;
3587 zonelist->_zonerefs[0].zone = NULL;
3588 zonelist->_zonerefs[0].zone_idx = 0;
3589 }
3590
3591 /* NUMA-aware ordering of nodes */
3592 local_node = pgdat->node_id;
3593 load = nr_online_nodes;
3594 prev_node = local_node;
3595 nodes_clear(used_mask);
3596
3597 memset(node_order, 0, sizeof(node_order));
3598 j = 0;
3599
3600 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3601 /*
3602 * We don't want to pressure a particular node.
3603 * So adding penalty to the first node in same
3604 * distance group to make it round-robin.
3605 */
3606 if (node_distance(local_node, node) !=
3607 node_distance(local_node, prev_node))
3608 node_load[node] = load;
3609
3610 prev_node = node;
3611 load--;
3612 if (order == ZONELIST_ORDER_NODE)
3613 build_zonelists_in_node_order(pgdat, node);
3614 else
3615 node_order[j++] = node; /* remember order */
3616 }
3617
3618 if (order == ZONELIST_ORDER_ZONE) {
3619 /* calculate node order -- i.e., DMA last! */
3620 build_zonelists_in_zone_order(pgdat, j);
3621 }
3622
3623 build_thisnode_zonelists(pgdat);
3624 }
3625
3626 /* Construct the zonelist performance cache - see further mmzone.h */
3627 static void build_zonelist_cache(pg_data_t *pgdat)
3628 {
3629 struct zonelist *zonelist;
3630 struct zonelist_cache *zlc;
3631 struct zoneref *z;
3632
3633 zonelist = &pgdat->node_zonelists[0];
3634 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3635 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3636 for (z = zonelist->_zonerefs; z->zone; z++)
3637 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3638 }
3639
3640 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3641 /*
3642 * Return node id of node used for "local" allocations.
3643 * I.e., first node id of first zone in arg node's generic zonelist.
3644 * Used for initializing percpu 'numa_mem', which is used primarily
3645 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3646 */
3647 int local_memory_node(int node)
3648 {
3649 struct zone *zone;
3650
3651 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3652 gfp_zone(GFP_KERNEL),
3653 NULL,
3654 &zone);
3655 return zone->node;
3656 }
3657 #endif
3658
3659 #else /* CONFIG_NUMA */
3660
3661 static void set_zonelist_order(void)
3662 {
3663 current_zonelist_order = ZONELIST_ORDER_ZONE;
3664 }
3665
3666 static void build_zonelists(pg_data_t *pgdat)
3667 {
3668 int node, local_node;
3669 enum zone_type j;
3670 struct zonelist *zonelist;
3671
3672 local_node = pgdat->node_id;
3673
3674 zonelist = &pgdat->node_zonelists[0];
3675 j = build_zonelists_node(pgdat, zonelist, 0);
3676
3677 /*
3678 * Now we build the zonelist so that it contains the zones
3679 * of all the other nodes.
3680 * We don't want to pressure a particular node, so when
3681 * building the zones for node N, we make sure that the
3682 * zones coming right after the local ones are those from
3683 * node N+1 (modulo N)
3684 */
3685 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3686 if (!node_online(node))
3687 continue;
3688 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3689 }
3690 for (node = 0; node < local_node; node++) {
3691 if (!node_online(node))
3692 continue;
3693 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3694 }
3695
3696 zonelist->_zonerefs[j].zone = NULL;
3697 zonelist->_zonerefs[j].zone_idx = 0;
3698 }
3699
3700 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3701 static void build_zonelist_cache(pg_data_t *pgdat)
3702 {
3703 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3704 }
3705
3706 #endif /* CONFIG_NUMA */
3707
3708 /*
3709 * Boot pageset table. One per cpu which is going to be used for all
3710 * zones and all nodes. The parameters will be set in such a way
3711 * that an item put on a list will immediately be handed over to
3712 * the buddy list. This is safe since pageset manipulation is done
3713 * with interrupts disabled.
3714 *
3715 * The boot_pagesets must be kept even after bootup is complete for
3716 * unused processors and/or zones. They do play a role for bootstrapping
3717 * hotplugged processors.
3718 *
3719 * zoneinfo_show() and maybe other functions do
3720 * not check if the processor is online before following the pageset pointer.
3721 * Other parts of the kernel may not check if the zone is available.
3722 */
3723 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3724 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3725 static void setup_zone_pageset(struct zone *zone);
3726
3727 /*
3728 * Global mutex to protect against size modification of zonelists
3729 * as well as to serialize pageset setup for the new populated zone.
3730 */
3731 DEFINE_MUTEX(zonelists_mutex);
3732
3733 /* return values int ....just for stop_machine() */
3734 static int __build_all_zonelists(void *data)
3735 {
3736 int nid;
3737 int cpu;
3738 pg_data_t *self = data;
3739
3740 #ifdef CONFIG_NUMA
3741 memset(node_load, 0, sizeof(node_load));
3742 #endif
3743
3744 if (self && !node_online(self->node_id)) {
3745 build_zonelists(self);
3746 build_zonelist_cache(self);
3747 }
3748
3749 for_each_online_node(nid) {
3750 pg_data_t *pgdat = NODE_DATA(nid);
3751
3752 build_zonelists(pgdat);
3753 build_zonelist_cache(pgdat);
3754 }
3755
3756 /*
3757 * Initialize the boot_pagesets that are going to be used
3758 * for bootstrapping processors. The real pagesets for
3759 * each zone will be allocated later when the per cpu
3760 * allocator is available.
3761 *
3762 * boot_pagesets are used also for bootstrapping offline
3763 * cpus if the system is already booted because the pagesets
3764 * are needed to initialize allocators on a specific cpu too.
3765 * F.e. the percpu allocator needs the page allocator which
3766 * needs the percpu allocator in order to allocate its pagesets
3767 * (a chicken-egg dilemma).
3768 */
3769 for_each_possible_cpu(cpu) {
3770 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3771
3772 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3773 /*
3774 * We now know the "local memory node" for each node--
3775 * i.e., the node of the first zone in the generic zonelist.
3776 * Set up numa_mem percpu variable for on-line cpus. During
3777 * boot, only the boot cpu should be on-line; we'll init the
3778 * secondary cpus' numa_mem as they come on-line. During
3779 * node/memory hotplug, we'll fixup all on-line cpus.
3780 */
3781 if (cpu_online(cpu))
3782 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3783 #endif
3784 }
3785
3786 return 0;
3787 }
3788
3789 /*
3790 * Called with zonelists_mutex held always
3791 * unless system_state == SYSTEM_BOOTING.
3792 */
3793 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3794 {
3795 set_zonelist_order();
3796
3797 if (system_state == SYSTEM_BOOTING) {
3798 __build_all_zonelists(NULL);
3799 mminit_verify_zonelist();
3800 cpuset_init_current_mems_allowed();
3801 } else {
3802 #ifdef CONFIG_MEMORY_HOTPLUG
3803 if (zone)
3804 setup_zone_pageset(zone);
3805 #endif
3806 /* we have to stop all cpus to guarantee there is no user
3807 of zonelist */
3808 stop_machine(__build_all_zonelists, pgdat, NULL);
3809 /* cpuset refresh routine should be here */
3810 }
3811 vm_total_pages = nr_free_pagecache_pages();
3812 /*
3813 * Disable grouping by mobility if the number of pages in the
3814 * system is too low to allow the mechanism to work. It would be
3815 * more accurate, but expensive to check per-zone. This check is
3816 * made on memory-hotadd so a system can start with mobility
3817 * disabled and enable it later
3818 */
3819 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3820 page_group_by_mobility_disabled = 1;
3821 else
3822 page_group_by_mobility_disabled = 0;
3823
3824 printk("Built %i zonelists in %s order, mobility grouping %s. "
3825 "Total pages: %ld\n",
3826 nr_online_nodes,
3827 zonelist_order_name[current_zonelist_order],
3828 page_group_by_mobility_disabled ? "off" : "on",
3829 vm_total_pages);
3830 #ifdef CONFIG_NUMA
3831 printk("Policy zone: %s\n", zone_names[policy_zone]);
3832 #endif
3833 }
3834
3835 /*
3836 * Helper functions to size the waitqueue hash table.
3837 * Essentially these want to choose hash table sizes sufficiently
3838 * large so that collisions trying to wait on pages are rare.
3839 * But in fact, the number of active page waitqueues on typical
3840 * systems is ridiculously low, less than 200. So this is even
3841 * conservative, even though it seems large.
3842 *
3843 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3844 * waitqueues, i.e. the size of the waitq table given the number of pages.
3845 */
3846 #define PAGES_PER_WAITQUEUE 256
3847
3848 #ifndef CONFIG_MEMORY_HOTPLUG
3849 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3850 {
3851 unsigned long size = 1;
3852
3853 pages /= PAGES_PER_WAITQUEUE;
3854
3855 while (size < pages)
3856 size <<= 1;
3857
3858 /*
3859 * Once we have dozens or even hundreds of threads sleeping
3860 * on IO we've got bigger problems than wait queue collision.
3861 * Limit the size of the wait table to a reasonable size.
3862 */
3863 size = min(size, 4096UL);
3864
3865 return max(size, 4UL);
3866 }
3867 #else
3868 /*
3869 * A zone's size might be changed by hot-add, so it is not possible to determine
3870 * a suitable size for its wait_table. So we use the maximum size now.
3871 *
3872 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3873 *
3874 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3875 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3876 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3877 *
3878 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3879 * or more by the traditional way. (See above). It equals:
3880 *
3881 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3882 * ia64(16K page size) : = ( 8G + 4M)byte.
3883 * powerpc (64K page size) : = (32G +16M)byte.
3884 */
3885 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3886 {
3887 return 4096UL;
3888 }
3889 #endif
3890
3891 /*
3892 * This is an integer logarithm so that shifts can be used later
3893 * to extract the more random high bits from the multiplicative
3894 * hash function before the remainder is taken.
3895 */
3896 static inline unsigned long wait_table_bits(unsigned long size)
3897 {
3898 return ffz(~size);
3899 }
3900
3901 /*
3902 * Check if a pageblock contains reserved pages
3903 */
3904 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3905 {
3906 unsigned long pfn;
3907
3908 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3909 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3910 return 1;
3911 }
3912 return 0;
3913 }
3914
3915 /*
3916 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3917 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3918 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3919 * higher will lead to a bigger reserve which will get freed as contiguous
3920 * blocks as reclaim kicks in
3921 */
3922 static void setup_zone_migrate_reserve(struct zone *zone)
3923 {
3924 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3925 struct page *page;
3926 unsigned long block_migratetype;
3927 int reserve;
3928 int old_reserve;
3929
3930 /*
3931 * Get the start pfn, end pfn and the number of blocks to reserve
3932 * We have to be careful to be aligned to pageblock_nr_pages to
3933 * make sure that we always check pfn_valid for the first page in
3934 * the block.
3935 */
3936 start_pfn = zone->zone_start_pfn;
3937 end_pfn = zone_end_pfn(zone);
3938 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3939 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3940 pageblock_order;
3941
3942 /*
3943 * Reserve blocks are generally in place to help high-order atomic
3944 * allocations that are short-lived. A min_free_kbytes value that
3945 * would result in more than 2 reserve blocks for atomic allocations
3946 * is assumed to be in place to help anti-fragmentation for the
3947 * future allocation of hugepages at runtime.
3948 */
3949 reserve = min(2, reserve);
3950 old_reserve = zone->nr_migrate_reserve_block;
3951
3952 /* When memory hot-add, we almost always need to do nothing */
3953 if (reserve == old_reserve)
3954 return;
3955 zone->nr_migrate_reserve_block = reserve;
3956
3957 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3958 if (!pfn_valid(pfn))
3959 continue;
3960 page = pfn_to_page(pfn);
3961
3962 /* Watch out for overlapping nodes */
3963 if (page_to_nid(page) != zone_to_nid(zone))
3964 continue;
3965
3966 block_migratetype = get_pageblock_migratetype(page);
3967
3968 /* Only test what is necessary when the reserves are not met */
3969 if (reserve > 0) {
3970 /*
3971 * Blocks with reserved pages will never free, skip
3972 * them.
3973 */
3974 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3975 if (pageblock_is_reserved(pfn, block_end_pfn))
3976 continue;
3977
3978 /* If this block is reserved, account for it */
3979 if (block_migratetype == MIGRATE_RESERVE) {
3980 reserve--;
3981 continue;
3982 }
3983
3984 /* Suitable for reserving if this block is movable */
3985 if (block_migratetype == MIGRATE_MOVABLE) {
3986 set_pageblock_migratetype(page,
3987 MIGRATE_RESERVE);
3988 move_freepages_block(zone, page,
3989 MIGRATE_RESERVE);
3990 reserve--;
3991 continue;
3992 }
3993 } else if (!old_reserve) {
3994 /*
3995 * At boot time we don't need to scan the whole zone
3996 * for turning off MIGRATE_RESERVE.
3997 */
3998 break;
3999 }
4000
4001 /*
4002 * If the reserve is met and this is a previous reserved block,
4003 * take it back
4004 */
4005 if (block_migratetype == MIGRATE_RESERVE) {
4006 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4007 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4008 }
4009 }
4010 }
4011
4012 /*
4013 * Initially all pages are reserved - free ones are freed
4014 * up by free_all_bootmem() once the early boot process is
4015 * done. Non-atomic initialization, single-pass.
4016 */
4017 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4018 unsigned long start_pfn, enum memmap_context context)
4019 {
4020 struct page *page;
4021 unsigned long end_pfn = start_pfn + size;
4022 unsigned long pfn;
4023 struct zone *z;
4024
4025 if (highest_memmap_pfn < end_pfn - 1)
4026 highest_memmap_pfn = end_pfn - 1;
4027
4028 z = &NODE_DATA(nid)->node_zones[zone];
4029 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4030 /*
4031 * There can be holes in boot-time mem_map[]s
4032 * handed to this function. They do not
4033 * exist on hotplugged memory.
4034 */
4035 if (context == MEMMAP_EARLY) {
4036 if (!early_pfn_valid(pfn))
4037 continue;
4038 if (!early_pfn_in_nid(pfn, nid))
4039 continue;
4040 }
4041 page = pfn_to_page(pfn);
4042 set_page_links(page, zone, nid, pfn);
4043 mminit_verify_page_links(page, zone, nid, pfn);
4044 init_page_count(page);
4045 page_mapcount_reset(page);
4046 page_cpupid_reset_last(page);
4047 SetPageReserved(page);
4048 /*
4049 * Mark the block movable so that blocks are reserved for
4050 * movable at startup. This will force kernel allocations
4051 * to reserve their blocks rather than leaking throughout
4052 * the address space during boot when many long-lived
4053 * kernel allocations are made. Later some blocks near
4054 * the start are marked MIGRATE_RESERVE by
4055 * setup_zone_migrate_reserve()
4056 *
4057 * bitmap is created for zone's valid pfn range. but memmap
4058 * can be created for invalid pages (for alignment)
4059 * check here not to call set_pageblock_migratetype() against
4060 * pfn out of zone.
4061 */
4062 if ((z->zone_start_pfn <= pfn)
4063 && (pfn < zone_end_pfn(z))
4064 && !(pfn & (pageblock_nr_pages - 1)))
4065 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4066
4067 INIT_LIST_HEAD(&page->lru);
4068 #ifdef WANT_PAGE_VIRTUAL
4069 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4070 if (!is_highmem_idx(zone))
4071 set_page_address(page, __va(pfn << PAGE_SHIFT));
4072 #endif
4073 }
4074 }
4075
4076 static void __meminit zone_init_free_lists(struct zone *zone)
4077 {
4078 int order, t;
4079 for_each_migratetype_order(order, t) {
4080 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4081 zone->free_area[order].nr_free = 0;
4082 }
4083 }
4084
4085 #ifndef __HAVE_ARCH_MEMMAP_INIT
4086 #define memmap_init(size, nid, zone, start_pfn) \
4087 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4088 #endif
4089
4090 static int __meminit zone_batchsize(struct zone *zone)
4091 {
4092 #ifdef CONFIG_MMU
4093 int batch;
4094
4095 /*
4096 * The per-cpu-pages pools are set to around 1000th of the
4097 * size of the zone. But no more than 1/2 of a meg.
4098 *
4099 * OK, so we don't know how big the cache is. So guess.
4100 */
4101 batch = zone->managed_pages / 1024;
4102 if (batch * PAGE_SIZE > 512 * 1024)
4103 batch = (512 * 1024) / PAGE_SIZE;
4104 batch /= 4; /* We effectively *= 4 below */
4105 if (batch < 1)
4106 batch = 1;
4107
4108 /*
4109 * Clamp the batch to a 2^n - 1 value. Having a power
4110 * of 2 value was found to be more likely to have
4111 * suboptimal cache aliasing properties in some cases.
4112 *
4113 * For example if 2 tasks are alternately allocating
4114 * batches of pages, one task can end up with a lot
4115 * of pages of one half of the possible page colors
4116 * and the other with pages of the other colors.
4117 */
4118 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4119
4120 return batch;
4121
4122 #else
4123 /* The deferral and batching of frees should be suppressed under NOMMU
4124 * conditions.
4125 *
4126 * The problem is that NOMMU needs to be able to allocate large chunks
4127 * of contiguous memory as there's no hardware page translation to
4128 * assemble apparent contiguous memory from discontiguous pages.
4129 *
4130 * Queueing large contiguous runs of pages for batching, however,
4131 * causes the pages to actually be freed in smaller chunks. As there
4132 * can be a significant delay between the individual batches being
4133 * recycled, this leads to the once large chunks of space being
4134 * fragmented and becoming unavailable for high-order allocations.
4135 */
4136 return 0;
4137 #endif
4138 }
4139
4140 /*
4141 * pcp->high and pcp->batch values are related and dependent on one another:
4142 * ->batch must never be higher then ->high.
4143 * The following function updates them in a safe manner without read side
4144 * locking.
4145 *
4146 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4147 * those fields changing asynchronously (acording the the above rule).
4148 *
4149 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4150 * outside of boot time (or some other assurance that no concurrent updaters
4151 * exist).
4152 */
4153 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4154 unsigned long batch)
4155 {
4156 /* start with a fail safe value for batch */
4157 pcp->batch = 1;
4158 smp_wmb();
4159
4160 /* Update high, then batch, in order */
4161 pcp->high = high;
4162 smp_wmb();
4163
4164 pcp->batch = batch;
4165 }
4166
4167 /* a companion to pageset_set_high() */
4168 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4169 {
4170 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4171 }
4172
4173 static void pageset_init(struct per_cpu_pageset *p)
4174 {
4175 struct per_cpu_pages *pcp;
4176 int migratetype;
4177
4178 memset(p, 0, sizeof(*p));
4179
4180 pcp = &p->pcp;
4181 pcp->count = 0;
4182 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4183 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4184 }
4185
4186 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4187 {
4188 pageset_init(p);
4189 pageset_set_batch(p, batch);
4190 }
4191
4192 /*
4193 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4194 * to the value high for the pageset p.
4195 */
4196 static void pageset_set_high(struct per_cpu_pageset *p,
4197 unsigned long high)
4198 {
4199 unsigned long batch = max(1UL, high / 4);
4200 if ((high / 4) > (PAGE_SHIFT * 8))
4201 batch = PAGE_SHIFT * 8;
4202
4203 pageset_update(&p->pcp, high, batch);
4204 }
4205
4206 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4207 struct per_cpu_pageset *pcp)
4208 {
4209 if (percpu_pagelist_fraction)
4210 pageset_set_high(pcp,
4211 (zone->managed_pages /
4212 percpu_pagelist_fraction));
4213 else
4214 pageset_set_batch(pcp, zone_batchsize(zone));
4215 }
4216
4217 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4218 {
4219 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4220
4221 pageset_init(pcp);
4222 pageset_set_high_and_batch(zone, pcp);
4223 }
4224
4225 static void __meminit setup_zone_pageset(struct zone *zone)
4226 {
4227 int cpu;
4228 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4229 for_each_possible_cpu(cpu)
4230 zone_pageset_init(zone, cpu);
4231 }
4232
4233 /*
4234 * Allocate per cpu pagesets and initialize them.
4235 * Before this call only boot pagesets were available.
4236 */
4237 void __init setup_per_cpu_pageset(void)
4238 {
4239 struct zone *zone;
4240
4241 for_each_populated_zone(zone)
4242 setup_zone_pageset(zone);
4243 }
4244
4245 static noinline __init_refok
4246 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4247 {
4248 int i;
4249 size_t alloc_size;
4250
4251 /*
4252 * The per-page waitqueue mechanism uses hashed waitqueues
4253 * per zone.
4254 */
4255 zone->wait_table_hash_nr_entries =
4256 wait_table_hash_nr_entries(zone_size_pages);
4257 zone->wait_table_bits =
4258 wait_table_bits(zone->wait_table_hash_nr_entries);
4259 alloc_size = zone->wait_table_hash_nr_entries
4260 * sizeof(wait_queue_head_t);
4261
4262 if (!slab_is_available()) {
4263 zone->wait_table = (wait_queue_head_t *)
4264 memblock_virt_alloc_node_nopanic(
4265 alloc_size, zone->zone_pgdat->node_id);
4266 } else {
4267 /*
4268 * This case means that a zone whose size was 0 gets new memory
4269 * via memory hot-add.
4270 * But it may be the case that a new node was hot-added. In
4271 * this case vmalloc() will not be able to use this new node's
4272 * memory - this wait_table must be initialized to use this new
4273 * node itself as well.
4274 * To use this new node's memory, further consideration will be
4275 * necessary.
4276 */
4277 zone->wait_table = vmalloc(alloc_size);
4278 }
4279 if (!zone->wait_table)
4280 return -ENOMEM;
4281
4282 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4283 init_waitqueue_head(zone->wait_table + i);
4284
4285 return 0;
4286 }
4287
4288 static __meminit void zone_pcp_init(struct zone *zone)
4289 {
4290 /*
4291 * per cpu subsystem is not up at this point. The following code
4292 * relies on the ability of the linker to provide the
4293 * offset of a (static) per cpu variable into the per cpu area.
4294 */
4295 zone->pageset = &boot_pageset;
4296
4297 if (populated_zone(zone))
4298 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4299 zone->name, zone->present_pages,
4300 zone_batchsize(zone));
4301 }
4302
4303 int __meminit init_currently_empty_zone(struct zone *zone,
4304 unsigned long zone_start_pfn,
4305 unsigned long size,
4306 enum memmap_context context)
4307 {
4308 struct pglist_data *pgdat = zone->zone_pgdat;
4309 int ret;
4310 ret = zone_wait_table_init(zone, size);
4311 if (ret)
4312 return ret;
4313 pgdat->nr_zones = zone_idx(zone) + 1;
4314
4315 zone->zone_start_pfn = zone_start_pfn;
4316
4317 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4318 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4319 pgdat->node_id,
4320 (unsigned long)zone_idx(zone),
4321 zone_start_pfn, (zone_start_pfn + size));
4322
4323 zone_init_free_lists(zone);
4324
4325 return 0;
4326 }
4327
4328 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4329 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4330 /*
4331 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4332 * Architectures may implement their own version but if add_active_range()
4333 * was used and there are no special requirements, this is a convenient
4334 * alternative
4335 */
4336 int __meminit __early_pfn_to_nid(unsigned long pfn)
4337 {
4338 unsigned long start_pfn, end_pfn;
4339 int nid;
4340 /*
4341 * NOTE: The following SMP-unsafe globals are only used early in boot
4342 * when the kernel is running single-threaded.
4343 */
4344 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4345 static int __meminitdata last_nid;
4346
4347 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4348 return last_nid;
4349
4350 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4351 if (nid != -1) {
4352 last_start_pfn = start_pfn;
4353 last_end_pfn = end_pfn;
4354 last_nid = nid;
4355 }
4356
4357 return nid;
4358 }
4359 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4360
4361 int __meminit early_pfn_to_nid(unsigned long pfn)
4362 {
4363 int nid;
4364
4365 nid = __early_pfn_to_nid(pfn);
4366 if (nid >= 0)
4367 return nid;
4368 /* just returns 0 */
4369 return 0;
4370 }
4371
4372 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4373 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4374 {
4375 int nid;
4376
4377 nid = __early_pfn_to_nid(pfn);
4378 if (nid >= 0 && nid != node)
4379 return false;
4380 return true;
4381 }
4382 #endif
4383
4384 /**
4385 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4386 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4387 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4388 *
4389 * If an architecture guarantees that all ranges registered with
4390 * add_active_ranges() contain no holes and may be freed, this
4391 * this function may be used instead of calling memblock_free_early_nid()
4392 * manually.
4393 */
4394 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4395 {
4396 unsigned long start_pfn, end_pfn;
4397 int i, this_nid;
4398
4399 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4400 start_pfn = min(start_pfn, max_low_pfn);
4401 end_pfn = min(end_pfn, max_low_pfn);
4402
4403 if (start_pfn < end_pfn)
4404 memblock_free_early_nid(PFN_PHYS(start_pfn),
4405 (end_pfn - start_pfn) << PAGE_SHIFT,
4406 this_nid);
4407 }
4408 }
4409
4410 /**
4411 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4412 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4413 *
4414 * If an architecture guarantees that all ranges registered with
4415 * add_active_ranges() contain no holes and may be freed, this
4416 * function may be used instead of calling memory_present() manually.
4417 */
4418 void __init sparse_memory_present_with_active_regions(int nid)
4419 {
4420 unsigned long start_pfn, end_pfn;
4421 int i, this_nid;
4422
4423 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4424 memory_present(this_nid, start_pfn, end_pfn);
4425 }
4426
4427 /**
4428 * get_pfn_range_for_nid - Return the start and end page frames for a node
4429 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4430 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4431 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4432 *
4433 * It returns the start and end page frame of a node based on information
4434 * provided by an arch calling add_active_range(). If called for a node
4435 * with no available memory, a warning is printed and the start and end
4436 * PFNs will be 0.
4437 */
4438 void __meminit get_pfn_range_for_nid(unsigned int nid,
4439 unsigned long *start_pfn, unsigned long *end_pfn)
4440 {
4441 unsigned long this_start_pfn, this_end_pfn;
4442 int i;
4443
4444 *start_pfn = -1UL;
4445 *end_pfn = 0;
4446
4447 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4448 *start_pfn = min(*start_pfn, this_start_pfn);
4449 *end_pfn = max(*end_pfn, this_end_pfn);
4450 }
4451
4452 if (*start_pfn == -1UL)
4453 *start_pfn = 0;
4454 }
4455
4456 /*
4457 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4458 * assumption is made that zones within a node are ordered in monotonic
4459 * increasing memory addresses so that the "highest" populated zone is used
4460 */
4461 static void __init find_usable_zone_for_movable(void)
4462 {
4463 int zone_index;
4464 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4465 if (zone_index == ZONE_MOVABLE)
4466 continue;
4467
4468 if (arch_zone_highest_possible_pfn[zone_index] >
4469 arch_zone_lowest_possible_pfn[zone_index])
4470 break;
4471 }
4472
4473 VM_BUG_ON(zone_index == -1);
4474 movable_zone = zone_index;
4475 }
4476
4477 /*
4478 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4479 * because it is sized independent of architecture. Unlike the other zones,
4480 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4481 * in each node depending on the size of each node and how evenly kernelcore
4482 * is distributed. This helper function adjusts the zone ranges
4483 * provided by the architecture for a given node by using the end of the
4484 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4485 * zones within a node are in order of monotonic increases memory addresses
4486 */
4487 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4488 unsigned long zone_type,
4489 unsigned long node_start_pfn,
4490 unsigned long node_end_pfn,
4491 unsigned long *zone_start_pfn,
4492 unsigned long *zone_end_pfn)
4493 {
4494 /* Only adjust if ZONE_MOVABLE is on this node */
4495 if (zone_movable_pfn[nid]) {
4496 /* Size ZONE_MOVABLE */
4497 if (zone_type == ZONE_MOVABLE) {
4498 *zone_start_pfn = zone_movable_pfn[nid];
4499 *zone_end_pfn = min(node_end_pfn,
4500 arch_zone_highest_possible_pfn[movable_zone]);
4501
4502 /* Adjust for ZONE_MOVABLE starting within this range */
4503 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4504 *zone_end_pfn > zone_movable_pfn[nid]) {
4505 *zone_end_pfn = zone_movable_pfn[nid];
4506
4507 /* Check if this whole range is within ZONE_MOVABLE */
4508 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4509 *zone_start_pfn = *zone_end_pfn;
4510 }
4511 }
4512
4513 /*
4514 * Return the number of pages a zone spans in a node, including holes
4515 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4516 */
4517 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4518 unsigned long zone_type,
4519 unsigned long node_start_pfn,
4520 unsigned long node_end_pfn,
4521 unsigned long *ignored)
4522 {
4523 unsigned long zone_start_pfn, zone_end_pfn;
4524
4525 /* Get the start and end of the zone */
4526 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4527 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4528 adjust_zone_range_for_zone_movable(nid, zone_type,
4529 node_start_pfn, node_end_pfn,
4530 &zone_start_pfn, &zone_end_pfn);
4531
4532 /* Check that this node has pages within the zone's required range */
4533 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4534 return 0;
4535
4536 /* Move the zone boundaries inside the node if necessary */
4537 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4538 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4539
4540 /* Return the spanned pages */
4541 return zone_end_pfn - zone_start_pfn;
4542 }
4543
4544 /*
4545 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4546 * then all holes in the requested range will be accounted for.
4547 */
4548 unsigned long __meminit __absent_pages_in_range(int nid,
4549 unsigned long range_start_pfn,
4550 unsigned long range_end_pfn)
4551 {
4552 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4553 unsigned long start_pfn, end_pfn;
4554 int i;
4555
4556 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4557 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4558 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4559 nr_absent -= end_pfn - start_pfn;
4560 }
4561 return nr_absent;
4562 }
4563
4564 /**
4565 * absent_pages_in_range - Return number of page frames in holes within a range
4566 * @start_pfn: The start PFN to start searching for holes
4567 * @end_pfn: The end PFN to stop searching for holes
4568 *
4569 * It returns the number of pages frames in memory holes within a range.
4570 */
4571 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4572 unsigned long end_pfn)
4573 {
4574 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4575 }
4576
4577 /* Return the number of page frames in holes in a zone on a node */
4578 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4579 unsigned long zone_type,
4580 unsigned long node_start_pfn,
4581 unsigned long node_end_pfn,
4582 unsigned long *ignored)
4583 {
4584 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4585 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4586 unsigned long zone_start_pfn, zone_end_pfn;
4587
4588 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4589 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4590
4591 adjust_zone_range_for_zone_movable(nid, zone_type,
4592 node_start_pfn, node_end_pfn,
4593 &zone_start_pfn, &zone_end_pfn);
4594 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4595 }
4596
4597 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4598 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4599 unsigned long zone_type,
4600 unsigned long node_start_pfn,
4601 unsigned long node_end_pfn,
4602 unsigned long *zones_size)
4603 {
4604 return zones_size[zone_type];
4605 }
4606
4607 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4608 unsigned long zone_type,
4609 unsigned long node_start_pfn,
4610 unsigned long node_end_pfn,
4611 unsigned long *zholes_size)
4612 {
4613 if (!zholes_size)
4614 return 0;
4615
4616 return zholes_size[zone_type];
4617 }
4618
4619 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4620
4621 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4622 unsigned long node_start_pfn,
4623 unsigned long node_end_pfn,
4624 unsigned long *zones_size,
4625 unsigned long *zholes_size)
4626 {
4627 unsigned long realtotalpages, totalpages = 0;
4628 enum zone_type i;
4629
4630 for (i = 0; i < MAX_NR_ZONES; i++)
4631 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4632 node_start_pfn,
4633 node_end_pfn,
4634 zones_size);
4635 pgdat->node_spanned_pages = totalpages;
4636
4637 realtotalpages = totalpages;
4638 for (i = 0; i < MAX_NR_ZONES; i++)
4639 realtotalpages -=
4640 zone_absent_pages_in_node(pgdat->node_id, i,
4641 node_start_pfn, node_end_pfn,
4642 zholes_size);
4643 pgdat->node_present_pages = realtotalpages;
4644 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4645 realtotalpages);
4646 }
4647
4648 #ifndef CONFIG_SPARSEMEM
4649 /*
4650 * Calculate the size of the zone->blockflags rounded to an unsigned long
4651 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4652 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4653 * round what is now in bits to nearest long in bits, then return it in
4654 * bytes.
4655 */
4656 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4657 {
4658 unsigned long usemapsize;
4659
4660 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4661 usemapsize = roundup(zonesize, pageblock_nr_pages);
4662 usemapsize = usemapsize >> pageblock_order;
4663 usemapsize *= NR_PAGEBLOCK_BITS;
4664 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4665
4666 return usemapsize / 8;
4667 }
4668
4669 static void __init setup_usemap(struct pglist_data *pgdat,
4670 struct zone *zone,
4671 unsigned long zone_start_pfn,
4672 unsigned long zonesize)
4673 {
4674 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4675 zone->pageblock_flags = NULL;
4676 if (usemapsize)
4677 zone->pageblock_flags =
4678 memblock_virt_alloc_node_nopanic(usemapsize,
4679 pgdat->node_id);
4680 }
4681 #else
4682 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4683 unsigned long zone_start_pfn, unsigned long zonesize) {}
4684 #endif /* CONFIG_SPARSEMEM */
4685
4686 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4687
4688 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4689 void __paginginit set_pageblock_order(void)
4690 {
4691 unsigned int order;
4692
4693 /* Check that pageblock_nr_pages has not already been setup */
4694 if (pageblock_order)
4695 return;
4696
4697 if (HPAGE_SHIFT > PAGE_SHIFT)
4698 order = HUGETLB_PAGE_ORDER;
4699 else
4700 order = MAX_ORDER - 1;
4701
4702 /*
4703 * Assume the largest contiguous order of interest is a huge page.
4704 * This value may be variable depending on boot parameters on IA64 and
4705 * powerpc.
4706 */
4707 pageblock_order = order;
4708 }
4709 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4710
4711 /*
4712 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4713 * is unused as pageblock_order is set at compile-time. See
4714 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4715 * the kernel config
4716 */
4717 void __paginginit set_pageblock_order(void)
4718 {
4719 }
4720
4721 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4722
4723 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4724 unsigned long present_pages)
4725 {
4726 unsigned long pages = spanned_pages;
4727
4728 /*
4729 * Provide a more accurate estimation if there are holes within
4730 * the zone and SPARSEMEM is in use. If there are holes within the
4731 * zone, each populated memory region may cost us one or two extra
4732 * memmap pages due to alignment because memmap pages for each
4733 * populated regions may not naturally algined on page boundary.
4734 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4735 */
4736 if (spanned_pages > present_pages + (present_pages >> 4) &&
4737 IS_ENABLED(CONFIG_SPARSEMEM))
4738 pages = present_pages;
4739
4740 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4741 }
4742
4743 /*
4744 * Set up the zone data structures:
4745 * - mark all pages reserved
4746 * - mark all memory queues empty
4747 * - clear the memory bitmaps
4748 *
4749 * NOTE: pgdat should get zeroed by caller.
4750 */
4751 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4752 unsigned long node_start_pfn, unsigned long node_end_pfn,
4753 unsigned long *zones_size, unsigned long *zholes_size)
4754 {
4755 enum zone_type j;
4756 int nid = pgdat->node_id;
4757 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4758 int ret;
4759
4760 pgdat_resize_init(pgdat);
4761 #ifdef CONFIG_NUMA_BALANCING
4762 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4763 pgdat->numabalancing_migrate_nr_pages = 0;
4764 pgdat->numabalancing_migrate_next_window = jiffies;
4765 #endif
4766 init_waitqueue_head(&pgdat->kswapd_wait);
4767 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4768 pgdat_page_cgroup_init(pgdat);
4769
4770 for (j = 0; j < MAX_NR_ZONES; j++) {
4771 struct zone *zone = pgdat->node_zones + j;
4772 unsigned long size, realsize, freesize, memmap_pages;
4773
4774 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4775 node_end_pfn, zones_size);
4776 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4777 node_start_pfn,
4778 node_end_pfn,
4779 zholes_size);
4780
4781 /*
4782 * Adjust freesize so that it accounts for how much memory
4783 * is used by this zone for memmap. This affects the watermark
4784 * and per-cpu initialisations
4785 */
4786 memmap_pages = calc_memmap_size(size, realsize);
4787 if (freesize >= memmap_pages) {
4788 freesize -= memmap_pages;
4789 if (memmap_pages)
4790 printk(KERN_DEBUG
4791 " %s zone: %lu pages used for memmap\n",
4792 zone_names[j], memmap_pages);
4793 } else
4794 printk(KERN_WARNING
4795 " %s zone: %lu pages exceeds freesize %lu\n",
4796 zone_names[j], memmap_pages, freesize);
4797
4798 /* Account for reserved pages */
4799 if (j == 0 && freesize > dma_reserve) {
4800 freesize -= dma_reserve;
4801 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4802 zone_names[0], dma_reserve);
4803 }
4804
4805 if (!is_highmem_idx(j))
4806 nr_kernel_pages += freesize;
4807 /* Charge for highmem memmap if there are enough kernel pages */
4808 else if (nr_kernel_pages > memmap_pages * 2)
4809 nr_kernel_pages -= memmap_pages;
4810 nr_all_pages += freesize;
4811
4812 zone->spanned_pages = size;
4813 zone->present_pages = realsize;
4814 /*
4815 * Set an approximate value for lowmem here, it will be adjusted
4816 * when the bootmem allocator frees pages into the buddy system.
4817 * And all highmem pages will be managed by the buddy system.
4818 */
4819 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4820 #ifdef CONFIG_NUMA
4821 zone->node = nid;
4822 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4823 / 100;
4824 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4825 #endif
4826 zone->name = zone_names[j];
4827 spin_lock_init(&zone->lock);
4828 spin_lock_init(&zone->lru_lock);
4829 zone_seqlock_init(zone);
4830 zone->zone_pgdat = pgdat;
4831 zone_pcp_init(zone);
4832
4833 /* For bootup, initialized properly in watermark setup */
4834 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4835
4836 lruvec_init(&zone->lruvec);
4837 if (!size)
4838 continue;
4839
4840 set_pageblock_order();
4841 setup_usemap(pgdat, zone, zone_start_pfn, size);
4842 ret = init_currently_empty_zone(zone, zone_start_pfn,
4843 size, MEMMAP_EARLY);
4844 BUG_ON(ret);
4845 memmap_init(size, nid, j, zone_start_pfn);
4846 zone_start_pfn += size;
4847 }
4848 }
4849
4850 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4851 {
4852 /* Skip empty nodes */
4853 if (!pgdat->node_spanned_pages)
4854 return;
4855
4856 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4857 /* ia64 gets its own node_mem_map, before this, without bootmem */
4858 if (!pgdat->node_mem_map) {
4859 unsigned long size, start, end;
4860 struct page *map;
4861
4862 /*
4863 * The zone's endpoints aren't required to be MAX_ORDER
4864 * aligned but the node_mem_map endpoints must be in order
4865 * for the buddy allocator to function correctly.
4866 */
4867 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4868 end = pgdat_end_pfn(pgdat);
4869 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4870 size = (end - start) * sizeof(struct page);
4871 map = alloc_remap(pgdat->node_id, size);
4872 if (!map)
4873 map = memblock_virt_alloc_node_nopanic(size,
4874 pgdat->node_id);
4875 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4876 }
4877 #ifndef CONFIG_NEED_MULTIPLE_NODES
4878 /*
4879 * With no DISCONTIG, the global mem_map is just set as node 0's
4880 */
4881 if (pgdat == NODE_DATA(0)) {
4882 mem_map = NODE_DATA(0)->node_mem_map;
4883 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4884 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4885 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4886 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4887 }
4888 #endif
4889 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4890 }
4891
4892 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4893 unsigned long node_start_pfn, unsigned long *zholes_size)
4894 {
4895 pg_data_t *pgdat = NODE_DATA(nid);
4896 unsigned long start_pfn = 0;
4897 unsigned long end_pfn = 0;
4898
4899 /* pg_data_t should be reset to zero when it's allocated */
4900 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4901
4902 pgdat->node_id = nid;
4903 pgdat->node_start_pfn = node_start_pfn;
4904 init_zone_allows_reclaim(nid);
4905 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4906 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4907 #endif
4908 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4909 zones_size, zholes_size);
4910
4911 alloc_node_mem_map(pgdat);
4912 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4913 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4914 nid, (unsigned long)pgdat,
4915 (unsigned long)pgdat->node_mem_map);
4916 #endif
4917
4918 free_area_init_core(pgdat, start_pfn, end_pfn,
4919 zones_size, zholes_size);
4920 }
4921
4922 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4923
4924 #if MAX_NUMNODES > 1
4925 /*
4926 * Figure out the number of possible node ids.
4927 */
4928 void __init setup_nr_node_ids(void)
4929 {
4930 unsigned int node;
4931 unsigned int highest = 0;
4932
4933 for_each_node_mask(node, node_possible_map)
4934 highest = node;
4935 nr_node_ids = highest + 1;
4936 }
4937 #endif
4938
4939 /**
4940 * node_map_pfn_alignment - determine the maximum internode alignment
4941 *
4942 * This function should be called after node map is populated and sorted.
4943 * It calculates the maximum power of two alignment which can distinguish
4944 * all the nodes.
4945 *
4946 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4947 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4948 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4949 * shifted, 1GiB is enough and this function will indicate so.
4950 *
4951 * This is used to test whether pfn -> nid mapping of the chosen memory
4952 * model has fine enough granularity to avoid incorrect mapping for the
4953 * populated node map.
4954 *
4955 * Returns the determined alignment in pfn's. 0 if there is no alignment
4956 * requirement (single node).
4957 */
4958 unsigned long __init node_map_pfn_alignment(void)
4959 {
4960 unsigned long accl_mask = 0, last_end = 0;
4961 unsigned long start, end, mask;
4962 int last_nid = -1;
4963 int i, nid;
4964
4965 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4966 if (!start || last_nid < 0 || last_nid == nid) {
4967 last_nid = nid;
4968 last_end = end;
4969 continue;
4970 }
4971
4972 /*
4973 * Start with a mask granular enough to pin-point to the
4974 * start pfn and tick off bits one-by-one until it becomes
4975 * too coarse to separate the current node from the last.
4976 */
4977 mask = ~((1 << __ffs(start)) - 1);
4978 while (mask && last_end <= (start & (mask << 1)))
4979 mask <<= 1;
4980
4981 /* accumulate all internode masks */
4982 accl_mask |= mask;
4983 }
4984
4985 /* convert mask to number of pages */
4986 return ~accl_mask + 1;
4987 }
4988
4989 /* Find the lowest pfn for a node */
4990 static unsigned long __init find_min_pfn_for_node(int nid)
4991 {
4992 unsigned long min_pfn = ULONG_MAX;
4993 unsigned long start_pfn;
4994 int i;
4995
4996 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4997 min_pfn = min(min_pfn, start_pfn);
4998
4999 if (min_pfn == ULONG_MAX) {
5000 printk(KERN_WARNING
5001 "Could not find start_pfn for node %d\n", nid);
5002 return 0;
5003 }
5004
5005 return min_pfn;
5006 }
5007
5008 /**
5009 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5010 *
5011 * It returns the minimum PFN based on information provided via
5012 * add_active_range().
5013 */
5014 unsigned long __init find_min_pfn_with_active_regions(void)
5015 {
5016 return find_min_pfn_for_node(MAX_NUMNODES);
5017 }
5018
5019 /*
5020 * early_calculate_totalpages()
5021 * Sum pages in active regions for movable zone.
5022 * Populate N_MEMORY for calculating usable_nodes.
5023 */
5024 static unsigned long __init early_calculate_totalpages(void)
5025 {
5026 unsigned long totalpages = 0;
5027 unsigned long start_pfn, end_pfn;
5028 int i, nid;
5029
5030 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5031 unsigned long pages = end_pfn - start_pfn;
5032
5033 totalpages += pages;
5034 if (pages)
5035 node_set_state(nid, N_MEMORY);
5036 }
5037 return totalpages;
5038 }
5039
5040 /*
5041 * Find the PFN the Movable zone begins in each node. Kernel memory
5042 * is spread evenly between nodes as long as the nodes have enough
5043 * memory. When they don't, some nodes will have more kernelcore than
5044 * others
5045 */
5046 static void __init find_zone_movable_pfns_for_nodes(void)
5047 {
5048 int i, nid;
5049 unsigned long usable_startpfn;
5050 unsigned long kernelcore_node, kernelcore_remaining;
5051 /* save the state before borrow the nodemask */
5052 nodemask_t saved_node_state = node_states[N_MEMORY];
5053 unsigned long totalpages = early_calculate_totalpages();
5054 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5055 struct memblock_type *type = &memblock.memory;
5056
5057 /* Need to find movable_zone earlier when movable_node is specified. */
5058 find_usable_zone_for_movable();
5059
5060 /*
5061 * If movable_node is specified, ignore kernelcore and movablecore
5062 * options.
5063 */
5064 if (movable_node_is_enabled()) {
5065 for (i = 0; i < type->cnt; i++) {
5066 if (!memblock_is_hotpluggable(&type->regions[i]))
5067 continue;
5068
5069 nid = type->regions[i].nid;
5070
5071 usable_startpfn = PFN_DOWN(type->regions[i].base);
5072 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5073 min(usable_startpfn, zone_movable_pfn[nid]) :
5074 usable_startpfn;
5075 }
5076
5077 goto out2;
5078 }
5079
5080 /*
5081 * If movablecore=nn[KMG] was specified, calculate what size of
5082 * kernelcore that corresponds so that memory usable for
5083 * any allocation type is evenly spread. If both kernelcore
5084 * and movablecore are specified, then the value of kernelcore
5085 * will be used for required_kernelcore if it's greater than
5086 * what movablecore would have allowed.
5087 */
5088 if (required_movablecore) {
5089 unsigned long corepages;
5090
5091 /*
5092 * Round-up so that ZONE_MOVABLE is at least as large as what
5093 * was requested by the user
5094 */
5095 required_movablecore =
5096 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5097 corepages = totalpages - required_movablecore;
5098
5099 required_kernelcore = max(required_kernelcore, corepages);
5100 }
5101
5102 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5103 if (!required_kernelcore)
5104 goto out;
5105
5106 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5107 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5108
5109 restart:
5110 /* Spread kernelcore memory as evenly as possible throughout nodes */
5111 kernelcore_node = required_kernelcore / usable_nodes;
5112 for_each_node_state(nid, N_MEMORY) {
5113 unsigned long start_pfn, end_pfn;
5114
5115 /*
5116 * Recalculate kernelcore_node if the division per node
5117 * now exceeds what is necessary to satisfy the requested
5118 * amount of memory for the kernel
5119 */
5120 if (required_kernelcore < kernelcore_node)
5121 kernelcore_node = required_kernelcore / usable_nodes;
5122
5123 /*
5124 * As the map is walked, we track how much memory is usable
5125 * by the kernel using kernelcore_remaining. When it is
5126 * 0, the rest of the node is usable by ZONE_MOVABLE
5127 */
5128 kernelcore_remaining = kernelcore_node;
5129
5130 /* Go through each range of PFNs within this node */
5131 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5132 unsigned long size_pages;
5133
5134 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5135 if (start_pfn >= end_pfn)
5136 continue;
5137
5138 /* Account for what is only usable for kernelcore */
5139 if (start_pfn < usable_startpfn) {
5140 unsigned long kernel_pages;
5141 kernel_pages = min(end_pfn, usable_startpfn)
5142 - start_pfn;
5143
5144 kernelcore_remaining -= min(kernel_pages,
5145 kernelcore_remaining);
5146 required_kernelcore -= min(kernel_pages,
5147 required_kernelcore);
5148
5149 /* Continue if range is now fully accounted */
5150 if (end_pfn <= usable_startpfn) {
5151
5152 /*
5153 * Push zone_movable_pfn to the end so
5154 * that if we have to rebalance
5155 * kernelcore across nodes, we will
5156 * not double account here
5157 */
5158 zone_movable_pfn[nid] = end_pfn;
5159 continue;
5160 }
5161 start_pfn = usable_startpfn;
5162 }
5163
5164 /*
5165 * The usable PFN range for ZONE_MOVABLE is from
5166 * start_pfn->end_pfn. Calculate size_pages as the
5167 * number of pages used as kernelcore
5168 */
5169 size_pages = end_pfn - start_pfn;
5170 if (size_pages > kernelcore_remaining)
5171 size_pages = kernelcore_remaining;
5172 zone_movable_pfn[nid] = start_pfn + size_pages;
5173
5174 /*
5175 * Some kernelcore has been met, update counts and
5176 * break if the kernelcore for this node has been
5177 * satisfied
5178 */
5179 required_kernelcore -= min(required_kernelcore,
5180 size_pages);
5181 kernelcore_remaining -= size_pages;
5182 if (!kernelcore_remaining)
5183 break;
5184 }
5185 }
5186
5187 /*
5188 * If there is still required_kernelcore, we do another pass with one
5189 * less node in the count. This will push zone_movable_pfn[nid] further
5190 * along on the nodes that still have memory until kernelcore is
5191 * satisfied
5192 */
5193 usable_nodes--;
5194 if (usable_nodes && required_kernelcore > usable_nodes)
5195 goto restart;
5196
5197 out2:
5198 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5199 for (nid = 0; nid < MAX_NUMNODES; nid++)
5200 zone_movable_pfn[nid] =
5201 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5202
5203 out:
5204 /* restore the node_state */
5205 node_states[N_MEMORY] = saved_node_state;
5206 }
5207
5208 /* Any regular or high memory on that node ? */
5209 static void check_for_memory(pg_data_t *pgdat, int nid)
5210 {
5211 enum zone_type zone_type;
5212
5213 if (N_MEMORY == N_NORMAL_MEMORY)
5214 return;
5215
5216 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5217 struct zone *zone = &pgdat->node_zones[zone_type];
5218 if (populated_zone(zone)) {
5219 node_set_state(nid, N_HIGH_MEMORY);
5220 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5221 zone_type <= ZONE_NORMAL)
5222 node_set_state(nid, N_NORMAL_MEMORY);
5223 break;
5224 }
5225 }
5226 }
5227
5228 /**
5229 * free_area_init_nodes - Initialise all pg_data_t and zone data
5230 * @max_zone_pfn: an array of max PFNs for each zone
5231 *
5232 * This will call free_area_init_node() for each active node in the system.
5233 * Using the page ranges provided by add_active_range(), the size of each
5234 * zone in each node and their holes is calculated. If the maximum PFN
5235 * between two adjacent zones match, it is assumed that the zone is empty.
5236 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5237 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5238 * starts where the previous one ended. For example, ZONE_DMA32 starts
5239 * at arch_max_dma_pfn.
5240 */
5241 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5242 {
5243 unsigned long start_pfn, end_pfn;
5244 int i, nid;
5245
5246 /* Record where the zone boundaries are */
5247 memset(arch_zone_lowest_possible_pfn, 0,
5248 sizeof(arch_zone_lowest_possible_pfn));
5249 memset(arch_zone_highest_possible_pfn, 0,
5250 sizeof(arch_zone_highest_possible_pfn));
5251 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5252 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5253 for (i = 1; i < MAX_NR_ZONES; i++) {
5254 if (i == ZONE_MOVABLE)
5255 continue;
5256 arch_zone_lowest_possible_pfn[i] =
5257 arch_zone_highest_possible_pfn[i-1];
5258 arch_zone_highest_possible_pfn[i] =
5259 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5260 }
5261 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5262 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5263
5264 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5265 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5266 find_zone_movable_pfns_for_nodes();
5267
5268 /* Print out the zone ranges */
5269 printk("Zone ranges:\n");
5270 for (i = 0; i < MAX_NR_ZONES; i++) {
5271 if (i == ZONE_MOVABLE)
5272 continue;
5273 printk(KERN_CONT " %-8s ", zone_names[i]);
5274 if (arch_zone_lowest_possible_pfn[i] ==
5275 arch_zone_highest_possible_pfn[i])
5276 printk(KERN_CONT "empty\n");
5277 else
5278 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5279 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5280 (arch_zone_highest_possible_pfn[i]
5281 << PAGE_SHIFT) - 1);
5282 }
5283
5284 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5285 printk("Movable zone start for each node\n");
5286 for (i = 0; i < MAX_NUMNODES; i++) {
5287 if (zone_movable_pfn[i])
5288 printk(" Node %d: %#010lx\n", i,
5289 zone_movable_pfn[i] << PAGE_SHIFT);
5290 }
5291
5292 /* Print out the early node map */
5293 printk("Early memory node ranges\n");
5294 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5295 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5296 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5297
5298 /* Initialise every node */
5299 mminit_verify_pageflags_layout();
5300 setup_nr_node_ids();
5301 for_each_online_node(nid) {
5302 pg_data_t *pgdat = NODE_DATA(nid);
5303 free_area_init_node(nid, NULL,
5304 find_min_pfn_for_node(nid), NULL);
5305
5306 /* Any memory on that node */
5307 if (pgdat->node_present_pages)
5308 node_set_state(nid, N_MEMORY);
5309 check_for_memory(pgdat, nid);
5310 }
5311 }
5312
5313 static int __init cmdline_parse_core(char *p, unsigned long *core)
5314 {
5315 unsigned long long coremem;
5316 if (!p)
5317 return -EINVAL;
5318
5319 coremem = memparse(p, &p);
5320 *core = coremem >> PAGE_SHIFT;
5321
5322 /* Paranoid check that UL is enough for the coremem value */
5323 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5324
5325 return 0;
5326 }
5327
5328 /*
5329 * kernelcore=size sets the amount of memory for use for allocations that
5330 * cannot be reclaimed or migrated.
5331 */
5332 static int __init cmdline_parse_kernelcore(char *p)
5333 {
5334 return cmdline_parse_core(p, &required_kernelcore);
5335 }
5336
5337 /*
5338 * movablecore=size sets the amount of memory for use for allocations that
5339 * can be reclaimed or migrated.
5340 */
5341 static int __init cmdline_parse_movablecore(char *p)
5342 {
5343 return cmdline_parse_core(p, &required_movablecore);
5344 }
5345
5346 early_param("kernelcore", cmdline_parse_kernelcore);
5347 early_param("movablecore", cmdline_parse_movablecore);
5348
5349 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5350
5351 void adjust_managed_page_count(struct page *page, long count)
5352 {
5353 spin_lock(&managed_page_count_lock);
5354 page_zone(page)->managed_pages += count;
5355 totalram_pages += count;
5356 #ifdef CONFIG_HIGHMEM
5357 if (PageHighMem(page))
5358 totalhigh_pages += count;
5359 #endif
5360 spin_unlock(&managed_page_count_lock);
5361 }
5362 EXPORT_SYMBOL(adjust_managed_page_count);
5363
5364 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5365 {
5366 void *pos;
5367 unsigned long pages = 0;
5368
5369 start = (void *)PAGE_ALIGN((unsigned long)start);
5370 end = (void *)((unsigned long)end & PAGE_MASK);
5371 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5372 if ((unsigned int)poison <= 0xFF)
5373 memset(pos, poison, PAGE_SIZE);
5374 free_reserved_page(virt_to_page(pos));
5375 }
5376
5377 if (pages && s)
5378 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5379 s, pages << (PAGE_SHIFT - 10), start, end);
5380
5381 return pages;
5382 }
5383 EXPORT_SYMBOL(free_reserved_area);
5384
5385 #ifdef CONFIG_HIGHMEM
5386 void free_highmem_page(struct page *page)
5387 {
5388 __free_reserved_page(page);
5389 totalram_pages++;
5390 page_zone(page)->managed_pages++;
5391 totalhigh_pages++;
5392 }
5393 #endif
5394
5395
5396 void __init mem_init_print_info(const char *str)
5397 {
5398 unsigned long physpages, codesize, datasize, rosize, bss_size;
5399 unsigned long init_code_size, init_data_size;
5400
5401 physpages = get_num_physpages();
5402 codesize = _etext - _stext;
5403 datasize = _edata - _sdata;
5404 rosize = __end_rodata - __start_rodata;
5405 bss_size = __bss_stop - __bss_start;
5406 init_data_size = __init_end - __init_begin;
5407 init_code_size = _einittext - _sinittext;
5408
5409 /*
5410 * Detect special cases and adjust section sizes accordingly:
5411 * 1) .init.* may be embedded into .data sections
5412 * 2) .init.text.* may be out of [__init_begin, __init_end],
5413 * please refer to arch/tile/kernel/vmlinux.lds.S.
5414 * 3) .rodata.* may be embedded into .text or .data sections.
5415 */
5416 #define adj_init_size(start, end, size, pos, adj) \
5417 do { \
5418 if (start <= pos && pos < end && size > adj) \
5419 size -= adj; \
5420 } while (0)
5421
5422 adj_init_size(__init_begin, __init_end, init_data_size,
5423 _sinittext, init_code_size);
5424 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5425 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5426 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5427 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5428
5429 #undef adj_init_size
5430
5431 printk("Memory: %luK/%luK available "
5432 "(%luK kernel code, %luK rwdata, %luK rodata, "
5433 "%luK init, %luK bss, %luK reserved"
5434 #ifdef CONFIG_HIGHMEM
5435 ", %luK highmem"
5436 #endif
5437 "%s%s)\n",
5438 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5439 codesize >> 10, datasize >> 10, rosize >> 10,
5440 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5441 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5442 #ifdef CONFIG_HIGHMEM
5443 totalhigh_pages << (PAGE_SHIFT-10),
5444 #endif
5445 str ? ", " : "", str ? str : "");
5446 }
5447
5448 /**
5449 * set_dma_reserve - set the specified number of pages reserved in the first zone
5450 * @new_dma_reserve: The number of pages to mark reserved
5451 *
5452 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5453 * In the DMA zone, a significant percentage may be consumed by kernel image
5454 * and other unfreeable allocations which can skew the watermarks badly. This
5455 * function may optionally be used to account for unfreeable pages in the
5456 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5457 * smaller per-cpu batchsize.
5458 */
5459 void __init set_dma_reserve(unsigned long new_dma_reserve)
5460 {
5461 dma_reserve = new_dma_reserve;
5462 }
5463
5464 void __init free_area_init(unsigned long *zones_size)
5465 {
5466 free_area_init_node(0, zones_size,
5467 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5468 }
5469
5470 static int page_alloc_cpu_notify(struct notifier_block *self,
5471 unsigned long action, void *hcpu)
5472 {
5473 int cpu = (unsigned long)hcpu;
5474
5475 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5476 lru_add_drain_cpu(cpu);
5477 drain_pages(cpu);
5478
5479 /*
5480 * Spill the event counters of the dead processor
5481 * into the current processors event counters.
5482 * This artificially elevates the count of the current
5483 * processor.
5484 */
5485 vm_events_fold_cpu(cpu);
5486
5487 /*
5488 * Zero the differential counters of the dead processor
5489 * so that the vm statistics are consistent.
5490 *
5491 * This is only okay since the processor is dead and cannot
5492 * race with what we are doing.
5493 */
5494 cpu_vm_stats_fold(cpu);
5495 }
5496 return NOTIFY_OK;
5497 }
5498
5499 void __init page_alloc_init(void)
5500 {
5501 hotcpu_notifier(page_alloc_cpu_notify, 0);
5502 }
5503
5504 /*
5505 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5506 * or min_free_kbytes changes.
5507 */
5508 static void calculate_totalreserve_pages(void)
5509 {
5510 struct pglist_data *pgdat;
5511 unsigned long reserve_pages = 0;
5512 enum zone_type i, j;
5513
5514 for_each_online_pgdat(pgdat) {
5515 for (i = 0; i < MAX_NR_ZONES; i++) {
5516 struct zone *zone = pgdat->node_zones + i;
5517 unsigned long max = 0;
5518
5519 /* Find valid and maximum lowmem_reserve in the zone */
5520 for (j = i; j < MAX_NR_ZONES; j++) {
5521 if (zone->lowmem_reserve[j] > max)
5522 max = zone->lowmem_reserve[j];
5523 }
5524
5525 /* we treat the high watermark as reserved pages. */
5526 max += high_wmark_pages(zone);
5527
5528 if (max > zone->managed_pages)
5529 max = zone->managed_pages;
5530 reserve_pages += max;
5531 /*
5532 * Lowmem reserves are not available to
5533 * GFP_HIGHUSER page cache allocations and
5534 * kswapd tries to balance zones to their high
5535 * watermark. As a result, neither should be
5536 * regarded as dirtyable memory, to prevent a
5537 * situation where reclaim has to clean pages
5538 * in order to balance the zones.
5539 */
5540 zone->dirty_balance_reserve = max;
5541 }
5542 }
5543 dirty_balance_reserve = reserve_pages;
5544 totalreserve_pages = reserve_pages;
5545 }
5546
5547 /*
5548 * setup_per_zone_lowmem_reserve - called whenever
5549 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5550 * has a correct pages reserved value, so an adequate number of
5551 * pages are left in the zone after a successful __alloc_pages().
5552 */
5553 static void setup_per_zone_lowmem_reserve(void)
5554 {
5555 struct pglist_data *pgdat;
5556 enum zone_type j, idx;
5557
5558 for_each_online_pgdat(pgdat) {
5559 for (j = 0; j < MAX_NR_ZONES; j++) {
5560 struct zone *zone = pgdat->node_zones + j;
5561 unsigned long managed_pages = zone->managed_pages;
5562
5563 zone->lowmem_reserve[j] = 0;
5564
5565 idx = j;
5566 while (idx) {
5567 struct zone *lower_zone;
5568
5569 idx--;
5570
5571 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5572 sysctl_lowmem_reserve_ratio[idx] = 1;
5573
5574 lower_zone = pgdat->node_zones + idx;
5575 lower_zone->lowmem_reserve[j] = managed_pages /
5576 sysctl_lowmem_reserve_ratio[idx];
5577 managed_pages += lower_zone->managed_pages;
5578 }
5579 }
5580 }
5581
5582 /* update totalreserve_pages */
5583 calculate_totalreserve_pages();
5584 }
5585
5586 static void __setup_per_zone_wmarks(void)
5587 {
5588 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5589 unsigned long lowmem_pages = 0;
5590 struct zone *zone;
5591 unsigned long flags;
5592
5593 /* Calculate total number of !ZONE_HIGHMEM pages */
5594 for_each_zone(zone) {
5595 if (!is_highmem(zone))
5596 lowmem_pages += zone->managed_pages;
5597 }
5598
5599 for_each_zone(zone) {
5600 u64 tmp;
5601
5602 spin_lock_irqsave(&zone->lock, flags);
5603 tmp = (u64)pages_min * zone->managed_pages;
5604 do_div(tmp, lowmem_pages);
5605 if (is_highmem(zone)) {
5606 /*
5607 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5608 * need highmem pages, so cap pages_min to a small
5609 * value here.
5610 *
5611 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5612 * deltas controls asynch page reclaim, and so should
5613 * not be capped for highmem.
5614 */
5615 unsigned long min_pages;
5616
5617 min_pages = zone->managed_pages / 1024;
5618 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5619 zone->watermark[WMARK_MIN] = min_pages;
5620 } else {
5621 /*
5622 * If it's a lowmem zone, reserve a number of pages
5623 * proportionate to the zone's size.
5624 */
5625 zone->watermark[WMARK_MIN] = tmp;
5626 }
5627
5628 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5629 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5630
5631 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5632 high_wmark_pages(zone) -
5633 low_wmark_pages(zone) -
5634 zone_page_state(zone, NR_ALLOC_BATCH));
5635
5636 setup_zone_migrate_reserve(zone);
5637 spin_unlock_irqrestore(&zone->lock, flags);
5638 }
5639
5640 /* update totalreserve_pages */
5641 calculate_totalreserve_pages();
5642 }
5643
5644 /**
5645 * setup_per_zone_wmarks - called when min_free_kbytes changes
5646 * or when memory is hot-{added|removed}
5647 *
5648 * Ensures that the watermark[min,low,high] values for each zone are set
5649 * correctly with respect to min_free_kbytes.
5650 */
5651 void setup_per_zone_wmarks(void)
5652 {
5653 mutex_lock(&zonelists_mutex);
5654 __setup_per_zone_wmarks();
5655 mutex_unlock(&zonelists_mutex);
5656 }
5657
5658 /*
5659 * The inactive anon list should be small enough that the VM never has to
5660 * do too much work, but large enough that each inactive page has a chance
5661 * to be referenced again before it is swapped out.
5662 *
5663 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5664 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5665 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5666 * the anonymous pages are kept on the inactive list.
5667 *
5668 * total target max
5669 * memory ratio inactive anon
5670 * -------------------------------------
5671 * 10MB 1 5MB
5672 * 100MB 1 50MB
5673 * 1GB 3 250MB
5674 * 10GB 10 0.9GB
5675 * 100GB 31 3GB
5676 * 1TB 101 10GB
5677 * 10TB 320 32GB
5678 */
5679 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5680 {
5681 unsigned int gb, ratio;
5682
5683 /* Zone size in gigabytes */
5684 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5685 if (gb)
5686 ratio = int_sqrt(10 * gb);
5687 else
5688 ratio = 1;
5689
5690 zone->inactive_ratio = ratio;
5691 }
5692
5693 static void __meminit setup_per_zone_inactive_ratio(void)
5694 {
5695 struct zone *zone;
5696
5697 for_each_zone(zone)
5698 calculate_zone_inactive_ratio(zone);
5699 }
5700
5701 /*
5702 * Initialise min_free_kbytes.
5703 *
5704 * For small machines we want it small (128k min). For large machines
5705 * we want it large (64MB max). But it is not linear, because network
5706 * bandwidth does not increase linearly with machine size. We use
5707 *
5708 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5709 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5710 *
5711 * which yields
5712 *
5713 * 16MB: 512k
5714 * 32MB: 724k
5715 * 64MB: 1024k
5716 * 128MB: 1448k
5717 * 256MB: 2048k
5718 * 512MB: 2896k
5719 * 1024MB: 4096k
5720 * 2048MB: 5792k
5721 * 4096MB: 8192k
5722 * 8192MB: 11584k
5723 * 16384MB: 16384k
5724 */
5725 int __meminit init_per_zone_wmark_min(void)
5726 {
5727 unsigned long lowmem_kbytes;
5728 int new_min_free_kbytes;
5729
5730 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5731 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5732
5733 if (new_min_free_kbytes > user_min_free_kbytes) {
5734 min_free_kbytes = new_min_free_kbytes;
5735 if (min_free_kbytes < 128)
5736 min_free_kbytes = 128;
5737 if (min_free_kbytes > 65536)
5738 min_free_kbytes = 65536;
5739 } else {
5740 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5741 new_min_free_kbytes, user_min_free_kbytes);
5742 }
5743 setup_per_zone_wmarks();
5744 refresh_zone_stat_thresholds();
5745 setup_per_zone_lowmem_reserve();
5746 setup_per_zone_inactive_ratio();
5747 return 0;
5748 }
5749 module_init(init_per_zone_wmark_min)
5750
5751 /*
5752 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5753 * that we can call two helper functions whenever min_free_kbytes
5754 * changes.
5755 */
5756 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5757 void __user *buffer, size_t *length, loff_t *ppos)
5758 {
5759 int rc;
5760
5761 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5762 if (rc)
5763 return rc;
5764
5765 if (write) {
5766 user_min_free_kbytes = min_free_kbytes;
5767 setup_per_zone_wmarks();
5768 }
5769 return 0;
5770 }
5771
5772 #ifdef CONFIG_NUMA
5773 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5774 void __user *buffer, size_t *length, loff_t *ppos)
5775 {
5776 struct zone *zone;
5777 int rc;
5778
5779 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5780 if (rc)
5781 return rc;
5782
5783 for_each_zone(zone)
5784 zone->min_unmapped_pages = (zone->managed_pages *
5785 sysctl_min_unmapped_ratio) / 100;
5786 return 0;
5787 }
5788
5789 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5790 void __user *buffer, size_t *length, loff_t *ppos)
5791 {
5792 struct zone *zone;
5793 int rc;
5794
5795 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5796 if (rc)
5797 return rc;
5798
5799 for_each_zone(zone)
5800 zone->min_slab_pages = (zone->managed_pages *
5801 sysctl_min_slab_ratio) / 100;
5802 return 0;
5803 }
5804 #endif
5805
5806 /*
5807 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5808 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5809 * whenever sysctl_lowmem_reserve_ratio changes.
5810 *
5811 * The reserve ratio obviously has absolutely no relation with the
5812 * minimum watermarks. The lowmem reserve ratio can only make sense
5813 * if in function of the boot time zone sizes.
5814 */
5815 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5816 void __user *buffer, size_t *length, loff_t *ppos)
5817 {
5818 proc_dointvec_minmax(table, write, buffer, length, ppos);
5819 setup_per_zone_lowmem_reserve();
5820 return 0;
5821 }
5822
5823 /*
5824 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5825 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5826 * pagelist can have before it gets flushed back to buddy allocator.
5827 */
5828 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5829 void __user *buffer, size_t *length, loff_t *ppos)
5830 {
5831 struct zone *zone;
5832 unsigned int cpu;
5833 int ret;
5834
5835 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5836 if (!write || (ret < 0))
5837 return ret;
5838
5839 mutex_lock(&pcp_batch_high_lock);
5840 for_each_populated_zone(zone) {
5841 unsigned long high;
5842 high = zone->managed_pages / percpu_pagelist_fraction;
5843 for_each_possible_cpu(cpu)
5844 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5845 high);
5846 }
5847 mutex_unlock(&pcp_batch_high_lock);
5848 return 0;
5849 }
5850
5851 int hashdist = HASHDIST_DEFAULT;
5852
5853 #ifdef CONFIG_NUMA
5854 static int __init set_hashdist(char *str)
5855 {
5856 if (!str)
5857 return 0;
5858 hashdist = simple_strtoul(str, &str, 0);
5859 return 1;
5860 }
5861 __setup("hashdist=", set_hashdist);
5862 #endif
5863
5864 /*
5865 * allocate a large system hash table from bootmem
5866 * - it is assumed that the hash table must contain an exact power-of-2
5867 * quantity of entries
5868 * - limit is the number of hash buckets, not the total allocation size
5869 */
5870 void *__init alloc_large_system_hash(const char *tablename,
5871 unsigned long bucketsize,
5872 unsigned long numentries,
5873 int scale,
5874 int flags,
5875 unsigned int *_hash_shift,
5876 unsigned int *_hash_mask,
5877 unsigned long low_limit,
5878 unsigned long high_limit)
5879 {
5880 unsigned long long max = high_limit;
5881 unsigned long log2qty, size;
5882 void *table = NULL;
5883
5884 /* allow the kernel cmdline to have a say */
5885 if (!numentries) {
5886 /* round applicable memory size up to nearest megabyte */
5887 numentries = nr_kernel_pages;
5888
5889 /* It isn't necessary when PAGE_SIZE >= 1MB */
5890 if (PAGE_SHIFT < 20)
5891 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5892
5893 /* limit to 1 bucket per 2^scale bytes of low memory */
5894 if (scale > PAGE_SHIFT)
5895 numentries >>= (scale - PAGE_SHIFT);
5896 else
5897 numentries <<= (PAGE_SHIFT - scale);
5898
5899 /* Make sure we've got at least a 0-order allocation.. */
5900 if (unlikely(flags & HASH_SMALL)) {
5901 /* Makes no sense without HASH_EARLY */
5902 WARN_ON(!(flags & HASH_EARLY));
5903 if (!(numentries >> *_hash_shift)) {
5904 numentries = 1UL << *_hash_shift;
5905 BUG_ON(!numentries);
5906 }
5907 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5908 numentries = PAGE_SIZE / bucketsize;
5909 }
5910 numentries = roundup_pow_of_two(numentries);
5911
5912 /* limit allocation size to 1/16 total memory by default */
5913 if (max == 0) {
5914 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5915 do_div(max, bucketsize);
5916 }
5917 max = min(max, 0x80000000ULL);
5918
5919 if (numentries < low_limit)
5920 numentries = low_limit;
5921 if (numentries > max)
5922 numentries = max;
5923
5924 log2qty = ilog2(numentries);
5925
5926 do {
5927 size = bucketsize << log2qty;
5928 if (flags & HASH_EARLY)
5929 table = memblock_virt_alloc_nopanic(size, 0);
5930 else if (hashdist)
5931 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5932 else {
5933 /*
5934 * If bucketsize is not a power-of-two, we may free
5935 * some pages at the end of hash table which
5936 * alloc_pages_exact() automatically does
5937 */
5938 if (get_order(size) < MAX_ORDER) {
5939 table = alloc_pages_exact(size, GFP_ATOMIC);
5940 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5941 }
5942 }
5943 } while (!table && size > PAGE_SIZE && --log2qty);
5944
5945 if (!table)
5946 panic("Failed to allocate %s hash table\n", tablename);
5947
5948 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5949 tablename,
5950 (1UL << log2qty),
5951 ilog2(size) - PAGE_SHIFT,
5952 size);
5953
5954 if (_hash_shift)
5955 *_hash_shift = log2qty;
5956 if (_hash_mask)
5957 *_hash_mask = (1 << log2qty) - 1;
5958
5959 return table;
5960 }
5961
5962 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5963 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5964 unsigned long pfn)
5965 {
5966 #ifdef CONFIG_SPARSEMEM
5967 return __pfn_to_section(pfn)->pageblock_flags;
5968 #else
5969 return zone->pageblock_flags;
5970 #endif /* CONFIG_SPARSEMEM */
5971 }
5972
5973 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5974 {
5975 #ifdef CONFIG_SPARSEMEM
5976 pfn &= (PAGES_PER_SECTION-1);
5977 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5978 #else
5979 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5980 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5981 #endif /* CONFIG_SPARSEMEM */
5982 }
5983
5984 /**
5985 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5986 * @page: The page within the block of interest
5987 * @start_bitidx: The first bit of interest to retrieve
5988 * @end_bitidx: The last bit of interest
5989 * returns pageblock_bits flags
5990 */
5991 unsigned long get_pageblock_flags_group(struct page *page,
5992 int start_bitidx, int end_bitidx)
5993 {
5994 struct zone *zone;
5995 unsigned long *bitmap;
5996 unsigned long pfn, bitidx;
5997 unsigned long flags = 0;
5998 unsigned long value = 1;
5999
6000 zone = page_zone(page);
6001 pfn = page_to_pfn(page);
6002 bitmap = get_pageblock_bitmap(zone, pfn);
6003 bitidx = pfn_to_bitidx(zone, pfn);
6004
6005 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6006 if (test_bit(bitidx + start_bitidx, bitmap))
6007 flags |= value;
6008
6009 return flags;
6010 }
6011
6012 /**
6013 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
6014 * @page: The page within the block of interest
6015 * @start_bitidx: The first bit of interest
6016 * @end_bitidx: The last bit of interest
6017 * @flags: The flags to set
6018 */
6019 void set_pageblock_flags_group(struct page *page, unsigned long flags,
6020 int start_bitidx, int end_bitidx)
6021 {
6022 struct zone *zone;
6023 unsigned long *bitmap;
6024 unsigned long pfn, bitidx;
6025 unsigned long value = 1;
6026
6027 zone = page_zone(page);
6028 pfn = page_to_pfn(page);
6029 bitmap = get_pageblock_bitmap(zone, pfn);
6030 bitidx = pfn_to_bitidx(zone, pfn);
6031 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6032
6033 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
6034 if (flags & value)
6035 __set_bit(bitidx + start_bitidx, bitmap);
6036 else
6037 __clear_bit(bitidx + start_bitidx, bitmap);
6038 }
6039
6040 /*
6041 * This function checks whether pageblock includes unmovable pages or not.
6042 * If @count is not zero, it is okay to include less @count unmovable pages
6043 *
6044 * PageLRU check without isolation or lru_lock could race so that
6045 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6046 * expect this function should be exact.
6047 */
6048 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6049 bool skip_hwpoisoned_pages)
6050 {
6051 unsigned long pfn, iter, found;
6052 int mt;
6053
6054 /*
6055 * For avoiding noise data, lru_add_drain_all() should be called
6056 * If ZONE_MOVABLE, the zone never contains unmovable pages
6057 */
6058 if (zone_idx(zone) == ZONE_MOVABLE)
6059 return false;
6060 mt = get_pageblock_migratetype(page);
6061 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6062 return false;
6063
6064 pfn = page_to_pfn(page);
6065 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6066 unsigned long check = pfn + iter;
6067
6068 if (!pfn_valid_within(check))
6069 continue;
6070
6071 page = pfn_to_page(check);
6072
6073 /*
6074 * Hugepages are not in LRU lists, but they're movable.
6075 * We need not scan over tail pages bacause we don't
6076 * handle each tail page individually in migration.
6077 */
6078 if (PageHuge(page)) {
6079 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6080 continue;
6081 }
6082
6083 /*
6084 * We can't use page_count without pin a page
6085 * because another CPU can free compound page.
6086 * This check already skips compound tails of THP
6087 * because their page->_count is zero at all time.
6088 */
6089 if (!atomic_read(&page->_count)) {
6090 if (PageBuddy(page))
6091 iter += (1 << page_order(page)) - 1;
6092 continue;
6093 }
6094
6095 /*
6096 * The HWPoisoned page may be not in buddy system, and
6097 * page_count() is not 0.
6098 */
6099 if (skip_hwpoisoned_pages && PageHWPoison(page))
6100 continue;
6101
6102 if (!PageLRU(page))
6103 found++;
6104 /*
6105 * If there are RECLAIMABLE pages, we need to check it.
6106 * But now, memory offline itself doesn't call shrink_slab()
6107 * and it still to be fixed.
6108 */
6109 /*
6110 * If the page is not RAM, page_count()should be 0.
6111 * we don't need more check. This is an _used_ not-movable page.
6112 *
6113 * The problematic thing here is PG_reserved pages. PG_reserved
6114 * is set to both of a memory hole page and a _used_ kernel
6115 * page at boot.
6116 */
6117 if (found > count)
6118 return true;
6119 }
6120 return false;
6121 }
6122
6123 bool is_pageblock_removable_nolock(struct page *page)
6124 {
6125 struct zone *zone;
6126 unsigned long pfn;
6127
6128 /*
6129 * We have to be careful here because we are iterating over memory
6130 * sections which are not zone aware so we might end up outside of
6131 * the zone but still within the section.
6132 * We have to take care about the node as well. If the node is offline
6133 * its NODE_DATA will be NULL - see page_zone.
6134 */
6135 if (!node_online(page_to_nid(page)))
6136 return false;
6137
6138 zone = page_zone(page);
6139 pfn = page_to_pfn(page);
6140 if (!zone_spans_pfn(zone, pfn))
6141 return false;
6142
6143 return !has_unmovable_pages(zone, page, 0, true);
6144 }
6145
6146 #ifdef CONFIG_CMA
6147
6148 static unsigned long pfn_max_align_down(unsigned long pfn)
6149 {
6150 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6151 pageblock_nr_pages) - 1);
6152 }
6153
6154 static unsigned long pfn_max_align_up(unsigned long pfn)
6155 {
6156 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6157 pageblock_nr_pages));
6158 }
6159
6160 /* [start, end) must belong to a single zone. */
6161 static int __alloc_contig_migrate_range(struct compact_control *cc,
6162 unsigned long start, unsigned long end)
6163 {
6164 /* This function is based on compact_zone() from compaction.c. */
6165 unsigned long nr_reclaimed;
6166 unsigned long pfn = start;
6167 unsigned int tries = 0;
6168 int ret = 0;
6169
6170 migrate_prep();
6171
6172 while (pfn < end || !list_empty(&cc->migratepages)) {
6173 if (fatal_signal_pending(current)) {
6174 ret = -EINTR;
6175 break;
6176 }
6177
6178 if (list_empty(&cc->migratepages)) {
6179 cc->nr_migratepages = 0;
6180 pfn = isolate_migratepages_range(cc->zone, cc,
6181 pfn, end, true);
6182 if (!pfn) {
6183 ret = -EINTR;
6184 break;
6185 }
6186 tries = 0;
6187 } else if (++tries == 5) {
6188 ret = ret < 0 ? ret : -EBUSY;
6189 break;
6190 }
6191
6192 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6193 &cc->migratepages);
6194 cc->nr_migratepages -= nr_reclaimed;
6195
6196 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6197 0, MIGRATE_SYNC, MR_CMA);
6198 }
6199 if (ret < 0) {
6200 putback_movable_pages(&cc->migratepages);
6201 return ret;
6202 }
6203 return 0;
6204 }
6205
6206 /**
6207 * alloc_contig_range() -- tries to allocate given range of pages
6208 * @start: start PFN to allocate
6209 * @end: one-past-the-last PFN to allocate
6210 * @migratetype: migratetype of the underlaying pageblocks (either
6211 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6212 * in range must have the same migratetype and it must
6213 * be either of the two.
6214 *
6215 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6216 * aligned, however it's the caller's responsibility to guarantee that
6217 * we are the only thread that changes migrate type of pageblocks the
6218 * pages fall in.
6219 *
6220 * The PFN range must belong to a single zone.
6221 *
6222 * Returns zero on success or negative error code. On success all
6223 * pages which PFN is in [start, end) are allocated for the caller and
6224 * need to be freed with free_contig_range().
6225 */
6226 int alloc_contig_range(unsigned long start, unsigned long end,
6227 unsigned migratetype)
6228 {
6229 unsigned long outer_start, outer_end;
6230 int ret = 0, order;
6231
6232 struct compact_control cc = {
6233 .nr_migratepages = 0,
6234 .order = -1,
6235 .zone = page_zone(pfn_to_page(start)),
6236 .sync = true,
6237 .ignore_skip_hint = true,
6238 };
6239 INIT_LIST_HEAD(&cc.migratepages);
6240
6241 /*
6242 * What we do here is we mark all pageblocks in range as
6243 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6244 * have different sizes, and due to the way page allocator
6245 * work, we align the range to biggest of the two pages so
6246 * that page allocator won't try to merge buddies from
6247 * different pageblocks and change MIGRATE_ISOLATE to some
6248 * other migration type.
6249 *
6250 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6251 * migrate the pages from an unaligned range (ie. pages that
6252 * we are interested in). This will put all the pages in
6253 * range back to page allocator as MIGRATE_ISOLATE.
6254 *
6255 * When this is done, we take the pages in range from page
6256 * allocator removing them from the buddy system. This way
6257 * page allocator will never consider using them.
6258 *
6259 * This lets us mark the pageblocks back as
6260 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6261 * aligned range but not in the unaligned, original range are
6262 * put back to page allocator so that buddy can use them.
6263 */
6264
6265 ret = start_isolate_page_range(pfn_max_align_down(start),
6266 pfn_max_align_up(end), migratetype,
6267 false);
6268 if (ret)
6269 return ret;
6270
6271 ret = __alloc_contig_migrate_range(&cc, start, end);
6272 if (ret)
6273 goto done;
6274
6275 /*
6276 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6277 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6278 * more, all pages in [start, end) are free in page allocator.
6279 * What we are going to do is to allocate all pages from
6280 * [start, end) (that is remove them from page allocator).
6281 *
6282 * The only problem is that pages at the beginning and at the
6283 * end of interesting range may be not aligned with pages that
6284 * page allocator holds, ie. they can be part of higher order
6285 * pages. Because of this, we reserve the bigger range and
6286 * once this is done free the pages we are not interested in.
6287 *
6288 * We don't have to hold zone->lock here because the pages are
6289 * isolated thus they won't get removed from buddy.
6290 */
6291
6292 lru_add_drain_all();
6293 drain_all_pages();
6294
6295 order = 0;
6296 outer_start = start;
6297 while (!PageBuddy(pfn_to_page(outer_start))) {
6298 if (++order >= MAX_ORDER) {
6299 ret = -EBUSY;
6300 goto done;
6301 }
6302 outer_start &= ~0UL << order;
6303 }
6304
6305 /* Make sure the range is really isolated. */
6306 if (test_pages_isolated(outer_start, end, false)) {
6307 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6308 outer_start, end);
6309 ret = -EBUSY;
6310 goto done;
6311 }
6312
6313
6314 /* Grab isolated pages from freelists. */
6315 outer_end = isolate_freepages_range(&cc, outer_start, end);
6316 if (!outer_end) {
6317 ret = -EBUSY;
6318 goto done;
6319 }
6320
6321 /* Free head and tail (if any) */
6322 if (start != outer_start)
6323 free_contig_range(outer_start, start - outer_start);
6324 if (end != outer_end)
6325 free_contig_range(end, outer_end - end);
6326
6327 done:
6328 undo_isolate_page_range(pfn_max_align_down(start),
6329 pfn_max_align_up(end), migratetype);
6330 return ret;
6331 }
6332
6333 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6334 {
6335 unsigned int count = 0;
6336
6337 for (; nr_pages--; pfn++) {
6338 struct page *page = pfn_to_page(pfn);
6339
6340 count += page_count(page) != 1;
6341 __free_page(page);
6342 }
6343 WARN(count != 0, "%d pages are still in use!\n", count);
6344 }
6345 #endif
6346
6347 #ifdef CONFIG_MEMORY_HOTPLUG
6348 /*
6349 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6350 * page high values need to be recalulated.
6351 */
6352 void __meminit zone_pcp_update(struct zone *zone)
6353 {
6354 unsigned cpu;
6355 mutex_lock(&pcp_batch_high_lock);
6356 for_each_possible_cpu(cpu)
6357 pageset_set_high_and_batch(zone,
6358 per_cpu_ptr(zone->pageset, cpu));
6359 mutex_unlock(&pcp_batch_high_lock);
6360 }
6361 #endif
6362
6363 void zone_pcp_reset(struct zone *zone)
6364 {
6365 unsigned long flags;
6366 int cpu;
6367 struct per_cpu_pageset *pset;
6368
6369 /* avoid races with drain_pages() */
6370 local_irq_save(flags);
6371 if (zone->pageset != &boot_pageset) {
6372 for_each_online_cpu(cpu) {
6373 pset = per_cpu_ptr(zone->pageset, cpu);
6374 drain_zonestat(zone, pset);
6375 }
6376 free_percpu(zone->pageset);
6377 zone->pageset = &boot_pageset;
6378 }
6379 local_irq_restore(flags);
6380 }
6381
6382 #ifdef CONFIG_MEMORY_HOTREMOVE
6383 /*
6384 * All pages in the range must be isolated before calling this.
6385 */
6386 void
6387 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6388 {
6389 struct page *page;
6390 struct zone *zone;
6391 int order, i;
6392 unsigned long pfn;
6393 unsigned long flags;
6394 /* find the first valid pfn */
6395 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6396 if (pfn_valid(pfn))
6397 break;
6398 if (pfn == end_pfn)
6399 return;
6400 zone = page_zone(pfn_to_page(pfn));
6401 spin_lock_irqsave(&zone->lock, flags);
6402 pfn = start_pfn;
6403 while (pfn < end_pfn) {
6404 if (!pfn_valid(pfn)) {
6405 pfn++;
6406 continue;
6407 }
6408 page = pfn_to_page(pfn);
6409 /*
6410 * The HWPoisoned page may be not in buddy system, and
6411 * page_count() is not 0.
6412 */
6413 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6414 pfn++;
6415 SetPageReserved(page);
6416 continue;
6417 }
6418
6419 BUG_ON(page_count(page));
6420 BUG_ON(!PageBuddy(page));
6421 order = page_order(page);
6422 #ifdef CONFIG_DEBUG_VM
6423 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6424 pfn, 1 << order, end_pfn);
6425 #endif
6426 list_del(&page->lru);
6427 rmv_page_order(page);
6428 zone->free_area[order].nr_free--;
6429 for (i = 0; i < (1 << order); i++)
6430 SetPageReserved((page+i));
6431 pfn += (1 << order);
6432 }
6433 spin_unlock_irqrestore(&zone->lock, flags);
6434 }
6435 #endif
6436
6437 #ifdef CONFIG_MEMORY_FAILURE
6438 bool is_free_buddy_page(struct page *page)
6439 {
6440 struct zone *zone = page_zone(page);
6441 unsigned long pfn = page_to_pfn(page);
6442 unsigned long flags;
6443 int order;
6444
6445 spin_lock_irqsave(&zone->lock, flags);
6446 for (order = 0; order < MAX_ORDER; order++) {
6447 struct page *page_head = page - (pfn & ((1 << order) - 1));
6448
6449 if (PageBuddy(page_head) && page_order(page_head) >= order)
6450 break;
6451 }
6452 spin_unlock_irqrestore(&zone->lock, flags);
6453
6454 return order < MAX_ORDER;
6455 }
6456 #endif
6457
6458 static const struct trace_print_flags pageflag_names[] = {
6459 {1UL << PG_locked, "locked" },
6460 {1UL << PG_error, "error" },
6461 {1UL << PG_referenced, "referenced" },
6462 {1UL << PG_uptodate, "uptodate" },
6463 {1UL << PG_dirty, "dirty" },
6464 {1UL << PG_lru, "lru" },
6465 {1UL << PG_active, "active" },
6466 {1UL << PG_slab, "slab" },
6467 {1UL << PG_owner_priv_1, "owner_priv_1" },
6468 {1UL << PG_arch_1, "arch_1" },
6469 {1UL << PG_reserved, "reserved" },
6470 {1UL << PG_private, "private" },
6471 {1UL << PG_private_2, "private_2" },
6472 {1UL << PG_writeback, "writeback" },
6473 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6474 {1UL << PG_head, "head" },
6475 {1UL << PG_tail, "tail" },
6476 #else
6477 {1UL << PG_compound, "compound" },
6478 #endif
6479 {1UL << PG_swapcache, "swapcache" },
6480 {1UL << PG_mappedtodisk, "mappedtodisk" },
6481 {1UL << PG_reclaim, "reclaim" },
6482 {1UL << PG_swapbacked, "swapbacked" },
6483 {1UL << PG_unevictable, "unevictable" },
6484 #ifdef CONFIG_MMU
6485 {1UL << PG_mlocked, "mlocked" },
6486 #endif
6487 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6488 {1UL << PG_uncached, "uncached" },
6489 #endif
6490 #ifdef CONFIG_MEMORY_FAILURE
6491 {1UL << PG_hwpoison, "hwpoison" },
6492 #endif
6493 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6494 {1UL << PG_compound_lock, "compound_lock" },
6495 #endif
6496 };
6497
6498 static void dump_page_flags(unsigned long flags)
6499 {
6500 const char *delim = "";
6501 unsigned long mask;
6502 int i;
6503
6504 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6505
6506 printk(KERN_ALERT "page flags: %#lx(", flags);
6507
6508 /* remove zone id */
6509 flags &= (1UL << NR_PAGEFLAGS) - 1;
6510
6511 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6512
6513 mask = pageflag_names[i].mask;
6514 if ((flags & mask) != mask)
6515 continue;
6516
6517 flags &= ~mask;
6518 printk("%s%s", delim, pageflag_names[i].name);
6519 delim = "|";
6520 }
6521
6522 /* check for left over flags */
6523 if (flags)
6524 printk("%s%#lx", delim, flags);
6525
6526 printk(")\n");
6527 }
6528
6529 void dump_page_badflags(struct page *page, char *reason, unsigned long badflags)
6530 {
6531 printk(KERN_ALERT
6532 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6533 page, atomic_read(&page->_count), page_mapcount(page),
6534 page->mapping, page->index);
6535 dump_page_flags(page->flags);
6536 if (reason)
6537 pr_alert("page dumped because: %s\n", reason);
6538 if (page->flags & badflags) {
6539 pr_alert("bad because of flags:\n");
6540 dump_page_flags(page->flags & badflags);
6541 }
6542 mem_cgroup_print_bad_page(page);
6543 }
6544
6545 void dump_page(struct page *page, char *reason)
6546 {
6547 dump_page_badflags(page, reason, 0);
6548 }
6549 EXPORT_SYMBOL_GPL(dump_page);
This page took 0.163824 seconds and 5 git commands to generate.