mm: init: report on last-nid information stored in page->flags
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 #include <linux/sched/rt.h>
62
63 #include <asm/tlbflush.h>
64 #include <asm/div64.h>
65 #include "internal.h"
66
67 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
68 DEFINE_PER_CPU(int, numa_node);
69 EXPORT_PER_CPU_SYMBOL(numa_node);
70 #endif
71
72 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
73 /*
74 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
75 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
76 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
77 * defined in <linux/topology.h>.
78 */
79 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
80 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
81 #endif
82
83 /*
84 * Array of node states.
85 */
86 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
87 [N_POSSIBLE] = NODE_MASK_ALL,
88 [N_ONLINE] = { { [0] = 1UL } },
89 #ifndef CONFIG_NUMA
90 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
91 #ifdef CONFIG_HIGHMEM
92 [N_HIGH_MEMORY] = { { [0] = 1UL } },
93 #endif
94 #ifdef CONFIG_MOVABLE_NODE
95 [N_MEMORY] = { { [0] = 1UL } },
96 #endif
97 [N_CPU] = { { [0] = 1UL } },
98 #endif /* NUMA */
99 };
100 EXPORT_SYMBOL(node_states);
101
102 unsigned long totalram_pages __read_mostly;
103 unsigned long totalreserve_pages __read_mostly;
104 /*
105 * When calculating the number of globally allowed dirty pages, there
106 * is a certain number of per-zone reserves that should not be
107 * considered dirtyable memory. This is the sum of those reserves
108 * over all existing zones that contribute dirtyable memory.
109 */
110 unsigned long dirty_balance_reserve __read_mostly;
111
112 int percpu_pagelist_fraction;
113 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
114
115 #ifdef CONFIG_PM_SLEEP
116 /*
117 * The following functions are used by the suspend/hibernate code to temporarily
118 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
119 * while devices are suspended. To avoid races with the suspend/hibernate code,
120 * they should always be called with pm_mutex held (gfp_allowed_mask also should
121 * only be modified with pm_mutex held, unless the suspend/hibernate code is
122 * guaranteed not to run in parallel with that modification).
123 */
124
125 static gfp_t saved_gfp_mask;
126
127 void pm_restore_gfp_mask(void)
128 {
129 WARN_ON(!mutex_is_locked(&pm_mutex));
130 if (saved_gfp_mask) {
131 gfp_allowed_mask = saved_gfp_mask;
132 saved_gfp_mask = 0;
133 }
134 }
135
136 void pm_restrict_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 WARN_ON(saved_gfp_mask);
140 saved_gfp_mask = gfp_allowed_mask;
141 gfp_allowed_mask &= ~GFP_IOFS;
142 }
143
144 bool pm_suspended_storage(void)
145 {
146 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
147 return false;
148 return true;
149 }
150 #endif /* CONFIG_PM_SLEEP */
151
152 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
153 int pageblock_order __read_mostly;
154 #endif
155
156 static void __free_pages_ok(struct page *page, unsigned int order);
157
158 /*
159 * results with 256, 32 in the lowmem_reserve sysctl:
160 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
161 * 1G machine -> (16M dma, 784M normal, 224M high)
162 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
163 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
164 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
165 *
166 * TBD: should special case ZONE_DMA32 machines here - in those we normally
167 * don't need any ZONE_NORMAL reservation
168 */
169 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
170 #ifdef CONFIG_ZONE_DMA
171 256,
172 #endif
173 #ifdef CONFIG_ZONE_DMA32
174 256,
175 #endif
176 #ifdef CONFIG_HIGHMEM
177 32,
178 #endif
179 32,
180 };
181
182 EXPORT_SYMBOL(totalram_pages);
183
184 static char * const zone_names[MAX_NR_ZONES] = {
185 #ifdef CONFIG_ZONE_DMA
186 "DMA",
187 #endif
188 #ifdef CONFIG_ZONE_DMA32
189 "DMA32",
190 #endif
191 "Normal",
192 #ifdef CONFIG_HIGHMEM
193 "HighMem",
194 #endif
195 "Movable",
196 };
197
198 int min_free_kbytes = 1024;
199
200 static unsigned long __meminitdata nr_kernel_pages;
201 static unsigned long __meminitdata nr_all_pages;
202 static unsigned long __meminitdata dma_reserve;
203
204 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
205 /* Movable memory ranges, will also be used by memblock subsystem. */
206 struct movablemem_map movablemem_map = {
207 .acpi = false,
208 .nr_map = 0,
209 };
210
211 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
212 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
213 static unsigned long __initdata required_kernelcore;
214 static unsigned long __initdata required_movablecore;
215 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
216 static unsigned long __meminitdata zone_movable_limit[MAX_NUMNODES];
217
218 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
219 int movable_zone;
220 EXPORT_SYMBOL(movable_zone);
221 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
222
223 #if MAX_NUMNODES > 1
224 int nr_node_ids __read_mostly = MAX_NUMNODES;
225 int nr_online_nodes __read_mostly = 1;
226 EXPORT_SYMBOL(nr_node_ids);
227 EXPORT_SYMBOL(nr_online_nodes);
228 #endif
229
230 int page_group_by_mobility_disabled __read_mostly;
231
232 void set_pageblock_migratetype(struct page *page, int migratetype)
233 {
234
235 if (unlikely(page_group_by_mobility_disabled))
236 migratetype = MIGRATE_UNMOVABLE;
237
238 set_pageblock_flags_group(page, (unsigned long)migratetype,
239 PB_migrate, PB_migrate_end);
240 }
241
242 bool oom_killer_disabled __read_mostly;
243
244 #ifdef CONFIG_DEBUG_VM
245 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
246 {
247 int ret = 0;
248 unsigned seq;
249 unsigned long pfn = page_to_pfn(page);
250
251 do {
252 seq = zone_span_seqbegin(zone);
253 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
254 ret = 1;
255 else if (pfn < zone->zone_start_pfn)
256 ret = 1;
257 } while (zone_span_seqretry(zone, seq));
258
259 return ret;
260 }
261
262 static int page_is_consistent(struct zone *zone, struct page *page)
263 {
264 if (!pfn_valid_within(page_to_pfn(page)))
265 return 0;
266 if (zone != page_zone(page))
267 return 0;
268
269 return 1;
270 }
271 /*
272 * Temporary debugging check for pages not lying within a given zone.
273 */
274 static int bad_range(struct zone *zone, struct page *page)
275 {
276 if (page_outside_zone_boundaries(zone, page))
277 return 1;
278 if (!page_is_consistent(zone, page))
279 return 1;
280
281 return 0;
282 }
283 #else
284 static inline int bad_range(struct zone *zone, struct page *page)
285 {
286 return 0;
287 }
288 #endif
289
290 static void bad_page(struct page *page)
291 {
292 static unsigned long resume;
293 static unsigned long nr_shown;
294 static unsigned long nr_unshown;
295
296 /* Don't complain about poisoned pages */
297 if (PageHWPoison(page)) {
298 reset_page_mapcount(page); /* remove PageBuddy */
299 return;
300 }
301
302 /*
303 * Allow a burst of 60 reports, then keep quiet for that minute;
304 * or allow a steady drip of one report per second.
305 */
306 if (nr_shown == 60) {
307 if (time_before(jiffies, resume)) {
308 nr_unshown++;
309 goto out;
310 }
311 if (nr_unshown) {
312 printk(KERN_ALERT
313 "BUG: Bad page state: %lu messages suppressed\n",
314 nr_unshown);
315 nr_unshown = 0;
316 }
317 nr_shown = 0;
318 }
319 if (nr_shown++ == 0)
320 resume = jiffies + 60 * HZ;
321
322 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
323 current->comm, page_to_pfn(page));
324 dump_page(page);
325
326 print_modules();
327 dump_stack();
328 out:
329 /* Leave bad fields for debug, except PageBuddy could make trouble */
330 reset_page_mapcount(page); /* remove PageBuddy */
331 add_taint(TAINT_BAD_PAGE);
332 }
333
334 /*
335 * Higher-order pages are called "compound pages". They are structured thusly:
336 *
337 * The first PAGE_SIZE page is called the "head page".
338 *
339 * The remaining PAGE_SIZE pages are called "tail pages".
340 *
341 * All pages have PG_compound set. All tail pages have their ->first_page
342 * pointing at the head page.
343 *
344 * The first tail page's ->lru.next holds the address of the compound page's
345 * put_page() function. Its ->lru.prev holds the order of allocation.
346 * This usage means that zero-order pages may not be compound.
347 */
348
349 static void free_compound_page(struct page *page)
350 {
351 __free_pages_ok(page, compound_order(page));
352 }
353
354 void prep_compound_page(struct page *page, unsigned long order)
355 {
356 int i;
357 int nr_pages = 1 << order;
358
359 set_compound_page_dtor(page, free_compound_page);
360 set_compound_order(page, order);
361 __SetPageHead(page);
362 for (i = 1; i < nr_pages; i++) {
363 struct page *p = page + i;
364 __SetPageTail(p);
365 set_page_count(p, 0);
366 p->first_page = page;
367 }
368 }
369
370 /* update __split_huge_page_refcount if you change this function */
371 static int destroy_compound_page(struct page *page, unsigned long order)
372 {
373 int i;
374 int nr_pages = 1 << order;
375 int bad = 0;
376
377 if (unlikely(compound_order(page) != order)) {
378 bad_page(page);
379 bad++;
380 }
381
382 __ClearPageHead(page);
383
384 for (i = 1; i < nr_pages; i++) {
385 struct page *p = page + i;
386
387 if (unlikely(!PageTail(p) || (p->first_page != page))) {
388 bad_page(page);
389 bad++;
390 }
391 __ClearPageTail(p);
392 }
393
394 return bad;
395 }
396
397 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
398 {
399 int i;
400
401 /*
402 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
403 * and __GFP_HIGHMEM from hard or soft interrupt context.
404 */
405 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
406 for (i = 0; i < (1 << order); i++)
407 clear_highpage(page + i);
408 }
409
410 #ifdef CONFIG_DEBUG_PAGEALLOC
411 unsigned int _debug_guardpage_minorder;
412
413 static int __init debug_guardpage_minorder_setup(char *buf)
414 {
415 unsigned long res;
416
417 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
418 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
419 return 0;
420 }
421 _debug_guardpage_minorder = res;
422 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
423 return 0;
424 }
425 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
426
427 static inline void set_page_guard_flag(struct page *page)
428 {
429 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431
432 static inline void clear_page_guard_flag(struct page *page)
433 {
434 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
435 }
436 #else
437 static inline void set_page_guard_flag(struct page *page) { }
438 static inline void clear_page_guard_flag(struct page *page) { }
439 #endif
440
441 static inline void set_page_order(struct page *page, int order)
442 {
443 set_page_private(page, order);
444 __SetPageBuddy(page);
445 }
446
447 static inline void rmv_page_order(struct page *page)
448 {
449 __ClearPageBuddy(page);
450 set_page_private(page, 0);
451 }
452
453 /*
454 * Locate the struct page for both the matching buddy in our
455 * pair (buddy1) and the combined O(n+1) page they form (page).
456 *
457 * 1) Any buddy B1 will have an order O twin B2 which satisfies
458 * the following equation:
459 * B2 = B1 ^ (1 << O)
460 * For example, if the starting buddy (buddy2) is #8 its order
461 * 1 buddy is #10:
462 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
463 *
464 * 2) Any buddy B will have an order O+1 parent P which
465 * satisfies the following equation:
466 * P = B & ~(1 << O)
467 *
468 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
469 */
470 static inline unsigned long
471 __find_buddy_index(unsigned long page_idx, unsigned int order)
472 {
473 return page_idx ^ (1 << order);
474 }
475
476 /*
477 * This function checks whether a page is free && is the buddy
478 * we can do coalesce a page and its buddy if
479 * (a) the buddy is not in a hole &&
480 * (b) the buddy is in the buddy system &&
481 * (c) a page and its buddy have the same order &&
482 * (d) a page and its buddy are in the same zone.
483 *
484 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
485 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
486 *
487 * For recording page's order, we use page_private(page).
488 */
489 static inline int page_is_buddy(struct page *page, struct page *buddy,
490 int order)
491 {
492 if (!pfn_valid_within(page_to_pfn(buddy)))
493 return 0;
494
495 if (page_zone_id(page) != page_zone_id(buddy))
496 return 0;
497
498 if (page_is_guard(buddy) && page_order(buddy) == order) {
499 VM_BUG_ON(page_count(buddy) != 0);
500 return 1;
501 }
502
503 if (PageBuddy(buddy) && page_order(buddy) == order) {
504 VM_BUG_ON(page_count(buddy) != 0);
505 return 1;
506 }
507 return 0;
508 }
509
510 /*
511 * Freeing function for a buddy system allocator.
512 *
513 * The concept of a buddy system is to maintain direct-mapped table
514 * (containing bit values) for memory blocks of various "orders".
515 * The bottom level table contains the map for the smallest allocatable
516 * units of memory (here, pages), and each level above it describes
517 * pairs of units from the levels below, hence, "buddies".
518 * At a high level, all that happens here is marking the table entry
519 * at the bottom level available, and propagating the changes upward
520 * as necessary, plus some accounting needed to play nicely with other
521 * parts of the VM system.
522 * At each level, we keep a list of pages, which are heads of continuous
523 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
524 * order is recorded in page_private(page) field.
525 * So when we are allocating or freeing one, we can derive the state of the
526 * other. That is, if we allocate a small block, and both were
527 * free, the remainder of the region must be split into blocks.
528 * If a block is freed, and its buddy is also free, then this
529 * triggers coalescing into a block of larger size.
530 *
531 * -- nyc
532 */
533
534 static inline void __free_one_page(struct page *page,
535 struct zone *zone, unsigned int order,
536 int migratetype)
537 {
538 unsigned long page_idx;
539 unsigned long combined_idx;
540 unsigned long uninitialized_var(buddy_idx);
541 struct page *buddy;
542
543 if (unlikely(PageCompound(page)))
544 if (unlikely(destroy_compound_page(page, order)))
545 return;
546
547 VM_BUG_ON(migratetype == -1);
548
549 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
550
551 VM_BUG_ON(page_idx & ((1 << order) - 1));
552 VM_BUG_ON(bad_range(zone, page));
553
554 while (order < MAX_ORDER-1) {
555 buddy_idx = __find_buddy_index(page_idx, order);
556 buddy = page + (buddy_idx - page_idx);
557 if (!page_is_buddy(page, buddy, order))
558 break;
559 /*
560 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
561 * merge with it and move up one order.
562 */
563 if (page_is_guard(buddy)) {
564 clear_page_guard_flag(buddy);
565 set_page_private(page, 0);
566 __mod_zone_freepage_state(zone, 1 << order,
567 migratetype);
568 } else {
569 list_del(&buddy->lru);
570 zone->free_area[order].nr_free--;
571 rmv_page_order(buddy);
572 }
573 combined_idx = buddy_idx & page_idx;
574 page = page + (combined_idx - page_idx);
575 page_idx = combined_idx;
576 order++;
577 }
578 set_page_order(page, order);
579
580 /*
581 * If this is not the largest possible page, check if the buddy
582 * of the next-highest order is free. If it is, it's possible
583 * that pages are being freed that will coalesce soon. In case,
584 * that is happening, add the free page to the tail of the list
585 * so it's less likely to be used soon and more likely to be merged
586 * as a higher order page
587 */
588 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
589 struct page *higher_page, *higher_buddy;
590 combined_idx = buddy_idx & page_idx;
591 higher_page = page + (combined_idx - page_idx);
592 buddy_idx = __find_buddy_index(combined_idx, order + 1);
593 higher_buddy = higher_page + (buddy_idx - combined_idx);
594 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
595 list_add_tail(&page->lru,
596 &zone->free_area[order].free_list[migratetype]);
597 goto out;
598 }
599 }
600
601 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
602 out:
603 zone->free_area[order].nr_free++;
604 }
605
606 static inline int free_pages_check(struct page *page)
607 {
608 if (unlikely(page_mapcount(page) |
609 (page->mapping != NULL) |
610 (atomic_read(&page->_count) != 0) |
611 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
612 (mem_cgroup_bad_page_check(page)))) {
613 bad_page(page);
614 return 1;
615 }
616 reset_page_last_nid(page);
617 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
618 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
619 return 0;
620 }
621
622 /*
623 * Frees a number of pages from the PCP lists
624 * Assumes all pages on list are in same zone, and of same order.
625 * count is the number of pages to free.
626 *
627 * If the zone was previously in an "all pages pinned" state then look to
628 * see if this freeing clears that state.
629 *
630 * And clear the zone's pages_scanned counter, to hold off the "all pages are
631 * pinned" detection logic.
632 */
633 static void free_pcppages_bulk(struct zone *zone, int count,
634 struct per_cpu_pages *pcp)
635 {
636 int migratetype = 0;
637 int batch_free = 0;
638 int to_free = count;
639
640 spin_lock(&zone->lock);
641 zone->all_unreclaimable = 0;
642 zone->pages_scanned = 0;
643
644 while (to_free) {
645 struct page *page;
646 struct list_head *list;
647
648 /*
649 * Remove pages from lists in a round-robin fashion. A
650 * batch_free count is maintained that is incremented when an
651 * empty list is encountered. This is so more pages are freed
652 * off fuller lists instead of spinning excessively around empty
653 * lists
654 */
655 do {
656 batch_free++;
657 if (++migratetype == MIGRATE_PCPTYPES)
658 migratetype = 0;
659 list = &pcp->lists[migratetype];
660 } while (list_empty(list));
661
662 /* This is the only non-empty list. Free them all. */
663 if (batch_free == MIGRATE_PCPTYPES)
664 batch_free = to_free;
665
666 do {
667 int mt; /* migratetype of the to-be-freed page */
668
669 page = list_entry(list->prev, struct page, lru);
670 /* must delete as __free_one_page list manipulates */
671 list_del(&page->lru);
672 mt = get_freepage_migratetype(page);
673 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
674 __free_one_page(page, zone, 0, mt);
675 trace_mm_page_pcpu_drain(page, 0, mt);
676 if (likely(!is_migrate_isolate_page(page))) {
677 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
678 if (is_migrate_cma(mt))
679 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
680 }
681 } while (--to_free && --batch_free && !list_empty(list));
682 }
683 spin_unlock(&zone->lock);
684 }
685
686 static void free_one_page(struct zone *zone, struct page *page, int order,
687 int migratetype)
688 {
689 spin_lock(&zone->lock);
690 zone->all_unreclaimable = 0;
691 zone->pages_scanned = 0;
692
693 __free_one_page(page, zone, order, migratetype);
694 if (unlikely(!is_migrate_isolate(migratetype)))
695 __mod_zone_freepage_state(zone, 1 << order, migratetype);
696 spin_unlock(&zone->lock);
697 }
698
699 static bool free_pages_prepare(struct page *page, unsigned int order)
700 {
701 int i;
702 int bad = 0;
703
704 trace_mm_page_free(page, order);
705 kmemcheck_free_shadow(page, order);
706
707 if (PageAnon(page))
708 page->mapping = NULL;
709 for (i = 0; i < (1 << order); i++)
710 bad += free_pages_check(page + i);
711 if (bad)
712 return false;
713
714 if (!PageHighMem(page)) {
715 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
716 debug_check_no_obj_freed(page_address(page),
717 PAGE_SIZE << order);
718 }
719 arch_free_page(page, order);
720 kernel_map_pages(page, 1 << order, 0);
721
722 return true;
723 }
724
725 static void __free_pages_ok(struct page *page, unsigned int order)
726 {
727 unsigned long flags;
728 int migratetype;
729
730 if (!free_pages_prepare(page, order))
731 return;
732
733 local_irq_save(flags);
734 __count_vm_events(PGFREE, 1 << order);
735 migratetype = get_pageblock_migratetype(page);
736 set_freepage_migratetype(page, migratetype);
737 free_one_page(page_zone(page), page, order, migratetype);
738 local_irq_restore(flags);
739 }
740
741 /*
742 * Read access to zone->managed_pages is safe because it's unsigned long,
743 * but we still need to serialize writers. Currently all callers of
744 * __free_pages_bootmem() except put_page_bootmem() should only be used
745 * at boot time. So for shorter boot time, we shift the burden to
746 * put_page_bootmem() to serialize writers.
747 */
748 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
749 {
750 unsigned int nr_pages = 1 << order;
751 unsigned int loop;
752
753 prefetchw(page);
754 for (loop = 0; loop < nr_pages; loop++) {
755 struct page *p = &page[loop];
756
757 if (loop + 1 < nr_pages)
758 prefetchw(p + 1);
759 __ClearPageReserved(p);
760 set_page_count(p, 0);
761 }
762
763 page_zone(page)->managed_pages += 1 << order;
764 set_page_refcounted(page);
765 __free_pages(page, order);
766 }
767
768 #ifdef CONFIG_CMA
769 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
770 void __init init_cma_reserved_pageblock(struct page *page)
771 {
772 unsigned i = pageblock_nr_pages;
773 struct page *p = page;
774
775 do {
776 __ClearPageReserved(p);
777 set_page_count(p, 0);
778 } while (++p, --i);
779
780 set_page_refcounted(page);
781 set_pageblock_migratetype(page, MIGRATE_CMA);
782 __free_pages(page, pageblock_order);
783 totalram_pages += pageblock_nr_pages;
784 #ifdef CONFIG_HIGHMEM
785 if (PageHighMem(page))
786 totalhigh_pages += pageblock_nr_pages;
787 #endif
788 }
789 #endif
790
791 /*
792 * The order of subdivision here is critical for the IO subsystem.
793 * Please do not alter this order without good reasons and regression
794 * testing. Specifically, as large blocks of memory are subdivided,
795 * the order in which smaller blocks are delivered depends on the order
796 * they're subdivided in this function. This is the primary factor
797 * influencing the order in which pages are delivered to the IO
798 * subsystem according to empirical testing, and this is also justified
799 * by considering the behavior of a buddy system containing a single
800 * large block of memory acted on by a series of small allocations.
801 * This behavior is a critical factor in sglist merging's success.
802 *
803 * -- nyc
804 */
805 static inline void expand(struct zone *zone, struct page *page,
806 int low, int high, struct free_area *area,
807 int migratetype)
808 {
809 unsigned long size = 1 << high;
810
811 while (high > low) {
812 area--;
813 high--;
814 size >>= 1;
815 VM_BUG_ON(bad_range(zone, &page[size]));
816
817 #ifdef CONFIG_DEBUG_PAGEALLOC
818 if (high < debug_guardpage_minorder()) {
819 /*
820 * Mark as guard pages (or page), that will allow to
821 * merge back to allocator when buddy will be freed.
822 * Corresponding page table entries will not be touched,
823 * pages will stay not present in virtual address space
824 */
825 INIT_LIST_HEAD(&page[size].lru);
826 set_page_guard_flag(&page[size]);
827 set_page_private(&page[size], high);
828 /* Guard pages are not available for any usage */
829 __mod_zone_freepage_state(zone, -(1 << high),
830 migratetype);
831 continue;
832 }
833 #endif
834 list_add(&page[size].lru, &area->free_list[migratetype]);
835 area->nr_free++;
836 set_page_order(&page[size], high);
837 }
838 }
839
840 /*
841 * This page is about to be returned from the page allocator
842 */
843 static inline int check_new_page(struct page *page)
844 {
845 if (unlikely(page_mapcount(page) |
846 (page->mapping != NULL) |
847 (atomic_read(&page->_count) != 0) |
848 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
849 (mem_cgroup_bad_page_check(page)))) {
850 bad_page(page);
851 return 1;
852 }
853 return 0;
854 }
855
856 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
857 {
858 int i;
859
860 for (i = 0; i < (1 << order); i++) {
861 struct page *p = page + i;
862 if (unlikely(check_new_page(p)))
863 return 1;
864 }
865
866 set_page_private(page, 0);
867 set_page_refcounted(page);
868
869 arch_alloc_page(page, order);
870 kernel_map_pages(page, 1 << order, 1);
871
872 if (gfp_flags & __GFP_ZERO)
873 prep_zero_page(page, order, gfp_flags);
874
875 if (order && (gfp_flags & __GFP_COMP))
876 prep_compound_page(page, order);
877
878 return 0;
879 }
880
881 /*
882 * Go through the free lists for the given migratetype and remove
883 * the smallest available page from the freelists
884 */
885 static inline
886 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
887 int migratetype)
888 {
889 unsigned int current_order;
890 struct free_area * area;
891 struct page *page;
892
893 /* Find a page of the appropriate size in the preferred list */
894 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
895 area = &(zone->free_area[current_order]);
896 if (list_empty(&area->free_list[migratetype]))
897 continue;
898
899 page = list_entry(area->free_list[migratetype].next,
900 struct page, lru);
901 list_del(&page->lru);
902 rmv_page_order(page);
903 area->nr_free--;
904 expand(zone, page, order, current_order, area, migratetype);
905 return page;
906 }
907
908 return NULL;
909 }
910
911
912 /*
913 * This array describes the order lists are fallen back to when
914 * the free lists for the desirable migrate type are depleted
915 */
916 static int fallbacks[MIGRATE_TYPES][4] = {
917 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
918 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 #ifdef CONFIG_CMA
920 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
921 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
922 #else
923 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
924 #endif
925 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
926 #ifdef CONFIG_MEMORY_ISOLATION
927 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
928 #endif
929 };
930
931 /*
932 * Move the free pages in a range to the free lists of the requested type.
933 * Note that start_page and end_pages are not aligned on a pageblock
934 * boundary. If alignment is required, use move_freepages_block()
935 */
936 int move_freepages(struct zone *zone,
937 struct page *start_page, struct page *end_page,
938 int migratetype)
939 {
940 struct page *page;
941 unsigned long order;
942 int pages_moved = 0;
943
944 #ifndef CONFIG_HOLES_IN_ZONE
945 /*
946 * page_zone is not safe to call in this context when
947 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
948 * anyway as we check zone boundaries in move_freepages_block().
949 * Remove at a later date when no bug reports exist related to
950 * grouping pages by mobility
951 */
952 BUG_ON(page_zone(start_page) != page_zone(end_page));
953 #endif
954
955 for (page = start_page; page <= end_page;) {
956 /* Make sure we are not inadvertently changing nodes */
957 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
958
959 if (!pfn_valid_within(page_to_pfn(page))) {
960 page++;
961 continue;
962 }
963
964 if (!PageBuddy(page)) {
965 page++;
966 continue;
967 }
968
969 order = page_order(page);
970 list_move(&page->lru,
971 &zone->free_area[order].free_list[migratetype]);
972 set_freepage_migratetype(page, migratetype);
973 page += 1 << order;
974 pages_moved += 1 << order;
975 }
976
977 return pages_moved;
978 }
979
980 int move_freepages_block(struct zone *zone, struct page *page,
981 int migratetype)
982 {
983 unsigned long start_pfn, end_pfn;
984 struct page *start_page, *end_page;
985
986 start_pfn = page_to_pfn(page);
987 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
988 start_page = pfn_to_page(start_pfn);
989 end_page = start_page + pageblock_nr_pages - 1;
990 end_pfn = start_pfn + pageblock_nr_pages - 1;
991
992 /* Do not cross zone boundaries */
993 if (start_pfn < zone->zone_start_pfn)
994 start_page = page;
995 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
996 return 0;
997
998 return move_freepages(zone, start_page, end_page, migratetype);
999 }
1000
1001 static void change_pageblock_range(struct page *pageblock_page,
1002 int start_order, int migratetype)
1003 {
1004 int nr_pageblocks = 1 << (start_order - pageblock_order);
1005
1006 while (nr_pageblocks--) {
1007 set_pageblock_migratetype(pageblock_page, migratetype);
1008 pageblock_page += pageblock_nr_pages;
1009 }
1010 }
1011
1012 /* Remove an element from the buddy allocator from the fallback list */
1013 static inline struct page *
1014 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1015 {
1016 struct free_area * area;
1017 int current_order;
1018 struct page *page;
1019 int migratetype, i;
1020
1021 /* Find the largest possible block of pages in the other list */
1022 for (current_order = MAX_ORDER-1; current_order >= order;
1023 --current_order) {
1024 for (i = 0;; i++) {
1025 migratetype = fallbacks[start_migratetype][i];
1026
1027 /* MIGRATE_RESERVE handled later if necessary */
1028 if (migratetype == MIGRATE_RESERVE)
1029 break;
1030
1031 area = &(zone->free_area[current_order]);
1032 if (list_empty(&area->free_list[migratetype]))
1033 continue;
1034
1035 page = list_entry(area->free_list[migratetype].next,
1036 struct page, lru);
1037 area->nr_free--;
1038
1039 /*
1040 * If breaking a large block of pages, move all free
1041 * pages to the preferred allocation list. If falling
1042 * back for a reclaimable kernel allocation, be more
1043 * aggressive about taking ownership of free pages
1044 *
1045 * On the other hand, never change migration
1046 * type of MIGRATE_CMA pageblocks nor move CMA
1047 * pages on different free lists. We don't
1048 * want unmovable pages to be allocated from
1049 * MIGRATE_CMA areas.
1050 */
1051 if (!is_migrate_cma(migratetype) &&
1052 (unlikely(current_order >= pageblock_order / 2) ||
1053 start_migratetype == MIGRATE_RECLAIMABLE ||
1054 page_group_by_mobility_disabled)) {
1055 int pages;
1056 pages = move_freepages_block(zone, page,
1057 start_migratetype);
1058
1059 /* Claim the whole block if over half of it is free */
1060 if (pages >= (1 << (pageblock_order-1)) ||
1061 page_group_by_mobility_disabled)
1062 set_pageblock_migratetype(page,
1063 start_migratetype);
1064
1065 migratetype = start_migratetype;
1066 }
1067
1068 /* Remove the page from the freelists */
1069 list_del(&page->lru);
1070 rmv_page_order(page);
1071
1072 /* Take ownership for orders >= pageblock_order */
1073 if (current_order >= pageblock_order &&
1074 !is_migrate_cma(migratetype))
1075 change_pageblock_range(page, current_order,
1076 start_migratetype);
1077
1078 expand(zone, page, order, current_order, area,
1079 is_migrate_cma(migratetype)
1080 ? migratetype : start_migratetype);
1081
1082 trace_mm_page_alloc_extfrag(page, order, current_order,
1083 start_migratetype, migratetype);
1084
1085 return page;
1086 }
1087 }
1088
1089 return NULL;
1090 }
1091
1092 /*
1093 * Do the hard work of removing an element from the buddy allocator.
1094 * Call me with the zone->lock already held.
1095 */
1096 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1097 int migratetype)
1098 {
1099 struct page *page;
1100
1101 retry_reserve:
1102 page = __rmqueue_smallest(zone, order, migratetype);
1103
1104 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1105 page = __rmqueue_fallback(zone, order, migratetype);
1106
1107 /*
1108 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1109 * is used because __rmqueue_smallest is an inline function
1110 * and we want just one call site
1111 */
1112 if (!page) {
1113 migratetype = MIGRATE_RESERVE;
1114 goto retry_reserve;
1115 }
1116 }
1117
1118 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1119 return page;
1120 }
1121
1122 /*
1123 * Obtain a specified number of elements from the buddy allocator, all under
1124 * a single hold of the lock, for efficiency. Add them to the supplied list.
1125 * Returns the number of new pages which were placed at *list.
1126 */
1127 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1128 unsigned long count, struct list_head *list,
1129 int migratetype, int cold)
1130 {
1131 int mt = migratetype, i;
1132
1133 spin_lock(&zone->lock);
1134 for (i = 0; i < count; ++i) {
1135 struct page *page = __rmqueue(zone, order, migratetype);
1136 if (unlikely(page == NULL))
1137 break;
1138
1139 /*
1140 * Split buddy pages returned by expand() are received here
1141 * in physical page order. The page is added to the callers and
1142 * list and the list head then moves forward. From the callers
1143 * perspective, the linked list is ordered by page number in
1144 * some conditions. This is useful for IO devices that can
1145 * merge IO requests if the physical pages are ordered
1146 * properly.
1147 */
1148 if (likely(cold == 0))
1149 list_add(&page->lru, list);
1150 else
1151 list_add_tail(&page->lru, list);
1152 if (IS_ENABLED(CONFIG_CMA)) {
1153 mt = get_pageblock_migratetype(page);
1154 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1155 mt = migratetype;
1156 }
1157 set_freepage_migratetype(page, mt);
1158 list = &page->lru;
1159 if (is_migrate_cma(mt))
1160 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1161 -(1 << order));
1162 }
1163 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1164 spin_unlock(&zone->lock);
1165 return i;
1166 }
1167
1168 #ifdef CONFIG_NUMA
1169 /*
1170 * Called from the vmstat counter updater to drain pagesets of this
1171 * currently executing processor on remote nodes after they have
1172 * expired.
1173 *
1174 * Note that this function must be called with the thread pinned to
1175 * a single processor.
1176 */
1177 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1178 {
1179 unsigned long flags;
1180 int to_drain;
1181
1182 local_irq_save(flags);
1183 if (pcp->count >= pcp->batch)
1184 to_drain = pcp->batch;
1185 else
1186 to_drain = pcp->count;
1187 if (to_drain > 0) {
1188 free_pcppages_bulk(zone, to_drain, pcp);
1189 pcp->count -= to_drain;
1190 }
1191 local_irq_restore(flags);
1192 }
1193 #endif
1194
1195 /*
1196 * Drain pages of the indicated processor.
1197 *
1198 * The processor must either be the current processor and the
1199 * thread pinned to the current processor or a processor that
1200 * is not online.
1201 */
1202 static void drain_pages(unsigned int cpu)
1203 {
1204 unsigned long flags;
1205 struct zone *zone;
1206
1207 for_each_populated_zone(zone) {
1208 struct per_cpu_pageset *pset;
1209 struct per_cpu_pages *pcp;
1210
1211 local_irq_save(flags);
1212 pset = per_cpu_ptr(zone->pageset, cpu);
1213
1214 pcp = &pset->pcp;
1215 if (pcp->count) {
1216 free_pcppages_bulk(zone, pcp->count, pcp);
1217 pcp->count = 0;
1218 }
1219 local_irq_restore(flags);
1220 }
1221 }
1222
1223 /*
1224 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1225 */
1226 void drain_local_pages(void *arg)
1227 {
1228 drain_pages(smp_processor_id());
1229 }
1230
1231 /*
1232 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1233 *
1234 * Note that this code is protected against sending an IPI to an offline
1235 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1236 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1237 * nothing keeps CPUs from showing up after we populated the cpumask and
1238 * before the call to on_each_cpu_mask().
1239 */
1240 void drain_all_pages(void)
1241 {
1242 int cpu;
1243 struct per_cpu_pageset *pcp;
1244 struct zone *zone;
1245
1246 /*
1247 * Allocate in the BSS so we wont require allocation in
1248 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1249 */
1250 static cpumask_t cpus_with_pcps;
1251
1252 /*
1253 * We don't care about racing with CPU hotplug event
1254 * as offline notification will cause the notified
1255 * cpu to drain that CPU pcps and on_each_cpu_mask
1256 * disables preemption as part of its processing
1257 */
1258 for_each_online_cpu(cpu) {
1259 bool has_pcps = false;
1260 for_each_populated_zone(zone) {
1261 pcp = per_cpu_ptr(zone->pageset, cpu);
1262 if (pcp->pcp.count) {
1263 has_pcps = true;
1264 break;
1265 }
1266 }
1267 if (has_pcps)
1268 cpumask_set_cpu(cpu, &cpus_with_pcps);
1269 else
1270 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1271 }
1272 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1273 }
1274
1275 #ifdef CONFIG_HIBERNATION
1276
1277 void mark_free_pages(struct zone *zone)
1278 {
1279 unsigned long pfn, max_zone_pfn;
1280 unsigned long flags;
1281 int order, t;
1282 struct list_head *curr;
1283
1284 if (!zone->spanned_pages)
1285 return;
1286
1287 spin_lock_irqsave(&zone->lock, flags);
1288
1289 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1290 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1291 if (pfn_valid(pfn)) {
1292 struct page *page = pfn_to_page(pfn);
1293
1294 if (!swsusp_page_is_forbidden(page))
1295 swsusp_unset_page_free(page);
1296 }
1297
1298 for_each_migratetype_order(order, t) {
1299 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1300 unsigned long i;
1301
1302 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1303 for (i = 0; i < (1UL << order); i++)
1304 swsusp_set_page_free(pfn_to_page(pfn + i));
1305 }
1306 }
1307 spin_unlock_irqrestore(&zone->lock, flags);
1308 }
1309 #endif /* CONFIG_PM */
1310
1311 /*
1312 * Free a 0-order page
1313 * cold == 1 ? free a cold page : free a hot page
1314 */
1315 void free_hot_cold_page(struct page *page, int cold)
1316 {
1317 struct zone *zone = page_zone(page);
1318 struct per_cpu_pages *pcp;
1319 unsigned long flags;
1320 int migratetype;
1321
1322 if (!free_pages_prepare(page, 0))
1323 return;
1324
1325 migratetype = get_pageblock_migratetype(page);
1326 set_freepage_migratetype(page, migratetype);
1327 local_irq_save(flags);
1328 __count_vm_event(PGFREE);
1329
1330 /*
1331 * We only track unmovable, reclaimable and movable on pcp lists.
1332 * Free ISOLATE pages back to the allocator because they are being
1333 * offlined but treat RESERVE as movable pages so we can get those
1334 * areas back if necessary. Otherwise, we may have to free
1335 * excessively into the page allocator
1336 */
1337 if (migratetype >= MIGRATE_PCPTYPES) {
1338 if (unlikely(is_migrate_isolate(migratetype))) {
1339 free_one_page(zone, page, 0, migratetype);
1340 goto out;
1341 }
1342 migratetype = MIGRATE_MOVABLE;
1343 }
1344
1345 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1346 if (cold)
1347 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1348 else
1349 list_add(&page->lru, &pcp->lists[migratetype]);
1350 pcp->count++;
1351 if (pcp->count >= pcp->high) {
1352 free_pcppages_bulk(zone, pcp->batch, pcp);
1353 pcp->count -= pcp->batch;
1354 }
1355
1356 out:
1357 local_irq_restore(flags);
1358 }
1359
1360 /*
1361 * Free a list of 0-order pages
1362 */
1363 void free_hot_cold_page_list(struct list_head *list, int cold)
1364 {
1365 struct page *page, *next;
1366
1367 list_for_each_entry_safe(page, next, list, lru) {
1368 trace_mm_page_free_batched(page, cold);
1369 free_hot_cold_page(page, cold);
1370 }
1371 }
1372
1373 /*
1374 * split_page takes a non-compound higher-order page, and splits it into
1375 * n (1<<order) sub-pages: page[0..n]
1376 * Each sub-page must be freed individually.
1377 *
1378 * Note: this is probably too low level an operation for use in drivers.
1379 * Please consult with lkml before using this in your driver.
1380 */
1381 void split_page(struct page *page, unsigned int order)
1382 {
1383 int i;
1384
1385 VM_BUG_ON(PageCompound(page));
1386 VM_BUG_ON(!page_count(page));
1387
1388 #ifdef CONFIG_KMEMCHECK
1389 /*
1390 * Split shadow pages too, because free(page[0]) would
1391 * otherwise free the whole shadow.
1392 */
1393 if (kmemcheck_page_is_tracked(page))
1394 split_page(virt_to_page(page[0].shadow), order);
1395 #endif
1396
1397 for (i = 1; i < (1 << order); i++)
1398 set_page_refcounted(page + i);
1399 }
1400
1401 static int __isolate_free_page(struct page *page, unsigned int order)
1402 {
1403 unsigned long watermark;
1404 struct zone *zone;
1405 int mt;
1406
1407 BUG_ON(!PageBuddy(page));
1408
1409 zone = page_zone(page);
1410 mt = get_pageblock_migratetype(page);
1411
1412 if (!is_migrate_isolate(mt)) {
1413 /* Obey watermarks as if the page was being allocated */
1414 watermark = low_wmark_pages(zone) + (1 << order);
1415 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1416 return 0;
1417
1418 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1419 }
1420
1421 /* Remove page from free list */
1422 list_del(&page->lru);
1423 zone->free_area[order].nr_free--;
1424 rmv_page_order(page);
1425
1426 /* Set the pageblock if the isolated page is at least a pageblock */
1427 if (order >= pageblock_order - 1) {
1428 struct page *endpage = page + (1 << order) - 1;
1429 for (; page < endpage; page += pageblock_nr_pages) {
1430 int mt = get_pageblock_migratetype(page);
1431 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1432 set_pageblock_migratetype(page,
1433 MIGRATE_MOVABLE);
1434 }
1435 }
1436
1437 return 1UL << order;
1438 }
1439
1440 /*
1441 * Similar to split_page except the page is already free. As this is only
1442 * being used for migration, the migratetype of the block also changes.
1443 * As this is called with interrupts disabled, the caller is responsible
1444 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1445 * are enabled.
1446 *
1447 * Note: this is probably too low level an operation for use in drivers.
1448 * Please consult with lkml before using this in your driver.
1449 */
1450 int split_free_page(struct page *page)
1451 {
1452 unsigned int order;
1453 int nr_pages;
1454
1455 order = page_order(page);
1456
1457 nr_pages = __isolate_free_page(page, order);
1458 if (!nr_pages)
1459 return 0;
1460
1461 /* Split into individual pages */
1462 set_page_refcounted(page);
1463 split_page(page, order);
1464 return nr_pages;
1465 }
1466
1467 /*
1468 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1469 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1470 * or two.
1471 */
1472 static inline
1473 struct page *buffered_rmqueue(struct zone *preferred_zone,
1474 struct zone *zone, int order, gfp_t gfp_flags,
1475 int migratetype)
1476 {
1477 unsigned long flags;
1478 struct page *page;
1479 int cold = !!(gfp_flags & __GFP_COLD);
1480
1481 again:
1482 if (likely(order == 0)) {
1483 struct per_cpu_pages *pcp;
1484 struct list_head *list;
1485
1486 local_irq_save(flags);
1487 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1488 list = &pcp->lists[migratetype];
1489 if (list_empty(list)) {
1490 pcp->count += rmqueue_bulk(zone, 0,
1491 pcp->batch, list,
1492 migratetype, cold);
1493 if (unlikely(list_empty(list)))
1494 goto failed;
1495 }
1496
1497 if (cold)
1498 page = list_entry(list->prev, struct page, lru);
1499 else
1500 page = list_entry(list->next, struct page, lru);
1501
1502 list_del(&page->lru);
1503 pcp->count--;
1504 } else {
1505 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1506 /*
1507 * __GFP_NOFAIL is not to be used in new code.
1508 *
1509 * All __GFP_NOFAIL callers should be fixed so that they
1510 * properly detect and handle allocation failures.
1511 *
1512 * We most definitely don't want callers attempting to
1513 * allocate greater than order-1 page units with
1514 * __GFP_NOFAIL.
1515 */
1516 WARN_ON_ONCE(order > 1);
1517 }
1518 spin_lock_irqsave(&zone->lock, flags);
1519 page = __rmqueue(zone, order, migratetype);
1520 spin_unlock(&zone->lock);
1521 if (!page)
1522 goto failed;
1523 __mod_zone_freepage_state(zone, -(1 << order),
1524 get_pageblock_migratetype(page));
1525 }
1526
1527 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1528 zone_statistics(preferred_zone, zone, gfp_flags);
1529 local_irq_restore(flags);
1530
1531 VM_BUG_ON(bad_range(zone, page));
1532 if (prep_new_page(page, order, gfp_flags))
1533 goto again;
1534 return page;
1535
1536 failed:
1537 local_irq_restore(flags);
1538 return NULL;
1539 }
1540
1541 #ifdef CONFIG_FAIL_PAGE_ALLOC
1542
1543 static struct {
1544 struct fault_attr attr;
1545
1546 u32 ignore_gfp_highmem;
1547 u32 ignore_gfp_wait;
1548 u32 min_order;
1549 } fail_page_alloc = {
1550 .attr = FAULT_ATTR_INITIALIZER,
1551 .ignore_gfp_wait = 1,
1552 .ignore_gfp_highmem = 1,
1553 .min_order = 1,
1554 };
1555
1556 static int __init setup_fail_page_alloc(char *str)
1557 {
1558 return setup_fault_attr(&fail_page_alloc.attr, str);
1559 }
1560 __setup("fail_page_alloc=", setup_fail_page_alloc);
1561
1562 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1563 {
1564 if (order < fail_page_alloc.min_order)
1565 return false;
1566 if (gfp_mask & __GFP_NOFAIL)
1567 return false;
1568 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1569 return false;
1570 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1571 return false;
1572
1573 return should_fail(&fail_page_alloc.attr, 1 << order);
1574 }
1575
1576 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1577
1578 static int __init fail_page_alloc_debugfs(void)
1579 {
1580 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1581 struct dentry *dir;
1582
1583 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1584 &fail_page_alloc.attr);
1585 if (IS_ERR(dir))
1586 return PTR_ERR(dir);
1587
1588 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1589 &fail_page_alloc.ignore_gfp_wait))
1590 goto fail;
1591 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1592 &fail_page_alloc.ignore_gfp_highmem))
1593 goto fail;
1594 if (!debugfs_create_u32("min-order", mode, dir,
1595 &fail_page_alloc.min_order))
1596 goto fail;
1597
1598 return 0;
1599 fail:
1600 debugfs_remove_recursive(dir);
1601
1602 return -ENOMEM;
1603 }
1604
1605 late_initcall(fail_page_alloc_debugfs);
1606
1607 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1608
1609 #else /* CONFIG_FAIL_PAGE_ALLOC */
1610
1611 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1612 {
1613 return false;
1614 }
1615
1616 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1617
1618 /*
1619 * Return true if free pages are above 'mark'. This takes into account the order
1620 * of the allocation.
1621 */
1622 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1623 int classzone_idx, int alloc_flags, long free_pages)
1624 {
1625 /* free_pages my go negative - that's OK */
1626 long min = mark;
1627 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1628 int o;
1629
1630 free_pages -= (1 << order) - 1;
1631 if (alloc_flags & ALLOC_HIGH)
1632 min -= min / 2;
1633 if (alloc_flags & ALLOC_HARDER)
1634 min -= min / 4;
1635 #ifdef CONFIG_CMA
1636 /* If allocation can't use CMA areas don't use free CMA pages */
1637 if (!(alloc_flags & ALLOC_CMA))
1638 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1639 #endif
1640 if (free_pages <= min + lowmem_reserve)
1641 return false;
1642 for (o = 0; o < order; o++) {
1643 /* At the next order, this order's pages become unavailable */
1644 free_pages -= z->free_area[o].nr_free << o;
1645
1646 /* Require fewer higher order pages to be free */
1647 min >>= 1;
1648
1649 if (free_pages <= min)
1650 return false;
1651 }
1652 return true;
1653 }
1654
1655 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1656 int classzone_idx, int alloc_flags)
1657 {
1658 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1659 zone_page_state(z, NR_FREE_PAGES));
1660 }
1661
1662 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1663 int classzone_idx, int alloc_flags)
1664 {
1665 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1666
1667 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1668 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1669
1670 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1671 free_pages);
1672 }
1673
1674 #ifdef CONFIG_NUMA
1675 /*
1676 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1677 * skip over zones that are not allowed by the cpuset, or that have
1678 * been recently (in last second) found to be nearly full. See further
1679 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1680 * that have to skip over a lot of full or unallowed zones.
1681 *
1682 * If the zonelist cache is present in the passed in zonelist, then
1683 * returns a pointer to the allowed node mask (either the current
1684 * tasks mems_allowed, or node_states[N_MEMORY].)
1685 *
1686 * If the zonelist cache is not available for this zonelist, does
1687 * nothing and returns NULL.
1688 *
1689 * If the fullzones BITMAP in the zonelist cache is stale (more than
1690 * a second since last zap'd) then we zap it out (clear its bits.)
1691 *
1692 * We hold off even calling zlc_setup, until after we've checked the
1693 * first zone in the zonelist, on the theory that most allocations will
1694 * be satisfied from that first zone, so best to examine that zone as
1695 * quickly as we can.
1696 */
1697 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1698 {
1699 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1700 nodemask_t *allowednodes; /* zonelist_cache approximation */
1701
1702 zlc = zonelist->zlcache_ptr;
1703 if (!zlc)
1704 return NULL;
1705
1706 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1707 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1708 zlc->last_full_zap = jiffies;
1709 }
1710
1711 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1712 &cpuset_current_mems_allowed :
1713 &node_states[N_MEMORY];
1714 return allowednodes;
1715 }
1716
1717 /*
1718 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1719 * if it is worth looking at further for free memory:
1720 * 1) Check that the zone isn't thought to be full (doesn't have its
1721 * bit set in the zonelist_cache fullzones BITMAP).
1722 * 2) Check that the zones node (obtained from the zonelist_cache
1723 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1724 * Return true (non-zero) if zone is worth looking at further, or
1725 * else return false (zero) if it is not.
1726 *
1727 * This check -ignores- the distinction between various watermarks,
1728 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1729 * found to be full for any variation of these watermarks, it will
1730 * be considered full for up to one second by all requests, unless
1731 * we are so low on memory on all allowed nodes that we are forced
1732 * into the second scan of the zonelist.
1733 *
1734 * In the second scan we ignore this zonelist cache and exactly
1735 * apply the watermarks to all zones, even it is slower to do so.
1736 * We are low on memory in the second scan, and should leave no stone
1737 * unturned looking for a free page.
1738 */
1739 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1740 nodemask_t *allowednodes)
1741 {
1742 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1743 int i; /* index of *z in zonelist zones */
1744 int n; /* node that zone *z is on */
1745
1746 zlc = zonelist->zlcache_ptr;
1747 if (!zlc)
1748 return 1;
1749
1750 i = z - zonelist->_zonerefs;
1751 n = zlc->z_to_n[i];
1752
1753 /* This zone is worth trying if it is allowed but not full */
1754 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1755 }
1756
1757 /*
1758 * Given 'z' scanning a zonelist, set the corresponding bit in
1759 * zlc->fullzones, so that subsequent attempts to allocate a page
1760 * from that zone don't waste time re-examining it.
1761 */
1762 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1763 {
1764 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1765 int i; /* index of *z in zonelist zones */
1766
1767 zlc = zonelist->zlcache_ptr;
1768 if (!zlc)
1769 return;
1770
1771 i = z - zonelist->_zonerefs;
1772
1773 set_bit(i, zlc->fullzones);
1774 }
1775
1776 /*
1777 * clear all zones full, called after direct reclaim makes progress so that
1778 * a zone that was recently full is not skipped over for up to a second
1779 */
1780 static void zlc_clear_zones_full(struct zonelist *zonelist)
1781 {
1782 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1783
1784 zlc = zonelist->zlcache_ptr;
1785 if (!zlc)
1786 return;
1787
1788 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1789 }
1790
1791 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1792 {
1793 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1794 }
1795
1796 static void __paginginit init_zone_allows_reclaim(int nid)
1797 {
1798 int i;
1799
1800 for_each_online_node(i)
1801 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1802 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1803 else
1804 zone_reclaim_mode = 1;
1805 }
1806
1807 #else /* CONFIG_NUMA */
1808
1809 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1810 {
1811 return NULL;
1812 }
1813
1814 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1815 nodemask_t *allowednodes)
1816 {
1817 return 1;
1818 }
1819
1820 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1821 {
1822 }
1823
1824 static void zlc_clear_zones_full(struct zonelist *zonelist)
1825 {
1826 }
1827
1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 {
1830 return true;
1831 }
1832
1833 static inline void init_zone_allows_reclaim(int nid)
1834 {
1835 }
1836 #endif /* CONFIG_NUMA */
1837
1838 /*
1839 * get_page_from_freelist goes through the zonelist trying to allocate
1840 * a page.
1841 */
1842 static struct page *
1843 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1844 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1845 struct zone *preferred_zone, int migratetype)
1846 {
1847 struct zoneref *z;
1848 struct page *page = NULL;
1849 int classzone_idx;
1850 struct zone *zone;
1851 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1852 int zlc_active = 0; /* set if using zonelist_cache */
1853 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1854
1855 classzone_idx = zone_idx(preferred_zone);
1856 zonelist_scan:
1857 /*
1858 * Scan zonelist, looking for a zone with enough free.
1859 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1860 */
1861 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1862 high_zoneidx, nodemask) {
1863 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1864 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1865 continue;
1866 if ((alloc_flags & ALLOC_CPUSET) &&
1867 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1868 continue;
1869 /*
1870 * When allocating a page cache page for writing, we
1871 * want to get it from a zone that is within its dirty
1872 * limit, such that no single zone holds more than its
1873 * proportional share of globally allowed dirty pages.
1874 * The dirty limits take into account the zone's
1875 * lowmem reserves and high watermark so that kswapd
1876 * should be able to balance it without having to
1877 * write pages from its LRU list.
1878 *
1879 * This may look like it could increase pressure on
1880 * lower zones by failing allocations in higher zones
1881 * before they are full. But the pages that do spill
1882 * over are limited as the lower zones are protected
1883 * by this very same mechanism. It should not become
1884 * a practical burden to them.
1885 *
1886 * XXX: For now, allow allocations to potentially
1887 * exceed the per-zone dirty limit in the slowpath
1888 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1889 * which is important when on a NUMA setup the allowed
1890 * zones are together not big enough to reach the
1891 * global limit. The proper fix for these situations
1892 * will require awareness of zones in the
1893 * dirty-throttling and the flusher threads.
1894 */
1895 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1896 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1897 goto this_zone_full;
1898
1899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1900 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1901 unsigned long mark;
1902 int ret;
1903
1904 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1905 if (zone_watermark_ok(zone, order, mark,
1906 classzone_idx, alloc_flags))
1907 goto try_this_zone;
1908
1909 if (IS_ENABLED(CONFIG_NUMA) &&
1910 !did_zlc_setup && nr_online_nodes > 1) {
1911 /*
1912 * we do zlc_setup if there are multiple nodes
1913 * and before considering the first zone allowed
1914 * by the cpuset.
1915 */
1916 allowednodes = zlc_setup(zonelist, alloc_flags);
1917 zlc_active = 1;
1918 did_zlc_setup = 1;
1919 }
1920
1921 if (zone_reclaim_mode == 0 ||
1922 !zone_allows_reclaim(preferred_zone, zone))
1923 goto this_zone_full;
1924
1925 /*
1926 * As we may have just activated ZLC, check if the first
1927 * eligible zone has failed zone_reclaim recently.
1928 */
1929 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1930 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1931 continue;
1932
1933 ret = zone_reclaim(zone, gfp_mask, order);
1934 switch (ret) {
1935 case ZONE_RECLAIM_NOSCAN:
1936 /* did not scan */
1937 continue;
1938 case ZONE_RECLAIM_FULL:
1939 /* scanned but unreclaimable */
1940 continue;
1941 default:
1942 /* did we reclaim enough */
1943 if (!zone_watermark_ok(zone, order, mark,
1944 classzone_idx, alloc_flags))
1945 goto this_zone_full;
1946 }
1947 }
1948
1949 try_this_zone:
1950 page = buffered_rmqueue(preferred_zone, zone, order,
1951 gfp_mask, migratetype);
1952 if (page)
1953 break;
1954 this_zone_full:
1955 if (IS_ENABLED(CONFIG_NUMA))
1956 zlc_mark_zone_full(zonelist, z);
1957 }
1958
1959 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
1960 /* Disable zlc cache for second zonelist scan */
1961 zlc_active = 0;
1962 goto zonelist_scan;
1963 }
1964
1965 if (page)
1966 /*
1967 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1968 * necessary to allocate the page. The expectation is
1969 * that the caller is taking steps that will free more
1970 * memory. The caller should avoid the page being used
1971 * for !PFMEMALLOC purposes.
1972 */
1973 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1974
1975 return page;
1976 }
1977
1978 /*
1979 * Large machines with many possible nodes should not always dump per-node
1980 * meminfo in irq context.
1981 */
1982 static inline bool should_suppress_show_mem(void)
1983 {
1984 bool ret = false;
1985
1986 #if NODES_SHIFT > 8
1987 ret = in_interrupt();
1988 #endif
1989 return ret;
1990 }
1991
1992 static DEFINE_RATELIMIT_STATE(nopage_rs,
1993 DEFAULT_RATELIMIT_INTERVAL,
1994 DEFAULT_RATELIMIT_BURST);
1995
1996 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
1997 {
1998 unsigned int filter = SHOW_MEM_FILTER_NODES;
1999
2000 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2001 debug_guardpage_minorder() > 0)
2002 return;
2003
2004 /*
2005 * This documents exceptions given to allocations in certain
2006 * contexts that are allowed to allocate outside current's set
2007 * of allowed nodes.
2008 */
2009 if (!(gfp_mask & __GFP_NOMEMALLOC))
2010 if (test_thread_flag(TIF_MEMDIE) ||
2011 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2012 filter &= ~SHOW_MEM_FILTER_NODES;
2013 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2014 filter &= ~SHOW_MEM_FILTER_NODES;
2015
2016 if (fmt) {
2017 struct va_format vaf;
2018 va_list args;
2019
2020 va_start(args, fmt);
2021
2022 vaf.fmt = fmt;
2023 vaf.va = &args;
2024
2025 pr_warn("%pV", &vaf);
2026
2027 va_end(args);
2028 }
2029
2030 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2031 current->comm, order, gfp_mask);
2032
2033 dump_stack();
2034 if (!should_suppress_show_mem())
2035 show_mem(filter);
2036 }
2037
2038 static inline int
2039 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2040 unsigned long did_some_progress,
2041 unsigned long pages_reclaimed)
2042 {
2043 /* Do not loop if specifically requested */
2044 if (gfp_mask & __GFP_NORETRY)
2045 return 0;
2046
2047 /* Always retry if specifically requested */
2048 if (gfp_mask & __GFP_NOFAIL)
2049 return 1;
2050
2051 /*
2052 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2053 * making forward progress without invoking OOM. Suspend also disables
2054 * storage devices so kswapd will not help. Bail if we are suspending.
2055 */
2056 if (!did_some_progress && pm_suspended_storage())
2057 return 0;
2058
2059 /*
2060 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2061 * means __GFP_NOFAIL, but that may not be true in other
2062 * implementations.
2063 */
2064 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2065 return 1;
2066
2067 /*
2068 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2069 * specified, then we retry until we no longer reclaim any pages
2070 * (above), or we've reclaimed an order of pages at least as
2071 * large as the allocation's order. In both cases, if the
2072 * allocation still fails, we stop retrying.
2073 */
2074 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2075 return 1;
2076
2077 return 0;
2078 }
2079
2080 static inline struct page *
2081 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2082 struct zonelist *zonelist, enum zone_type high_zoneidx,
2083 nodemask_t *nodemask, struct zone *preferred_zone,
2084 int migratetype)
2085 {
2086 struct page *page;
2087
2088 /* Acquire the OOM killer lock for the zones in zonelist */
2089 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2090 schedule_timeout_uninterruptible(1);
2091 return NULL;
2092 }
2093
2094 /*
2095 * Go through the zonelist yet one more time, keep very high watermark
2096 * here, this is only to catch a parallel oom killing, we must fail if
2097 * we're still under heavy pressure.
2098 */
2099 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2100 order, zonelist, high_zoneidx,
2101 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2102 preferred_zone, migratetype);
2103 if (page)
2104 goto out;
2105
2106 if (!(gfp_mask & __GFP_NOFAIL)) {
2107 /* The OOM killer will not help higher order allocs */
2108 if (order > PAGE_ALLOC_COSTLY_ORDER)
2109 goto out;
2110 /* The OOM killer does not needlessly kill tasks for lowmem */
2111 if (high_zoneidx < ZONE_NORMAL)
2112 goto out;
2113 /*
2114 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2115 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2116 * The caller should handle page allocation failure by itself if
2117 * it specifies __GFP_THISNODE.
2118 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2119 */
2120 if (gfp_mask & __GFP_THISNODE)
2121 goto out;
2122 }
2123 /* Exhausted what can be done so it's blamo time */
2124 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2125
2126 out:
2127 clear_zonelist_oom(zonelist, gfp_mask);
2128 return page;
2129 }
2130
2131 #ifdef CONFIG_COMPACTION
2132 /* Try memory compaction for high-order allocations before reclaim */
2133 static struct page *
2134 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2135 struct zonelist *zonelist, enum zone_type high_zoneidx,
2136 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2137 int migratetype, bool sync_migration,
2138 bool *contended_compaction, bool *deferred_compaction,
2139 unsigned long *did_some_progress)
2140 {
2141 if (!order)
2142 return NULL;
2143
2144 if (compaction_deferred(preferred_zone, order)) {
2145 *deferred_compaction = true;
2146 return NULL;
2147 }
2148
2149 current->flags |= PF_MEMALLOC;
2150 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2151 nodemask, sync_migration,
2152 contended_compaction);
2153 current->flags &= ~PF_MEMALLOC;
2154
2155 if (*did_some_progress != COMPACT_SKIPPED) {
2156 struct page *page;
2157
2158 /* Page migration frees to the PCP lists but we want merging */
2159 drain_pages(get_cpu());
2160 put_cpu();
2161
2162 page = get_page_from_freelist(gfp_mask, nodemask,
2163 order, zonelist, high_zoneidx,
2164 alloc_flags & ~ALLOC_NO_WATERMARKS,
2165 preferred_zone, migratetype);
2166 if (page) {
2167 preferred_zone->compact_blockskip_flush = false;
2168 preferred_zone->compact_considered = 0;
2169 preferred_zone->compact_defer_shift = 0;
2170 if (order >= preferred_zone->compact_order_failed)
2171 preferred_zone->compact_order_failed = order + 1;
2172 count_vm_event(COMPACTSUCCESS);
2173 return page;
2174 }
2175
2176 /*
2177 * It's bad if compaction run occurs and fails.
2178 * The most likely reason is that pages exist,
2179 * but not enough to satisfy watermarks.
2180 */
2181 count_vm_event(COMPACTFAIL);
2182
2183 /*
2184 * As async compaction considers a subset of pageblocks, only
2185 * defer if the failure was a sync compaction failure.
2186 */
2187 if (sync_migration)
2188 defer_compaction(preferred_zone, order);
2189
2190 cond_resched();
2191 }
2192
2193 return NULL;
2194 }
2195 #else
2196 static inline struct page *
2197 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2198 struct zonelist *zonelist, enum zone_type high_zoneidx,
2199 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2200 int migratetype, bool sync_migration,
2201 bool *contended_compaction, bool *deferred_compaction,
2202 unsigned long *did_some_progress)
2203 {
2204 return NULL;
2205 }
2206 #endif /* CONFIG_COMPACTION */
2207
2208 /* Perform direct synchronous page reclaim */
2209 static int
2210 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2211 nodemask_t *nodemask)
2212 {
2213 struct reclaim_state reclaim_state;
2214 int progress;
2215
2216 cond_resched();
2217
2218 /* We now go into synchronous reclaim */
2219 cpuset_memory_pressure_bump();
2220 current->flags |= PF_MEMALLOC;
2221 lockdep_set_current_reclaim_state(gfp_mask);
2222 reclaim_state.reclaimed_slab = 0;
2223 current->reclaim_state = &reclaim_state;
2224
2225 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2226
2227 current->reclaim_state = NULL;
2228 lockdep_clear_current_reclaim_state();
2229 current->flags &= ~PF_MEMALLOC;
2230
2231 cond_resched();
2232
2233 return progress;
2234 }
2235
2236 /* The really slow allocator path where we enter direct reclaim */
2237 static inline struct page *
2238 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2239 struct zonelist *zonelist, enum zone_type high_zoneidx,
2240 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2241 int migratetype, unsigned long *did_some_progress)
2242 {
2243 struct page *page = NULL;
2244 bool drained = false;
2245
2246 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2247 nodemask);
2248 if (unlikely(!(*did_some_progress)))
2249 return NULL;
2250
2251 /* After successful reclaim, reconsider all zones for allocation */
2252 if (IS_ENABLED(CONFIG_NUMA))
2253 zlc_clear_zones_full(zonelist);
2254
2255 retry:
2256 page = get_page_from_freelist(gfp_mask, nodemask, order,
2257 zonelist, high_zoneidx,
2258 alloc_flags & ~ALLOC_NO_WATERMARKS,
2259 preferred_zone, migratetype);
2260
2261 /*
2262 * If an allocation failed after direct reclaim, it could be because
2263 * pages are pinned on the per-cpu lists. Drain them and try again
2264 */
2265 if (!page && !drained) {
2266 drain_all_pages();
2267 drained = true;
2268 goto retry;
2269 }
2270
2271 return page;
2272 }
2273
2274 /*
2275 * This is called in the allocator slow-path if the allocation request is of
2276 * sufficient urgency to ignore watermarks and take other desperate measures
2277 */
2278 static inline struct page *
2279 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2280 struct zonelist *zonelist, enum zone_type high_zoneidx,
2281 nodemask_t *nodemask, struct zone *preferred_zone,
2282 int migratetype)
2283 {
2284 struct page *page;
2285
2286 do {
2287 page = get_page_from_freelist(gfp_mask, nodemask, order,
2288 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2289 preferred_zone, migratetype);
2290
2291 if (!page && gfp_mask & __GFP_NOFAIL)
2292 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2293 } while (!page && (gfp_mask & __GFP_NOFAIL));
2294
2295 return page;
2296 }
2297
2298 static inline
2299 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2300 enum zone_type high_zoneidx,
2301 enum zone_type classzone_idx)
2302 {
2303 struct zoneref *z;
2304 struct zone *zone;
2305
2306 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2307 wakeup_kswapd(zone, order, classzone_idx);
2308 }
2309
2310 static inline int
2311 gfp_to_alloc_flags(gfp_t gfp_mask)
2312 {
2313 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2314 const gfp_t wait = gfp_mask & __GFP_WAIT;
2315
2316 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2317 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2318
2319 /*
2320 * The caller may dip into page reserves a bit more if the caller
2321 * cannot run direct reclaim, or if the caller has realtime scheduling
2322 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2323 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2324 */
2325 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2326
2327 if (!wait) {
2328 /*
2329 * Not worth trying to allocate harder for
2330 * __GFP_NOMEMALLOC even if it can't schedule.
2331 */
2332 if (!(gfp_mask & __GFP_NOMEMALLOC))
2333 alloc_flags |= ALLOC_HARDER;
2334 /*
2335 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2336 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2337 */
2338 alloc_flags &= ~ALLOC_CPUSET;
2339 } else if (unlikely(rt_task(current)) && !in_interrupt())
2340 alloc_flags |= ALLOC_HARDER;
2341
2342 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2343 if (gfp_mask & __GFP_MEMALLOC)
2344 alloc_flags |= ALLOC_NO_WATERMARKS;
2345 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2346 alloc_flags |= ALLOC_NO_WATERMARKS;
2347 else if (!in_interrupt() &&
2348 ((current->flags & PF_MEMALLOC) ||
2349 unlikely(test_thread_flag(TIF_MEMDIE))))
2350 alloc_flags |= ALLOC_NO_WATERMARKS;
2351 }
2352 #ifdef CONFIG_CMA
2353 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2354 alloc_flags |= ALLOC_CMA;
2355 #endif
2356 return alloc_flags;
2357 }
2358
2359 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2360 {
2361 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2362 }
2363
2364 static inline struct page *
2365 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2366 struct zonelist *zonelist, enum zone_type high_zoneidx,
2367 nodemask_t *nodemask, struct zone *preferred_zone,
2368 int migratetype)
2369 {
2370 const gfp_t wait = gfp_mask & __GFP_WAIT;
2371 struct page *page = NULL;
2372 int alloc_flags;
2373 unsigned long pages_reclaimed = 0;
2374 unsigned long did_some_progress;
2375 bool sync_migration = false;
2376 bool deferred_compaction = false;
2377 bool contended_compaction = false;
2378
2379 /*
2380 * In the slowpath, we sanity check order to avoid ever trying to
2381 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2382 * be using allocators in order of preference for an area that is
2383 * too large.
2384 */
2385 if (order >= MAX_ORDER) {
2386 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2387 return NULL;
2388 }
2389
2390 /*
2391 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2392 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2393 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2394 * using a larger set of nodes after it has established that the
2395 * allowed per node queues are empty and that nodes are
2396 * over allocated.
2397 */
2398 if (IS_ENABLED(CONFIG_NUMA) &&
2399 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2400 goto nopage;
2401
2402 restart:
2403 if (!(gfp_mask & __GFP_NO_KSWAPD))
2404 wake_all_kswapd(order, zonelist, high_zoneidx,
2405 zone_idx(preferred_zone));
2406
2407 /*
2408 * OK, we're below the kswapd watermark and have kicked background
2409 * reclaim. Now things get more complex, so set up alloc_flags according
2410 * to how we want to proceed.
2411 */
2412 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2413
2414 /*
2415 * Find the true preferred zone if the allocation is unconstrained by
2416 * cpusets.
2417 */
2418 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2419 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2420 &preferred_zone);
2421
2422 rebalance:
2423 /* This is the last chance, in general, before the goto nopage. */
2424 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2425 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2426 preferred_zone, migratetype);
2427 if (page)
2428 goto got_pg;
2429
2430 /* Allocate without watermarks if the context allows */
2431 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2432 /*
2433 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2434 * the allocation is high priority and these type of
2435 * allocations are system rather than user orientated
2436 */
2437 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2438
2439 page = __alloc_pages_high_priority(gfp_mask, order,
2440 zonelist, high_zoneidx, nodemask,
2441 preferred_zone, migratetype);
2442 if (page) {
2443 goto got_pg;
2444 }
2445 }
2446
2447 /* Atomic allocations - we can't balance anything */
2448 if (!wait)
2449 goto nopage;
2450
2451 /* Avoid recursion of direct reclaim */
2452 if (current->flags & PF_MEMALLOC)
2453 goto nopage;
2454
2455 /* Avoid allocations with no watermarks from looping endlessly */
2456 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2457 goto nopage;
2458
2459 /*
2460 * Try direct compaction. The first pass is asynchronous. Subsequent
2461 * attempts after direct reclaim are synchronous
2462 */
2463 page = __alloc_pages_direct_compact(gfp_mask, order,
2464 zonelist, high_zoneidx,
2465 nodemask,
2466 alloc_flags, preferred_zone,
2467 migratetype, sync_migration,
2468 &contended_compaction,
2469 &deferred_compaction,
2470 &did_some_progress);
2471 if (page)
2472 goto got_pg;
2473 sync_migration = true;
2474
2475 /*
2476 * If compaction is deferred for high-order allocations, it is because
2477 * sync compaction recently failed. In this is the case and the caller
2478 * requested a movable allocation that does not heavily disrupt the
2479 * system then fail the allocation instead of entering direct reclaim.
2480 */
2481 if ((deferred_compaction || contended_compaction) &&
2482 (gfp_mask & __GFP_NO_KSWAPD))
2483 goto nopage;
2484
2485 /* Try direct reclaim and then allocating */
2486 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2487 zonelist, high_zoneidx,
2488 nodemask,
2489 alloc_flags, preferred_zone,
2490 migratetype, &did_some_progress);
2491 if (page)
2492 goto got_pg;
2493
2494 /*
2495 * If we failed to make any progress reclaiming, then we are
2496 * running out of options and have to consider going OOM
2497 */
2498 if (!did_some_progress) {
2499 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2500 if (oom_killer_disabled)
2501 goto nopage;
2502 /* Coredumps can quickly deplete all memory reserves */
2503 if ((current->flags & PF_DUMPCORE) &&
2504 !(gfp_mask & __GFP_NOFAIL))
2505 goto nopage;
2506 page = __alloc_pages_may_oom(gfp_mask, order,
2507 zonelist, high_zoneidx,
2508 nodemask, preferred_zone,
2509 migratetype);
2510 if (page)
2511 goto got_pg;
2512
2513 if (!(gfp_mask & __GFP_NOFAIL)) {
2514 /*
2515 * The oom killer is not called for high-order
2516 * allocations that may fail, so if no progress
2517 * is being made, there are no other options and
2518 * retrying is unlikely to help.
2519 */
2520 if (order > PAGE_ALLOC_COSTLY_ORDER)
2521 goto nopage;
2522 /*
2523 * The oom killer is not called for lowmem
2524 * allocations to prevent needlessly killing
2525 * innocent tasks.
2526 */
2527 if (high_zoneidx < ZONE_NORMAL)
2528 goto nopage;
2529 }
2530
2531 goto restart;
2532 }
2533 }
2534
2535 /* Check if we should retry the allocation */
2536 pages_reclaimed += did_some_progress;
2537 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2538 pages_reclaimed)) {
2539 /* Wait for some write requests to complete then retry */
2540 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2541 goto rebalance;
2542 } else {
2543 /*
2544 * High-order allocations do not necessarily loop after
2545 * direct reclaim and reclaim/compaction depends on compaction
2546 * being called after reclaim so call directly if necessary
2547 */
2548 page = __alloc_pages_direct_compact(gfp_mask, order,
2549 zonelist, high_zoneidx,
2550 nodemask,
2551 alloc_flags, preferred_zone,
2552 migratetype, sync_migration,
2553 &contended_compaction,
2554 &deferred_compaction,
2555 &did_some_progress);
2556 if (page)
2557 goto got_pg;
2558 }
2559
2560 nopage:
2561 warn_alloc_failed(gfp_mask, order, NULL);
2562 return page;
2563 got_pg:
2564 if (kmemcheck_enabled)
2565 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2566
2567 return page;
2568 }
2569
2570 /*
2571 * This is the 'heart' of the zoned buddy allocator.
2572 */
2573 struct page *
2574 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2575 struct zonelist *zonelist, nodemask_t *nodemask)
2576 {
2577 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2578 struct zone *preferred_zone;
2579 struct page *page = NULL;
2580 int migratetype = allocflags_to_migratetype(gfp_mask);
2581 unsigned int cpuset_mems_cookie;
2582 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2583 struct mem_cgroup *memcg = NULL;
2584
2585 gfp_mask &= gfp_allowed_mask;
2586
2587 lockdep_trace_alloc(gfp_mask);
2588
2589 might_sleep_if(gfp_mask & __GFP_WAIT);
2590
2591 if (should_fail_alloc_page(gfp_mask, order))
2592 return NULL;
2593
2594 /*
2595 * Check the zones suitable for the gfp_mask contain at least one
2596 * valid zone. It's possible to have an empty zonelist as a result
2597 * of GFP_THISNODE and a memoryless node
2598 */
2599 if (unlikely(!zonelist->_zonerefs->zone))
2600 return NULL;
2601
2602 /*
2603 * Will only have any effect when __GFP_KMEMCG is set. This is
2604 * verified in the (always inline) callee
2605 */
2606 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2607 return NULL;
2608
2609 retry_cpuset:
2610 cpuset_mems_cookie = get_mems_allowed();
2611
2612 /* The preferred zone is used for statistics later */
2613 first_zones_zonelist(zonelist, high_zoneidx,
2614 nodemask ? : &cpuset_current_mems_allowed,
2615 &preferred_zone);
2616 if (!preferred_zone)
2617 goto out;
2618
2619 #ifdef CONFIG_CMA
2620 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2621 alloc_flags |= ALLOC_CMA;
2622 #endif
2623 /* First allocation attempt */
2624 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2625 zonelist, high_zoneidx, alloc_flags,
2626 preferred_zone, migratetype);
2627 if (unlikely(!page)) {
2628 /*
2629 * Runtime PM, block IO and its error handling path
2630 * can deadlock because I/O on the device might not
2631 * complete.
2632 */
2633 gfp_mask = memalloc_noio_flags(gfp_mask);
2634 page = __alloc_pages_slowpath(gfp_mask, order,
2635 zonelist, high_zoneidx, nodemask,
2636 preferred_zone, migratetype);
2637 }
2638
2639 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2640
2641 out:
2642 /*
2643 * When updating a task's mems_allowed, it is possible to race with
2644 * parallel threads in such a way that an allocation can fail while
2645 * the mask is being updated. If a page allocation is about to fail,
2646 * check if the cpuset changed during allocation and if so, retry.
2647 */
2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2649 goto retry_cpuset;
2650
2651 memcg_kmem_commit_charge(page, memcg, order);
2652
2653 return page;
2654 }
2655 EXPORT_SYMBOL(__alloc_pages_nodemask);
2656
2657 /*
2658 * Common helper functions.
2659 */
2660 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2661 {
2662 struct page *page;
2663
2664 /*
2665 * __get_free_pages() returns a 32-bit address, which cannot represent
2666 * a highmem page
2667 */
2668 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2669
2670 page = alloc_pages(gfp_mask, order);
2671 if (!page)
2672 return 0;
2673 return (unsigned long) page_address(page);
2674 }
2675 EXPORT_SYMBOL(__get_free_pages);
2676
2677 unsigned long get_zeroed_page(gfp_t gfp_mask)
2678 {
2679 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2680 }
2681 EXPORT_SYMBOL(get_zeroed_page);
2682
2683 void __free_pages(struct page *page, unsigned int order)
2684 {
2685 if (put_page_testzero(page)) {
2686 if (order == 0)
2687 free_hot_cold_page(page, 0);
2688 else
2689 __free_pages_ok(page, order);
2690 }
2691 }
2692
2693 EXPORT_SYMBOL(__free_pages);
2694
2695 void free_pages(unsigned long addr, unsigned int order)
2696 {
2697 if (addr != 0) {
2698 VM_BUG_ON(!virt_addr_valid((void *)addr));
2699 __free_pages(virt_to_page((void *)addr), order);
2700 }
2701 }
2702
2703 EXPORT_SYMBOL(free_pages);
2704
2705 /*
2706 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2707 * pages allocated with __GFP_KMEMCG.
2708 *
2709 * Those pages are accounted to a particular memcg, embedded in the
2710 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2711 * for that information only to find out that it is NULL for users who have no
2712 * interest in that whatsoever, we provide these functions.
2713 *
2714 * The caller knows better which flags it relies on.
2715 */
2716 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2717 {
2718 memcg_kmem_uncharge_pages(page, order);
2719 __free_pages(page, order);
2720 }
2721
2722 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2723 {
2724 if (addr != 0) {
2725 VM_BUG_ON(!virt_addr_valid((void *)addr));
2726 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2727 }
2728 }
2729
2730 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2731 {
2732 if (addr) {
2733 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2734 unsigned long used = addr + PAGE_ALIGN(size);
2735
2736 split_page(virt_to_page((void *)addr), order);
2737 while (used < alloc_end) {
2738 free_page(used);
2739 used += PAGE_SIZE;
2740 }
2741 }
2742 return (void *)addr;
2743 }
2744
2745 /**
2746 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2747 * @size: the number of bytes to allocate
2748 * @gfp_mask: GFP flags for the allocation
2749 *
2750 * This function is similar to alloc_pages(), except that it allocates the
2751 * minimum number of pages to satisfy the request. alloc_pages() can only
2752 * allocate memory in power-of-two pages.
2753 *
2754 * This function is also limited by MAX_ORDER.
2755 *
2756 * Memory allocated by this function must be released by free_pages_exact().
2757 */
2758 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2759 {
2760 unsigned int order = get_order(size);
2761 unsigned long addr;
2762
2763 addr = __get_free_pages(gfp_mask, order);
2764 return make_alloc_exact(addr, order, size);
2765 }
2766 EXPORT_SYMBOL(alloc_pages_exact);
2767
2768 /**
2769 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2770 * pages on a node.
2771 * @nid: the preferred node ID where memory should be allocated
2772 * @size: the number of bytes to allocate
2773 * @gfp_mask: GFP flags for the allocation
2774 *
2775 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2776 * back.
2777 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2778 * but is not exact.
2779 */
2780 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2781 {
2782 unsigned order = get_order(size);
2783 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2784 if (!p)
2785 return NULL;
2786 return make_alloc_exact((unsigned long)page_address(p), order, size);
2787 }
2788 EXPORT_SYMBOL(alloc_pages_exact_nid);
2789
2790 /**
2791 * free_pages_exact - release memory allocated via alloc_pages_exact()
2792 * @virt: the value returned by alloc_pages_exact.
2793 * @size: size of allocation, same value as passed to alloc_pages_exact().
2794 *
2795 * Release the memory allocated by a previous call to alloc_pages_exact.
2796 */
2797 void free_pages_exact(void *virt, size_t size)
2798 {
2799 unsigned long addr = (unsigned long)virt;
2800 unsigned long end = addr + PAGE_ALIGN(size);
2801
2802 while (addr < end) {
2803 free_page(addr);
2804 addr += PAGE_SIZE;
2805 }
2806 }
2807 EXPORT_SYMBOL(free_pages_exact);
2808
2809 static unsigned int nr_free_zone_pages(int offset)
2810 {
2811 struct zoneref *z;
2812 struct zone *zone;
2813
2814 /* Just pick one node, since fallback list is circular */
2815 unsigned int sum = 0;
2816
2817 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2818
2819 for_each_zone_zonelist(zone, z, zonelist, offset) {
2820 unsigned long size = zone->managed_pages;
2821 unsigned long high = high_wmark_pages(zone);
2822 if (size > high)
2823 sum += size - high;
2824 }
2825
2826 return sum;
2827 }
2828
2829 /*
2830 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2831 */
2832 unsigned int nr_free_buffer_pages(void)
2833 {
2834 return nr_free_zone_pages(gfp_zone(GFP_USER));
2835 }
2836 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2837
2838 /*
2839 * Amount of free RAM allocatable within all zones
2840 */
2841 unsigned int nr_free_pagecache_pages(void)
2842 {
2843 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2844 }
2845
2846 static inline void show_node(struct zone *zone)
2847 {
2848 if (IS_ENABLED(CONFIG_NUMA))
2849 printk("Node %d ", zone_to_nid(zone));
2850 }
2851
2852 void si_meminfo(struct sysinfo *val)
2853 {
2854 val->totalram = totalram_pages;
2855 val->sharedram = 0;
2856 val->freeram = global_page_state(NR_FREE_PAGES);
2857 val->bufferram = nr_blockdev_pages();
2858 val->totalhigh = totalhigh_pages;
2859 val->freehigh = nr_free_highpages();
2860 val->mem_unit = PAGE_SIZE;
2861 }
2862
2863 EXPORT_SYMBOL(si_meminfo);
2864
2865 #ifdef CONFIG_NUMA
2866 void si_meminfo_node(struct sysinfo *val, int nid)
2867 {
2868 pg_data_t *pgdat = NODE_DATA(nid);
2869
2870 val->totalram = pgdat->node_present_pages;
2871 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2872 #ifdef CONFIG_HIGHMEM
2873 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2874 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2875 NR_FREE_PAGES);
2876 #else
2877 val->totalhigh = 0;
2878 val->freehigh = 0;
2879 #endif
2880 val->mem_unit = PAGE_SIZE;
2881 }
2882 #endif
2883
2884 /*
2885 * Determine whether the node should be displayed or not, depending on whether
2886 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2887 */
2888 bool skip_free_areas_node(unsigned int flags, int nid)
2889 {
2890 bool ret = false;
2891 unsigned int cpuset_mems_cookie;
2892
2893 if (!(flags & SHOW_MEM_FILTER_NODES))
2894 goto out;
2895
2896 do {
2897 cpuset_mems_cookie = get_mems_allowed();
2898 ret = !node_isset(nid, cpuset_current_mems_allowed);
2899 } while (!put_mems_allowed(cpuset_mems_cookie));
2900 out:
2901 return ret;
2902 }
2903
2904 #define K(x) ((x) << (PAGE_SHIFT-10))
2905
2906 static void show_migration_types(unsigned char type)
2907 {
2908 static const char types[MIGRATE_TYPES] = {
2909 [MIGRATE_UNMOVABLE] = 'U',
2910 [MIGRATE_RECLAIMABLE] = 'E',
2911 [MIGRATE_MOVABLE] = 'M',
2912 [MIGRATE_RESERVE] = 'R',
2913 #ifdef CONFIG_CMA
2914 [MIGRATE_CMA] = 'C',
2915 #endif
2916 #ifdef CONFIG_MEMORY_ISOLATION
2917 [MIGRATE_ISOLATE] = 'I',
2918 #endif
2919 };
2920 char tmp[MIGRATE_TYPES + 1];
2921 char *p = tmp;
2922 int i;
2923
2924 for (i = 0; i < MIGRATE_TYPES; i++) {
2925 if (type & (1 << i))
2926 *p++ = types[i];
2927 }
2928
2929 *p = '\0';
2930 printk("(%s) ", tmp);
2931 }
2932
2933 /*
2934 * Show free area list (used inside shift_scroll-lock stuff)
2935 * We also calculate the percentage fragmentation. We do this by counting the
2936 * memory on each free list with the exception of the first item on the list.
2937 * Suppresses nodes that are not allowed by current's cpuset if
2938 * SHOW_MEM_FILTER_NODES is passed.
2939 */
2940 void show_free_areas(unsigned int filter)
2941 {
2942 int cpu;
2943 struct zone *zone;
2944
2945 for_each_populated_zone(zone) {
2946 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2947 continue;
2948 show_node(zone);
2949 printk("%s per-cpu:\n", zone->name);
2950
2951 for_each_online_cpu(cpu) {
2952 struct per_cpu_pageset *pageset;
2953
2954 pageset = per_cpu_ptr(zone->pageset, cpu);
2955
2956 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2957 cpu, pageset->pcp.high,
2958 pageset->pcp.batch, pageset->pcp.count);
2959 }
2960 }
2961
2962 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2963 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2964 " unevictable:%lu"
2965 " dirty:%lu writeback:%lu unstable:%lu\n"
2966 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2967 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2968 " free_cma:%lu\n",
2969 global_page_state(NR_ACTIVE_ANON),
2970 global_page_state(NR_INACTIVE_ANON),
2971 global_page_state(NR_ISOLATED_ANON),
2972 global_page_state(NR_ACTIVE_FILE),
2973 global_page_state(NR_INACTIVE_FILE),
2974 global_page_state(NR_ISOLATED_FILE),
2975 global_page_state(NR_UNEVICTABLE),
2976 global_page_state(NR_FILE_DIRTY),
2977 global_page_state(NR_WRITEBACK),
2978 global_page_state(NR_UNSTABLE_NFS),
2979 global_page_state(NR_FREE_PAGES),
2980 global_page_state(NR_SLAB_RECLAIMABLE),
2981 global_page_state(NR_SLAB_UNRECLAIMABLE),
2982 global_page_state(NR_FILE_MAPPED),
2983 global_page_state(NR_SHMEM),
2984 global_page_state(NR_PAGETABLE),
2985 global_page_state(NR_BOUNCE),
2986 global_page_state(NR_FREE_CMA_PAGES));
2987
2988 for_each_populated_zone(zone) {
2989 int i;
2990
2991 if (skip_free_areas_node(filter, zone_to_nid(zone)))
2992 continue;
2993 show_node(zone);
2994 printk("%s"
2995 " free:%lukB"
2996 " min:%lukB"
2997 " low:%lukB"
2998 " high:%lukB"
2999 " active_anon:%lukB"
3000 " inactive_anon:%lukB"
3001 " active_file:%lukB"
3002 " inactive_file:%lukB"
3003 " unevictable:%lukB"
3004 " isolated(anon):%lukB"
3005 " isolated(file):%lukB"
3006 " present:%lukB"
3007 " managed:%lukB"
3008 " mlocked:%lukB"
3009 " dirty:%lukB"
3010 " writeback:%lukB"
3011 " mapped:%lukB"
3012 " shmem:%lukB"
3013 " slab_reclaimable:%lukB"
3014 " slab_unreclaimable:%lukB"
3015 " kernel_stack:%lukB"
3016 " pagetables:%lukB"
3017 " unstable:%lukB"
3018 " bounce:%lukB"
3019 " free_cma:%lukB"
3020 " writeback_tmp:%lukB"
3021 " pages_scanned:%lu"
3022 " all_unreclaimable? %s"
3023 "\n",
3024 zone->name,
3025 K(zone_page_state(zone, NR_FREE_PAGES)),
3026 K(min_wmark_pages(zone)),
3027 K(low_wmark_pages(zone)),
3028 K(high_wmark_pages(zone)),
3029 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3030 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3031 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3032 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3033 K(zone_page_state(zone, NR_UNEVICTABLE)),
3034 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3035 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3036 K(zone->present_pages),
3037 K(zone->managed_pages),
3038 K(zone_page_state(zone, NR_MLOCK)),
3039 K(zone_page_state(zone, NR_FILE_DIRTY)),
3040 K(zone_page_state(zone, NR_WRITEBACK)),
3041 K(zone_page_state(zone, NR_FILE_MAPPED)),
3042 K(zone_page_state(zone, NR_SHMEM)),
3043 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3044 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3045 zone_page_state(zone, NR_KERNEL_STACK) *
3046 THREAD_SIZE / 1024,
3047 K(zone_page_state(zone, NR_PAGETABLE)),
3048 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3049 K(zone_page_state(zone, NR_BOUNCE)),
3050 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3051 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3052 zone->pages_scanned,
3053 (zone->all_unreclaimable ? "yes" : "no")
3054 );
3055 printk("lowmem_reserve[]:");
3056 for (i = 0; i < MAX_NR_ZONES; i++)
3057 printk(" %lu", zone->lowmem_reserve[i]);
3058 printk("\n");
3059 }
3060
3061 for_each_populated_zone(zone) {
3062 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3063 unsigned char types[MAX_ORDER];
3064
3065 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3066 continue;
3067 show_node(zone);
3068 printk("%s: ", zone->name);
3069
3070 spin_lock_irqsave(&zone->lock, flags);
3071 for (order = 0; order < MAX_ORDER; order++) {
3072 struct free_area *area = &zone->free_area[order];
3073 int type;
3074
3075 nr[order] = area->nr_free;
3076 total += nr[order] << order;
3077
3078 types[order] = 0;
3079 for (type = 0; type < MIGRATE_TYPES; type++) {
3080 if (!list_empty(&area->free_list[type]))
3081 types[order] |= 1 << type;
3082 }
3083 }
3084 spin_unlock_irqrestore(&zone->lock, flags);
3085 for (order = 0; order < MAX_ORDER; order++) {
3086 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3087 if (nr[order])
3088 show_migration_types(types[order]);
3089 }
3090 printk("= %lukB\n", K(total));
3091 }
3092
3093 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3094
3095 show_swap_cache_info();
3096 }
3097
3098 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3099 {
3100 zoneref->zone = zone;
3101 zoneref->zone_idx = zone_idx(zone);
3102 }
3103
3104 /*
3105 * Builds allocation fallback zone lists.
3106 *
3107 * Add all populated zones of a node to the zonelist.
3108 */
3109 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3110 int nr_zones, enum zone_type zone_type)
3111 {
3112 struct zone *zone;
3113
3114 BUG_ON(zone_type >= MAX_NR_ZONES);
3115 zone_type++;
3116
3117 do {
3118 zone_type--;
3119 zone = pgdat->node_zones + zone_type;
3120 if (populated_zone(zone)) {
3121 zoneref_set_zone(zone,
3122 &zonelist->_zonerefs[nr_zones++]);
3123 check_highest_zone(zone_type);
3124 }
3125
3126 } while (zone_type);
3127 return nr_zones;
3128 }
3129
3130
3131 /*
3132 * zonelist_order:
3133 * 0 = automatic detection of better ordering.
3134 * 1 = order by ([node] distance, -zonetype)
3135 * 2 = order by (-zonetype, [node] distance)
3136 *
3137 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3138 * the same zonelist. So only NUMA can configure this param.
3139 */
3140 #define ZONELIST_ORDER_DEFAULT 0
3141 #define ZONELIST_ORDER_NODE 1
3142 #define ZONELIST_ORDER_ZONE 2
3143
3144 /* zonelist order in the kernel.
3145 * set_zonelist_order() will set this to NODE or ZONE.
3146 */
3147 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3148 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3149
3150
3151 #ifdef CONFIG_NUMA
3152 /* The value user specified ....changed by config */
3153 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3154 /* string for sysctl */
3155 #define NUMA_ZONELIST_ORDER_LEN 16
3156 char numa_zonelist_order[16] = "default";
3157
3158 /*
3159 * interface for configure zonelist ordering.
3160 * command line option "numa_zonelist_order"
3161 * = "[dD]efault - default, automatic configuration.
3162 * = "[nN]ode - order by node locality, then by zone within node
3163 * = "[zZ]one - order by zone, then by locality within zone
3164 */
3165
3166 static int __parse_numa_zonelist_order(char *s)
3167 {
3168 if (*s == 'd' || *s == 'D') {
3169 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3170 } else if (*s == 'n' || *s == 'N') {
3171 user_zonelist_order = ZONELIST_ORDER_NODE;
3172 } else if (*s == 'z' || *s == 'Z') {
3173 user_zonelist_order = ZONELIST_ORDER_ZONE;
3174 } else {
3175 printk(KERN_WARNING
3176 "Ignoring invalid numa_zonelist_order value: "
3177 "%s\n", s);
3178 return -EINVAL;
3179 }
3180 return 0;
3181 }
3182
3183 static __init int setup_numa_zonelist_order(char *s)
3184 {
3185 int ret;
3186
3187 if (!s)
3188 return 0;
3189
3190 ret = __parse_numa_zonelist_order(s);
3191 if (ret == 0)
3192 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3193
3194 return ret;
3195 }
3196 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3197
3198 /*
3199 * sysctl handler for numa_zonelist_order
3200 */
3201 int numa_zonelist_order_handler(ctl_table *table, int write,
3202 void __user *buffer, size_t *length,
3203 loff_t *ppos)
3204 {
3205 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3206 int ret;
3207 static DEFINE_MUTEX(zl_order_mutex);
3208
3209 mutex_lock(&zl_order_mutex);
3210 if (write)
3211 strcpy(saved_string, (char*)table->data);
3212 ret = proc_dostring(table, write, buffer, length, ppos);
3213 if (ret)
3214 goto out;
3215 if (write) {
3216 int oldval = user_zonelist_order;
3217 if (__parse_numa_zonelist_order((char*)table->data)) {
3218 /*
3219 * bogus value. restore saved string
3220 */
3221 strncpy((char*)table->data, saved_string,
3222 NUMA_ZONELIST_ORDER_LEN);
3223 user_zonelist_order = oldval;
3224 } else if (oldval != user_zonelist_order) {
3225 mutex_lock(&zonelists_mutex);
3226 build_all_zonelists(NULL, NULL);
3227 mutex_unlock(&zonelists_mutex);
3228 }
3229 }
3230 out:
3231 mutex_unlock(&zl_order_mutex);
3232 return ret;
3233 }
3234
3235
3236 #define MAX_NODE_LOAD (nr_online_nodes)
3237 static int node_load[MAX_NUMNODES];
3238
3239 /**
3240 * find_next_best_node - find the next node that should appear in a given node's fallback list
3241 * @node: node whose fallback list we're appending
3242 * @used_node_mask: nodemask_t of already used nodes
3243 *
3244 * We use a number of factors to determine which is the next node that should
3245 * appear on a given node's fallback list. The node should not have appeared
3246 * already in @node's fallback list, and it should be the next closest node
3247 * according to the distance array (which contains arbitrary distance values
3248 * from each node to each node in the system), and should also prefer nodes
3249 * with no CPUs, since presumably they'll have very little allocation pressure
3250 * on them otherwise.
3251 * It returns -1 if no node is found.
3252 */
3253 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3254 {
3255 int n, val;
3256 int min_val = INT_MAX;
3257 int best_node = -1;
3258 const struct cpumask *tmp = cpumask_of_node(0);
3259
3260 /* Use the local node if we haven't already */
3261 if (!node_isset(node, *used_node_mask)) {
3262 node_set(node, *used_node_mask);
3263 return node;
3264 }
3265
3266 for_each_node_state(n, N_MEMORY) {
3267
3268 /* Don't want a node to appear more than once */
3269 if (node_isset(n, *used_node_mask))
3270 continue;
3271
3272 /* Use the distance array to find the distance */
3273 val = node_distance(node, n);
3274
3275 /* Penalize nodes under us ("prefer the next node") */
3276 val += (n < node);
3277
3278 /* Give preference to headless and unused nodes */
3279 tmp = cpumask_of_node(n);
3280 if (!cpumask_empty(tmp))
3281 val += PENALTY_FOR_NODE_WITH_CPUS;
3282
3283 /* Slight preference for less loaded node */
3284 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3285 val += node_load[n];
3286
3287 if (val < min_val) {
3288 min_val = val;
3289 best_node = n;
3290 }
3291 }
3292
3293 if (best_node >= 0)
3294 node_set(best_node, *used_node_mask);
3295
3296 return best_node;
3297 }
3298
3299
3300 /*
3301 * Build zonelists ordered by node and zones within node.
3302 * This results in maximum locality--normal zone overflows into local
3303 * DMA zone, if any--but risks exhausting DMA zone.
3304 */
3305 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3306 {
3307 int j;
3308 struct zonelist *zonelist;
3309
3310 zonelist = &pgdat->node_zonelists[0];
3311 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3312 ;
3313 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3314 MAX_NR_ZONES - 1);
3315 zonelist->_zonerefs[j].zone = NULL;
3316 zonelist->_zonerefs[j].zone_idx = 0;
3317 }
3318
3319 /*
3320 * Build gfp_thisnode zonelists
3321 */
3322 static void build_thisnode_zonelists(pg_data_t *pgdat)
3323 {
3324 int j;
3325 struct zonelist *zonelist;
3326
3327 zonelist = &pgdat->node_zonelists[1];
3328 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3329 zonelist->_zonerefs[j].zone = NULL;
3330 zonelist->_zonerefs[j].zone_idx = 0;
3331 }
3332
3333 /*
3334 * Build zonelists ordered by zone and nodes within zones.
3335 * This results in conserving DMA zone[s] until all Normal memory is
3336 * exhausted, but results in overflowing to remote node while memory
3337 * may still exist in local DMA zone.
3338 */
3339 static int node_order[MAX_NUMNODES];
3340
3341 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3342 {
3343 int pos, j, node;
3344 int zone_type; /* needs to be signed */
3345 struct zone *z;
3346 struct zonelist *zonelist;
3347
3348 zonelist = &pgdat->node_zonelists[0];
3349 pos = 0;
3350 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3351 for (j = 0; j < nr_nodes; j++) {
3352 node = node_order[j];
3353 z = &NODE_DATA(node)->node_zones[zone_type];
3354 if (populated_zone(z)) {
3355 zoneref_set_zone(z,
3356 &zonelist->_zonerefs[pos++]);
3357 check_highest_zone(zone_type);
3358 }
3359 }
3360 }
3361 zonelist->_zonerefs[pos].zone = NULL;
3362 zonelist->_zonerefs[pos].zone_idx = 0;
3363 }
3364
3365 static int default_zonelist_order(void)
3366 {
3367 int nid, zone_type;
3368 unsigned long low_kmem_size,total_size;
3369 struct zone *z;
3370 int average_size;
3371 /*
3372 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3373 * If they are really small and used heavily, the system can fall
3374 * into OOM very easily.
3375 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3376 */
3377 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3378 low_kmem_size = 0;
3379 total_size = 0;
3380 for_each_online_node(nid) {
3381 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3382 z = &NODE_DATA(nid)->node_zones[zone_type];
3383 if (populated_zone(z)) {
3384 if (zone_type < ZONE_NORMAL)
3385 low_kmem_size += z->present_pages;
3386 total_size += z->present_pages;
3387 } else if (zone_type == ZONE_NORMAL) {
3388 /*
3389 * If any node has only lowmem, then node order
3390 * is preferred to allow kernel allocations
3391 * locally; otherwise, they can easily infringe
3392 * on other nodes when there is an abundance of
3393 * lowmem available to allocate from.
3394 */
3395 return ZONELIST_ORDER_NODE;
3396 }
3397 }
3398 }
3399 if (!low_kmem_size || /* there are no DMA area. */
3400 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3401 return ZONELIST_ORDER_NODE;
3402 /*
3403 * look into each node's config.
3404 * If there is a node whose DMA/DMA32 memory is very big area on
3405 * local memory, NODE_ORDER may be suitable.
3406 */
3407 average_size = total_size /
3408 (nodes_weight(node_states[N_MEMORY]) + 1);
3409 for_each_online_node(nid) {
3410 low_kmem_size = 0;
3411 total_size = 0;
3412 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3413 z = &NODE_DATA(nid)->node_zones[zone_type];
3414 if (populated_zone(z)) {
3415 if (zone_type < ZONE_NORMAL)
3416 low_kmem_size += z->present_pages;
3417 total_size += z->present_pages;
3418 }
3419 }
3420 if (low_kmem_size &&
3421 total_size > average_size && /* ignore small node */
3422 low_kmem_size > total_size * 70/100)
3423 return ZONELIST_ORDER_NODE;
3424 }
3425 return ZONELIST_ORDER_ZONE;
3426 }
3427
3428 static void set_zonelist_order(void)
3429 {
3430 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3431 current_zonelist_order = default_zonelist_order();
3432 else
3433 current_zonelist_order = user_zonelist_order;
3434 }
3435
3436 static void build_zonelists(pg_data_t *pgdat)
3437 {
3438 int j, node, load;
3439 enum zone_type i;
3440 nodemask_t used_mask;
3441 int local_node, prev_node;
3442 struct zonelist *zonelist;
3443 int order = current_zonelist_order;
3444
3445 /* initialize zonelists */
3446 for (i = 0; i < MAX_ZONELISTS; i++) {
3447 zonelist = pgdat->node_zonelists + i;
3448 zonelist->_zonerefs[0].zone = NULL;
3449 zonelist->_zonerefs[0].zone_idx = 0;
3450 }
3451
3452 /* NUMA-aware ordering of nodes */
3453 local_node = pgdat->node_id;
3454 load = nr_online_nodes;
3455 prev_node = local_node;
3456 nodes_clear(used_mask);
3457
3458 memset(node_order, 0, sizeof(node_order));
3459 j = 0;
3460
3461 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3462 /*
3463 * We don't want to pressure a particular node.
3464 * So adding penalty to the first node in same
3465 * distance group to make it round-robin.
3466 */
3467 if (node_distance(local_node, node) !=
3468 node_distance(local_node, prev_node))
3469 node_load[node] = load;
3470
3471 prev_node = node;
3472 load--;
3473 if (order == ZONELIST_ORDER_NODE)
3474 build_zonelists_in_node_order(pgdat, node);
3475 else
3476 node_order[j++] = node; /* remember order */
3477 }
3478
3479 if (order == ZONELIST_ORDER_ZONE) {
3480 /* calculate node order -- i.e., DMA last! */
3481 build_zonelists_in_zone_order(pgdat, j);
3482 }
3483
3484 build_thisnode_zonelists(pgdat);
3485 }
3486
3487 /* Construct the zonelist performance cache - see further mmzone.h */
3488 static void build_zonelist_cache(pg_data_t *pgdat)
3489 {
3490 struct zonelist *zonelist;
3491 struct zonelist_cache *zlc;
3492 struct zoneref *z;
3493
3494 zonelist = &pgdat->node_zonelists[0];
3495 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3496 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3497 for (z = zonelist->_zonerefs; z->zone; z++)
3498 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3499 }
3500
3501 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3502 /*
3503 * Return node id of node used for "local" allocations.
3504 * I.e., first node id of first zone in arg node's generic zonelist.
3505 * Used for initializing percpu 'numa_mem', which is used primarily
3506 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3507 */
3508 int local_memory_node(int node)
3509 {
3510 struct zone *zone;
3511
3512 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3513 gfp_zone(GFP_KERNEL),
3514 NULL,
3515 &zone);
3516 return zone->node;
3517 }
3518 #endif
3519
3520 #else /* CONFIG_NUMA */
3521
3522 static void set_zonelist_order(void)
3523 {
3524 current_zonelist_order = ZONELIST_ORDER_ZONE;
3525 }
3526
3527 static void build_zonelists(pg_data_t *pgdat)
3528 {
3529 int node, local_node;
3530 enum zone_type j;
3531 struct zonelist *zonelist;
3532
3533 local_node = pgdat->node_id;
3534
3535 zonelist = &pgdat->node_zonelists[0];
3536 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3537
3538 /*
3539 * Now we build the zonelist so that it contains the zones
3540 * of all the other nodes.
3541 * We don't want to pressure a particular node, so when
3542 * building the zones for node N, we make sure that the
3543 * zones coming right after the local ones are those from
3544 * node N+1 (modulo N)
3545 */
3546 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3547 if (!node_online(node))
3548 continue;
3549 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3550 MAX_NR_ZONES - 1);
3551 }
3552 for (node = 0; node < local_node; node++) {
3553 if (!node_online(node))
3554 continue;
3555 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3556 MAX_NR_ZONES - 1);
3557 }
3558
3559 zonelist->_zonerefs[j].zone = NULL;
3560 zonelist->_zonerefs[j].zone_idx = 0;
3561 }
3562
3563 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3564 static void build_zonelist_cache(pg_data_t *pgdat)
3565 {
3566 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3567 }
3568
3569 #endif /* CONFIG_NUMA */
3570
3571 /*
3572 * Boot pageset table. One per cpu which is going to be used for all
3573 * zones and all nodes. The parameters will be set in such a way
3574 * that an item put on a list will immediately be handed over to
3575 * the buddy list. This is safe since pageset manipulation is done
3576 * with interrupts disabled.
3577 *
3578 * The boot_pagesets must be kept even after bootup is complete for
3579 * unused processors and/or zones. They do play a role for bootstrapping
3580 * hotplugged processors.
3581 *
3582 * zoneinfo_show() and maybe other functions do
3583 * not check if the processor is online before following the pageset pointer.
3584 * Other parts of the kernel may not check if the zone is available.
3585 */
3586 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3587 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3588 static void setup_zone_pageset(struct zone *zone);
3589
3590 /*
3591 * Global mutex to protect against size modification of zonelists
3592 * as well as to serialize pageset setup for the new populated zone.
3593 */
3594 DEFINE_MUTEX(zonelists_mutex);
3595
3596 /* return values int ....just for stop_machine() */
3597 static int __build_all_zonelists(void *data)
3598 {
3599 int nid;
3600 int cpu;
3601 pg_data_t *self = data;
3602
3603 #ifdef CONFIG_NUMA
3604 memset(node_load, 0, sizeof(node_load));
3605 #endif
3606
3607 if (self && !node_online(self->node_id)) {
3608 build_zonelists(self);
3609 build_zonelist_cache(self);
3610 }
3611
3612 for_each_online_node(nid) {
3613 pg_data_t *pgdat = NODE_DATA(nid);
3614
3615 build_zonelists(pgdat);
3616 build_zonelist_cache(pgdat);
3617 }
3618
3619 /*
3620 * Initialize the boot_pagesets that are going to be used
3621 * for bootstrapping processors. The real pagesets for
3622 * each zone will be allocated later when the per cpu
3623 * allocator is available.
3624 *
3625 * boot_pagesets are used also for bootstrapping offline
3626 * cpus if the system is already booted because the pagesets
3627 * are needed to initialize allocators on a specific cpu too.
3628 * F.e. the percpu allocator needs the page allocator which
3629 * needs the percpu allocator in order to allocate its pagesets
3630 * (a chicken-egg dilemma).
3631 */
3632 for_each_possible_cpu(cpu) {
3633 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3634
3635 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3636 /*
3637 * We now know the "local memory node" for each node--
3638 * i.e., the node of the first zone in the generic zonelist.
3639 * Set up numa_mem percpu variable for on-line cpus. During
3640 * boot, only the boot cpu should be on-line; we'll init the
3641 * secondary cpus' numa_mem as they come on-line. During
3642 * node/memory hotplug, we'll fixup all on-line cpus.
3643 */
3644 if (cpu_online(cpu))
3645 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3646 #endif
3647 }
3648
3649 return 0;
3650 }
3651
3652 /*
3653 * Called with zonelists_mutex held always
3654 * unless system_state == SYSTEM_BOOTING.
3655 */
3656 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3657 {
3658 set_zonelist_order();
3659
3660 if (system_state == SYSTEM_BOOTING) {
3661 __build_all_zonelists(NULL);
3662 mminit_verify_zonelist();
3663 cpuset_init_current_mems_allowed();
3664 } else {
3665 /* we have to stop all cpus to guarantee there is no user
3666 of zonelist */
3667 #ifdef CONFIG_MEMORY_HOTPLUG
3668 if (zone)
3669 setup_zone_pageset(zone);
3670 #endif
3671 stop_machine(__build_all_zonelists, pgdat, NULL);
3672 /* cpuset refresh routine should be here */
3673 }
3674 vm_total_pages = nr_free_pagecache_pages();
3675 /*
3676 * Disable grouping by mobility if the number of pages in the
3677 * system is too low to allow the mechanism to work. It would be
3678 * more accurate, but expensive to check per-zone. This check is
3679 * made on memory-hotadd so a system can start with mobility
3680 * disabled and enable it later
3681 */
3682 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3683 page_group_by_mobility_disabled = 1;
3684 else
3685 page_group_by_mobility_disabled = 0;
3686
3687 printk("Built %i zonelists in %s order, mobility grouping %s. "
3688 "Total pages: %ld\n",
3689 nr_online_nodes,
3690 zonelist_order_name[current_zonelist_order],
3691 page_group_by_mobility_disabled ? "off" : "on",
3692 vm_total_pages);
3693 #ifdef CONFIG_NUMA
3694 printk("Policy zone: %s\n", zone_names[policy_zone]);
3695 #endif
3696 }
3697
3698 /*
3699 * Helper functions to size the waitqueue hash table.
3700 * Essentially these want to choose hash table sizes sufficiently
3701 * large so that collisions trying to wait on pages are rare.
3702 * But in fact, the number of active page waitqueues on typical
3703 * systems is ridiculously low, less than 200. So this is even
3704 * conservative, even though it seems large.
3705 *
3706 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3707 * waitqueues, i.e. the size of the waitq table given the number of pages.
3708 */
3709 #define PAGES_PER_WAITQUEUE 256
3710
3711 #ifndef CONFIG_MEMORY_HOTPLUG
3712 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3713 {
3714 unsigned long size = 1;
3715
3716 pages /= PAGES_PER_WAITQUEUE;
3717
3718 while (size < pages)
3719 size <<= 1;
3720
3721 /*
3722 * Once we have dozens or even hundreds of threads sleeping
3723 * on IO we've got bigger problems than wait queue collision.
3724 * Limit the size of the wait table to a reasonable size.
3725 */
3726 size = min(size, 4096UL);
3727
3728 return max(size, 4UL);
3729 }
3730 #else
3731 /*
3732 * A zone's size might be changed by hot-add, so it is not possible to determine
3733 * a suitable size for its wait_table. So we use the maximum size now.
3734 *
3735 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3736 *
3737 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3738 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3739 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3740 *
3741 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3742 * or more by the traditional way. (See above). It equals:
3743 *
3744 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3745 * ia64(16K page size) : = ( 8G + 4M)byte.
3746 * powerpc (64K page size) : = (32G +16M)byte.
3747 */
3748 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3749 {
3750 return 4096UL;
3751 }
3752 #endif
3753
3754 /*
3755 * This is an integer logarithm so that shifts can be used later
3756 * to extract the more random high bits from the multiplicative
3757 * hash function before the remainder is taken.
3758 */
3759 static inline unsigned long wait_table_bits(unsigned long size)
3760 {
3761 return ffz(~size);
3762 }
3763
3764 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3765
3766 /*
3767 * Check if a pageblock contains reserved pages
3768 */
3769 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3770 {
3771 unsigned long pfn;
3772
3773 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3774 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3775 return 1;
3776 }
3777 return 0;
3778 }
3779
3780 /*
3781 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3782 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3783 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3784 * higher will lead to a bigger reserve which will get freed as contiguous
3785 * blocks as reclaim kicks in
3786 */
3787 static void setup_zone_migrate_reserve(struct zone *zone)
3788 {
3789 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3790 struct page *page;
3791 unsigned long block_migratetype;
3792 int reserve;
3793
3794 /*
3795 * Get the start pfn, end pfn and the number of blocks to reserve
3796 * We have to be careful to be aligned to pageblock_nr_pages to
3797 * make sure that we always check pfn_valid for the first page in
3798 * the block.
3799 */
3800 start_pfn = zone->zone_start_pfn;
3801 end_pfn = start_pfn + zone->spanned_pages;
3802 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3803 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3804 pageblock_order;
3805
3806 /*
3807 * Reserve blocks are generally in place to help high-order atomic
3808 * allocations that are short-lived. A min_free_kbytes value that
3809 * would result in more than 2 reserve blocks for atomic allocations
3810 * is assumed to be in place to help anti-fragmentation for the
3811 * future allocation of hugepages at runtime.
3812 */
3813 reserve = min(2, reserve);
3814
3815 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3816 if (!pfn_valid(pfn))
3817 continue;
3818 page = pfn_to_page(pfn);
3819
3820 /* Watch out for overlapping nodes */
3821 if (page_to_nid(page) != zone_to_nid(zone))
3822 continue;
3823
3824 block_migratetype = get_pageblock_migratetype(page);
3825
3826 /* Only test what is necessary when the reserves are not met */
3827 if (reserve > 0) {
3828 /*
3829 * Blocks with reserved pages will never free, skip
3830 * them.
3831 */
3832 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3833 if (pageblock_is_reserved(pfn, block_end_pfn))
3834 continue;
3835
3836 /* If this block is reserved, account for it */
3837 if (block_migratetype == MIGRATE_RESERVE) {
3838 reserve--;
3839 continue;
3840 }
3841
3842 /* Suitable for reserving if this block is movable */
3843 if (block_migratetype == MIGRATE_MOVABLE) {
3844 set_pageblock_migratetype(page,
3845 MIGRATE_RESERVE);
3846 move_freepages_block(zone, page,
3847 MIGRATE_RESERVE);
3848 reserve--;
3849 continue;
3850 }
3851 }
3852
3853 /*
3854 * If the reserve is met and this is a previous reserved block,
3855 * take it back
3856 */
3857 if (block_migratetype == MIGRATE_RESERVE) {
3858 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3859 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3860 }
3861 }
3862 }
3863
3864 /*
3865 * Initially all pages are reserved - free ones are freed
3866 * up by free_all_bootmem() once the early boot process is
3867 * done. Non-atomic initialization, single-pass.
3868 */
3869 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3870 unsigned long start_pfn, enum memmap_context context)
3871 {
3872 struct page *page;
3873 unsigned long end_pfn = start_pfn + size;
3874 unsigned long pfn;
3875 struct zone *z;
3876
3877 if (highest_memmap_pfn < end_pfn - 1)
3878 highest_memmap_pfn = end_pfn - 1;
3879
3880 z = &NODE_DATA(nid)->node_zones[zone];
3881 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3882 /*
3883 * There can be holes in boot-time mem_map[]s
3884 * handed to this function. They do not
3885 * exist on hotplugged memory.
3886 */
3887 if (context == MEMMAP_EARLY) {
3888 if (!early_pfn_valid(pfn))
3889 continue;
3890 if (!early_pfn_in_nid(pfn, nid))
3891 continue;
3892 }
3893 page = pfn_to_page(pfn);
3894 set_page_links(page, zone, nid, pfn);
3895 mminit_verify_page_links(page, zone, nid, pfn);
3896 init_page_count(page);
3897 reset_page_mapcount(page);
3898 reset_page_last_nid(page);
3899 SetPageReserved(page);
3900 /*
3901 * Mark the block movable so that blocks are reserved for
3902 * movable at startup. This will force kernel allocations
3903 * to reserve their blocks rather than leaking throughout
3904 * the address space during boot when many long-lived
3905 * kernel allocations are made. Later some blocks near
3906 * the start are marked MIGRATE_RESERVE by
3907 * setup_zone_migrate_reserve()
3908 *
3909 * bitmap is created for zone's valid pfn range. but memmap
3910 * can be created for invalid pages (for alignment)
3911 * check here not to call set_pageblock_migratetype() against
3912 * pfn out of zone.
3913 */
3914 if ((z->zone_start_pfn <= pfn)
3915 && (pfn < z->zone_start_pfn + z->spanned_pages)
3916 && !(pfn & (pageblock_nr_pages - 1)))
3917 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3918
3919 INIT_LIST_HEAD(&page->lru);
3920 #ifdef WANT_PAGE_VIRTUAL
3921 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3922 if (!is_highmem_idx(zone))
3923 set_page_address(page, __va(pfn << PAGE_SHIFT));
3924 #endif
3925 }
3926 }
3927
3928 static void __meminit zone_init_free_lists(struct zone *zone)
3929 {
3930 int order, t;
3931 for_each_migratetype_order(order, t) {
3932 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3933 zone->free_area[order].nr_free = 0;
3934 }
3935 }
3936
3937 #ifndef __HAVE_ARCH_MEMMAP_INIT
3938 #define memmap_init(size, nid, zone, start_pfn) \
3939 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3940 #endif
3941
3942 static int __meminit zone_batchsize(struct zone *zone)
3943 {
3944 #ifdef CONFIG_MMU
3945 int batch;
3946
3947 /*
3948 * The per-cpu-pages pools are set to around 1000th of the
3949 * size of the zone. But no more than 1/2 of a meg.
3950 *
3951 * OK, so we don't know how big the cache is. So guess.
3952 */
3953 batch = zone->managed_pages / 1024;
3954 if (batch * PAGE_SIZE > 512 * 1024)
3955 batch = (512 * 1024) / PAGE_SIZE;
3956 batch /= 4; /* We effectively *= 4 below */
3957 if (batch < 1)
3958 batch = 1;
3959
3960 /*
3961 * Clamp the batch to a 2^n - 1 value. Having a power
3962 * of 2 value was found to be more likely to have
3963 * suboptimal cache aliasing properties in some cases.
3964 *
3965 * For example if 2 tasks are alternately allocating
3966 * batches of pages, one task can end up with a lot
3967 * of pages of one half of the possible page colors
3968 * and the other with pages of the other colors.
3969 */
3970 batch = rounddown_pow_of_two(batch + batch/2) - 1;
3971
3972 return batch;
3973
3974 #else
3975 /* The deferral and batching of frees should be suppressed under NOMMU
3976 * conditions.
3977 *
3978 * The problem is that NOMMU needs to be able to allocate large chunks
3979 * of contiguous memory as there's no hardware page translation to
3980 * assemble apparent contiguous memory from discontiguous pages.
3981 *
3982 * Queueing large contiguous runs of pages for batching, however,
3983 * causes the pages to actually be freed in smaller chunks. As there
3984 * can be a significant delay between the individual batches being
3985 * recycled, this leads to the once large chunks of space being
3986 * fragmented and becoming unavailable for high-order allocations.
3987 */
3988 return 0;
3989 #endif
3990 }
3991
3992 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3993 {
3994 struct per_cpu_pages *pcp;
3995 int migratetype;
3996
3997 memset(p, 0, sizeof(*p));
3998
3999 pcp = &p->pcp;
4000 pcp->count = 0;
4001 pcp->high = 6 * batch;
4002 pcp->batch = max(1UL, 1 * batch);
4003 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4004 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4005 }
4006
4007 /*
4008 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
4009 * to the value high for the pageset p.
4010 */
4011
4012 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
4013 unsigned long high)
4014 {
4015 struct per_cpu_pages *pcp;
4016
4017 pcp = &p->pcp;
4018 pcp->high = high;
4019 pcp->batch = max(1UL, high/4);
4020 if ((high/4) > (PAGE_SHIFT * 8))
4021 pcp->batch = PAGE_SHIFT * 8;
4022 }
4023
4024 static void __meminit setup_zone_pageset(struct zone *zone)
4025 {
4026 int cpu;
4027
4028 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4029
4030 for_each_possible_cpu(cpu) {
4031 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4032
4033 setup_pageset(pcp, zone_batchsize(zone));
4034
4035 if (percpu_pagelist_fraction)
4036 setup_pagelist_highmark(pcp,
4037 (zone->managed_pages /
4038 percpu_pagelist_fraction));
4039 }
4040 }
4041
4042 /*
4043 * Allocate per cpu pagesets and initialize them.
4044 * Before this call only boot pagesets were available.
4045 */
4046 void __init setup_per_cpu_pageset(void)
4047 {
4048 struct zone *zone;
4049
4050 for_each_populated_zone(zone)
4051 setup_zone_pageset(zone);
4052 }
4053
4054 static noinline __init_refok
4055 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4056 {
4057 int i;
4058 struct pglist_data *pgdat = zone->zone_pgdat;
4059 size_t alloc_size;
4060
4061 /*
4062 * The per-page waitqueue mechanism uses hashed waitqueues
4063 * per zone.
4064 */
4065 zone->wait_table_hash_nr_entries =
4066 wait_table_hash_nr_entries(zone_size_pages);
4067 zone->wait_table_bits =
4068 wait_table_bits(zone->wait_table_hash_nr_entries);
4069 alloc_size = zone->wait_table_hash_nr_entries
4070 * sizeof(wait_queue_head_t);
4071
4072 if (!slab_is_available()) {
4073 zone->wait_table = (wait_queue_head_t *)
4074 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4075 } else {
4076 /*
4077 * This case means that a zone whose size was 0 gets new memory
4078 * via memory hot-add.
4079 * But it may be the case that a new node was hot-added. In
4080 * this case vmalloc() will not be able to use this new node's
4081 * memory - this wait_table must be initialized to use this new
4082 * node itself as well.
4083 * To use this new node's memory, further consideration will be
4084 * necessary.
4085 */
4086 zone->wait_table = vmalloc(alloc_size);
4087 }
4088 if (!zone->wait_table)
4089 return -ENOMEM;
4090
4091 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4092 init_waitqueue_head(zone->wait_table + i);
4093
4094 return 0;
4095 }
4096
4097 static __meminit void zone_pcp_init(struct zone *zone)
4098 {
4099 /*
4100 * per cpu subsystem is not up at this point. The following code
4101 * relies on the ability of the linker to provide the
4102 * offset of a (static) per cpu variable into the per cpu area.
4103 */
4104 zone->pageset = &boot_pageset;
4105
4106 if (zone->present_pages)
4107 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4108 zone->name, zone->present_pages,
4109 zone_batchsize(zone));
4110 }
4111
4112 int __meminit init_currently_empty_zone(struct zone *zone,
4113 unsigned long zone_start_pfn,
4114 unsigned long size,
4115 enum memmap_context context)
4116 {
4117 struct pglist_data *pgdat = zone->zone_pgdat;
4118 int ret;
4119 ret = zone_wait_table_init(zone, size);
4120 if (ret)
4121 return ret;
4122 pgdat->nr_zones = zone_idx(zone) + 1;
4123
4124 zone->zone_start_pfn = zone_start_pfn;
4125
4126 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4127 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4128 pgdat->node_id,
4129 (unsigned long)zone_idx(zone),
4130 zone_start_pfn, (zone_start_pfn + size));
4131
4132 zone_init_free_lists(zone);
4133
4134 return 0;
4135 }
4136
4137 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4138 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4139 /*
4140 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4141 * Architectures may implement their own version but if add_active_range()
4142 * was used and there are no special requirements, this is a convenient
4143 * alternative
4144 */
4145 int __meminit __early_pfn_to_nid(unsigned long pfn)
4146 {
4147 unsigned long start_pfn, end_pfn;
4148 int i, nid;
4149
4150 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4151 if (start_pfn <= pfn && pfn < end_pfn)
4152 return nid;
4153 /* This is a memory hole */
4154 return -1;
4155 }
4156 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4157
4158 int __meminit early_pfn_to_nid(unsigned long pfn)
4159 {
4160 int nid;
4161
4162 nid = __early_pfn_to_nid(pfn);
4163 if (nid >= 0)
4164 return nid;
4165 /* just returns 0 */
4166 return 0;
4167 }
4168
4169 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4170 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4171 {
4172 int nid;
4173
4174 nid = __early_pfn_to_nid(pfn);
4175 if (nid >= 0 && nid != node)
4176 return false;
4177 return true;
4178 }
4179 #endif
4180
4181 /**
4182 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4183 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4184 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4185 *
4186 * If an architecture guarantees that all ranges registered with
4187 * add_active_ranges() contain no holes and may be freed, this
4188 * this function may be used instead of calling free_bootmem() manually.
4189 */
4190 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4191 {
4192 unsigned long start_pfn, end_pfn;
4193 int i, this_nid;
4194
4195 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4196 start_pfn = min(start_pfn, max_low_pfn);
4197 end_pfn = min(end_pfn, max_low_pfn);
4198
4199 if (start_pfn < end_pfn)
4200 free_bootmem_node(NODE_DATA(this_nid),
4201 PFN_PHYS(start_pfn),
4202 (end_pfn - start_pfn) << PAGE_SHIFT);
4203 }
4204 }
4205
4206 /**
4207 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4208 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4209 *
4210 * If an architecture guarantees that all ranges registered with
4211 * add_active_ranges() contain no holes and may be freed, this
4212 * function may be used instead of calling memory_present() manually.
4213 */
4214 void __init sparse_memory_present_with_active_regions(int nid)
4215 {
4216 unsigned long start_pfn, end_pfn;
4217 int i, this_nid;
4218
4219 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4220 memory_present(this_nid, start_pfn, end_pfn);
4221 }
4222
4223 /**
4224 * get_pfn_range_for_nid - Return the start and end page frames for a node
4225 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4226 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4227 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4228 *
4229 * It returns the start and end page frame of a node based on information
4230 * provided by an arch calling add_active_range(). If called for a node
4231 * with no available memory, a warning is printed and the start and end
4232 * PFNs will be 0.
4233 */
4234 void __meminit get_pfn_range_for_nid(unsigned int nid,
4235 unsigned long *start_pfn, unsigned long *end_pfn)
4236 {
4237 unsigned long this_start_pfn, this_end_pfn;
4238 int i;
4239
4240 *start_pfn = -1UL;
4241 *end_pfn = 0;
4242
4243 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4244 *start_pfn = min(*start_pfn, this_start_pfn);
4245 *end_pfn = max(*end_pfn, this_end_pfn);
4246 }
4247
4248 if (*start_pfn == -1UL)
4249 *start_pfn = 0;
4250 }
4251
4252 /*
4253 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4254 * assumption is made that zones within a node are ordered in monotonic
4255 * increasing memory addresses so that the "highest" populated zone is used
4256 */
4257 static void __init find_usable_zone_for_movable(void)
4258 {
4259 int zone_index;
4260 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4261 if (zone_index == ZONE_MOVABLE)
4262 continue;
4263
4264 if (arch_zone_highest_possible_pfn[zone_index] >
4265 arch_zone_lowest_possible_pfn[zone_index])
4266 break;
4267 }
4268
4269 VM_BUG_ON(zone_index == -1);
4270 movable_zone = zone_index;
4271 }
4272
4273 /*
4274 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4275 * because it is sized independent of architecture. Unlike the other zones,
4276 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4277 * in each node depending on the size of each node and how evenly kernelcore
4278 * is distributed. This helper function adjusts the zone ranges
4279 * provided by the architecture for a given node by using the end of the
4280 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4281 * zones within a node are in order of monotonic increases memory addresses
4282 */
4283 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4284 unsigned long zone_type,
4285 unsigned long node_start_pfn,
4286 unsigned long node_end_pfn,
4287 unsigned long *zone_start_pfn,
4288 unsigned long *zone_end_pfn)
4289 {
4290 /* Only adjust if ZONE_MOVABLE is on this node */
4291 if (zone_movable_pfn[nid]) {
4292 /* Size ZONE_MOVABLE */
4293 if (zone_type == ZONE_MOVABLE) {
4294 *zone_start_pfn = zone_movable_pfn[nid];
4295 *zone_end_pfn = min(node_end_pfn,
4296 arch_zone_highest_possible_pfn[movable_zone]);
4297
4298 /* Adjust for ZONE_MOVABLE starting within this range */
4299 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4300 *zone_end_pfn > zone_movable_pfn[nid]) {
4301 *zone_end_pfn = zone_movable_pfn[nid];
4302
4303 /* Check if this whole range is within ZONE_MOVABLE */
4304 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4305 *zone_start_pfn = *zone_end_pfn;
4306 }
4307 }
4308
4309 /*
4310 * Return the number of pages a zone spans in a node, including holes
4311 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4312 */
4313 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4314 unsigned long zone_type,
4315 unsigned long *ignored)
4316 {
4317 unsigned long node_start_pfn, node_end_pfn;
4318 unsigned long zone_start_pfn, zone_end_pfn;
4319
4320 /* Get the start and end of the node and zone */
4321 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4322 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4323 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4324 adjust_zone_range_for_zone_movable(nid, zone_type,
4325 node_start_pfn, node_end_pfn,
4326 &zone_start_pfn, &zone_end_pfn);
4327
4328 /* Check that this node has pages within the zone's required range */
4329 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4330 return 0;
4331
4332 /* Move the zone boundaries inside the node if necessary */
4333 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4334 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4335
4336 /* Return the spanned pages */
4337 return zone_end_pfn - zone_start_pfn;
4338 }
4339
4340 /*
4341 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4342 * then all holes in the requested range will be accounted for.
4343 */
4344 unsigned long __meminit __absent_pages_in_range(int nid,
4345 unsigned long range_start_pfn,
4346 unsigned long range_end_pfn)
4347 {
4348 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4349 unsigned long start_pfn, end_pfn;
4350 int i;
4351
4352 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4353 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4354 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4355 nr_absent -= end_pfn - start_pfn;
4356 }
4357 return nr_absent;
4358 }
4359
4360 /**
4361 * absent_pages_in_range - Return number of page frames in holes within a range
4362 * @start_pfn: The start PFN to start searching for holes
4363 * @end_pfn: The end PFN to stop searching for holes
4364 *
4365 * It returns the number of pages frames in memory holes within a range.
4366 */
4367 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4368 unsigned long end_pfn)
4369 {
4370 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4371 }
4372
4373 /* Return the number of page frames in holes in a zone on a node */
4374 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4375 unsigned long zone_type,
4376 unsigned long *ignored)
4377 {
4378 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4379 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4380 unsigned long node_start_pfn, node_end_pfn;
4381 unsigned long zone_start_pfn, zone_end_pfn;
4382
4383 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4384 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4385 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4386
4387 adjust_zone_range_for_zone_movable(nid, zone_type,
4388 node_start_pfn, node_end_pfn,
4389 &zone_start_pfn, &zone_end_pfn);
4390 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4391 }
4392
4393 /**
4394 * sanitize_zone_movable_limit - Sanitize the zone_movable_limit array.
4395 *
4396 * zone_movable_limit is initialized as 0. This function will try to get
4397 * the first ZONE_MOVABLE pfn of each node from movablemem_map, and
4398 * assigne them to zone_movable_limit.
4399 * zone_movable_limit[nid] == 0 means no limit for the node.
4400 *
4401 * Note: Each range is represented as [start_pfn, end_pfn)
4402 */
4403 static void __meminit sanitize_zone_movable_limit(void)
4404 {
4405 int map_pos = 0, i, nid;
4406 unsigned long start_pfn, end_pfn;
4407
4408 if (!movablemem_map.nr_map)
4409 return;
4410
4411 /* Iterate all ranges from minimum to maximum */
4412 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4413 /*
4414 * If we have found lowest pfn of ZONE_MOVABLE of the node
4415 * specified by user, just go on to check next range.
4416 */
4417 if (zone_movable_limit[nid])
4418 continue;
4419
4420 #ifdef CONFIG_ZONE_DMA
4421 /* Skip DMA memory. */
4422 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA])
4423 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA];
4424 #endif
4425
4426 #ifdef CONFIG_ZONE_DMA32
4427 /* Skip DMA32 memory. */
4428 if (start_pfn < arch_zone_highest_possible_pfn[ZONE_DMA32])
4429 start_pfn = arch_zone_highest_possible_pfn[ZONE_DMA32];
4430 #endif
4431
4432 #ifdef CONFIG_HIGHMEM
4433 /* Skip lowmem if ZONE_MOVABLE is highmem. */
4434 if (zone_movable_is_highmem() &&
4435 start_pfn < arch_zone_lowest_possible_pfn[ZONE_HIGHMEM])
4436 start_pfn = arch_zone_lowest_possible_pfn[ZONE_HIGHMEM];
4437 #endif
4438
4439 if (start_pfn >= end_pfn)
4440 continue;
4441
4442 while (map_pos < movablemem_map.nr_map) {
4443 if (end_pfn <= movablemem_map.map[map_pos].start_pfn)
4444 break;
4445
4446 if (start_pfn >= movablemem_map.map[map_pos].end_pfn) {
4447 map_pos++;
4448 continue;
4449 }
4450
4451 /*
4452 * The start_pfn of ZONE_MOVABLE is either the minimum
4453 * pfn specified by movablemem_map, or 0, which means
4454 * the node has no ZONE_MOVABLE.
4455 */
4456 zone_movable_limit[nid] = max(start_pfn,
4457 movablemem_map.map[map_pos].start_pfn);
4458
4459 break;
4460 }
4461 }
4462 }
4463
4464 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4465 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4466 unsigned long zone_type,
4467 unsigned long *zones_size)
4468 {
4469 return zones_size[zone_type];
4470 }
4471
4472 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4473 unsigned long zone_type,
4474 unsigned long *zholes_size)
4475 {
4476 if (!zholes_size)
4477 return 0;
4478
4479 return zholes_size[zone_type];
4480 }
4481 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4482
4483 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4484 unsigned long *zones_size, unsigned long *zholes_size)
4485 {
4486 unsigned long realtotalpages, totalpages = 0;
4487 enum zone_type i;
4488
4489 for (i = 0; i < MAX_NR_ZONES; i++)
4490 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4491 zones_size);
4492 pgdat->node_spanned_pages = totalpages;
4493
4494 realtotalpages = totalpages;
4495 for (i = 0; i < MAX_NR_ZONES; i++)
4496 realtotalpages -=
4497 zone_absent_pages_in_node(pgdat->node_id, i,
4498 zholes_size);
4499 pgdat->node_present_pages = realtotalpages;
4500 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4501 realtotalpages);
4502 }
4503
4504 #ifndef CONFIG_SPARSEMEM
4505 /*
4506 * Calculate the size of the zone->blockflags rounded to an unsigned long
4507 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4508 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4509 * round what is now in bits to nearest long in bits, then return it in
4510 * bytes.
4511 */
4512 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4513 {
4514 unsigned long usemapsize;
4515
4516 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4517 usemapsize = roundup(zonesize, pageblock_nr_pages);
4518 usemapsize = usemapsize >> pageblock_order;
4519 usemapsize *= NR_PAGEBLOCK_BITS;
4520 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4521
4522 return usemapsize / 8;
4523 }
4524
4525 static void __init setup_usemap(struct pglist_data *pgdat,
4526 struct zone *zone,
4527 unsigned long zone_start_pfn,
4528 unsigned long zonesize)
4529 {
4530 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4531 zone->pageblock_flags = NULL;
4532 if (usemapsize)
4533 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4534 usemapsize);
4535 }
4536 #else
4537 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4538 unsigned long zone_start_pfn, unsigned long zonesize) {}
4539 #endif /* CONFIG_SPARSEMEM */
4540
4541 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4542
4543 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4544 void __init set_pageblock_order(void)
4545 {
4546 unsigned int order;
4547
4548 /* Check that pageblock_nr_pages has not already been setup */
4549 if (pageblock_order)
4550 return;
4551
4552 if (HPAGE_SHIFT > PAGE_SHIFT)
4553 order = HUGETLB_PAGE_ORDER;
4554 else
4555 order = MAX_ORDER - 1;
4556
4557 /*
4558 * Assume the largest contiguous order of interest is a huge page.
4559 * This value may be variable depending on boot parameters on IA64 and
4560 * powerpc.
4561 */
4562 pageblock_order = order;
4563 }
4564 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4565
4566 /*
4567 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4568 * is unused as pageblock_order is set at compile-time. See
4569 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4570 * the kernel config
4571 */
4572 void __init set_pageblock_order(void)
4573 {
4574 }
4575
4576 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4577
4578 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4579 unsigned long present_pages)
4580 {
4581 unsigned long pages = spanned_pages;
4582
4583 /*
4584 * Provide a more accurate estimation if there are holes within
4585 * the zone and SPARSEMEM is in use. If there are holes within the
4586 * zone, each populated memory region may cost us one or two extra
4587 * memmap pages due to alignment because memmap pages for each
4588 * populated regions may not naturally algined on page boundary.
4589 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4590 */
4591 if (spanned_pages > present_pages + (present_pages >> 4) &&
4592 IS_ENABLED(CONFIG_SPARSEMEM))
4593 pages = present_pages;
4594
4595 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4596 }
4597
4598 /*
4599 * Set up the zone data structures:
4600 * - mark all pages reserved
4601 * - mark all memory queues empty
4602 * - clear the memory bitmaps
4603 *
4604 * NOTE: pgdat should get zeroed by caller.
4605 */
4606 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4607 unsigned long *zones_size, unsigned long *zholes_size)
4608 {
4609 enum zone_type j;
4610 int nid = pgdat->node_id;
4611 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4612 int ret;
4613
4614 pgdat_resize_init(pgdat);
4615 #ifdef CONFIG_NUMA_BALANCING
4616 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4617 pgdat->numabalancing_migrate_nr_pages = 0;
4618 pgdat->numabalancing_migrate_next_window = jiffies;
4619 #endif
4620 init_waitqueue_head(&pgdat->kswapd_wait);
4621 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4622 pgdat_page_cgroup_init(pgdat);
4623
4624 for (j = 0; j < MAX_NR_ZONES; j++) {
4625 struct zone *zone = pgdat->node_zones + j;
4626 unsigned long size, realsize, freesize, memmap_pages;
4627
4628 size = zone_spanned_pages_in_node(nid, j, zones_size);
4629 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4630 zholes_size);
4631
4632 /*
4633 * Adjust freesize so that it accounts for how much memory
4634 * is used by this zone for memmap. This affects the watermark
4635 * and per-cpu initialisations
4636 */
4637 memmap_pages = calc_memmap_size(size, realsize);
4638 if (freesize >= memmap_pages) {
4639 freesize -= memmap_pages;
4640 if (memmap_pages)
4641 printk(KERN_DEBUG
4642 " %s zone: %lu pages used for memmap\n",
4643 zone_names[j], memmap_pages);
4644 } else
4645 printk(KERN_WARNING
4646 " %s zone: %lu pages exceeds freesize %lu\n",
4647 zone_names[j], memmap_pages, freesize);
4648
4649 /* Account for reserved pages */
4650 if (j == 0 && freesize > dma_reserve) {
4651 freesize -= dma_reserve;
4652 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4653 zone_names[0], dma_reserve);
4654 }
4655
4656 if (!is_highmem_idx(j))
4657 nr_kernel_pages += freesize;
4658 /* Charge for highmem memmap if there are enough kernel pages */
4659 else if (nr_kernel_pages > memmap_pages * 2)
4660 nr_kernel_pages -= memmap_pages;
4661 nr_all_pages += freesize;
4662
4663 zone->spanned_pages = size;
4664 zone->present_pages = realsize;
4665 /*
4666 * Set an approximate value for lowmem here, it will be adjusted
4667 * when the bootmem allocator frees pages into the buddy system.
4668 * And all highmem pages will be managed by the buddy system.
4669 */
4670 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4671 #ifdef CONFIG_NUMA
4672 zone->node = nid;
4673 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4674 / 100;
4675 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4676 #endif
4677 zone->name = zone_names[j];
4678 spin_lock_init(&zone->lock);
4679 spin_lock_init(&zone->lru_lock);
4680 zone_seqlock_init(zone);
4681 zone->zone_pgdat = pgdat;
4682
4683 zone_pcp_init(zone);
4684 lruvec_init(&zone->lruvec);
4685 if (!size)
4686 continue;
4687
4688 set_pageblock_order();
4689 setup_usemap(pgdat, zone, zone_start_pfn, size);
4690 ret = init_currently_empty_zone(zone, zone_start_pfn,
4691 size, MEMMAP_EARLY);
4692 BUG_ON(ret);
4693 memmap_init(size, nid, j, zone_start_pfn);
4694 zone_start_pfn += size;
4695 }
4696 }
4697
4698 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4699 {
4700 /* Skip empty nodes */
4701 if (!pgdat->node_spanned_pages)
4702 return;
4703
4704 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4705 /* ia64 gets its own node_mem_map, before this, without bootmem */
4706 if (!pgdat->node_mem_map) {
4707 unsigned long size, start, end;
4708 struct page *map;
4709
4710 /*
4711 * The zone's endpoints aren't required to be MAX_ORDER
4712 * aligned but the node_mem_map endpoints must be in order
4713 * for the buddy allocator to function correctly.
4714 */
4715 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4716 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4717 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4718 size = (end - start) * sizeof(struct page);
4719 map = alloc_remap(pgdat->node_id, size);
4720 if (!map)
4721 map = alloc_bootmem_node_nopanic(pgdat, size);
4722 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4723 }
4724 #ifndef CONFIG_NEED_MULTIPLE_NODES
4725 /*
4726 * With no DISCONTIG, the global mem_map is just set as node 0's
4727 */
4728 if (pgdat == NODE_DATA(0)) {
4729 mem_map = NODE_DATA(0)->node_mem_map;
4730 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4731 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4732 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4733 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4734 }
4735 #endif
4736 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4737 }
4738
4739 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4740 unsigned long node_start_pfn, unsigned long *zholes_size)
4741 {
4742 pg_data_t *pgdat = NODE_DATA(nid);
4743
4744 /* pg_data_t should be reset to zero when it's allocated */
4745 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4746
4747 pgdat->node_id = nid;
4748 pgdat->node_start_pfn = node_start_pfn;
4749 init_zone_allows_reclaim(nid);
4750 calculate_node_totalpages(pgdat, zones_size, zholes_size);
4751
4752 alloc_node_mem_map(pgdat);
4753 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4754 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4755 nid, (unsigned long)pgdat,
4756 (unsigned long)pgdat->node_mem_map);
4757 #endif
4758
4759 free_area_init_core(pgdat, zones_size, zholes_size);
4760 }
4761
4762 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4763
4764 #if MAX_NUMNODES > 1
4765 /*
4766 * Figure out the number of possible node ids.
4767 */
4768 static void __init setup_nr_node_ids(void)
4769 {
4770 unsigned int node;
4771 unsigned int highest = 0;
4772
4773 for_each_node_mask(node, node_possible_map)
4774 highest = node;
4775 nr_node_ids = highest + 1;
4776 }
4777 #else
4778 static inline void setup_nr_node_ids(void)
4779 {
4780 }
4781 #endif
4782
4783 /**
4784 * node_map_pfn_alignment - determine the maximum internode alignment
4785 *
4786 * This function should be called after node map is populated and sorted.
4787 * It calculates the maximum power of two alignment which can distinguish
4788 * all the nodes.
4789 *
4790 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4791 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4792 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4793 * shifted, 1GiB is enough and this function will indicate so.
4794 *
4795 * This is used to test whether pfn -> nid mapping of the chosen memory
4796 * model has fine enough granularity to avoid incorrect mapping for the
4797 * populated node map.
4798 *
4799 * Returns the determined alignment in pfn's. 0 if there is no alignment
4800 * requirement (single node).
4801 */
4802 unsigned long __init node_map_pfn_alignment(void)
4803 {
4804 unsigned long accl_mask = 0, last_end = 0;
4805 unsigned long start, end, mask;
4806 int last_nid = -1;
4807 int i, nid;
4808
4809 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4810 if (!start || last_nid < 0 || last_nid == nid) {
4811 last_nid = nid;
4812 last_end = end;
4813 continue;
4814 }
4815
4816 /*
4817 * Start with a mask granular enough to pin-point to the
4818 * start pfn and tick off bits one-by-one until it becomes
4819 * too coarse to separate the current node from the last.
4820 */
4821 mask = ~((1 << __ffs(start)) - 1);
4822 while (mask && last_end <= (start & (mask << 1)))
4823 mask <<= 1;
4824
4825 /* accumulate all internode masks */
4826 accl_mask |= mask;
4827 }
4828
4829 /* convert mask to number of pages */
4830 return ~accl_mask + 1;
4831 }
4832
4833 /* Find the lowest pfn for a node */
4834 static unsigned long __init find_min_pfn_for_node(int nid)
4835 {
4836 unsigned long min_pfn = ULONG_MAX;
4837 unsigned long start_pfn;
4838 int i;
4839
4840 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4841 min_pfn = min(min_pfn, start_pfn);
4842
4843 if (min_pfn == ULONG_MAX) {
4844 printk(KERN_WARNING
4845 "Could not find start_pfn for node %d\n", nid);
4846 return 0;
4847 }
4848
4849 return min_pfn;
4850 }
4851
4852 /**
4853 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4854 *
4855 * It returns the minimum PFN based on information provided via
4856 * add_active_range().
4857 */
4858 unsigned long __init find_min_pfn_with_active_regions(void)
4859 {
4860 return find_min_pfn_for_node(MAX_NUMNODES);
4861 }
4862
4863 /*
4864 * early_calculate_totalpages()
4865 * Sum pages in active regions for movable zone.
4866 * Populate N_MEMORY for calculating usable_nodes.
4867 */
4868 static unsigned long __init early_calculate_totalpages(void)
4869 {
4870 unsigned long totalpages = 0;
4871 unsigned long start_pfn, end_pfn;
4872 int i, nid;
4873
4874 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4875 unsigned long pages = end_pfn - start_pfn;
4876
4877 totalpages += pages;
4878 if (pages)
4879 node_set_state(nid, N_MEMORY);
4880 }
4881 return totalpages;
4882 }
4883
4884 /*
4885 * Find the PFN the Movable zone begins in each node. Kernel memory
4886 * is spread evenly between nodes as long as the nodes have enough
4887 * memory. When they don't, some nodes will have more kernelcore than
4888 * others
4889 */
4890 static void __init find_zone_movable_pfns_for_nodes(void)
4891 {
4892 int i, nid;
4893 unsigned long usable_startpfn;
4894 unsigned long kernelcore_node, kernelcore_remaining;
4895 /* save the state before borrow the nodemask */
4896 nodemask_t saved_node_state = node_states[N_MEMORY];
4897 unsigned long totalpages = early_calculate_totalpages();
4898 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
4899
4900 /*
4901 * If movablecore was specified, calculate what size of
4902 * kernelcore that corresponds so that memory usable for
4903 * any allocation type is evenly spread. If both kernelcore
4904 * and movablecore are specified, then the value of kernelcore
4905 * will be used for required_kernelcore if it's greater than
4906 * what movablecore would have allowed.
4907 */
4908 if (required_movablecore) {
4909 unsigned long corepages;
4910
4911 /*
4912 * Round-up so that ZONE_MOVABLE is at least as large as what
4913 * was requested by the user
4914 */
4915 required_movablecore =
4916 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4917 corepages = totalpages - required_movablecore;
4918
4919 required_kernelcore = max(required_kernelcore, corepages);
4920 }
4921
4922 /*
4923 * If neither kernelcore/movablecore nor movablemem_map is specified,
4924 * there is no ZONE_MOVABLE. But if movablemem_map is specified, the
4925 * start pfn of ZONE_MOVABLE has been stored in zone_movable_limit[].
4926 */
4927 if (!required_kernelcore) {
4928 if (movablemem_map.nr_map)
4929 memcpy(zone_movable_pfn, zone_movable_limit,
4930 sizeof(zone_movable_pfn));
4931 goto out;
4932 }
4933
4934 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4935 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4936
4937 restart:
4938 /* Spread kernelcore memory as evenly as possible throughout nodes */
4939 kernelcore_node = required_kernelcore / usable_nodes;
4940 for_each_node_state(nid, N_MEMORY) {
4941 unsigned long start_pfn, end_pfn;
4942
4943 /*
4944 * Recalculate kernelcore_node if the division per node
4945 * now exceeds what is necessary to satisfy the requested
4946 * amount of memory for the kernel
4947 */
4948 if (required_kernelcore < kernelcore_node)
4949 kernelcore_node = required_kernelcore / usable_nodes;
4950
4951 /*
4952 * As the map is walked, we track how much memory is usable
4953 * by the kernel using kernelcore_remaining. When it is
4954 * 0, the rest of the node is usable by ZONE_MOVABLE
4955 */
4956 kernelcore_remaining = kernelcore_node;
4957
4958 /* Go through each range of PFNs within this node */
4959 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4960 unsigned long size_pages;
4961
4962 /*
4963 * Find more memory for kernelcore in
4964 * [zone_movable_pfn[nid], zone_movable_limit[nid]).
4965 */
4966 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4967 if (start_pfn >= end_pfn)
4968 continue;
4969
4970 if (zone_movable_limit[nid]) {
4971 end_pfn = min(end_pfn, zone_movable_limit[nid]);
4972 /* No range left for kernelcore in this node */
4973 if (start_pfn >= end_pfn) {
4974 zone_movable_pfn[nid] =
4975 zone_movable_limit[nid];
4976 break;
4977 }
4978 }
4979
4980 /* Account for what is only usable for kernelcore */
4981 if (start_pfn < usable_startpfn) {
4982 unsigned long kernel_pages;
4983 kernel_pages = min(end_pfn, usable_startpfn)
4984 - start_pfn;
4985
4986 kernelcore_remaining -= min(kernel_pages,
4987 kernelcore_remaining);
4988 required_kernelcore -= min(kernel_pages,
4989 required_kernelcore);
4990
4991 /* Continue if range is now fully accounted */
4992 if (end_pfn <= usable_startpfn) {
4993
4994 /*
4995 * Push zone_movable_pfn to the end so
4996 * that if we have to rebalance
4997 * kernelcore across nodes, we will
4998 * not double account here
4999 */
5000 zone_movable_pfn[nid] = end_pfn;
5001 continue;
5002 }
5003 start_pfn = usable_startpfn;
5004 }
5005
5006 /*
5007 * The usable PFN range for ZONE_MOVABLE is from
5008 * start_pfn->end_pfn. Calculate size_pages as the
5009 * number of pages used as kernelcore
5010 */
5011 size_pages = end_pfn - start_pfn;
5012 if (size_pages > kernelcore_remaining)
5013 size_pages = kernelcore_remaining;
5014 zone_movable_pfn[nid] = start_pfn + size_pages;
5015
5016 /*
5017 * Some kernelcore has been met, update counts and
5018 * break if the kernelcore for this node has been
5019 * satisified
5020 */
5021 required_kernelcore -= min(required_kernelcore,
5022 size_pages);
5023 kernelcore_remaining -= size_pages;
5024 if (!kernelcore_remaining)
5025 break;
5026 }
5027 }
5028
5029 /*
5030 * If there is still required_kernelcore, we do another pass with one
5031 * less node in the count. This will push zone_movable_pfn[nid] further
5032 * along on the nodes that still have memory until kernelcore is
5033 * satisified
5034 */
5035 usable_nodes--;
5036 if (usable_nodes && required_kernelcore > usable_nodes)
5037 goto restart;
5038
5039 out:
5040 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5041 for (nid = 0; nid < MAX_NUMNODES; nid++)
5042 zone_movable_pfn[nid] =
5043 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5044
5045 /* restore the node_state */
5046 node_states[N_MEMORY] = saved_node_state;
5047 }
5048
5049 /* Any regular or high memory on that node ? */
5050 static void check_for_memory(pg_data_t *pgdat, int nid)
5051 {
5052 enum zone_type zone_type;
5053
5054 if (N_MEMORY == N_NORMAL_MEMORY)
5055 return;
5056
5057 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5058 struct zone *zone = &pgdat->node_zones[zone_type];
5059 if (zone->present_pages) {
5060 node_set_state(nid, N_HIGH_MEMORY);
5061 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5062 zone_type <= ZONE_NORMAL)
5063 node_set_state(nid, N_NORMAL_MEMORY);
5064 break;
5065 }
5066 }
5067 }
5068
5069 /**
5070 * free_area_init_nodes - Initialise all pg_data_t and zone data
5071 * @max_zone_pfn: an array of max PFNs for each zone
5072 *
5073 * This will call free_area_init_node() for each active node in the system.
5074 * Using the page ranges provided by add_active_range(), the size of each
5075 * zone in each node and their holes is calculated. If the maximum PFN
5076 * between two adjacent zones match, it is assumed that the zone is empty.
5077 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5078 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5079 * starts where the previous one ended. For example, ZONE_DMA32 starts
5080 * at arch_max_dma_pfn.
5081 */
5082 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5083 {
5084 unsigned long start_pfn, end_pfn;
5085 int i, nid;
5086
5087 /* Record where the zone boundaries are */
5088 memset(arch_zone_lowest_possible_pfn, 0,
5089 sizeof(arch_zone_lowest_possible_pfn));
5090 memset(arch_zone_highest_possible_pfn, 0,
5091 sizeof(arch_zone_highest_possible_pfn));
5092 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5093 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5094 for (i = 1; i < MAX_NR_ZONES; i++) {
5095 if (i == ZONE_MOVABLE)
5096 continue;
5097 arch_zone_lowest_possible_pfn[i] =
5098 arch_zone_highest_possible_pfn[i-1];
5099 arch_zone_highest_possible_pfn[i] =
5100 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5101 }
5102 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5103 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5104
5105 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5106 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5107 find_usable_zone_for_movable();
5108 sanitize_zone_movable_limit();
5109 find_zone_movable_pfns_for_nodes();
5110
5111 /* Print out the zone ranges */
5112 printk("Zone ranges:\n");
5113 for (i = 0; i < MAX_NR_ZONES; i++) {
5114 if (i == ZONE_MOVABLE)
5115 continue;
5116 printk(KERN_CONT " %-8s ", zone_names[i]);
5117 if (arch_zone_lowest_possible_pfn[i] ==
5118 arch_zone_highest_possible_pfn[i])
5119 printk(KERN_CONT "empty\n");
5120 else
5121 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5122 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5123 (arch_zone_highest_possible_pfn[i]
5124 << PAGE_SHIFT) - 1);
5125 }
5126
5127 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5128 printk("Movable zone start for each node\n");
5129 for (i = 0; i < MAX_NUMNODES; i++) {
5130 if (zone_movable_pfn[i])
5131 printk(" Node %d: %#010lx\n", i,
5132 zone_movable_pfn[i] << PAGE_SHIFT);
5133 }
5134
5135 /* Print out the early node map */
5136 printk("Early memory node ranges\n");
5137 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5138 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5139 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5140
5141 /* Initialise every node */
5142 mminit_verify_pageflags_layout();
5143 setup_nr_node_ids();
5144 for_each_online_node(nid) {
5145 pg_data_t *pgdat = NODE_DATA(nid);
5146 free_area_init_node(nid, NULL,
5147 find_min_pfn_for_node(nid), NULL);
5148
5149 /* Any memory on that node */
5150 if (pgdat->node_present_pages)
5151 node_set_state(nid, N_MEMORY);
5152 check_for_memory(pgdat, nid);
5153 }
5154 }
5155
5156 static int __init cmdline_parse_core(char *p, unsigned long *core)
5157 {
5158 unsigned long long coremem;
5159 if (!p)
5160 return -EINVAL;
5161
5162 coremem = memparse(p, &p);
5163 *core = coremem >> PAGE_SHIFT;
5164
5165 /* Paranoid check that UL is enough for the coremem value */
5166 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5167
5168 return 0;
5169 }
5170
5171 /*
5172 * kernelcore=size sets the amount of memory for use for allocations that
5173 * cannot be reclaimed or migrated.
5174 */
5175 static int __init cmdline_parse_kernelcore(char *p)
5176 {
5177 return cmdline_parse_core(p, &required_kernelcore);
5178 }
5179
5180 /*
5181 * movablecore=size sets the amount of memory for use for allocations that
5182 * can be reclaimed or migrated.
5183 */
5184 static int __init cmdline_parse_movablecore(char *p)
5185 {
5186 return cmdline_parse_core(p, &required_movablecore);
5187 }
5188
5189 early_param("kernelcore", cmdline_parse_kernelcore);
5190 early_param("movablecore", cmdline_parse_movablecore);
5191
5192 /**
5193 * movablemem_map_overlap() - Check if a range overlaps movablemem_map.map[].
5194 * @start_pfn: start pfn of the range to be checked
5195 * @end_pfn: end pfn of the range to be checked (exclusive)
5196 *
5197 * This function checks if a given memory range [start_pfn, end_pfn) overlaps
5198 * the movablemem_map.map[] array.
5199 *
5200 * Return: index of the first overlapped element in movablemem_map.map[]
5201 * or -1 if they don't overlap each other.
5202 */
5203 int __init movablemem_map_overlap(unsigned long start_pfn,
5204 unsigned long end_pfn)
5205 {
5206 int overlap;
5207
5208 if (!movablemem_map.nr_map)
5209 return -1;
5210
5211 for (overlap = 0; overlap < movablemem_map.nr_map; overlap++)
5212 if (start_pfn < movablemem_map.map[overlap].end_pfn)
5213 break;
5214
5215 if (overlap == movablemem_map.nr_map ||
5216 end_pfn <= movablemem_map.map[overlap].start_pfn)
5217 return -1;
5218
5219 return overlap;
5220 }
5221
5222 /**
5223 * insert_movablemem_map - Insert a memory range in to movablemem_map.map.
5224 * @start_pfn: start pfn of the range
5225 * @end_pfn: end pfn of the range
5226 *
5227 * This function will also merge the overlapped ranges, and sort the array
5228 * by start_pfn in monotonic increasing order.
5229 */
5230 void __init insert_movablemem_map(unsigned long start_pfn,
5231 unsigned long end_pfn)
5232 {
5233 int pos, overlap;
5234
5235 /*
5236 * pos will be at the 1st overlapped range, or the position
5237 * where the element should be inserted.
5238 */
5239 for (pos = 0; pos < movablemem_map.nr_map; pos++)
5240 if (start_pfn <= movablemem_map.map[pos].end_pfn)
5241 break;
5242
5243 /* If there is no overlapped range, just insert the element. */
5244 if (pos == movablemem_map.nr_map ||
5245 end_pfn < movablemem_map.map[pos].start_pfn) {
5246 /*
5247 * If pos is not the end of array, we need to move all
5248 * the rest elements backward.
5249 */
5250 if (pos < movablemem_map.nr_map)
5251 memmove(&movablemem_map.map[pos+1],
5252 &movablemem_map.map[pos],
5253 sizeof(struct movablemem_entry) *
5254 (movablemem_map.nr_map - pos));
5255 movablemem_map.map[pos].start_pfn = start_pfn;
5256 movablemem_map.map[pos].end_pfn = end_pfn;
5257 movablemem_map.nr_map++;
5258 return;
5259 }
5260
5261 /* overlap will be at the last overlapped range */
5262 for (overlap = pos + 1; overlap < movablemem_map.nr_map; overlap++)
5263 if (end_pfn < movablemem_map.map[overlap].start_pfn)
5264 break;
5265
5266 /*
5267 * If there are more ranges overlapped, we need to merge them,
5268 * and move the rest elements forward.
5269 */
5270 overlap--;
5271 movablemem_map.map[pos].start_pfn = min(start_pfn,
5272 movablemem_map.map[pos].start_pfn);
5273 movablemem_map.map[pos].end_pfn = max(end_pfn,
5274 movablemem_map.map[overlap].end_pfn);
5275
5276 if (pos != overlap && overlap + 1 != movablemem_map.nr_map)
5277 memmove(&movablemem_map.map[pos+1],
5278 &movablemem_map.map[overlap+1],
5279 sizeof(struct movablemem_entry) *
5280 (movablemem_map.nr_map - overlap - 1));
5281
5282 movablemem_map.nr_map -= overlap - pos;
5283 }
5284
5285 /**
5286 * movablemem_map_add_region - Add a memory range into movablemem_map.
5287 * @start: physical start address of range
5288 * @end: physical end address of range
5289 *
5290 * This function transform the physical address into pfn, and then add the
5291 * range into movablemem_map by calling insert_movablemem_map().
5292 */
5293 static void __init movablemem_map_add_region(u64 start, u64 size)
5294 {
5295 unsigned long start_pfn, end_pfn;
5296
5297 /* In case size == 0 or start + size overflows */
5298 if (start + size <= start)
5299 return;
5300
5301 if (movablemem_map.nr_map >= ARRAY_SIZE(movablemem_map.map)) {
5302 pr_err("movablemem_map: too many entries;"
5303 " ignoring [mem %#010llx-%#010llx]\n",
5304 (unsigned long long) start,
5305 (unsigned long long) (start + size - 1));
5306 return;
5307 }
5308
5309 start_pfn = PFN_DOWN(start);
5310 end_pfn = PFN_UP(start + size);
5311 insert_movablemem_map(start_pfn, end_pfn);
5312 }
5313
5314 /*
5315 * cmdline_parse_movablemem_map - Parse boot option movablemem_map.
5316 * @p: The boot option of the following format:
5317 * movablemem_map=nn[KMG]@ss[KMG]
5318 *
5319 * This option sets the memory range [ss, ss+nn) to be used as movable memory.
5320 *
5321 * Return: 0 on success or -EINVAL on failure.
5322 */
5323 static int __init cmdline_parse_movablemem_map(char *p)
5324 {
5325 char *oldp;
5326 u64 start_at, mem_size;
5327
5328 if (!p)
5329 goto err;
5330
5331 if (!strcmp(p, "acpi"))
5332 movablemem_map.acpi = true;
5333
5334 /*
5335 * If user decide to use info from BIOS, all the other user specified
5336 * ranges will be ingored.
5337 */
5338 if (movablemem_map.acpi) {
5339 if (movablemem_map.nr_map) {
5340 memset(movablemem_map.map, 0,
5341 sizeof(struct movablemem_entry)
5342 * movablemem_map.nr_map);
5343 movablemem_map.nr_map = 0;
5344 }
5345 return 0;
5346 }
5347
5348 oldp = p;
5349 mem_size = memparse(p, &p);
5350 if (p == oldp)
5351 goto err;
5352
5353 if (*p == '@') {
5354 oldp = ++p;
5355 start_at = memparse(p, &p);
5356 if (p == oldp || *p != '\0')
5357 goto err;
5358
5359 movablemem_map_add_region(start_at, mem_size);
5360 return 0;
5361 }
5362 err:
5363 return -EINVAL;
5364 }
5365 early_param("movablemem_map", cmdline_parse_movablemem_map);
5366
5367 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5368
5369 /**
5370 * set_dma_reserve - set the specified number of pages reserved in the first zone
5371 * @new_dma_reserve: The number of pages to mark reserved
5372 *
5373 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5374 * In the DMA zone, a significant percentage may be consumed by kernel image
5375 * and other unfreeable allocations which can skew the watermarks badly. This
5376 * function may optionally be used to account for unfreeable pages in the
5377 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5378 * smaller per-cpu batchsize.
5379 */
5380 void __init set_dma_reserve(unsigned long new_dma_reserve)
5381 {
5382 dma_reserve = new_dma_reserve;
5383 }
5384
5385 void __init free_area_init(unsigned long *zones_size)
5386 {
5387 free_area_init_node(0, zones_size,
5388 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5389 }
5390
5391 static int page_alloc_cpu_notify(struct notifier_block *self,
5392 unsigned long action, void *hcpu)
5393 {
5394 int cpu = (unsigned long)hcpu;
5395
5396 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5397 lru_add_drain_cpu(cpu);
5398 drain_pages(cpu);
5399
5400 /*
5401 * Spill the event counters of the dead processor
5402 * into the current processors event counters.
5403 * This artificially elevates the count of the current
5404 * processor.
5405 */
5406 vm_events_fold_cpu(cpu);
5407
5408 /*
5409 * Zero the differential counters of the dead processor
5410 * so that the vm statistics are consistent.
5411 *
5412 * This is only okay since the processor is dead and cannot
5413 * race with what we are doing.
5414 */
5415 refresh_cpu_vm_stats(cpu);
5416 }
5417 return NOTIFY_OK;
5418 }
5419
5420 void __init page_alloc_init(void)
5421 {
5422 hotcpu_notifier(page_alloc_cpu_notify, 0);
5423 }
5424
5425 /*
5426 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5427 * or min_free_kbytes changes.
5428 */
5429 static void calculate_totalreserve_pages(void)
5430 {
5431 struct pglist_data *pgdat;
5432 unsigned long reserve_pages = 0;
5433 enum zone_type i, j;
5434
5435 for_each_online_pgdat(pgdat) {
5436 for (i = 0; i < MAX_NR_ZONES; i++) {
5437 struct zone *zone = pgdat->node_zones + i;
5438 unsigned long max = 0;
5439
5440 /* Find valid and maximum lowmem_reserve in the zone */
5441 for (j = i; j < MAX_NR_ZONES; j++) {
5442 if (zone->lowmem_reserve[j] > max)
5443 max = zone->lowmem_reserve[j];
5444 }
5445
5446 /* we treat the high watermark as reserved pages. */
5447 max += high_wmark_pages(zone);
5448
5449 if (max > zone->managed_pages)
5450 max = zone->managed_pages;
5451 reserve_pages += max;
5452 /*
5453 * Lowmem reserves are not available to
5454 * GFP_HIGHUSER page cache allocations and
5455 * kswapd tries to balance zones to their high
5456 * watermark. As a result, neither should be
5457 * regarded as dirtyable memory, to prevent a
5458 * situation where reclaim has to clean pages
5459 * in order to balance the zones.
5460 */
5461 zone->dirty_balance_reserve = max;
5462 }
5463 }
5464 dirty_balance_reserve = reserve_pages;
5465 totalreserve_pages = reserve_pages;
5466 }
5467
5468 /*
5469 * setup_per_zone_lowmem_reserve - called whenever
5470 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5471 * has a correct pages reserved value, so an adequate number of
5472 * pages are left in the zone after a successful __alloc_pages().
5473 */
5474 static void setup_per_zone_lowmem_reserve(void)
5475 {
5476 struct pglist_data *pgdat;
5477 enum zone_type j, idx;
5478
5479 for_each_online_pgdat(pgdat) {
5480 for (j = 0; j < MAX_NR_ZONES; j++) {
5481 struct zone *zone = pgdat->node_zones + j;
5482 unsigned long managed_pages = zone->managed_pages;
5483
5484 zone->lowmem_reserve[j] = 0;
5485
5486 idx = j;
5487 while (idx) {
5488 struct zone *lower_zone;
5489
5490 idx--;
5491
5492 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5493 sysctl_lowmem_reserve_ratio[idx] = 1;
5494
5495 lower_zone = pgdat->node_zones + idx;
5496 lower_zone->lowmem_reserve[j] = managed_pages /
5497 sysctl_lowmem_reserve_ratio[idx];
5498 managed_pages += lower_zone->managed_pages;
5499 }
5500 }
5501 }
5502
5503 /* update totalreserve_pages */
5504 calculate_totalreserve_pages();
5505 }
5506
5507 static void __setup_per_zone_wmarks(void)
5508 {
5509 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5510 unsigned long lowmem_pages = 0;
5511 struct zone *zone;
5512 unsigned long flags;
5513
5514 /* Calculate total number of !ZONE_HIGHMEM pages */
5515 for_each_zone(zone) {
5516 if (!is_highmem(zone))
5517 lowmem_pages += zone->managed_pages;
5518 }
5519
5520 for_each_zone(zone) {
5521 u64 tmp;
5522
5523 spin_lock_irqsave(&zone->lock, flags);
5524 tmp = (u64)pages_min * zone->managed_pages;
5525 do_div(tmp, lowmem_pages);
5526 if (is_highmem(zone)) {
5527 /*
5528 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5529 * need highmem pages, so cap pages_min to a small
5530 * value here.
5531 *
5532 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5533 * deltas controls asynch page reclaim, and so should
5534 * not be capped for highmem.
5535 */
5536 unsigned long min_pages;
5537
5538 min_pages = zone->managed_pages / 1024;
5539 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5540 zone->watermark[WMARK_MIN] = min_pages;
5541 } else {
5542 /*
5543 * If it's a lowmem zone, reserve a number of pages
5544 * proportionate to the zone's size.
5545 */
5546 zone->watermark[WMARK_MIN] = tmp;
5547 }
5548
5549 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5550 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5551
5552 setup_zone_migrate_reserve(zone);
5553 spin_unlock_irqrestore(&zone->lock, flags);
5554 }
5555
5556 /* update totalreserve_pages */
5557 calculate_totalreserve_pages();
5558 }
5559
5560 /**
5561 * setup_per_zone_wmarks - called when min_free_kbytes changes
5562 * or when memory is hot-{added|removed}
5563 *
5564 * Ensures that the watermark[min,low,high] values for each zone are set
5565 * correctly with respect to min_free_kbytes.
5566 */
5567 void setup_per_zone_wmarks(void)
5568 {
5569 mutex_lock(&zonelists_mutex);
5570 __setup_per_zone_wmarks();
5571 mutex_unlock(&zonelists_mutex);
5572 }
5573
5574 /*
5575 * The inactive anon list should be small enough that the VM never has to
5576 * do too much work, but large enough that each inactive page has a chance
5577 * to be referenced again before it is swapped out.
5578 *
5579 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5580 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5581 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5582 * the anonymous pages are kept on the inactive list.
5583 *
5584 * total target max
5585 * memory ratio inactive anon
5586 * -------------------------------------
5587 * 10MB 1 5MB
5588 * 100MB 1 50MB
5589 * 1GB 3 250MB
5590 * 10GB 10 0.9GB
5591 * 100GB 31 3GB
5592 * 1TB 101 10GB
5593 * 10TB 320 32GB
5594 */
5595 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5596 {
5597 unsigned int gb, ratio;
5598
5599 /* Zone size in gigabytes */
5600 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5601 if (gb)
5602 ratio = int_sqrt(10 * gb);
5603 else
5604 ratio = 1;
5605
5606 zone->inactive_ratio = ratio;
5607 }
5608
5609 static void __meminit setup_per_zone_inactive_ratio(void)
5610 {
5611 struct zone *zone;
5612
5613 for_each_zone(zone)
5614 calculate_zone_inactive_ratio(zone);
5615 }
5616
5617 /*
5618 * Initialise min_free_kbytes.
5619 *
5620 * For small machines we want it small (128k min). For large machines
5621 * we want it large (64MB max). But it is not linear, because network
5622 * bandwidth does not increase linearly with machine size. We use
5623 *
5624 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5625 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5626 *
5627 * which yields
5628 *
5629 * 16MB: 512k
5630 * 32MB: 724k
5631 * 64MB: 1024k
5632 * 128MB: 1448k
5633 * 256MB: 2048k
5634 * 512MB: 2896k
5635 * 1024MB: 4096k
5636 * 2048MB: 5792k
5637 * 4096MB: 8192k
5638 * 8192MB: 11584k
5639 * 16384MB: 16384k
5640 */
5641 int __meminit init_per_zone_wmark_min(void)
5642 {
5643 unsigned long lowmem_kbytes;
5644
5645 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5646
5647 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5648 if (min_free_kbytes < 128)
5649 min_free_kbytes = 128;
5650 if (min_free_kbytes > 65536)
5651 min_free_kbytes = 65536;
5652 setup_per_zone_wmarks();
5653 refresh_zone_stat_thresholds();
5654 setup_per_zone_lowmem_reserve();
5655 setup_per_zone_inactive_ratio();
5656 return 0;
5657 }
5658 module_init(init_per_zone_wmark_min)
5659
5660 /*
5661 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5662 * that we can call two helper functions whenever min_free_kbytes
5663 * changes.
5664 */
5665 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5666 void __user *buffer, size_t *length, loff_t *ppos)
5667 {
5668 proc_dointvec(table, write, buffer, length, ppos);
5669 if (write)
5670 setup_per_zone_wmarks();
5671 return 0;
5672 }
5673
5674 #ifdef CONFIG_NUMA
5675 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5676 void __user *buffer, size_t *length, loff_t *ppos)
5677 {
5678 struct zone *zone;
5679 int rc;
5680
5681 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5682 if (rc)
5683 return rc;
5684
5685 for_each_zone(zone)
5686 zone->min_unmapped_pages = (zone->managed_pages *
5687 sysctl_min_unmapped_ratio) / 100;
5688 return 0;
5689 }
5690
5691 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5692 void __user *buffer, size_t *length, loff_t *ppos)
5693 {
5694 struct zone *zone;
5695 int rc;
5696
5697 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5698 if (rc)
5699 return rc;
5700
5701 for_each_zone(zone)
5702 zone->min_slab_pages = (zone->managed_pages *
5703 sysctl_min_slab_ratio) / 100;
5704 return 0;
5705 }
5706 #endif
5707
5708 /*
5709 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5710 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5711 * whenever sysctl_lowmem_reserve_ratio changes.
5712 *
5713 * The reserve ratio obviously has absolutely no relation with the
5714 * minimum watermarks. The lowmem reserve ratio can only make sense
5715 * if in function of the boot time zone sizes.
5716 */
5717 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5718 void __user *buffer, size_t *length, loff_t *ppos)
5719 {
5720 proc_dointvec_minmax(table, write, buffer, length, ppos);
5721 setup_per_zone_lowmem_reserve();
5722 return 0;
5723 }
5724
5725 /*
5726 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5727 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5728 * can have before it gets flushed back to buddy allocator.
5729 */
5730
5731 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5732 void __user *buffer, size_t *length, loff_t *ppos)
5733 {
5734 struct zone *zone;
5735 unsigned int cpu;
5736 int ret;
5737
5738 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5739 if (!write || (ret < 0))
5740 return ret;
5741 for_each_populated_zone(zone) {
5742 for_each_possible_cpu(cpu) {
5743 unsigned long high;
5744 high = zone->managed_pages / percpu_pagelist_fraction;
5745 setup_pagelist_highmark(
5746 per_cpu_ptr(zone->pageset, cpu), high);
5747 }
5748 }
5749 return 0;
5750 }
5751
5752 int hashdist = HASHDIST_DEFAULT;
5753
5754 #ifdef CONFIG_NUMA
5755 static int __init set_hashdist(char *str)
5756 {
5757 if (!str)
5758 return 0;
5759 hashdist = simple_strtoul(str, &str, 0);
5760 return 1;
5761 }
5762 __setup("hashdist=", set_hashdist);
5763 #endif
5764
5765 /*
5766 * allocate a large system hash table from bootmem
5767 * - it is assumed that the hash table must contain an exact power-of-2
5768 * quantity of entries
5769 * - limit is the number of hash buckets, not the total allocation size
5770 */
5771 void *__init alloc_large_system_hash(const char *tablename,
5772 unsigned long bucketsize,
5773 unsigned long numentries,
5774 int scale,
5775 int flags,
5776 unsigned int *_hash_shift,
5777 unsigned int *_hash_mask,
5778 unsigned long low_limit,
5779 unsigned long high_limit)
5780 {
5781 unsigned long long max = high_limit;
5782 unsigned long log2qty, size;
5783 void *table = NULL;
5784
5785 /* allow the kernel cmdline to have a say */
5786 if (!numentries) {
5787 /* round applicable memory size up to nearest megabyte */
5788 numentries = nr_kernel_pages;
5789 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5790 numentries >>= 20 - PAGE_SHIFT;
5791 numentries <<= 20 - PAGE_SHIFT;
5792
5793 /* limit to 1 bucket per 2^scale bytes of low memory */
5794 if (scale > PAGE_SHIFT)
5795 numentries >>= (scale - PAGE_SHIFT);
5796 else
5797 numentries <<= (PAGE_SHIFT - scale);
5798
5799 /* Make sure we've got at least a 0-order allocation.. */
5800 if (unlikely(flags & HASH_SMALL)) {
5801 /* Makes no sense without HASH_EARLY */
5802 WARN_ON(!(flags & HASH_EARLY));
5803 if (!(numentries >> *_hash_shift)) {
5804 numentries = 1UL << *_hash_shift;
5805 BUG_ON(!numentries);
5806 }
5807 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5808 numentries = PAGE_SIZE / bucketsize;
5809 }
5810 numentries = roundup_pow_of_two(numentries);
5811
5812 /* limit allocation size to 1/16 total memory by default */
5813 if (max == 0) {
5814 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5815 do_div(max, bucketsize);
5816 }
5817 max = min(max, 0x80000000ULL);
5818
5819 if (numentries < low_limit)
5820 numentries = low_limit;
5821 if (numentries > max)
5822 numentries = max;
5823
5824 log2qty = ilog2(numentries);
5825
5826 do {
5827 size = bucketsize << log2qty;
5828 if (flags & HASH_EARLY)
5829 table = alloc_bootmem_nopanic(size);
5830 else if (hashdist)
5831 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5832 else {
5833 /*
5834 * If bucketsize is not a power-of-two, we may free
5835 * some pages at the end of hash table which
5836 * alloc_pages_exact() automatically does
5837 */
5838 if (get_order(size) < MAX_ORDER) {
5839 table = alloc_pages_exact(size, GFP_ATOMIC);
5840 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5841 }
5842 }
5843 } while (!table && size > PAGE_SIZE && --log2qty);
5844
5845 if (!table)
5846 panic("Failed to allocate %s hash table\n", tablename);
5847
5848 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5849 tablename,
5850 (1UL << log2qty),
5851 ilog2(size) - PAGE_SHIFT,
5852 size);
5853
5854 if (_hash_shift)
5855 *_hash_shift = log2qty;
5856 if (_hash_mask)
5857 *_hash_mask = (1 << log2qty) - 1;
5858
5859 return table;
5860 }
5861
5862 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5863 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5864 unsigned long pfn)
5865 {
5866 #ifdef CONFIG_SPARSEMEM
5867 return __pfn_to_section(pfn)->pageblock_flags;
5868 #else
5869 return zone->pageblock_flags;
5870 #endif /* CONFIG_SPARSEMEM */
5871 }
5872
5873 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5874 {
5875 #ifdef CONFIG_SPARSEMEM
5876 pfn &= (PAGES_PER_SECTION-1);
5877 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5878 #else
5879 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5880 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5881 #endif /* CONFIG_SPARSEMEM */
5882 }
5883
5884 /**
5885 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5886 * @page: The page within the block of interest
5887 * @start_bitidx: The first bit of interest to retrieve
5888 * @end_bitidx: The last bit of interest
5889 * returns pageblock_bits flags
5890 */
5891 unsigned long get_pageblock_flags_group(struct page *page,
5892 int start_bitidx, int end_bitidx)
5893 {
5894 struct zone *zone;
5895 unsigned long *bitmap;
5896 unsigned long pfn, bitidx;
5897 unsigned long flags = 0;
5898 unsigned long value = 1;
5899
5900 zone = page_zone(page);
5901 pfn = page_to_pfn(page);
5902 bitmap = get_pageblock_bitmap(zone, pfn);
5903 bitidx = pfn_to_bitidx(zone, pfn);
5904
5905 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5906 if (test_bit(bitidx + start_bitidx, bitmap))
5907 flags |= value;
5908
5909 return flags;
5910 }
5911
5912 /**
5913 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5914 * @page: The page within the block of interest
5915 * @start_bitidx: The first bit of interest
5916 * @end_bitidx: The last bit of interest
5917 * @flags: The flags to set
5918 */
5919 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5920 int start_bitidx, int end_bitidx)
5921 {
5922 struct zone *zone;
5923 unsigned long *bitmap;
5924 unsigned long pfn, bitidx;
5925 unsigned long value = 1;
5926
5927 zone = page_zone(page);
5928 pfn = page_to_pfn(page);
5929 bitmap = get_pageblock_bitmap(zone, pfn);
5930 bitidx = pfn_to_bitidx(zone, pfn);
5931 VM_BUG_ON(pfn < zone->zone_start_pfn);
5932 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5933
5934 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5935 if (flags & value)
5936 __set_bit(bitidx + start_bitidx, bitmap);
5937 else
5938 __clear_bit(bitidx + start_bitidx, bitmap);
5939 }
5940
5941 /*
5942 * This function checks whether pageblock includes unmovable pages or not.
5943 * If @count is not zero, it is okay to include less @count unmovable pages
5944 *
5945 * PageLRU check wihtout isolation or lru_lock could race so that
5946 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5947 * expect this function should be exact.
5948 */
5949 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5950 bool skip_hwpoisoned_pages)
5951 {
5952 unsigned long pfn, iter, found;
5953 int mt;
5954
5955 /*
5956 * For avoiding noise data, lru_add_drain_all() should be called
5957 * If ZONE_MOVABLE, the zone never contains unmovable pages
5958 */
5959 if (zone_idx(zone) == ZONE_MOVABLE)
5960 return false;
5961 mt = get_pageblock_migratetype(page);
5962 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5963 return false;
5964
5965 pfn = page_to_pfn(page);
5966 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5967 unsigned long check = pfn + iter;
5968
5969 if (!pfn_valid_within(check))
5970 continue;
5971
5972 page = pfn_to_page(check);
5973 /*
5974 * We can't use page_count without pin a page
5975 * because another CPU can free compound page.
5976 * This check already skips compound tails of THP
5977 * because their page->_count is zero at all time.
5978 */
5979 if (!atomic_read(&page->_count)) {
5980 if (PageBuddy(page))
5981 iter += (1 << page_order(page)) - 1;
5982 continue;
5983 }
5984
5985 /*
5986 * The HWPoisoned page may be not in buddy system, and
5987 * page_count() is not 0.
5988 */
5989 if (skip_hwpoisoned_pages && PageHWPoison(page))
5990 continue;
5991
5992 if (!PageLRU(page))
5993 found++;
5994 /*
5995 * If there are RECLAIMABLE pages, we need to check it.
5996 * But now, memory offline itself doesn't call shrink_slab()
5997 * and it still to be fixed.
5998 */
5999 /*
6000 * If the page is not RAM, page_count()should be 0.
6001 * we don't need more check. This is an _used_ not-movable page.
6002 *
6003 * The problematic thing here is PG_reserved pages. PG_reserved
6004 * is set to both of a memory hole page and a _used_ kernel
6005 * page at boot.
6006 */
6007 if (found > count)
6008 return true;
6009 }
6010 return false;
6011 }
6012
6013 bool is_pageblock_removable_nolock(struct page *page)
6014 {
6015 struct zone *zone;
6016 unsigned long pfn;
6017
6018 /*
6019 * We have to be careful here because we are iterating over memory
6020 * sections which are not zone aware so we might end up outside of
6021 * the zone but still within the section.
6022 * We have to take care about the node as well. If the node is offline
6023 * its NODE_DATA will be NULL - see page_zone.
6024 */
6025 if (!node_online(page_to_nid(page)))
6026 return false;
6027
6028 zone = page_zone(page);
6029 pfn = page_to_pfn(page);
6030 if (zone->zone_start_pfn > pfn ||
6031 zone->zone_start_pfn + zone->spanned_pages <= pfn)
6032 return false;
6033
6034 return !has_unmovable_pages(zone, page, 0, true);
6035 }
6036
6037 #ifdef CONFIG_CMA
6038
6039 static unsigned long pfn_max_align_down(unsigned long pfn)
6040 {
6041 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6042 pageblock_nr_pages) - 1);
6043 }
6044
6045 static unsigned long pfn_max_align_up(unsigned long pfn)
6046 {
6047 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6048 pageblock_nr_pages));
6049 }
6050
6051 /* [start, end) must belong to a single zone. */
6052 static int __alloc_contig_migrate_range(struct compact_control *cc,
6053 unsigned long start, unsigned long end)
6054 {
6055 /* This function is based on compact_zone() from compaction.c. */
6056 unsigned long nr_reclaimed;
6057 unsigned long pfn = start;
6058 unsigned int tries = 0;
6059 int ret = 0;
6060
6061 migrate_prep();
6062
6063 while (pfn < end || !list_empty(&cc->migratepages)) {
6064 if (fatal_signal_pending(current)) {
6065 ret = -EINTR;
6066 break;
6067 }
6068
6069 if (list_empty(&cc->migratepages)) {
6070 cc->nr_migratepages = 0;
6071 pfn = isolate_migratepages_range(cc->zone, cc,
6072 pfn, end, true);
6073 if (!pfn) {
6074 ret = -EINTR;
6075 break;
6076 }
6077 tries = 0;
6078 } else if (++tries == 5) {
6079 ret = ret < 0 ? ret : -EBUSY;
6080 break;
6081 }
6082
6083 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6084 &cc->migratepages);
6085 cc->nr_migratepages -= nr_reclaimed;
6086
6087 ret = migrate_pages(&cc->migratepages,
6088 alloc_migrate_target,
6089 0, false, MIGRATE_SYNC,
6090 MR_CMA);
6091 }
6092 if (ret < 0) {
6093 putback_movable_pages(&cc->migratepages);
6094 return ret;
6095 }
6096 return 0;
6097 }
6098
6099 /**
6100 * alloc_contig_range() -- tries to allocate given range of pages
6101 * @start: start PFN to allocate
6102 * @end: one-past-the-last PFN to allocate
6103 * @migratetype: migratetype of the underlaying pageblocks (either
6104 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6105 * in range must have the same migratetype and it must
6106 * be either of the two.
6107 *
6108 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6109 * aligned, however it's the caller's responsibility to guarantee that
6110 * we are the only thread that changes migrate type of pageblocks the
6111 * pages fall in.
6112 *
6113 * The PFN range must belong to a single zone.
6114 *
6115 * Returns zero on success or negative error code. On success all
6116 * pages which PFN is in [start, end) are allocated for the caller and
6117 * need to be freed with free_contig_range().
6118 */
6119 int alloc_contig_range(unsigned long start, unsigned long end,
6120 unsigned migratetype)
6121 {
6122 unsigned long outer_start, outer_end;
6123 int ret = 0, order;
6124
6125 struct compact_control cc = {
6126 .nr_migratepages = 0,
6127 .order = -1,
6128 .zone = page_zone(pfn_to_page(start)),
6129 .sync = true,
6130 .ignore_skip_hint = true,
6131 };
6132 INIT_LIST_HEAD(&cc.migratepages);
6133
6134 /*
6135 * What we do here is we mark all pageblocks in range as
6136 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6137 * have different sizes, and due to the way page allocator
6138 * work, we align the range to biggest of the two pages so
6139 * that page allocator won't try to merge buddies from
6140 * different pageblocks and change MIGRATE_ISOLATE to some
6141 * other migration type.
6142 *
6143 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6144 * migrate the pages from an unaligned range (ie. pages that
6145 * we are interested in). This will put all the pages in
6146 * range back to page allocator as MIGRATE_ISOLATE.
6147 *
6148 * When this is done, we take the pages in range from page
6149 * allocator removing them from the buddy system. This way
6150 * page allocator will never consider using them.
6151 *
6152 * This lets us mark the pageblocks back as
6153 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6154 * aligned range but not in the unaligned, original range are
6155 * put back to page allocator so that buddy can use them.
6156 */
6157
6158 ret = start_isolate_page_range(pfn_max_align_down(start),
6159 pfn_max_align_up(end), migratetype,
6160 false);
6161 if (ret)
6162 return ret;
6163
6164 ret = __alloc_contig_migrate_range(&cc, start, end);
6165 if (ret)
6166 goto done;
6167
6168 /*
6169 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6170 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6171 * more, all pages in [start, end) are free in page allocator.
6172 * What we are going to do is to allocate all pages from
6173 * [start, end) (that is remove them from page allocator).
6174 *
6175 * The only problem is that pages at the beginning and at the
6176 * end of interesting range may be not aligned with pages that
6177 * page allocator holds, ie. they can be part of higher order
6178 * pages. Because of this, we reserve the bigger range and
6179 * once this is done free the pages we are not interested in.
6180 *
6181 * We don't have to hold zone->lock here because the pages are
6182 * isolated thus they won't get removed from buddy.
6183 */
6184
6185 lru_add_drain_all();
6186 drain_all_pages();
6187
6188 order = 0;
6189 outer_start = start;
6190 while (!PageBuddy(pfn_to_page(outer_start))) {
6191 if (++order >= MAX_ORDER) {
6192 ret = -EBUSY;
6193 goto done;
6194 }
6195 outer_start &= ~0UL << order;
6196 }
6197
6198 /* Make sure the range is really isolated. */
6199 if (test_pages_isolated(outer_start, end, false)) {
6200 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6201 outer_start, end);
6202 ret = -EBUSY;
6203 goto done;
6204 }
6205
6206
6207 /* Grab isolated pages from freelists. */
6208 outer_end = isolate_freepages_range(&cc, outer_start, end);
6209 if (!outer_end) {
6210 ret = -EBUSY;
6211 goto done;
6212 }
6213
6214 /* Free head and tail (if any) */
6215 if (start != outer_start)
6216 free_contig_range(outer_start, start - outer_start);
6217 if (end != outer_end)
6218 free_contig_range(end, outer_end - end);
6219
6220 done:
6221 undo_isolate_page_range(pfn_max_align_down(start),
6222 pfn_max_align_up(end), migratetype);
6223 return ret;
6224 }
6225
6226 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6227 {
6228 unsigned int count = 0;
6229
6230 for (; nr_pages--; pfn++) {
6231 struct page *page = pfn_to_page(pfn);
6232
6233 count += page_count(page) != 1;
6234 __free_page(page);
6235 }
6236 WARN(count != 0, "%d pages are still in use!\n", count);
6237 }
6238 #endif
6239
6240 #ifdef CONFIG_MEMORY_HOTPLUG
6241 static int __meminit __zone_pcp_update(void *data)
6242 {
6243 struct zone *zone = data;
6244 int cpu;
6245 unsigned long batch = zone_batchsize(zone), flags;
6246
6247 for_each_possible_cpu(cpu) {
6248 struct per_cpu_pageset *pset;
6249 struct per_cpu_pages *pcp;
6250
6251 pset = per_cpu_ptr(zone->pageset, cpu);
6252 pcp = &pset->pcp;
6253
6254 local_irq_save(flags);
6255 if (pcp->count > 0)
6256 free_pcppages_bulk(zone, pcp->count, pcp);
6257 drain_zonestat(zone, pset);
6258 setup_pageset(pset, batch);
6259 local_irq_restore(flags);
6260 }
6261 return 0;
6262 }
6263
6264 void __meminit zone_pcp_update(struct zone *zone)
6265 {
6266 stop_machine(__zone_pcp_update, zone, NULL);
6267 }
6268 #endif
6269
6270 void zone_pcp_reset(struct zone *zone)
6271 {
6272 unsigned long flags;
6273 int cpu;
6274 struct per_cpu_pageset *pset;
6275
6276 /* avoid races with drain_pages() */
6277 local_irq_save(flags);
6278 if (zone->pageset != &boot_pageset) {
6279 for_each_online_cpu(cpu) {
6280 pset = per_cpu_ptr(zone->pageset, cpu);
6281 drain_zonestat(zone, pset);
6282 }
6283 free_percpu(zone->pageset);
6284 zone->pageset = &boot_pageset;
6285 }
6286 local_irq_restore(flags);
6287 }
6288
6289 #ifdef CONFIG_MEMORY_HOTREMOVE
6290 /*
6291 * All pages in the range must be isolated before calling this.
6292 */
6293 void
6294 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6295 {
6296 struct page *page;
6297 struct zone *zone;
6298 int order, i;
6299 unsigned long pfn;
6300 unsigned long flags;
6301 /* find the first valid pfn */
6302 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6303 if (pfn_valid(pfn))
6304 break;
6305 if (pfn == end_pfn)
6306 return;
6307 zone = page_zone(pfn_to_page(pfn));
6308 spin_lock_irqsave(&zone->lock, flags);
6309 pfn = start_pfn;
6310 while (pfn < end_pfn) {
6311 if (!pfn_valid(pfn)) {
6312 pfn++;
6313 continue;
6314 }
6315 page = pfn_to_page(pfn);
6316 /*
6317 * The HWPoisoned page may be not in buddy system, and
6318 * page_count() is not 0.
6319 */
6320 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6321 pfn++;
6322 SetPageReserved(page);
6323 continue;
6324 }
6325
6326 BUG_ON(page_count(page));
6327 BUG_ON(!PageBuddy(page));
6328 order = page_order(page);
6329 #ifdef CONFIG_DEBUG_VM
6330 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6331 pfn, 1 << order, end_pfn);
6332 #endif
6333 list_del(&page->lru);
6334 rmv_page_order(page);
6335 zone->free_area[order].nr_free--;
6336 for (i = 0; i < (1 << order); i++)
6337 SetPageReserved((page+i));
6338 pfn += (1 << order);
6339 }
6340 spin_unlock_irqrestore(&zone->lock, flags);
6341 }
6342 #endif
6343
6344 #ifdef CONFIG_MEMORY_FAILURE
6345 bool is_free_buddy_page(struct page *page)
6346 {
6347 struct zone *zone = page_zone(page);
6348 unsigned long pfn = page_to_pfn(page);
6349 unsigned long flags;
6350 int order;
6351
6352 spin_lock_irqsave(&zone->lock, flags);
6353 for (order = 0; order < MAX_ORDER; order++) {
6354 struct page *page_head = page - (pfn & ((1 << order) - 1));
6355
6356 if (PageBuddy(page_head) && page_order(page_head) >= order)
6357 break;
6358 }
6359 spin_unlock_irqrestore(&zone->lock, flags);
6360
6361 return order < MAX_ORDER;
6362 }
6363 #endif
6364
6365 static const struct trace_print_flags pageflag_names[] = {
6366 {1UL << PG_locked, "locked" },
6367 {1UL << PG_error, "error" },
6368 {1UL << PG_referenced, "referenced" },
6369 {1UL << PG_uptodate, "uptodate" },
6370 {1UL << PG_dirty, "dirty" },
6371 {1UL << PG_lru, "lru" },
6372 {1UL << PG_active, "active" },
6373 {1UL << PG_slab, "slab" },
6374 {1UL << PG_owner_priv_1, "owner_priv_1" },
6375 {1UL << PG_arch_1, "arch_1" },
6376 {1UL << PG_reserved, "reserved" },
6377 {1UL << PG_private, "private" },
6378 {1UL << PG_private_2, "private_2" },
6379 {1UL << PG_writeback, "writeback" },
6380 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6381 {1UL << PG_head, "head" },
6382 {1UL << PG_tail, "tail" },
6383 #else
6384 {1UL << PG_compound, "compound" },
6385 #endif
6386 {1UL << PG_swapcache, "swapcache" },
6387 {1UL << PG_mappedtodisk, "mappedtodisk" },
6388 {1UL << PG_reclaim, "reclaim" },
6389 {1UL << PG_swapbacked, "swapbacked" },
6390 {1UL << PG_unevictable, "unevictable" },
6391 #ifdef CONFIG_MMU
6392 {1UL << PG_mlocked, "mlocked" },
6393 #endif
6394 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6395 {1UL << PG_uncached, "uncached" },
6396 #endif
6397 #ifdef CONFIG_MEMORY_FAILURE
6398 {1UL << PG_hwpoison, "hwpoison" },
6399 #endif
6400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6401 {1UL << PG_compound_lock, "compound_lock" },
6402 #endif
6403 };
6404
6405 static void dump_page_flags(unsigned long flags)
6406 {
6407 const char *delim = "";
6408 unsigned long mask;
6409 int i;
6410
6411 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6412
6413 printk(KERN_ALERT "page flags: %#lx(", flags);
6414
6415 /* remove zone id */
6416 flags &= (1UL << NR_PAGEFLAGS) - 1;
6417
6418 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6419
6420 mask = pageflag_names[i].mask;
6421 if ((flags & mask) != mask)
6422 continue;
6423
6424 flags &= ~mask;
6425 printk("%s%s", delim, pageflag_names[i].name);
6426 delim = "|";
6427 }
6428
6429 /* check for left over flags */
6430 if (flags)
6431 printk("%s%#lx", delim, flags);
6432
6433 printk(")\n");
6434 }
6435
6436 void dump_page(struct page *page)
6437 {
6438 printk(KERN_ALERT
6439 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6440 page, atomic_read(&page->_count), page_mapcount(page),
6441 page->mapping, page->index);
6442 dump_page_flags(page->flags);
6443 mem_cgroup_print_bad_page(page);
6444 }
This page took 0.1631 seconds and 5 git commands to generate.